WO2021023019A1 - 电池组的热管理方法 - Google Patents

电池组的热管理方法 Download PDF

Info

Publication number
WO2021023019A1
WO2021023019A1 PCT/CN2020/103845 CN2020103845W WO2021023019A1 WO 2021023019 A1 WO2021023019 A1 WO 2021023019A1 CN 2020103845 W CN2020103845 W CN 2020103845W WO 2021023019 A1 WO2021023019 A1 WO 2021023019A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
thermal management
time
temperature
preset
Prior art date
Application number
PCT/CN2020/103845
Other languages
English (en)
French (fr)
Inventor
吴兴远
李艳茹
宋玉锐
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to ES20850104T priority Critical patent/ES2957805T3/es
Priority to EP20850104.9A priority patent/EP3919320B1/en
Publication of WO2021023019A1 publication Critical patent/WO2021023019A1/zh
Priority to US17/585,581 priority patent/US11498451B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/58Departure time prediction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the field of new energy, and in particular to a thermal management method of a battery pack.
  • the electric vehicle can operate normally, so thermal management of the battery pack is required.
  • the heating demand of electric vehicle cabins in winter is greater, and the cooling demand of electric vehicle cabins in summer also consumes more electricity, which will lead to a significant reduction in the range of battery vehicles.
  • the battery pack itself has thermal management requirements, if the power of the battery pack is used to perform thermal management on itself, the power consumption of the battery pack will be further increased.
  • This application provides a thermal management method for a battery pack to improve the cruising range of the battery pack.
  • the thermal management method of the battery pack includes:
  • thermal management start time is reached, thermal management is performed on the battery pack so that the temperature of the battery pack reaches the target temperature before the time when the power supply is to be reached.
  • the target temperature of the battery pack is determined by using the connection state of the charging interface of the electric vehicle and the charging device.
  • the charging interface When the charging interface is connected to the charging device, the battery pack can be heated by the charging device. Therefore, the target temperature of the battery pack can be set higher. If the charging port is not connected to the charging device, the target temperature of the battery pack can be set a little lower, so as to avoid reducing the power consumption of the battery pack as much as possible to improve the battery pack's range.
  • the battery pack can be thermally managed at the best time, and the power consumption of the battery pack is also avoided, and the battery pack's endurance is improved mileage.
  • FIG. 1 is a schematic flowchart of a first embodiment of a thermal management method for a battery pack provided by this application;
  • FIG. 2 is a schematic structural diagram of an embodiment of a thermal management system for a battery pack provided by this application;
  • FIG. 3 is a schematic flowchart of a second embodiment of a thermal management method for a battery pack provided by this application;
  • FIG. 4 is a schematic flowchart of a third embodiment of a thermal management method for a battery pack provided by this application;
  • FIG. 5 is a schematic flowchart of a fourth embodiment of a thermal management method for a battery pack provided by this application;
  • FIG. 6 is a schematic flowchart of a fifth embodiment of a thermal management method for a battery pack provided by this application;
  • FIG. 7 is a schematic flowchart of a sixth embodiment of a thermal management method for a battery pack provided by this application.
  • FIG. 8 is a schematic flowchart of a seventh embodiment of a thermal management method for a battery pack provided by this application.
  • FIG. 1 shows a schematic flowchart of a method 100 for thermal management of a battery pack provided by the present application.
  • the thermal management method of the battery pack provided by the present application includes the following steps:
  • S130 Determine the thermal management start time of the battery pack based on the target temperature of the battery pack and the time to be powered;
  • the standby time of the battery pack is the standby time of the electric vehicle and the standby time of the user.
  • the thermal management method of the battery pack provided in this application can be applied to the battery management system (Battery Management System, BMS) of the battery pack.
  • BMS Battery Management System
  • the target temperature of the battery pack is determined by using the connection state of the charging interface of the electric vehicle and the charging device.
  • the charging interface When the charging interface is connected to the charging device, the battery pack can be heated by the charging device.
  • the target temperature of the battery pack is set a little higher. If the charging port is not connected to the charging device, you can set the target temperature of the battery pack a bit lower to avoid reducing the power consumption of the battery pack as much as possible to improve the battery pack's mileage.
  • the battery pack can be preheated or pre-cooled at the best time, and the power consumption of the battery pack is also avoided, which improves the battery The mileage of the car.
  • the thermal management system of the electric vehicle includes a vehicle controller and a BMS.
  • the bidirectional arrow between the vehicle controller and the BMS means that the two can communicate in both directions.
  • the BMS may obtain the standby time of the battery pack from the vehicle controller.
  • step S110 after the vehicle controller detects that the electric vehicle stops running, that is, when the electric vehicle is at a standstill, the BMS controls the vehicle controller to send to the smart terminal whether there is a travel requirement. A prompt message. If the vehicle controller receives the feedback information sent by the smart terminal that the user has no travel requirements, the BMS will not act.
  • the BMS controls the vehicle controller to send second prompt information to the smart terminal whether there is a battery pack thermal management requirement.
  • the BMS will not act.
  • the BMS controls the vehicle controller to send the third prompt information to the smart terminal to set the waiting time for travel.
  • the two-way arrow between the vehicle controller and the smart terminal in Figure 2 represents that the two can communicate in two directions.
  • the vehicle controller determines whether the user sets the time to travel through the smart terminal. As an example, the vehicle controller may determine whether the user sets the waiting time to travel by whether the time information sent by the smart terminal is received within the preset time period t 0 .
  • the vehicle controller If the vehicle controller receives the waiting travel time set by the user returned by the smart terminal within the preset time period t 0 , the vehicle controller sends the waiting travel time set by the user to the BMS.
  • the BMS regards the received travel time as the standby time of the battery pack.
  • the vehicle controller analyzes the pre-recorded user’s travel habit information and road condition information for each trip, and calculates The travel time recommended to the user.
  • the vehicle controller sends the recommended travel time to the smart terminal. If the user accepts the recommended travel time through the smart terminal, the vehicle controller will use the recommended travel time as the standby time of the battery pack. If the user does not receive the recommended travel time, neither the vehicle controller nor the BMS will process it.
  • the BMS determines whether the battery pack has thermal management requirements. As an example, in step S120, the BMS may determine whether the battery pack has thermal management requirements according to the temperature of the battery pack.
  • the BMS first obtains the temperature T_bat of the battery pack, and then determines whether the battery pack has heat according to the temperature T_bat of the battery pack, the first preset temperature threshold, and the second preset temperature threshold. Management needs.
  • the first preset temperature threshold is determined based on the lowest operating temperature Temp1 of the battery pack, and the second preset temperature threshold is determined based on the highest operating temperature Temp2 of the battery pack.
  • Temp1 is smaller than Temp2.
  • the first preset temperature threshold is equal to the lowest operating temperature Temp1 of the battery pack
  • the second preset temperature threshold is equal to the highest operating temperature Temp2 of the battery pack.
  • the lowest operating temperature of the battery pack Temp1 refers to the lowest temperature of the battery pack when the electric vehicle can operate normally.
  • the maximum temperature of the battery pack Temp2 refers to the maximum temperature of the battery pack when the electric vehicle can operate normally.
  • Temp1 ⁇ T_bat ⁇ Temp2 it is determined that the battery pack has no thermal management requirements. If it is determined that the battery pack has no heat pipe demand, the BMS will re-acquire the temperature of the battery pack every preset time interval ⁇ t 0 , and continue to determine whether the battery pack has thermal management requirements based on the re-acquired temperature of the battery pack, Temp1 and Temp2 .
  • thermal management requirements of the battery pack include cooling requirements and heating requirements. If T_bat ⁇ Temp1, the BMS determines that the battery pack has a heating requirement; if T_bat ⁇ Temp2, the BMS determines that the battery pack has a cooling requirement.
  • step S120 after the BMS determines that the battery pack has thermal management requirements, it determines the target temperature of the battery pack according to the connection state of the charging interface of the electric vehicle and the charging device.
  • the charging device may be a charging pile.
  • the BMS determines that the battery pack has a thermal management requirement, whether it is a heating requirement or a cooling requirement, it will determine whether the charging interface and the charging device of the electric vehicle are in a connected state.
  • the BMS can determine whether the charging interface of the electric vehicle is connected to the charging device by determining whether it receives a wake-up signal sent by the charging device to indicate that it has established a connection with the charging interface of the electric vehicle. If the BMS receives the wake-up signal sent by the charging device, the BMS determines that the charging device and the charging interface of the electric vehicle are in a connected state. If the BMS does not receive the wake-up signal sent by the charging device, the BMS determines that the charging device and the charging interface of the electric vehicle are in Not connected.
  • step S120 if the battery pack has a thermal management requirement (whether it is a heating requirement or a cooling requirement), and the charging interface of the electric vehicle is connected to the charging device, the target temperature is set as the third preset temperature threshold.
  • the target temperature is set as the fourth preset temperature threshold.
  • the target temperature is set to the fifth preset temperature threshold.
  • the fourth preset temperature threshold is less than the third preset temperature threshold
  • the third preset temperature threshold is less than the fifth preset temperature threshold
  • the third preset temperature threshold is the optimal operating temperature Temp3 of the battery pack
  • the fourth preset temperature threshold is equal to the lowest operating temperature Temp1 of the battery pack
  • the fifth preset temperature threshold is equal to the highest operating temperature Temp2 of the battery pack.
  • the battery pack when the battery pack has thermal management requirements, whether it is heating or cooling, as long as the charging interface of the electric vehicle is connected to the charging device, the battery pack can be thermally managed by the charging device to avoid battery damage The power consumption of the battery pack, so the target temperature of the battery pack can be set as the optimal working temperature Temp3 of the battery pack.
  • the battery pack has heating requirements, but the charging interface of the electric vehicle is not connected to the charging device, it may be necessary to use the battery pack’s own power to perform thermal management on the battery pack.
  • the battery The target temperature of the group is heated to the lowest working temperature so that the electric vehicle can start and run.
  • the target temperature of the battery pack is reduced to the maximum working temperature of the battery pack, so that the electric vehicle It can be up and running.
  • the target temperature of the battery pack is intelligently and reasonably set according to the connection status of the charging interface of the electric vehicle and the charging device, so as to avoid consuming the power of the battery pack as much as possible. Improve the range of the battery pack.
  • the type of thermal management requirements of the battery pack and the connection status of the charging interface of the electric vehicle and the charging device will not only affect the setting of the target temperature of the battery pack, but also affect the calculation of the thermal management start time.
  • the following will introduce the calculation process of the thermal management start time according to different scenarios.
  • Scenario 1 The battery pack has heating requirements, and the charging interface of the electric vehicle is connected to the charging device.
  • the BMS determines whether the charging device has the function of heating the battery pack.
  • the charging device When the charging device is connected to the charging interface of the electric vehicle, the charging device will automatically report its performance information to the BMS.
  • the BMS can determine whether the charging device has a heating function according to the heating identification information in the performance information reported by the charging device.
  • the performance information reported by the charging device may also include information such as power information, the model of the charging device, and the type of charging current.
  • the heating identification information reported by the charging device can indicate whether the charging device has a heating function, so the BMS can determine whether the charging device has a heating function based on the received heating identification information of the charging device.
  • step S130 includes step A1 to step A5.
  • Step A1 The BMS obtains the current temperature of the battery pack and the heating rate of the charging device (ie, the first heating rate).
  • the BMS can obtain the first heating rate according to the acquired current state parameters of the battery pack and the corresponding relationship between the pre-saved battery pack state parameters and the heating rate.
  • the first heating rate may also be a heating rate preset by the BMS.
  • Step A2 Based on the obtained heating rate v 1 of the charging device, the third preset temperature threshold, and the obtained current temperature T 0 of the battery pack, the BMS calculates the temperature required for the battery pack to reach the third preset temperature threshold from the current temperature Duration t 1 .
  • the ambient temperature T_env of the electric vehicle needs to be obtained first.
  • the BMS can directly obtain the ambient temperature of the electric vehicle from the temperature sensor that measures the ambient temperature of the electric vehicle.
  • the BMS can also receive the environmental temperature of the electric vehicle from the vehicle controller, and the vehicle controller can obtain the environmental temperature of the electric vehicle from the environmental temperature sensor set on the vehicle.
  • the third preset temperature threshold is equal to the optimal operating temperature Temp3 of the battery pack, then t 1 can be calculated using the following expression:
  • v 2 is the heat transfer rate obtained by the BMS
  • ⁇ 1 is the preset first correction coefficient
  • ⁇ 2 is the preset second correction coefficient.
  • the BMS can determine the heat transfer rate v 2 according to the pre-stored corresponding relationship between the temperature range and the heat transfer rate, which will not be repeated here.
  • Step A3 the BMS obtains the current state of charge (SOC) of the battery pack, and calculates the charging time t 2 of the battery pack based on the current SOC of the battery pack and the preset target SOC of the battery pack.
  • SOC state of charge
  • the BMS can use a known charging time calculation method to calculate the charging time of the battery pack, which will not be repeated here.
  • Step A4 The BMS obtains the current time, and determines whether the first time difference between the first time and the current time meets the preset thermal management start time determination condition.
  • the first time is before the time to supply power of the battery pack, and the time length between the first time and the time to supply power is equal to t 1 +t 2 .
  • the time to supply power is 14:00 on July 19, 2019, t 1 is equal to 10 minutes, and t 2 is equal to 20 minutes, and the first moment is 13:30 on July 19, 2019.
  • the first moment is the estimated thermal management starting moment. If the time difference between the estimated thermal management starting moment and the current moment meets the preset thermal management starting moment determination conditions, the first moment is determined as the final The thermal management start time. If the time difference between the estimated thermal management start time and the current time does not meet the preset thermal management start time determination condition, t 1 + t 2 is recalculated to re-estimate the thermal management start time.
  • the preset thermal management start time determination condition is that the first time difference is less than the preset duration threshold.
  • step A5 is entered. If the first time difference does not meet the preset thermal management start time determination condition, then after the second preset time interval ⁇ t 1 , return to step A1.
  • the current temperature of the battery pack is updated, and the current temperature of the battery pack is obtained based on the newly acquired current temperature of the battery pack.
  • Step A5 use the first moment as the thermal management start moment.
  • the two-way arrow between the charging device and the BMS indicates that two-way communication is possible between the two.
  • the charging device is connected to the charging interface (not shown in Figure 2) of the electric vehicle.
  • the charging interface of the electric vehicle is connected to the positive electrode of the battery pack through the series-connected positive electrode switch K1 and heating switch K3.
  • the charging interface of the electric vehicle is also connected through the series connection
  • the negative charging switch K2 and the heating switch K4 are connected to the negative electrode of the battery pack.
  • step S140 includes step B1 to step B5.
  • Step B1 When the BMS determines that the thermal management start time is reached, the BMS controls the positive charging switch K1, the negative charging switch K2, the heating switch K3, and the heating switch K4 to close, and sends the heating including the heating parameters corresponding to the heating rate of the charging device Request to charging device.
  • the charging device may have a pulse heating function.
  • the BMS can determine the pulse current signal parameter corresponding to the heating rate of the charging device according to the corresponding relationship between the pre-stored pulse current signal parameter and the heating rate.
  • the BMS can send pulse current signal parameters corresponding to the heating rate of the charging device to the charging device.
  • the pulse current signal parameters include the frequency of the pulse current signal and the duty cycle of the pulse current signal.
  • the duty cycle of the pulse current signal refers to the ratio of the time when the current direction is in the positive direction to one cycle of the pulse current.
  • the charging device After the charging device receives the pulse current signal parameter for pulse heating of the battery pack, the charging device provides the pulse current having the above pulse current signal parameter.
  • the charging device and the battery pack form a pulse heating circuit.
  • the internal resistance of the battery pack itself can generate heat, thereby heating the battery pack.
  • the charging device may also use other heating methods to heat the battery pack, which is not limited herein.
  • Step B2 When the temperature of the battery pack is equal to the third preset temperature threshold, the charging device is controlled to charge the battery pack until the SOC of the battery pack reaches the target SOC.
  • the BMS While the charging device is heating the battery pack, the BMS monitors the temperature of the battery pack in real time, and if the temperature of the battery pack reaches the third preset temperature threshold, it stops thermal management of the battery pack.
  • the BMS sends a charging request including the charging current to the charging device, and controls the charging device to charge the battery pack with the charging current until the SOC of the battery pack reaches the preset target SOC.
  • step B3 when the power of the battery pack reaches the preset target power, it is determined whether the power supply time is reached. If the time to be powered is reached, proceed to step B4; if the time to be powered is not reached, proceed to step B5.
  • Step B4 if the electric vehicle is still in a stationary state, return to step S110; if the electric vehicle starts, stop thermal management of the battery pack.
  • the BMS controls the positive charging switch K1 and the negative charging switch K2 to disconnect, and re-acquires the waiting time of the battery pack, namely Return to step S110. If the electric vehicle is in the starting state at the time to supply power, it means that the user travels on time, and the BMS controls the positive charging switch K1 and the negative charging switch K2 to disconnect to stop thermal management of the battery pack.
  • Step B5 maintaining the temperature of the battery pack at a third preset temperature threshold.
  • the BMS monitors the temperature of the battery pack in real time. If the temperature of the battery pack is equal to the third preset temperature If the temperature difference between the thresholds meets the preset thermal management start condition, a heating request is sent to the charging device to control the charging device to heat the battery pack until the temperature of the battery pack reaches the target temperature. If the temperature of the battery pack reaches the target temperature, the BMS controls the positive charging switch K1 and the negative charging switch K2 to turn off to stop thermal management of the battery pack so as to maintain the temperature of the battery pack at the target temperature.
  • the preset thermal management activation condition is that the difference between the target temperature minus the temperature of the battery pack is greater than the preset temperature difference threshold.
  • BMS determines that the charging device does not have a heating function.
  • the charging device does not have the function of heating the battery pack, at least one of the following methods can be used to heat the battery pack:
  • the self-heating function of the battery pack heats the battery pack, the waste heat generated by the electric motor in the electric vehicle heats the battery pack, and the energy obtained by the motor from the charging device heats the battery pack.
  • the thermal management system of the battery pack also includes a switch K5 connected to the heating switch K3, a switch K6 connected to the heating switch K4, a switch drive component J connected to the switches K5 and K6, and a switch drive component J
  • the connected motor M and the motor controller (not shown in Figure 2), the switch drive assembly J and the motor controller are all located in the inverter.
  • the switch driving component J includes power switch devices J1 to J6, and each power switch device has a corresponding parasitic diode.
  • the switch K5 and the switch K6 are connected to the BMU (not shown in Figure 2).
  • the power switching devices J1 to J6 are all connected to the motor controller (not shown in Figure 2).
  • the switch drive assembly J includes a first phase bridge arm, a second phase bridge arm and a third phase bridge arm connected in parallel.
  • the first phase bridge arm, the second phase bridge arm and the third phase bridge arm all have an upper bridge arm and a lower bridge arm, and each upper bridge arm is provided with a power switch device, and each lower bridge arm is also provided with power Switching device.
  • the first-phase bridge arm is a U-phase bridge arm
  • the second-phase bridge arm is a V-phase bridge arm
  • the third-phase bridge arm is a W-phase bridge arm.
  • the switching unit of the upper bridge arm of the U-phase bridge arm is a power switching device J1
  • the lower bridge arm of the U-phase bridge arm is provided with a power switching device J2.
  • the switching unit of the upper bridge arm of the V-phase bridge arm is the power switching device J3
  • the switching unit of the lower bridge arm of the V-phase bridge arm is the power switching device J4.
  • the switching unit of the upper bridge arm of the W-phase bridge arm is the power switching device J5, and the switching unit of the lower bridge arm of the W-phase bridge arm is the power switching device J6.
  • the stator of the motor M is equivalent to a three-phase stator inductance, that is, the stator inductance L1, the stator inductance L3, and the stator inductance L5.
  • Each phase stator inductance is connected to a phase bridge arm, and the stator inductance has the function of energy storage and discharge.
  • one end of stator inductance L1, one end of stator inductance L3 and one end of stator inductance L5 are connected to a common end.
  • the first phase input end, the second phase input end, and the third phase input end of the motor M are respectively connected to the upper and lower bridge arms in the first phase bridge arm, and the upper and lower bridge arms in the second phase bridge arm.
  • the connection point of the bridge arm is connected to the connection point of the upper bridge arm and the lower bridge arm in the third phase bridge arm.
  • the non-common terminal of the stator inductance L1 is the first phase input terminal
  • the non-common terminal of the stator inductance L3 is the second phase input terminal
  • the non-common terminal of the stator inductance L5 is the third phase input terminal.
  • the BMU determines that the battery pack needs to be heated
  • the BMU sends a battery heating request to the vehicle controller.
  • the vehicle controller sends a battery heating command to the motor controller according to the battery heating request.
  • the motor controller establishes communication with the BMU after receiving the battery heating command.
  • the BMU controls the heating switch K3, the heating switch K4, the switch K5, and the switch K6 to close, and controls the motor controller to provide drive signals for the target upper-arm power switch device and the target lower-arm power switch device to control the target upper bridge
  • the arm power switch device and the target lower arm power switch device are turned on and off periodically.
  • the driving signal may specifically be a pulse signal.
  • a high level in the drive signal can drive the power switch device to turn on, and a low level signal in the drive signal can drive the power switch device to turn off.
  • the driving signal can control the target upper-arm power switch device and the target lower-arm power switch device to periodically turn on and off.
  • the target upper-arm power switching device is the upper-arm power switching device of any one of the first phase, second-phase, and third-phase bridge arms
  • the target lower-arm power switching device is The power switching device of the lower bridge arm of at least one bridge arm outside the bridge arm where the target upper bridge arm power switching device is located.
  • the driving signal drives the target upper-arm power switch device and the target lower-arm power switch device to periodically turn on and off, so that the battery pack, heating switch K3, switch K5, target upper-arm power switch device, motor M, Alternating current is generated in the loop formed by the target lower arm power switching device, switch K6, and heating switch K4.
  • an alternating sine wave current can be generated. That is, the battery pack is charged and discharged alternately, which can generate continuous alternating excitation current in the high-voltage circuit where the battery pack is located, and the alternating current flows continuously through the battery pack, causing the internal resistance of the battery pack to heat up, thereby heating the battery from the inside.
  • the following describes the process of heating the battery pack by the heat generated by the motor in the electric vehicle.
  • the thermal management system of the electric vehicle also includes the thermal management system of the battery pack, the cooling system of the motor, and the air conditioning system.
  • the thermal management system of the battery pack includes a water pump 1, a heat exchange plate and a first heat exchanger connected in series.
  • the motor cooling system includes a motor radiator, a motor heat exchange device and a water pump 2 connected in series.
  • the cooling system of the motor and the thermal management system of the battery pack are connected through the second heat exchanger.
  • the first port of the second heat exchanger is connected to the water pump 1
  • the second port of the second heat exchanger is connected to the water pump 2
  • the third port of the second heat exchanger is connected to the first heat exchanger.
  • the fourth port is connected to the motor radiator.
  • the BMU controls the water pump 2, the water pump 1 and the second heat exchanger to be turned on, and the motor heat exchange device absorbs the heat generated by the motor into the coolant of the motor cooling system.
  • the cooling liquid that absorbs heat in the motor cooling system flows to the second heat exchanger, the second heat exchanger transfers the heat in the cooling liquid in the motor cooling system to the cooling liquid in the battery management system.
  • the heat exchange plate transfers the heat to the battery pack, so as to use the waste heat generated by the motor to heat the battery pack.
  • the thermal management system of an electric vehicle also includes an air conditioning system.
  • the air conditioning system includes a first evaporator, a compressor, a condenser and an expansion valve TXV1 connected in series.
  • the air conditioning system also includes an expansion valve TXV2 and a second evaporator connected in series.
  • the second evaporator is connected to the common port of the first evaporator and the compressor, and the expansion valve TXV2 is connected to the common port of the expansion valve TXV1 and the condenser.
  • the first evaporator is connected with the first heat exchanger, and is used for absorbing the heat transferred by the first heat exchanger to cool the battery pack.
  • the BMU controls the expansion valve TXV1, expansion valve TXV2, and water pump 1 to be open, and controls the compressor to be on, then the heat generated by the battery pack is transferred to the battery pack thermal management system through the heat exchange plate In the coolant.
  • the first evaporator absorbs the heat transferred by the first heat exchanger, and the first evaporator, compressor, condenser and expansion valve TXV1 form a cooling circuit for the battery The group is cooled.
  • the second evaporator, compressor, condenser and expansion valve TXV2 can form a cooling circuit to cool the passenger compartment of the electric vehicle.
  • the following describes the implementation process of heating the battery pack using the energy obtained by the motor from the charging device.
  • the BMS controls the positive charging switch K1, the negative charging switch K2, the switch K5, and the switch K6 to close, and controls the heating switch K3 and the heating switch K4 to open, and controls the motor controller to provide the switch drive assembly J
  • the driving signal makes the target upper-arm power switch device and the target lower-arm power switch device conduct, so that the motor obtains energy from the charging device, even if the stator inductance of the motor stores energy.
  • the BMS controls the positive charging switch K1 and the negative charging switch K2 to open, and controls the switch K5, switch K6, heating switch K3, and heating switch K4 to close, and controls the motor controller to provide the switch drive component J
  • the drive signal is used to disconnect the target high-side power switch device and the target low-side power switch device.
  • stator inductance corresponding to the target upper-arm power switch device the parasitic diode of the target upper-arm power switch device, switch K5, heating switch K3, battery pack, heating switch K4, switch K6, and the parasitic of the target lower-arm power switch device
  • the diode and the stator inductance corresponding to the target lower-arm power switch device form the charging circuit of the battery pack, so that the energy stored in the motor heats the battery pack.
  • step S130 includes step A1' to step A5.
  • Step A1' judging whether the acquired current SOC of the battery pack meets the preset self-heating condition.
  • step A2' If the current SOC of the battery pack meets the preset self-heating condition, then go to step A2'; if the current SOC of the battery pack does not meet the preset self-heating condition, then go to step A2''.
  • the preset self-heating condition is that the current SOC of the battery pack is greater than the preset SOC threshold.
  • Step A2' based on the acquired second heating rate, the acquired third heating rate, the third preset temperature threshold, and the acquired current temperature of the battery pack, calculate the temperature of the battery pack from the current temperature to the third preset temperature threshold.
  • the required time length t 1 based on the acquired second heating rate, the acquired third heating rate, the third preset temperature threshold, and the acquired current temperature of the battery pack.
  • the self-heating function of the battery pack can be used to heat the battery pack.
  • the motor when the battery pack is self-heating, the motor generates heat, so the waste heat of the motor can also be used to heat the battery pack.
  • the battery pack self-heating function when the battery pack self-heating function is turned on, the motor cooling system and the battery pack thermal management system can also be turned on at the same time, so as to use the waste heat of the motor to heat the battery pack.
  • the self-heating rate of the battery pack corresponding to the current battery pack state parameter may be obtained according to the correspondence between the pre-stored battery pack state parameter and the battery pack self-heating rate.
  • the corresponding relationship between the pre-stored battery pack state parameter and the heating rate of the waste heat of the motor may be used to obtain the heating rate of the waste heat of the motor corresponding to the current battery pack state parameter.
  • Step A2'' based on the acquired fourth heating rate, the acquired fifth heating rate, the third preset temperature threshold and the acquired current temperature of the battery pack, calculate the temperature of the battery pack from the current temperature to the third preset temperature threshold The required duration t 1 .
  • the current SOC of the battery pack does not meet the self-heating condition, it means that the current remaining power of the battery pack is small, and the self-heating of the battery pack is not supported, and the energy obtained by the motor from the charging device can be used Heat the battery pack.
  • the motor uses the stored energy to heat the battery pack, the motor also generates waste heat. Therefore, the waste heat of the motor can also be used to heat the battery pack.
  • the fourth heating rate and the fifth heating rate can be pre-stored, or can be queried based on the correspondence between the pre-stored battery pack state parameter and the heating rate, which is not specifically limited here. .
  • step A3 is entered.
  • Step A3 the BMS obtains the current SOC of the battery pack, and calculates the charging time t 2 of the battery pack based on the current SOC of the battery pack and the preset target SOC of the battery pack.
  • Step A4 The BMS obtains the current time, and determines whether the first time difference between the first time and the current time meets the preset thermal management start time determination condition.
  • step A5 is entered.
  • step A2 Under the condition that the current SOC of the battery pack satisfies the preset self-heating condition, if the first time difference does not meet the preset thermal management start time determination condition, then after the second preset time interval ⁇ t 1 , return to step A2 '.
  • step A2' only the current temperature of the battery pack needs to be reacquired, and the remaining parameters may not need to be reacquired. Then use the updated current temperature of the battery pack to update t 1 and t 2 until the thermal management start time of the battery pack is obtained.
  • step A2 only the current temperature of the battery pack needs to be re-acquired, and the remaining parameters do not need to be re-acquired. Then use the updated current temperature of the battery pack to update t 1 and t 2 until the battery is obtained The thermal management start time of the group.
  • Step A5 use the first moment as the thermal management start moment.
  • step S140 includes step B1' and step B2 to step B5.
  • step S140 includes step B1' and step B2 to step B5.
  • step B1' the BMS controls the switch drive component of the motor in the electric vehicle to be in the on state and the off state periodically to realize the heating of the battery pack and the connection between the cooling system of the motor and the thermal management system of the battery pack, The waste heat generated by the motor is used to heat the battery pack.
  • the BMS controls the heating switch K3, the heating switch K4, the switch K5, and the switch K6 to close, and controls the motor controller to provide a drive signal for the switch drive component J to control the switch of the motor in the electric vehicle
  • the driving component J is in the on state and the off state periodically to achieve heating of the battery pack.
  • BMS controls the heating switch K3, heating switch K4, switch K5, and switch K6 to be closed, while controlling the water pump 1, water pump 2 and the second heat exchanger to be in the open state, so as to realize the connection between the motor cooling system and the battery pack thermal management system , To realize the use of waste heat generated by the motor in the self-heating process to heat the battery pack.
  • Step B1 the BMS controls the motor to use the charging equipment for energy storage, and controls the motor to use its own stored energy to heat the battery pack, and controls the motor’s cooling system to communicate with the battery pack’s thermal management system to realize the use of the waste heat generated by the motor.
  • the battery pack is heated.
  • the BMS first controls the positive charging switch K1, the negative charging switch K2, the switch K5, and the switch K6 to be closed, and controls the heating switch K3 and the heating switch K4 to open, and controls the motor controller to provide driving signals to the switch drive assembly J.
  • the BMS controls the water pump 1, the water pump 2 and the second heat exchanger to be in the on state to realize the connection between the motor cooling system and the battery pack thermal management system, so as to use the energy stored by the motor to heat the battery pack. Waste heat heats the battery pack.
  • the BMS controls the positive electrode switch K1 and the negative electrode switch K2 to open, and controls the switch K5, switch K6, heating switch K3, and heating switch K4 to close, and controls the motor controller to drive the switch drive assembly J Signal to disconnect the target upper-arm power switch device from the target lower-arm power switch device, so that the energy stored in the motor heats the battery pack.
  • Step B2 When the temperature of the battery pack is equal to the third preset temperature threshold, the charging device is controlled to charge the battery pack until the SOC of the battery pack reaches the target SOC.
  • step B3 when the power of the battery pack reaches the preset target power, it is determined whether the power supply time is reached. If the time to be powered is reached, proceed to step B4; if the time to be powered is not reached, proceed to step B5.
  • Step B4 if the electric vehicle is still in a stationary state, return to step S110; if the electric vehicle starts, stop thermal management of the battery pack.
  • the battery pack when the battery pack is heated by the battery self-heating function, if the electric vehicle is still at a standstill at the time to be powered, it means that the user has not traveled according to the set time, and the BMS controls
  • the heating switch K3, the heating switch K4, the switch K5, and the switch K6 are all turned off, and the standby time of the battery pack is obtained again, that is, the step S110 is returned.
  • Step B5 maintaining the temperature of the battery pack at a third preset temperature threshold.
  • the BMS monitors the temperature of the battery pack in real time. If the temperature difference between the temperature of and the third preset temperature threshold meets the preset thermal management on condition, the battery pack is re-heated to maintain the temperature of the battery pack at the third preset temperature threshold. When the temperature of the battery pack reaches the third preset temperature threshold, return to step B3 until the time to supply power is reached under the third preset temperature threshold.
  • the temperature of the battery pack may change during the process of charging the battery pack by the charging device. Therefore, the temperature of the battery pack can also be obtained in real time during the process of charging the battery pack. If the temperature difference between the temperature of the battery pack and the target temperature meets the preset thermal management on condition, the charging device is controlled to stop charging the battery pack.
  • the BMS determines whether the power of the battery pack reaches the preset target power.
  • step B3 is executed to realize that the battery pack reaches the preset target SOC at the target temperature. If the SOC of the battery pack does not reach the preset target SOC, thermal management of the battery pack is performed again to achieve the heating of the battery pack to the target temperature until the SOC of the battery pack reaches the target SOC at the target temperature.
  • the temperature of the battery pack decreases during the process of heating the battery pack by the charging device, stop charging the battery pack and reheat the battery pack so as to charge the battery pack at the target temperature as much as possible.
  • step A2 in order to adapt to the above-mentioned thermal management scenario of charging and thermal management interval, and at the same time to ensure that the thermal management of the battery pack and the charging of the battery pack are completed before the power supply time arrives, so in step A2, step A2' And in step A2", when calculating the time required for the temperature of the battery pack to reach the target temperature from the current temperature, a preset margin time period t s may be added. Among them, t s can be determined according to empirical values.
  • t 1 can be calculated using the following expression:
  • Scenario 2 The battery pack has cooling requirements, and the charging interface of the electric vehicle is in a connected state with the charging device.
  • the target temperature of the battery pack can also be set to the third preset temperature threshold.
  • step S130 includes step A1" to step A5.
  • Step A1 the BMS obtains the current temperature and cooling rate of the battery pack.
  • the cooling rate of the battery pack by the air conditioning system may be a preset cooling rate, or it may be obtained according to the corresponding relationship between the battery pack state parameter and the cooling rate, which is not limited here.
  • Step A2"' the BMS calculates the time period t 1 required for the temperature of the battery pack to reach the third preset temperature threshold from the current temperature based on the acquired cooling rate, the third preset temperature threshold and the acquired current temperature T 0 of the battery pack .
  • Step A3 the BMS calculates the charging time t 2 of the battery pack based on the acquired current SOC of the battery pack and the preset target SOC.
  • Step A4 The BMS obtains the current time, and determines whether the first time difference between the first time and the current time meets the preset thermal management start time determination condition.
  • the first time is before the time to supply power of the battery pack, and the time length between the first time and the time to supply power is equal to t 1 +t 2 .
  • step A5 is entered.
  • Step A5 use the first moment as the thermal management start moment.
  • step A1 that is, update the temperature of the battery pack, and based on the newly acquired battery pack temperature
  • the current temperature updates t 1 and t 2 until the thermal management start time of the battery pack is obtained.
  • step S140 includes step B1"' to step B5.
  • Step B1"' if the thermal management start time is reached, the charging device is controlled to supply power to the compressor corresponding to the battery pack, so that the compressor cools the battery pack.
  • the BMS determines that the thermal management start time is reached, the BMS controls the switch K7 and the switch K8 to close, the voltage output by the charging device is converted into a voltage for the stable operation of the compressor through the voltage converter, and the expansion valve TXV1 and the expansion valve TXV2 are controlled to open .
  • the air conditioning system can cool the battery pack.
  • Step B2 When the temperature of the battery pack is equal to the third preset temperature threshold, the charging device is controlled to charge the battery pack until the SOC of the battery pack reaches the target SOC.
  • the BMS monitors the temperature of the battery pack in real time.
  • the BMS controls the switch K7 and the switch K8 to turn off to stop cooling the battery pack.
  • the BMS controls the positive charging switch K1, the negative charging switch K2, the heating switch K3, and the heating switch K4 to close, and sends a charging request including the charging current to the charging device, and controls the charging device to charge the battery pack with the charging current until the battery The group's SOC reaches the preset target SOC.
  • step B3 when the power of the battery pack reaches the preset target power, it is determined whether the power supply time is reached. If the time to be powered is reached, proceed to step B4; if the time to be powered is not reached, proceed to step B5.
  • Step B4 if the electric vehicle is still in a stationary state, return to step S110; if the electric vehicle starts, stop thermal management of the battery pack.
  • the BMS controls switches K1 to K8 to be turned off, and the standby time of the battery pack is retrieved again, that is, return to step S110 . If the electric vehicle is in the starting state at the time to be powered, it means that the user travels on time, and the BMS controls the switches K1 to K8 to be turned off to stop the thermal management of the battery pack.
  • Step B5 maintaining the temperature of the battery pack at a third preset temperature threshold.
  • the BMS monitors the temperature of the battery pack in real time. If the temperature of the battery pack is equal to the third preset temperature The temperature difference between the thresholds satisfies the preset thermal management opening condition, the control switch K7 and the switch K8 are closed, and the expansion valve TXV1 and the expansion valve TXV2 are controlled to be opened to cool the battery pack again. If the temperature of the battery pack reaches the target temperature, the BMS controls the switch K7 and the switch K8 to be turned off to stop the thermal management of the battery pack, so as to maintain the temperature of the battery pack at the target temperature.
  • the preset thermal management activation condition is that the temperature of the battery pack minus the third preset temperature threshold is greater than the preset temperature difference threshold.
  • Scenario 3 The battery pack has heating requirements, and the charging interface of the electric vehicle is not connected to the charging device.
  • the electric vehicle since the electric vehicle is not connected to the charging pile, it can only use the self-heating function of the battery pack and the waste heat generated by the motor during the self-heating process to heat the battery pack. Since an external charging device cannot be used to heat the battery pack, the target temperature of the battery pack is set as the fourth preset temperature threshold.
  • the fourth preset temperature threshold is the lowest operating temperature Temp1 of the battery pack.
  • the BMS needs to control the vehicle controller to send the current remaining SOC and the SOC required for thermal management to the smart terminal, and send Whether to use the remaining SOC of the battery pack for thermal management.
  • the BMS will not act. If the user chooses to perform thermal management on the battery pack, the BMS will receive the user's heating command from the vehicle controller.
  • step S130 includes step C1 to step C4.
  • Step C1 Receive a heating instruction from the user, and obtain the current temperature of the battery pack and the fourth preset temperature threshold.
  • Step C2 based on the acquired current temperature of the battery pack and the fourth preset temperature threshold, calculate the heating time t 3 required for the temperature of the battery pack to increase from the current temperature to the fourth preset temperature threshold.
  • the BMS can obtain the self-heating rate of the battery pack, the heating rate of the motor waste heat during the self-heating process, the fourth preset temperature threshold and the current temperature of the battery pack, and calculate the heating time t 3 .
  • the specific calculation method can be calculated using a similar idea to the formula (1), which will not be repeated here.
  • Step C3 It is determined whether the second time difference between the second time and the acquired current time meets the preset thermal management start time determination condition.
  • step C4 is entered.
  • the second moment is also the estimated starting moment of thermal management.
  • Step C4 the second time is used as the thermal management start time.
  • the second time is before the time to be powered, and the length of time between the second time and the time to be powered is equal to t 3 .
  • step C1 If the second time difference does not meet the preset thermal management start-up time determination condition, after the third preset time interval ⁇ t 2 , return to step C1.
  • the current temperature of the battery pack is updated, and is updated based on the re-acquired current temperature of the battery pack t 3 , until the thermal management start time of the battery pack is obtained.
  • step S140 includes step D1 to step D4.
  • Step D1 When the thermal management start time is reached, the BMS controls the switch drive component of the electric vehicle to be periodically turned on and off to achieve heating of the battery pack, and control the cooling system of the motor and the heat of the battery pack The management system is connected to realize the use of waste heat generated by the motor to heat the battery pack.
  • the thermal management strategy of the BMS for the battery pack in scenario 3 is similar to the thermal management strategy under the condition that the current SOC of the battery pack meets the preset self-heating conditions in scenario 1, and will not be repeated here.
  • step D2 if the temperature of the battery pack is equal to the fourth preset temperature threshold, it is determined whether the power supply time is reached. If the time to be powered is reached, step D3 is entered, and if the time to be powered is not reached, step D4 is entered.
  • the BMS will obtain the temperature of the battery pack in real time, and determine whether the temperature of the battery pack reaches the fourth preset temperature threshold. In the case where the temperature of the battery pack is equal to the fourth preset temperature threshold, it is determined whether the time to supply power is reached.
  • step D3 if the electric vehicle is still in a stationary state, return to step S110. If the electric vehicle starts, it stops thermal management of the battery pack.
  • Step D4 maintaining the temperature of the battery pack at a fourth preset temperature threshold.
  • the BMS monitors the temperature of the battery pack in real time. If the temperature of the battery pack is consistent with the fourth preset If the temperature difference between the temperature thresholds meets the preset thermal management activation condition, the thermal management of the battery pack is performed again, so as to maintain the temperature of the battery pack at the fourth preset temperature threshold. When the temperature of the battery pack reaches the fourth preset temperature threshold, return to step D2 until the time to supply power is reached under the fourth preset temperature threshold.
  • Scenario 4 The battery pack has cooling requirements, and the charging interface of the electric vehicle is not connected to the charging equipment.
  • the target temperature of the battery pack is the fifth preset temperature threshold.
  • the BMS needs to control the vehicle controller to send prompt information about whether to conduct thermal management to the intelligent terminal. If the user chooses not to perform thermal management on the battery pack, the BMS will not act. If the user chooses to perform thermal management on the battery pack, the BMS will receive the user's cooling instruction from the vehicle controller.
  • step S130 includes step E1 to step E4.
  • Step E1 The BMS receives the cooling instruction from the user, and obtains the current temperature of the battery pack and the fifth preset temperature threshold.
  • Step E2 based on the current temperature of the battery pack and the fifth preset temperature threshold, calculate the cooling time t 4 required for the temperature of the battery pack to decrease from the current temperature to the fifth preset temperature threshold.
  • the cooling rate of the battery pack by the air conditioning system may be a preset cooling rate.
  • the BMS may calculate the cooling duration t 4 based on the acquired cooling rate of the battery pack, the fifth preset temperature threshold, and the current temperature of the battery pack.
  • the specific calculation method can be calculated using a similar idea to the formula (1), which will not be repeated here.
  • Step E3 It is determined that the third time difference between the third time and the acquired current time meets the preset thermal management start time determination condition.
  • the third time is before the time to be powered, and the length of time between the third time and the time to be powered is equal to t 4 .
  • the third moment is also the estimated starting moment of thermal management.
  • step E4 is entered.
  • step E4 the third time is used as the thermal management start time.
  • step E1 If the third time difference does not meet the preset thermal management start time determination condition, then after the fourth preset time interval ⁇ t 3 , return to step E1.
  • the current temperature of the battery pack is updated, and is updated based on the re-acquired current temperature of the battery pack t 4 , until the thermal management start time of the battery pack is obtained
  • step S140 includes step F1 to step F4:
  • Step F1 If the thermal management start time is reached, the BMS controls the lead-acid battery in the electric vehicle to supply power to the compressor corresponding to the battery pack, so that the compressor cools the battery pack.
  • the air conditioning system can cool the battery pack.
  • the BMS monitors the temperature of the battery pack in real time, and determines whether the temperature of the battery pack reaches the fifth preset temperature threshold.
  • Step F2 When the temperature of the battery pack is equal to the fifth preset temperature threshold, it is judged whether the time to supply power is reached. If the time to be powered is reached, step F3 is entered, and if the time to be powered is not reached, step F4 is entered.
  • the BMS will obtain the temperature of the battery pack in real time, and determine whether the temperature of the battery pack reaches the fifth preset temperature threshold. In the case that the temperature of the battery pack is equal to the fifth preset temperature threshold, it is determined whether the time to supply power is reached.
  • step F3 if the electric vehicle is still in a stationary state, return to step S110. If the electric vehicle starts, it stops thermal management of the battery pack.
  • the temperature of the battery pack is equal to the fifth preset temperature threshold, if the time to supply power is reached, it is determined whether the electric vehicle is in a stationary state. If the electric vehicle is still at a standstill, return to step S110. If the electric vehicle starts, it stops thermal management of the battery pack.
  • Step F4 maintaining the temperature of the battery pack at a fifth preset temperature threshold.
  • the BMS monitors the temperature of the battery pack in real time. If the temperature of the battery pack is consistent with the fifth preset If the temperature difference between the temperature thresholds meets the preset thermal management activation condition, the thermal management of the battery pack is performed again, so as to maintain the temperature of the battery pack at the fifth preset temperature threshold. When the temperature of the battery pack reaches the fifth preset temperature threshold, return to step F2 until the time to supply power is reached under the fifth preset temperature threshold.
  • different target temperatures are set for the battery pack in different application scenarios, so as to avoid the consumption of power of the battery pack as much as possible.
  • the thermal management start time of the battery pack is determined.
  • the battery pack is intelligently thermally managed to improve the user experience .
  • the vehicle controller communicates with the intelligent terminal, and intelligent thermal management of the battery pack can be performed with full consideration of user needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池组的热管理方法。该方法,包括:若电动汽车处于静止状态,获取电动汽车中电池组的待供电时刻;若确定电池组具有热管理需求,根据电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度;基于电池组的目标温度和待供电时刻,确定电池组的热管理启动时刻;若到达热管理启动时刻,则对电池组进行热管理,以在到达待供电时刻之前使电池组的温度达到目标温度。根据上述电池组的热管理方法,可以提高电池组的续航里程。

Description

电池组的热管理方法
相关申请的交叉引用
本申请要求享有于2019年08月05日提交的名称为“电池组的热管理方法”的中国专利申请201910716195.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及新能源领域,尤其涉及一种电池组的热管理方法。
背景技术
当电动汽车中电池组的温度处于合适的温度范围时,电动汽车才能正常运行,因此需要对电池组进行热管理。
冬季电动汽车客舱的加热需求较大,夏季电动汽车客舱的冷却需求耗电量也较大,这都将会导致电池汽车的续航里程大幅度缩减。当电池组自身具有热管理需求时,若利用电池组的电量对其自身进行热管理,则会进一步增加电池组电量的消耗量。
因此,需要提供一种智能化的电池组的热管理方法,以降低对电池组电量的消耗,从而提高电池组的续航里程。
发明内容
本申请提供一种电池组的热管理方法,以提高电池组的续航里程。
根据本申请实施例,电池组的热管理方法,包括:
若电动汽车处于静止状态,获取电动汽车中电池组的待供电时刻;
若确定电池组具有热管理需求,根据电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度;
基于电池组的目标温度和待供电时刻,确定电池组的热管理启动时刻;
若到达热管理启动时刻,则对电池组进行热管理,以在到达待供电时刻之前使电池组的温度达到目标温度。
根据本申请的电池组的热管理方法,通过利用电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度,当充电接口与充电设备连接时,由于可以借助充电设备对电池组加热,因此可以将电池组的目标温度设置的偏高一点。若充电接口与充电设备未连接,可以将电池组的目标温度设置的偏低一点,尽量避免减少电池组的电量消耗,以提高电池组的续航里程。并且,通过利用电动汽车的待供电时刻与电池组的目标温度确定热管理启动时刻,可以在最佳时刻对电池组进行热管理,也避免了对电池组的电量消耗,提高了电池组的续航里程。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的电池组的热管理方法的第一实施例的流程示意图;
图2为本申请提供的电池组的热管理系统的一个实施例的结构示意图;
图3为本申请提供的电池组的热管理方法的第二实施例的流程示意图;
图4为本申请提供的电池组的热管理方法的第三实施例的流程示意图;
图5为本申请提供的电池组的热管理方法的第四实施例的流程示意图;
图6为本申请提供的电池组的热管理方法的第五实施例的流程示意图;
图7为本申请提供的电池组的热管理方法的第六实施例的流程示意图;
图8为本申请提供的电池组的热管理方法的第七实施例的流程示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本 申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1示出本申请提供的电池组的热管理方法100的流程示意图。如图1所示,本申请提供的电池组的热管理方法包括以下步骤:
S110,若电动汽车处于静止状态,获取电动汽车中电池组的待供电时刻;
S120,若确定电池组具有热管理需求,根据电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度;
S130,基于电池组的目标温度和待供电时刻,确定电池组的热管理启动时刻;
S140,若到达热管理启动时刻,则对电池组进行热管理,以在到达待供电时刻之前使电池组的温度达到目标温度。
作为一个示例,电池组的待供电时刻即是电动汽车的待启动时刻,也是用户的待出行时间。
本申请提供的电池组的热管理方法可以应用于电池组的电池管理系统(Battery Management System,BMS)。
在本申请的实施例中,通过利用电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度,当充电接口与充电设备连接时,由于可以借助充电设备对电池组加热,因此可以将电池组的目标温度设置的偏高一点。若充电接口与充电设备未连接,可以将电池组的目标温度设置的偏低 一点,尽量避免减少电池组的电量消耗,以提高电池组的续航里程。并且,通过基于电动汽车的待供电时刻与电池组的目标温度确定热管理启动时刻,可以在最佳时刻对电池组进行预热或预冷,也避免了对电池组的电量消耗,提高了电池汽车的续航里程。
在本申请的实施例中,参见图2示出的电动汽车的热管理系统图,电动汽车的热管理系统包括整车控制器和BMS。整车控制器和BMS之间的双向箭头代表两者可以进行双向通信。
在本申请的实施例中,在步骤S110中,BMS可以从整车控制器获取电池组的待供电时刻。
作为一个示例,参见图3,在步骤S110中,当整车控制器检测到电动汽车停止运行之后,即电动汽车处于静止状态时,BMS控制整车控制器向智能终端发送是否具有出行需求的第一提示信息。若整车控制器接收到智能终端发送的用户无出行需求的反馈信息,则BMS不动作。
若整车控制器接收到智能终端发送的用户具有出行需求的反馈信息,则BMS控制整车控制器向智能终端发送是否具有电池组热管理需求的第二提示信息。
若整车控制器接收到智能终端发送的用户没有电池组热管理需求的反馈信息,则BMS不动作。
若整车控制器接收到智能终端发送的用户具有电池组热管理需求的反馈信息,则BMS控制整车控制器向智能终端发送设置待出行时间的第三提示信息。图2中整车控制器和智能终端之间的双向箭头代表两者可以进行双向通信。
整车控制器判断用户是否通过智能终端设定待出行时间。作为一个示例,整车控制器可以通过在预设时间段t 0内是否接收到智能终端发送的时间信息,来确定用户是否设定待出行时间。
若整车控制器在预设时间段t 0内接收到智能终端返回的用户设置的待出行时间,则整车控制器将用户设置的待出行时间发送至BMS。BMS将接收的待出行时间作为电池组的待供电时刻。
参见图3,若整车控制器在预设时间段t 0内未收到智能终端返回的时 间信息,则整车控制器分析预先记录的用户的出行习惯信息和每次出行的路况信息,计算出向用户推荐的待出行时间。整车控制器将推荐的待出行时间发送至智能终端。若用户通过智能终端接受推荐的待出行时间,则整车控制器将推荐的待出行时间作为电池组的待供电时刻。若用户不接收推荐的待出行时间,则整车控制器和BMS均不做处理。
继续参见图3,若BMS从整车控制器处获取了电池组的待供电时刻,则BMS判断电池组是否具有热管理需求。作为一个示例,在步骤S120中,BMS可以根据电池组的温度判断电池组是否具有热管理需求。
在本申请的一些实施例中,在S120中,首先BMS获取电池组的温度T_bat,然后根据电池组的温度T_bat、第一预设温度阈值和第二预设温度阈值,判断电池组是否具有热管理需求。
其中,第一预设温度阈值基于电池组的最低工作温度Temp1确定,第二预设温度阈值基于电池组的最高工作温度Temp2确定。其中,Temp1小于Temp2。作为一个具体示例,第一预设温度阈值等于电池组的最低工作温度Temp1,第二预设温度阈值等于电池组的最高工作温度Temp2。电池组的最低工作温度Temp1是指电动汽车能够正常运行时电池组的最低温度。电池组的最高温度Temp2是指电动汽车能够正常运行时电池组的最高温度。
继续参见图3,若Temp1<T_bat<Temp2,则确定电池组没有热管理需求。若确定电池组无热管需求,则BMS每隔预设时间间隔Δt 0,会重新获取电池组的温度,并根据重新获取的电池组的温度、Temp1和Temp2,继续判断电池组是否具有热管理需求。
需要说明的是,电池组的热管理需求包括冷却需求和加热需求。若T_bat≤Temp1,则BMS确定电池组具有加热需求;若T_bat≥Temp2,则BMS确定电池组具有冷却需求。
在本申请的实施例中,在步骤S120中,当BMS确定电池组具有热管理需求后,则根据电动汽车的充电接口与充电设备的连接状态确定电池组的目标温度。作为一个示例,充电设备可以为充电桩。
继续参见图3,当BMS确定电池组具有热管理需求时,无论是加热需求还是冷却需求,均判断电动汽车的充电接口和充电设备是否处于连接状 态。
作为一个示例,BMS可以通过判断是否接收到充电设备发送的用于表征自身与电动汽车的充电接口建立连接的唤醒信号,来判断电动汽车的充电接口是否与充电设备连接。若BMS接收到充电设备发送的唤醒信号,则BMS确定充电设备与电动汽车的充电接口处于连接状态,若BMS未接收到充电设备发送的唤醒信号,则BMS确定充电设备与电动汽车的充电接口处于未连接状态。
在步骤S120中,若电池组具有热管理需求(无论是加热需求还是冷却需求),且电动汽车的充电接口与充电设备处于连接状态,则将目标温度设置为第三预设温度阈值。
若电池组的热管理需求为加热需求,且电动汽车的充电接口与充电设备处于未连接状态,则将目标温度设置为第四预设温度阈值。
若电池组的热管理需求为冷却需求,且电动汽车的充电接口与充电设备处于未连接状态,则将目标温度设置为第五预设温度阈值。
其中,第四预设温度阈值小于第三预设温度阈值,第三预设温度阈值小于第五预设温度阈值。
作为一个示例,第三预设温度阈值为电池组的最佳工作温度Temp3,第四预设温度阈值等于电池组的最低工作温度Temp1,第五预设温度阈值等于电池组的最高工作温度Temp2。
继续参见图3,当电池组具有热管理需求时,无论是加热需求还是冷却需求,只要电动汽车的充电接口与充电设备处于连接状态,则可以借助充电设备对电池组进行热管理,避免对电池组的电量的消耗,因此可以将电池组的目标温度设置为电池组的最佳工作温度Temp3。
当电池组具有加热需求,但电动汽车的充电接口与充电设备处于未连接状态,则可能需要利用电池组自身的电量对电池组进行热管理,为了尽可能提高电动汽车的续航里程,则将电池组的目标温度加热至最低工作温度,使电动汽车可以启动和运行即可。
当电池组具有冷却需求,但电动汽车的充电接口与充电设备处于未连接状态,为了尽可能提高电动汽车的续航里程,则将电池组的目标温度降低至电池组的最高工作温度,使电动汽车可以启动和运行即可。
在本申请的实施例中,当电池组具有热管理需求时,通过根据电动汽车的充电接口和充电设备的连接状态,智能地合理设置电池组的目标温度,尽量避免消耗电池组的电量,以提高电池组的续航里程。
在本申请的实施例中,电池组的热管理需求的种类以及电动汽车的充电接口和充电设备的连接状态不仅会影响电池组的目标温度的设置,还会影响热管理启动时刻的计算。下面将根据不同的场景介绍热管理启动时刻的计算过程。
场景一:电池组具有加热需求,且电动汽车的充电接口与充电设备处于连接状态。
在场景一的情况下,当BMS确定电动汽车的充电接口与充电设备处于连接状态之后,BMS判断充电设备是否具有对电池组进行加热的功能。
当充电设备与电动汽车的充电接口连接之后,充电设备将会自动向BMS上报自身的性能信息。BMS可以根据充电设备上报的性能信息中的加热标识信息来确定充电设备是否具有加热功能。充电设备上报的性能信息还可以包括功率信息、充电设备的型号以及充电电流的类型等信息。
充电设备上报的加热标识信息可以表征该充电设备是否具有加热功能,因此BMS可以基于接收的充电设备的加热标识信息,判断充电设备是否具有加热功能。
(1)若BMS确定充电设备具有加热功能,参见图4,则步骤S130包括步骤A1至步骤A5。
步骤A1,BMS获取电池组的当前温度和充电设备的加热速率(即第一加热速率)。
需要说明的是,当电池组的状态参数(例如剩余电量和电池组的当前温度)不同时,需要的加热速率不同。因此BMS可以根据获取的电池组的当前状态参数以及预先保存的电池组状态参数与加热速率的对应关系,获取第一加热速率。在另一些实施例中,第一加热速率也可以是BMS预设的 加热速率。
步骤A2,BMS基于获取的充电设备的加热速率v 1、第三预设温度阈值和获取的电池组的当前温度T 0,计算电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1
在充电设备对电池组加热的过程中,电池组和外界环境之间会产生热传导,因此还需要考虑电池组和外界环境之间的热传导对t 1的计算影响。
因此,在计算电池组的加热时长时,需要先获取电动汽车的环境温度T_env。
值得一提的是,BMS可以从测量电动汽车的环境温度的温度传感器处直接获取电动汽车的环境温度。BMS也可以从整车控制器接收电动汽车的环境温度,整车控制器可以从整车上设置的环境温度传感器获取电动汽车的环境温度。
作为一个示例,第三预设温度阈值等于电池组的最佳工作温度Temp3,则t 1可以利用下面的表达式进行计算:
Figure PCTCN2020103845-appb-000001
其中,v 2为BMS获取的热传导速率,γ 1为预设的第一修正系数,γ 2为预设的第二修正系数。
需要说明的是,BMS可以根据预先存储的温度范围与热传导速率的对应关系,确定热传导速率v 2,在此不再赘述。
步骤A3,BMS获取电池组的当前荷电状态(State of Charge,SOC),并基于电池组的当前SOC和预设的电池组的目标SOC,计算电池组的充电时长t 2
其中,BMS可以利用已知的充电时间计算方法计算电池组的充电时长,在此不再赘述。
步骤A4,BMS获取当前时刻,并判断第一时刻与当前时刻之间的第一时间差值是否满足预设的热管理启动时刻确定条件。
其中,第一时刻在电池组的待供电时刻之前,且第一时刻与待供电时刻之间的时长等于t 1+t 2
作为一个示例,待供电时刻为2019年7月19日14:00,t 1等于10分钟,t 2等于20分钟,则第一时刻为2019年7月19日13:30。
其中,第一时刻是预估的热管理启动时刻,若预估的热管理启动时刻与当前时刻之间的时间差值满足预设的热管理启动时刻确定条件,则将第一时刻确定为最终的热管理启动时刻。若预估的热管理启动时刻与当前时刻之间的时间差值不满足预设的热管理启动时刻确定条件,则重新计算t 1+t 2,以重新预估热管理启动时刻。
作为一个示例,预设的热管理启动时刻确定条件为第一时间差值小于预设的时长阈值。
若第一时间差值满足预设的热管理启动时刻确定条件,进入步骤A5。若第一时间差值不满足预设的热管理启动时刻确定条件,则在第二预设时间间隔Δt 1之后,返回步骤A1。
也就是说,若第一时间差值不满足预设的热管理启动时刻确定条件,则在第二预设时间间隔Δt 1之后,更新电池组的当前温度,并基于重新获取的电池组的当前温度更新t 1和t 2,直至得到电池组的热管理启动时刻。
步骤A5,将第一时刻作为热管理启动时刻。
参见图2,充电设备与BMS之间的双向箭头代表两者之间可以双向通信。充电设备与电动汽车的充电接口(图2中未示出)连接,电动汽车的充电接口通过串联的充电正极开关K1和加热开关K3与电池组的正极连接,电动汽车的充电接口还通过串联的充电负极开关K2和加热开关K4与电池组的负极连接。
参见图4,则步骤S140包括步骤B1至步骤B5。
步骤B1,当BMS确定到达热管理启动时刻时,BMS控制充电正极开关K1、充电负极开关K2、加热开关K3和加热开关K4均闭合,并发送包括与充电设备的加热速率对应的加热参数的加热请求至充电设备。
作为一个示例,充电设备可以具有脉冲加热功能。BMS可以根据预先存储的脉冲电流信号参数与加热速率的对应关系,确定与充电设备的加热速率对应的脉冲电流信号参数。BMS可以发送与充电设备的加热速率对应的脉冲电流信号参数至充电设备,例如脉冲电流信号参数包括脉冲电流信 号的频率和脉冲电流信号的占空比等参数。
其中,脉冲电流信号的占空比是指电流方向为正方向的时间与脉冲电流的一个周期的比值。
当充电设备接收到用于对电池组进行脉冲加热的脉冲电流信号参数后,充电设备提供具有上述脉冲电流信号参数的脉冲电流。
由于充电正极开关K1、充电负极开关K2、加热开关K3和加热开关K4均闭合,则充电设备和电池组构成脉冲加热回路。当电池组中有脉冲电流流过时,可以使电池组自身的内阻发热,从而对电池组加热。
在本申请的实施例中,充电设备也可以采用其他加热方式对电池组加热,在此并不限制。
步骤B2,当电池组的温度等于第三预设温度阈值时,控制充电设备对电池组充电,直至电池组的SOC达到目标SOC。
在充电设备对电池组进行加热的过程中,BMS实时监测电池组的温度,若电池组的温度到达第三预设温度阈值,则停止对电池组进行热管理。BMS向充电设备发送包括充电电流的充电请求,控制充电设备以该充电电流对电池组充电,直至电池组的SOC达到预设的目标SOC。
步骤B3,当电池组的电量达到预设的目标电量,则判断是否到达待供电时刻。若到达待供电时刻,进入步骤B4,若未到达待供电时刻,则进入步骤B5。
步骤B4,若电动汽车仍处于静止状态,则返回步骤S110;若电动汽车启动,则停止对电池组进行热管理。
若到达待供电时刻,电动汽车仍处于静止状态,则代表用户未按照设定的时间出行,则BMS控制充电正极开关K1和充电负极开关K2断开,并重新获取电池组的待供电时刻,即返回步骤S110。若到达待供电时刻,电动汽车处于启动状态,则代表用户按时出行,则BMS控制充电正极开关K1和充电负极开关K2断开,以停止对电池组进行热管理。
步骤B5,将电池组的温度维持在第三预设温度阈值。
为了使本申请实施例提供的电池组的热管理方法适用于更多的热管理应用场景,若未达到待供电时刻,BMS实时监控电池组的温度,若电池组 的温度与第三预设温度阈值之间的温度差值满足预设的热管理开启条件,则发送加热请求至充电设备,以控制充电设备对电池组加热,直至电池组的温度达到目标温度。若电池组的温度达到目标温度,则BMS控制充电正极开关K1和充电负极开关K2断开,以停止对电池组进行热管理,以实现将电池组的温度维持在目标温度。当电池组的温度达到第三预设温度阈值后,返回步骤B3,直至在第三预设温度阈值下达到待供电时刻。其中,预设的热管理开启条件为目标温度减去电池组的温度的差值大于预设的温度差值阈值。
(2)BMS确定充电设备不具有加热功能。
在本申请的实施例中,若充电设备不具有对电池组的加热功能,则可以利用以下方式中的至少一种方式对电池组进行加热:
电池组的自加热功能对电池组进行加热、电动汽车中电机产生的废热对电池组加热以及电机从充电设备处获取的能量对电池组进行加热。
下面介绍电池组的自加热功能的实现过程。
参见图2,电池组的热管理系统还包括与加热开关K3连接的开关K5、与加热开关K4连接的开关K6、连接与开关K5和开关K6之间的开关驱动组件J、与开关驱动组件J连接的电机M以及电机控制器(图2中未示出),开关驱动组件J和电机控制器均位于逆变器中。
其中,开关驱动组件J包括功率开关器件J1~J6,每个功率开关器件均具有对应的寄生二极管。开关K5和开关K6与BMU连接(图2中未示出)。功率开关器件J1~J6均与电机控制器连接(图2中未示出)。开关驱动组件J包括并联的第一相桥臂、第二相桥臂和第三相桥臂。第一相桥臂、第二相桥臂和第三相桥臂均具有上桥臂和下桥臂,且每个上桥臂均设置有功率开关器件,每个下桥臂也均设置有功率开关器件。
比如,如图2所示,第一相桥臂为U相桥臂,第二相桥臂为V相桥臂,第三相桥臂为W相桥臂。其中,U相桥臂的上桥臂的开关单元为功率开关器件J1,U相桥臂的下桥臂设置有功率开关器件J2。V相桥臂的上桥臂的开关单元为功率开关器件J3,V相桥臂的下桥臂的开关单元为功率开关器件J4。W相桥臂的上桥臂的开关单元为功率开关器件J5,W相桥臂的下桥 臂的开关单元为功率开关器件J6。
参见图2,将电机M的定子等效为三相定子电感,即定子电感L1、定子电感L3和定子电感L5。每一相定子电感与一相桥臂连接,定子电感具有储能和放能的功能。其中,定子电感L1的一端、定子电感L3的一端和定子电感L5一端连接在一个公共端。
电机M的第一相输入端、第二相输入端和第三相输入端分别与第一相桥臂中上桥臂和下桥臂的连接点、第二相桥臂中上桥臂和下桥臂的连接点和第三相桥臂中上桥臂和下桥臂的连接点连接。定子电感L1的非公共端即为第一相输入端,定子电感L3的非公共端即为第二相输入端,定子电感L5的非公共端即为第三相输入端。
当BMU确定电池组需要加热时,BMU发送电池加热请求至整车控制器。整车控制器在确定电动汽车处于静止状态且电机未工作的情况下,根据电池加热请求发送电池加热指令至电机控制器。电机控制器在接收到电池加热指令后与BMU建立通信。然后,BMU控制加热开关K3、加热开关K4、开关K5和开关K6均闭合,并控制电机控制器为目标上桥臂功率开关器件和目标下桥臂功率开关器件提供驱动信号,以控制目标上桥臂功率开关器件和目标下桥臂功率开关器件周期性地导通和断开。
驱动信号具体可为脉冲信号。在一些示例中,驱动信号中的高电平可驱动功率开关器件导通,驱动信号中的低电平信号可驱动功率开关器件断开。驱动信号可控制目标上桥臂功率开关器件和目标下桥臂功率开关器件周期性的导通和断开。
其中,目标上桥臂功率开关器件为第一相桥臂、第二相桥臂、第三相桥臂中任意一个桥臂的上桥臂的功率开关器件,目标下桥臂功率开关器件为除目标上桥臂功率开关器件所在的桥臂外的至少一个桥臂的下桥臂的功率开关器件。
驱动信号驱动目标上桥臂功率开关器件和目标下桥臂功率开关器件周期性地导通和断开,从而在电池组、加热开关K3、开关K5、目标上桥臂功率开关器件、电机M、目标下桥臂功率开关器件、开关K6、加热开关K4所形成的回路中产生了交变电流。具体的,可产生交变正弦波电流。即 电池组交替进行充电和放电,可以在电池组所在的高压回路中产生持续不断的交变激励电流,交变激流电流持续流过电池组,使电池组内阻发热,从而从内部加热电池。
下面介绍电动汽车中电机产生的热量对电池组加热的过程。
参见图2,电动汽车的热管理系统还包括电池组的热管理系统和电机的冷却系统以及空调系统。
其中,电池组的热管理系统包括串联的水泵1、换热板和第一热交换器。电机的冷却系统包括串联的电机散热器、电机换热装置和水泵2。
其中,电机的冷却系统和电池组的热管理系统通过第二热交换器连接。第二热交换器的第一端口与水泵1连接,第二热交换器的第二端口与水泵2连接,第二热交换器的第三端口与第一热交换器连接,第二热交换器的第四端口与电机散热器连接。
当电机产生热量时,BMU控制水泵2、水泵1均和第二热交换器均处于开启状态,电机换热装置将电机产生的热量吸收至电机冷却系统的冷却液中。当电机冷却系统中的吸收热量后的冷却液流经至第二热交换器时,第二热交换器将电机冷却系统中冷却液中的热量传递至电池管理系统中的冷却液。
电池管理系统中的吸收热量之后的冷却液流经至换热板时,换热板将热量传递至电池组,以实现利用电机产生的废热对电池组进行加热。
需要说明的是,电动汽车的热管理系统还包括空调系统。空调系统包括串联的第一蒸发器、压缩机、冷凝器和膨胀阀TXV1。空调系统还包括串联的膨胀阀TXV2和第二蒸发器。其中,第二蒸发器与第一蒸发器和压缩机的公共端口连接,膨胀阀TXV2与膨胀阀TXV1和冷凝器的公共端口连接。第一蒸发器与第一热交换器连接,用于吸收第一热交换器传递的热量,以冷却电池组。
当电池组具有冷却需求时,BMU控制膨胀阀TXV1、膨胀阀TXV2和水泵1均处于开启状态,并控制压缩机处于开启状态,则电池组产生的热量通过换热板传递至电池组热管理系统中的冷却液中。当吸收热量后的冷却液流经至第一热交换器时,第一蒸发器吸收第一热交换器传递的热量, 第一蒸发器、压缩机、冷凝器和膨胀阀TXV1形成冷却回路对电池组进行冷却。另外,第二蒸发器、压缩机、冷凝器和膨胀阀TXV2可以形成冷却回路对电动汽车的乘客舱进行冷却。
下面介绍利用电机从充电设备处获取的能量对电池组进行加热的实现过程。
若电池组需要加热,则BMS控制充电正极开关K1、充电负极开关K2、开关K5和开关K6均闭合,并控制加热开关K3和加热开关K4断开,并控制电机控制器给开关驱动组件J提供驱动信号,以使目标上桥臂功率开关器件和目标下桥臂功率开关器件导通,从而使电机从充电设备处获取能量,即使电机的定子电感进行储能。
当电机储能之后,则BMS控制充电正极开关K1和充电负极开关K2断开,并控制开关K5、开关K6、加热开关K3和加热开关K4均闭合,并控制电机控制器给开关驱动组件J提供驱动信号,以使目标上桥臂功率开关器件和目标下桥臂功率开关器件断开。则目标上桥臂功率开关器件对应的定子电感、目标上桥臂功率开关器件的寄生二极管、开关K5、加热开关K3、电池组、加热开关K4、开关K6、目标下桥臂功率开关器件的寄生二极管和与目标下桥臂功率开关器件对应的定子电感构成电池组的充电回路,从而使电机中储存的能量对电池组进行加热。
当BMS确定充电设备不具备对电池组的加热功能时,BMS需要判断利用何种加热方式对电池组进行热管理。参见图5,当BMS确定充电设备不具备对电池组的加热功能,步骤S130包括步骤A1’~步骤A5。
步骤A1’,判断获取的电池组的当前SOC是否满足预设的自加热条件。
若电池组的当前SOC满足预设的自加热条件,则进入步骤A2’,若电池组的当前SOC不满足预设的自加热条件,则进入步骤A2’’。
在本申请的实施例中,预设的自加热条件为电池组的当前SOC大于预设的SOC阈值。
步骤A2’,基于获取的第二加热速率、获取的第三加热速率、第三预设温度阈值以及获取的电池组的当前温度,计算电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1
在本申请的实施例中,若电池组的当前SOC满足预设的自加热条件,则可以利用电池组的自加热功能对电池组进行加热。并且,当电池组进行自加热时,电机会产生热量,因此还可以利用电机的废热对电池组进行加热。也就是说,当开启电池组自加热功能的同时,还可以同时开启电机冷却系统和电池组热管理系统,以实现利用电机的废热对电池组进行加热。
因此,在计算t 1时,需要获取电池组的自加热速率(第二加热速率)以及自加热过程中电机废热的加热速率(第三加热速率)。
在本申请的实施例中,可以根据预先存储的电池组状态参数与电池组自加热速率的对应关系,获取当前电池组状态参数对应的电池组的自加热速率。另外,还可以预先存储的电池组状态参数与电机废热的加热速率的对应关系,获取当前电池组状态参数对应的电机废热的加热速率。
在计算t 1时,还需要考虑电池组和外界环境之间的热传导因素,因此可以利用与公式(1)相类似的方法,基于电池组的自加热速率、电机废热的加热速率、热传导速率、第三预设温度阈值和电池组的当前温度,计算加热时长t 1,具体计算过程在此不再赘述。
步骤A2’’,基于获取的第四加热速率、获取的第五加热速率、第三预设温度阈值以及获取的电池组的当前温度,计算电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1
在本申请的实施例中,若电池组的当前SOC不满足自加热条件,则代表电池组当前的剩余电量较少,不支持电池组的自加热,则可以利用电机从充电设备处获取的能量对电池组进行加热。在电机利用储存的能量对电池组进行加热的过程中,电机也会产生废热,因此还可以利用电机废热对电池组进行加热。
因此,在计算t 1时,需要获取电机从充电设备处储存的能量对电池组加热的加热速率(第四加热速率)以及电机储能加热过程中电机废热的加热速率(第五加热速率)。
在本申请的实施例中,第四加热速率和第五加热速率可以是预先存储的,也可以是根据预先存储的电池组状态参数与加热速率的对应关系查询的,在此并不做具体限定。
在计算t 1时,还需要考虑电池组和外界环境之间的热传导因素,因此可以利用与公式(1)相类似的方法,基于第四加热速率、第五加热速率、热传导速率、第三预设温度阈值和电池组的当前温度,计算加热时长t 1,具体计算过程在此不再赘述。
继续参见图5,无论电池组的当前SOC是否满足电池的自加热条件,当计算出电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1之后,均进入步骤A3。
步骤A3,BMS获取电池组的当前SOC,并基于电池组的当前SOC和预设的电池组的目标SOC,计算电池组的充电时长t 2
步骤A4,BMS获取当前时刻,并判断第一时刻与当前时刻之间的第一时间差值是否满足预设的热管理启动时刻确定条件。
若第一时间差值满足预设的热管理启动时刻确定条件,进入步骤A5。
在电池组的当前SOC满足预设的自加热条件的条件下,若第一时间差值不满足预设的热管理启动时刻确定条件,则在第二预设时间间隔Δt 1之后,返回步骤A2’。
需要说明的是,在返回步骤A2’之后,只需要重新获取电池组的当前温度,其余参数可以不需要重新获取。然后利用更新后的电池组的当前温度更新t 1和t 2,直至得到电池组的热管理启动时刻。
在电池组的当前SOC不满足预设的自加热条件的条件下,若第一时间差值不满足预设的热管理启动时刻确定条件,则在第二预设时间间隔Δt 1之后,返回步骤A2’’。
需要说明的是,在返回步骤A2”之后,只需要重新获取电池组的当前温度,其余参数可以不需要重新获取。然后利用更新后的电池组的当前温度更新t 1和t 2,直至得到电池组的热管理启动时刻。
步骤A5,将第一时刻作为热管理启动时刻。
在电池组的当前SOC满足预设的自加热条件的情况下,步骤S140包括步骤B1’以及步骤B2~步骤B5。
在电池组的当前SOC不满足预设的自加热条件的情况下,步骤S140包括步骤B1’’以及步骤B2~步骤B5。
步骤B1’,BMS控制电动汽车中电机的开关驱动组件周期性地处于导通状态和断开状态,以实现对电池组进行加热,以及控制电机的冷却系统和电池组的热管理系统连通,以实现利用电机产生的废热对电池组进行加热。
具体地,若到达热管理启动时刻,BMS控制加热开关K3、加热开关K4、开关K5和开关K6均闭合,并控制电机控制器为开关驱动组件J提供驱动信号,以控制电动汽车中电机的开关驱动组件J周期性地处于导通状态和断开状态,以实现对电池组进行加热。
BMS控制加热开关K3、加热开关K4、开关K5和开关K6均闭合的同时,控制水泵1、水泵2和第二热交换器均处于开启状态,以实现电机冷却系统和电池组热管理系统的连通,实现利用自加热过程中电机产生的废热加热电池组。
步骤B1”,BMS控制电机利用充电设备进行储能,并控制电机利用自身储存的能量对电池组加热,以及控制电机的冷却系统和电池组的热管理系统连通,以实现利用电机产生的废热对电池组进行加热。
具体地,BMS先控制充电正极开关K1、充电负极开关K2、开关K5和开关K6均闭合,并控制加热开关K3和加热开关K4断开,并控制电机控制器给开关驱动组件J提供驱动信号,以使目标上桥臂功率开关器件和目标下桥臂功率开关器件导通,从而电机从充电设备处获取能量,以使电机的定子电感进行储能。同时,BMS控制水泵1、水泵2和第二热交换器均处于开启状态,以实现电机冷却系统和电池组热管理系统的连通,实现利用电机储存的能量对电池组加热过程中电机所产生的废热加热电池组。
当电机储能之后,BMS控制充电正极开关K1和充电负极开关K2断开,并控制开关K5、开关K6、加热开关K3和加热开关K4均闭合,并控制电机控制器给开关驱动组件J提供驱动信号,以使目标上桥臂功率开关器件和目标下桥臂功率开关器件断开,使电机储存的能量对电池组进行加热。
步骤B2,当电池组的温度等于第三预设温度阈值时,控制充电设备对电池组充电,直至电池组的SOC达到目标SOC。
步骤B3,当电池组的电量达到预设的目标电量,则判断是否到达待供电时刻。若到达待供电时刻,进入步骤B4,若未到达待供电时刻,则进入步骤B5。
步骤B4,若电动汽车仍处于静止状态,则返回步骤S110;若电动汽车启动,则停止对电池组进行热管理。
在本申请的实施例中,当利用电池自加热功能对电池组进行加热的情况下,若到达待供电时刻,电动汽车仍处于静止状态,则代表用户未按照设定的时间出行,则BMS控制加热开关K3、加热开关K4、开关K5和开关K6均断开,并重新获取电池组的待供电时刻,即返回步骤S110。
当利用电机从充电设备处获取的能量对电池组进行加热的情况下,若到达待供电时刻,电动汽车仍处于静止状态,则控制充电正极开关K1、充电负极开关K2、开关K5和开关K6均断开,并重新获取电池组的待供电时刻,即返回步骤S110。
若电动汽车启动,则控制所有开关断开,以停止对电池组进行热管理。
步骤B5,将电池组的温度维持在第三预设温度阈值。
为了使本申请实施例提供的电池组的热管理方法适用于更多的热管理应用场景,在本申请的实施例中,若未达到待供电时刻,BMS实时监控电池组的温度,若电池组的温度与第三预设温度阈值之间的温度差值满足预设的热管理开启条件,则重新对电池组进行热管理,以将电池组的温度维持在第三预设温度阈值。当电池组的温度达第三预设温度阈值后,返回步骤B3,直至在第三预设温度阈值下达到待供电时刻。
在本申请的另一些实施例中,在充电设备对电池组进行充电的过程中,电池组的温度可能会发生变化,因此在对电池组充电的过程中,也可以实时获取电池组的温度,若电池组的温度与目标温度之间的温度差值满足预设的热管理开启条件,则控制充电设备停止对电池组充电。
当充电设备停止对电池组充电之后,BMS判断电池组的电量是否达到预设的目标电量。
若电池组的电量达到预设的目标电量,则执行步骤B3,以实现电池组在目标温度下达到预设的目标SOC。若电池组的SOC未到达预设的目标 SOC,重新对电池组进行热管理,以实现将电池组的温度加热至目标温度,直至在目标温度下电池组的SOC达到目标SOC。
也就是说,若利用充电设备对电池组加热的过程中,电池组的温度降低,则停止对电池组充电,重新对电池组加热,以实现尽量在目标温度下对电池组进行充电。
在一些实施例中,为了适应上述充电和热管理间隔进行的热管理场景,同时为了保证在待供电时刻到达之前对电池组完成热管理以及对电池组完成充电,因此在步骤A2、步骤A2’以及步骤A2’’中,在计算电池组的温度从当前温度达到目标温度的所需时长时,可以再增加一个预设的余量时长t s。其中,t s可以根据经验值确定。
作为一个具体示例,在步骤A2中,t 1可以利用下面的表达式进行计算:
Figure PCTCN2020103845-appb-000002
场景二,电池组具有冷却需求,且电动汽车的充电接口与充电设备处于连接状态。
在场景二下,由于电动汽车的充电接口与充电设备处于连接状态,因此可以将电池组的目标温度也设置第三预设温度阈值。
在场景二下,参见图6,与电池组具有加热需求且电动汽车的充电接口与充电设备处于连接状态时的热管理策略相类似,只是在计算电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1时利用的是冷却速率。
在场景二下,步骤S130包括步骤A1”~步骤A5。
步骤A1”,BMS获取电池组的当前温度和冷却速率。
其中,空调系统对电池组的冷却速率可以是预设的冷却速率,也可以是根据电池组状态参数与冷却速率的对应关系所获取的,在此并不限定。
步骤A2”’,BMS基于获取的冷却速率、第三预设温度阈值和获取的电池组的当前温度T 0,计算电池组的温度从当前温度达到第三预设温度阈值所需的时长t 1
具体计算方法,可利用与公式(1)相类似的思路进行计算,在此不再赘述。
步骤A3,BMS基于获取的电池组的当前SOC和预设的目标SOC,计算电池组的充电时长t 2
步骤A4,BMS获取当前时刻,并判断第一时刻与当前时刻之间的第一时间差值是否满足预设的热管理启动时刻确定条件。
其中,第一时刻在电池组的待供电时刻之前,且第一时与待供电时刻之间的时长等于t 1+t 2
若第一时间差值满足预设的热管理启动时刻确定条件,则进入步骤A5。
步骤A5,将第一时刻作为热管理启动时刻。
若第一时间差值不满足预设的热管理启动时刻确定条件,则在第二预设时间间隔Δt 1之后,返回步骤A1”,即更新电池组的温度,并基于重新获取的电池组的当前温度更新t 1和t 2,直至得到电池组的热管理启动时刻。
在场景二下,步骤S140包括步骤B1”’~步骤B5。
步骤B1”’,若到达热管理启动时刻,控制充电设备对与电池组对应的压缩机供电,以使压缩机对电池组进行冷却。
当BMS确定到达热管理启动时刻时,BMS控制开关K7和开关K8闭合,将充电设备输出的电压通过电压转换器转换成供压缩机稳定工作的电压,并且控制膨胀阀TXV1和膨胀阀TXV2均开启。当压缩机和水泵1启动之后,空调系统可以对电池组进行冷却。
步骤B2,当电池组的温度等于第三预设温度阈值时,控制充电设备对电池组充电,直至电池组的SOC达到目标SOC。
在对电池组冷却的过程中,BMS实时监测电池组的温度,当电池组的温度等于第三预设温度阈值时,则BMS控制开关K7和开关K8断开,以停止对电池组进行冷却。并且,BMS控制充电正极开关K1、充电负极开关K2、加热开关K3和加热开关K4均闭合,并发送包括充电电流的充电请求至充电设备,控制充电设备以该充电电流对电池组充电,直至电池组的SOC达到预设的目标SOC。
步骤B3,当电池组的电量达到预设的目标电量,则判断是否到达待供电时刻。若到达待供电时刻,进入步骤B4,若未到达待供电时刻,则进入步骤B5。
步骤B4,若电动汽车仍处于静止状态,则返回步骤S110;若电动汽车启动,则停止对电池组进行热管理。
若到达待供电时刻,电动汽车仍处于静止状态,则代表用户未按照设定的时间出行,则BMS控制开关K1~开关K8均断开,并重新获取电池组的待供电时刻,即返回步骤S110。若到达待供电时刻,电动汽车处于启动状态,则代表用户按时出行,则BMS控制控制开关K1~开关K8均断开,以停止对电池组进行热管理。
步骤B5,将电池组的温度维持在第三预设温度阈值。
为了使本申请实施例提供的电池组的热管理方法适用于更多的热管理应用场景,若未达到待供电时刻,BMS实时监控电池组的温度,若电池组的温度与第三预设温度阈值之间的温度差值满足预设的热管理开启条件,则控制开关K7和开关K8闭合,并且控制膨胀阀TXV1和膨胀阀TXV2均开启,以对电池组重新进行冷却。若电池组的温度达到目标温度,则BMS控制控制开关K7和开关K8断开,以停止对电池组进行热管理,以实现将电池组的温度维持在目标温度。当电池组的温度达到第三预设温度阈值后,返回步骤B3,直至在第三预设温度阈值下达到待供电时刻。其中,在冷却需求中,预设的热管理开启条件为电池组的温度减去第三预设温度阈值的差值大于预设的温度差值阈值。
场景三:电池组具有加热需求,且电动汽车的充电接口与充电设备处于未连接状态。
在场景三下,由于电动汽车未连接充电桩,因此只能利用电池组的自加热功能和自加热过程中的电机产生的废热对电池组进行加热。由于不能借用外部的充电设备对电池组进行加热,因此将电池组的目标温度设置为第四预设温度阈值,作为一个示例,第四预设温度阈值为电池组的最低工作温度Temp1。
在场景三下,由于需要浪费电池组自身的电量进行自加热,且又没有充电设备进行充电,因此,BMS需要控制整车控制器向智能终端发送当前剩余SOC以及热管理所需SOC,并发送是否利用电池组的剩余SOC进行热管理的提示信息。
若用户选择不对电池组进行热管理,则BMS不动作,若用户选择对电池组进行热管理,则BMS将从整车控制器处接收到用户的加热指令。
参见图7,在场景三下,步骤S130包括步骤C1~步骤C4。
步骤C1,接收用户的加热指令,获取电池组的当前温度和第四预设温度阈值。
步骤C2,基于获取的电池组的当前温度和第四预设温度阈值,计算电池组的温度从当前温度升高至第四预设温度阈值所需的加热时长t 3
具体地,BMS可以获取电池组的自加热速率以及自加热过程中的电机废热的加热速率、第四预设温度阈值和电池组的当前温度,计算加热时长t 3。具体计算方法,可利用与公式(1)相类似的思路进行计算,在此不再赘述。
步骤C3,判断第二时刻与获取的当前时刻之间的第二时间差值是否满足预设的热管理启动时刻确定条件。
若第二时间差值满足预设的热管理启动时刻确定条件,则进入步骤C4。其中,第二时刻也是预估的热管理启动时刻。
步骤C4,将第二时刻作为热管理启动时刻。
其中,第二时刻在待供电时刻之前,第二时刻与待供电时刻之间的时长等于t 3
若第二时间差值不满足预设的热管理启动时刻确定条件,则在第三预设时间间隔Δt 2之后,返回步骤C1。
也就是说,若第二时间差值不满足预设的热管理启动时刻确定条件,则在预设时间间隔Δt 2之后,更新电池组的当前温度,并基于重新获取的电池组的当前温度更新t 3,直至得到电池组的热管理启动时刻。
在场景三下,步骤S140包括步骤D1~步骤D4。
步骤D1,若到达热管理启动时刻,BMS控制电动汽车中电机的开关驱动组件周期性地处于导通状态和断开状态,实现对电池组进行加热,以及控制电机的冷却系统和电池组的热管理系统连通,以实现利用电机产生的废热对电池组进行加热。
在场景三下BMS对电池组进行热管理的策略与场景一中电池组的当前 SOC满足预设的自加热条件下的热管理策略相类似,在此不再赘述。
步骤D2,若电池组的温度等于第四预设温度阈值,判断是否到达待供电时刻。若达到待供电时刻,则进入步骤D3,若未达到待供电时刻,则进入步骤D4。
在本申请的实施例中,BMS会实时获取电池组的温度,并判断电池组的温度是否到达第四预设温度阈值。在电池组的温度等于第四预设温度阈值的情况下,则判断是否到达待供电时刻。
步骤D3,若电动汽车仍处于静止状态,则返回步骤S110。若电动汽车启动,则停止对电池组进行热管理。
步骤D4,将电池组的温度维持在第四预设温度阈值。
为了使本申请实施例提供的电池组的热管理方法适用于更多的热管理应用场景,若未到达待供电时刻,则BMS实时监控电池组的温度,若电池组的温度与第四预设温度阈值之间的温度差值满足预设的热管理开启条件,则重新对电池组进行热管理,以实现将电池组的温度维持在第四预设温度阈值。当电池组的温度达到第四预设温度阈值后,返回步骤D2,直至在第四预设温度阈值下达到待供电时刻。
场景四,电池组具有冷却需求,且电动汽车的充电接口与充电设备处于未连接状态。
在场景四下,电池组的目标温度为第五预设温度阈值。BMS需要控制整车控制器向智能终端发送是否进行热管理的提示信息。若用户选择不对电池组进行热管理,则BMS不动作,若用户选择对电池组进行热管理,则BMS将从整车控制器处接收到用户的冷却指令。
在场景四下,参见图8,步骤S130包括步骤E1~步骤E4。
步骤E1,BMS接收到用户的冷却指令,获取电池组的当前温度和第五预设温度阈值。
步骤E2,基于电池组的当前温度和第五预设温度阈值,计算电池组的温度从当前温度降低至第五预设温度阈值所需的冷却时长t 4
其中,空调系统对电池组的冷却速率可以是预设的冷却速率。具体地,BMS可以基于获取的电池组的冷却速率、第五预设温度阈值和电池组的当 前温度,计算冷却时长t 4。具体计算方法,可利用与公式(1)相类似的思路进行计算,在此不再赘述。
步骤E3,判断第三时刻与获取的当前时刻之间的第三时间差值满足预设的热管理启动时刻确定条件。
其中,第三时刻在待供电时刻之前,第三时刻与待供电时刻之间的时长等于t 4。其中,第三时刻也是预估的热管理启动时刻。
若第三时间差值满足预设的热管理启动时刻确定条件,则进入步骤E4。
步骤E4,将第三时刻作为热管理启动时刻。
若第三时间差值不满足预设的热管理启动时刻确定条件,则在第四预设时间间隔Δt 3之后,返回步骤E1。
也就是说,若第三时间差值不满足预设的热管理启动时刻确定条件,则在预设时间间隔Δt 3之后,更新电池组的当前温度,并基于重新获取的电池组的当前温度更新t 4,直至得到电池组的热管理启动时刻
在场景四下,步骤S140包括步骤F1~步骤F4:
步骤F1,若到达热管理启动时刻,BMS控制电动汽车中的铅酸电池对与电池组对应的压缩机待供电,以使压缩机对电池组进行冷却。
当压缩机和水泵1均启动之后,空调系统可以对电池组进行冷却。在对电池组冷却的过程中,BMS实时监测电池组的温度,判断电池组的温度是否到达第五预设温度阈值。
步骤F2,当电池组的温度等于第五预设温度阈值时,判断是否到达待供电时刻。若达到待供电时刻,则进入步骤F3,若未达到待供电时刻,则进入步骤F4。
在本申请的实施例中,BMS会实时获取电池组的温度,并判断电池组的温度是否到达第五预设温度阈值。在电池组的温度等于第五预设温度阈值的情况下,则判断是否到达待供电时刻。
步骤F3,若电动汽车仍处于静止状态,则返回步骤S110。若电动汽车启动,则停止对电池组进行热管理。
在本申请的实施例中,在电池组的温度等于第五预设温度阈值的情况下,若到达待供电时刻,判断电动汽车是否处于静止状态。若电动汽车仍 处于静止状态,则返回步骤S110。若电动汽车启动,则停止对电池组进行热管理。
步骤F4,将电池组的温度维持在第五预设温度阈值。
为了使本申请实施例提供的电池组的热管理方法适用于更多的热管理应用场景,若未到达待供电时刻,则BMS实时监控电池组的温度,若电池组的温度与第五预设温度阈值之间的温度差值满足预设的热管理开启条件,则重新对电池组进行热管理,以实现将电池组的温度维持在第五预设温度阈值。当电池组的温度达到第五预设温度阈值后,返回步骤F2,直至在第五预设温度阈值下达到待供电时刻。
在本申请的实施例中,在不同的应用场景下为电池组设置不同的目标温度,尽量避免对电池组电量的消耗。并且,通过将电池组的待供电时刻与目标温度相结合,确定电池组的热管理启动时刻,在提高电动汽车续航里程的基础上,智能化对电池组进行热管理,提高了用户的良好体验。
在本申请的实施例中,通过整车控制器与智能终端通信,可以在充分考虑用户需求的情况下,对电池组进行智能的热管理。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种电池组的热管理方法,包括:
    若电动汽车处于静止状态,获取所述电动汽车中电池组的待供电时刻;
    若确定所述电池组具有热管理需求,根据所述电动汽车的充电接口与充电设备的连接状态确定所述电池组的目标温度;
    基于所述电池组的目标温度和所述待供电时刻,确定所述电池组的热管理启动时刻;
    若到达所述热管理启动时刻,则对所述电池组进行热管理,以在到达所述待供电时刻之前使所述电池组的温度达到所述目标温度。
  2. 根据权利要求1所述的方法,其中,所述确定所述电池组具有热管理需求,包括:
    若获取的所述电池组的温度小于第一预设温度阈值,则确定所述电池组的热管理需求为加热需求;
    若所述电池组的温度大于第二预设温度阈值,则确定所述电池组的热管理需求为冷却需求;
    所述第一预设温度阈值基于所述电池组的最低工作温度确定,所述第二预设温度阈值基于所述电池组的最高工作温度确定。
  3. 根据权利要求1所述的方法,其中,所述若确定所述电池组具有热管理需求,根据所述电动汽车的充电接口与充电设备的连接状态确定所述电池组的目标温度,包括:
    若所述电池组具有热管理需求,且所述充电接口与所述充电设备处于连接状态,则将所述目标温度设置为第三预设温度阈值;
    若所述电池组的热管理需求为加热需求,且所述充电接口与所述充电设备处于未连接状态,则将所述目标温度设置为第四预设温度阈值;
    若所述电池组的热管理需求为冷却需求,且所述充电接口与所述充电设备处于未连接状态,则将所述目标温度设置为第五预设温度阈值;
    其中,所述第四预设温度阈值小于所述第三预设温度阈值,所述第三预设温度阈值小于所述第五预设温度阈值。
  4. 根据权利要求1所述的方法,其中,若所述电池组具有热管理需求,且所述充电接口与所述充电设备处于连接状态,所述方法还包括:
    若所述电池组的温度到达所述目标温度,则停止对所述电池组进行热管理,并控制所述充电设备对所述电池组充电;
    在对所述电池组充电的过程中,实时获取所述电池组的温度,若所述电池组的温度与所述目标温度之间的温度差值满足预设的热管理开启条件,则控制所述充电设备停止对所述电池组充电;
    若所述电池组的荷电状态SOC未到达预设的目标SOC,重新对所述电池组进行热管理,直至在所述目标温度下所述电池组的SOC达到所述目标SOC。
  5. 根据权利要求1或4所述的方法,还包括:
    若到达所述待供电时刻时所述电动汽车处于静止状态,则重新获取所述电池组的待供电时刻。
  6. 根据权利要求3所述的方法,其中,若所述电池组具有热管理需求,且所述充电接口与所述充电设备处于连接状态,所述基于所述电池组的目标温度和所述待供电时刻,确定所述电池组的热管理启动时刻,包括:
    基于获取的所述电池组的当前温度和所述第三预设温度阈值,计算所述电池组的温度从所述当前温度达到所述第三预设温度阈值所需的时长t1;
    基于获取的所述电池组的当前SOC和预设的目标SOC,计算所述电池组的充电时长t2;
    若第一时刻与获取的当前时刻之间的第一时间差值满足预设的热管理启动时刻确定条件,则将所述第一时刻作为所述热管理启动时刻;其中,所述第一时刻在所述待供电时刻之前,且所述第一时刻与所述待供电时刻之间的时长等于t1+t2;
    若所述第一时间差值不满足所述预设的热管理启动时刻确定条件,则在第一预设时间间隔之后,更新所述电池组的当前温度,直至得到所述电池组的热管理启动时刻。
  7. 根据权利要求6所述的方法,其中,若所述电池组的热管理需求为加热需求,所述基于获取的所述电池组的当前温度和所述第三预设温度阈 值,计算所述电池组的温度从所述当前温度达到所述第三预设温度阈值所需的时长t1,包括:
    基于接收的所述充电设备的加热标识信息,判断所述充电设备是否具有加热功能;
    若所述充电设备具有加热功能,则基于获取的第一加热速率、所述第三预设温度阈值和获取的所述电池组的当前温度,计算所述电池组的温度从所述当前温度达到所述第三预设温度阈值所需的时长t1。
  8. 根据权利要求7所述的方法,其中,所述若到达所述热管理启动时刻,则对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,发送与所述第一加热速率对应的加热参数至所述充电设备,以使所述充电设备根据所述加热参数对所述电池组进行加热。
  9. 根据权利要求7所述的方法,还包括:
    若所述充电设备没有加热功能,判断获取的所述电池组的当前SOC是否满足预设的自加热条件;
    若所述电池组的当前SOC满足所述自加热条件,则基于获取的第二加热速率、获取的第三加热速率、所述第三预设温度阈值以及获取的所述电池组的当前温度,计算所述电池组的温度从所述当前温度达到所述第三预设温度阈值所需的时长t1。
  10. 根据权利要求9所述的方法,其中,所述若到达所述热管理启动时刻,则对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,控制所述电动汽车中电机的开关驱动组件周期性地处于导通状态和断开状态,以实现对所述电池组进行加热,以及控制所述电机的冷却系统和所述电池组的热管理系统连通,以实现利用所述电机产生的热量对所述电池组进行加热。
  11. 根据权利要求9所述的方法,还包括:
    若所述电池组的当前SOC不满足所述自加热条件,则基于获取的第四加热速率、获取的第五加热速率、所述第三预设温度阈值以及获取的所述 电池组的当前温度,计算所述电池组的温度从所述当前温度达到所述第三预设温度阈值所需的时长t1。
  12. 根据权利要求11所述的方法,其中,所述若到达所述热管理启动时刻,则对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,控制所述电机利用所述充电设备进行储能,并控制所述电机利用自身储存的能量对所述电池组加热,以及控制所述电机的冷却系统和所述电池组的热管理系统连通,以实现利用所述电机产生的热量对所述电池组进行加热。
  13. 根据权利要求1所述的方法,其中,若所述电池组的热管理需求为冷却需求,且所述充电接口与所述充电设备处于连接状态,所述若到达所述热管理启动时刻,对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,控制所述充电设备对与所述电池组对应的压缩机供电,以使所述压缩机对所述电池组进行冷却。
  14. 根据权利要求3所述的方法,其中,若所述电池组的热管理需求为加热需求,且所述充电接口与所述充电设备处于未连接状态,所述基于所述电池组的目标温度和所述待供电时刻,确定所述电池组的热管理启动时刻,包括:
    接收用户的加热指令,基于获取的所述电池组的当前温度和所述第四预设温度阈值,计算所述电池组的温度从所述当前温度升高至所述第四预设温度阈值所需的加热时长t3;
    若第二时刻与获取的当前时刻之间的第二时间差值满足预设的热管理启动时刻确定条件,则将所述第二时刻作为所述热管理启动时刻;所述第二时刻在所述待供电时刻之前,所述第二时刻与所述待供电时刻之间的时长等于t3;
    若所述第二时间差值不满足所述预设的热管理启动时刻确定条件,则在第二预设时间间隔之后,更新所述电池组的当前温度,直至得到所述电池组的热管理启动时刻。
  15. 根据权利要求14所述的方法,其中,所述若到达所述热管理启动时刻,则对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,控制所述电动汽车中电机的开关驱动组件周期性地处于导通状态和断开状态,实现对所述电池组进行加热,以及控制所述电机的冷却系统和所述电池组的热管理系统连通,以实现利用所述电机产生的热量对所述电池组进行加热。
  16. 根据权利要求3所述的方法,其中,若所述电池组的热管理需求为冷却需求,且所述充电接口与所述充电设备处于未连接状态,所述基于所述电池组的目标温度和所述待供电时刻,确定所述电池组的热管理启动时刻,包括:
    接收用户的冷却指令,基于获取的所述电池组的当前温度和所述第五预设温度阈值,计算所述电池组的温度从所述当前温度降低至所述第五预设温度阈值所需的冷却时长t4;
    若第三时刻与获取的当前时刻之间的第三时间差值满足预设的热管理启动时刻确定条件,则将所述第三时刻作为所述热管理启动时刻;所述第三时刻在所述待供电时刻之前,所述第三时刻与所述待供电时刻之间的时长等于t4;
    若所述第三时间差值不满足所述预设的热管理启动时刻确定条件,则在第三预设时间间隔之后,更新所述电池组的当前温度,直至得到所述电池组的热管理启动时刻。
  17. 根据权利要求16所述的方法,其中,所述若到达所述热管理启动时刻,则对所述电池组进行热管理,包括:
    若到达所述热管理启动时刻,控制所述电动汽车中的铅酸电池对与所述电池组对应的压缩机待供电,以使所述压缩机对所述电池组进行冷却。
  18. 根据权利要求1所述的方法,其中,所述电池组的待供电时刻为所述电动汽车的待启动时刻;所述电池组的待供电时刻根据预先记录的用户的出行习惯信息确定。
PCT/CN2020/103845 2019-08-05 2020-07-23 电池组的热管理方法 WO2021023019A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES20850104T ES2957805T3 (es) 2019-08-05 2020-07-23 Método de gestión térmica para un paquete de baterías
EP20850104.9A EP3919320B1 (en) 2019-08-05 2020-07-23 Thermal management method for battery pack
US17/585,581 US11498451B2 (en) 2019-08-05 2022-01-27 Thermal management method for battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910716195.2A CN112319310B (zh) 2019-08-05 2019-08-05 电池组的热管理方法
CN201910716195.2 2019-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/585,581 Continuation US11498451B2 (en) 2019-08-05 2022-01-27 Thermal management method for battery pack

Publications (1)

Publication Number Publication Date
WO2021023019A1 true WO2021023019A1 (zh) 2021-02-11

Family

ID=74319498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103845 WO2021023019A1 (zh) 2019-08-05 2020-07-23 电池组的热管理方法

Country Status (5)

Country Link
US (1) US11498451B2 (zh)
EP (1) EP3919320B1 (zh)
CN (1) CN112319310B (zh)
ES (1) ES2957805T3 (zh)
WO (1) WO2021023019A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571947A (zh) * 2022-03-18 2022-06-03 中国重汽集团济南动力有限公司 一种电池冷却和乘客制冷的集成空调系统及控制方法
CN114771355A (zh) * 2022-05-12 2022-07-22 重庆金康赛力斯新能源汽车设计院有限公司 电池热管理方法、装置、计算机设备和存储介质
CN114865150A (zh) * 2022-06-01 2022-08-05 中国电建集团成都勘测设计研究院有限公司 一种储能用电池系统温度管理方法及系统
WO2023028789A1 (zh) * 2021-08-30 2023-03-09 宁德时代新能源科技股份有限公司 温度确定方法与电流阈值确定方法、电池管理系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937370B (zh) * 2021-02-22 2024-05-14 北京车和家信息技术有限公司 一种车辆动力电池保温控制方法及装置
CN113140811B (zh) * 2021-02-24 2023-04-21 合众新能源汽车股份有限公司 一种动力电池热管理系统的水泵控制系统及控制方法
CN113043914B (zh) * 2021-03-18 2022-12-02 三一汽车制造有限公司 电池加热方法、装置及电动汽车
CN113043915A (zh) * 2021-05-11 2021-06-29 南京市欣旺达新能源有限公司 电池的加热方法、加热系统及含有该加热系统的电动汽车
CN113663313B (zh) * 2021-08-19 2022-12-06 厦门任和运动器材有限公司 一种搭载智能显示屏运动设备的控制系统及其启动方法
CN113829894A (zh) * 2021-10-29 2021-12-24 重庆长安新能源汽车科技有限公司 动力电池高频脉冲加热过程中的脉冲电流确定方法及系统
DE102022200790A1 (de) 2022-01-25 2023-07-27 Psa Automobiles Sa Verfahren zum Regeln einer Temperatur einer Batterie für ein elektrisch angetriebenes Kraftfahrzeug.
CN114619925B (zh) * 2022-03-30 2023-08-25 重庆金康赛力斯新能源汽车设计院有限公司 锂离子电池低温快充加热方法、装置、设备和存储介质
CN115366723A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 一种电池充电控制方法、装置、设备及存储介质
US11481010B1 (en) * 2022-06-29 2022-10-25 8Me Nova, Llc Pre-cooling a battery energy storage system for charging or discharging
CN115172943B (zh) * 2022-07-22 2024-07-09 智己汽车科技有限公司 一种电池预热方法及系统
CN115431702B (zh) * 2022-08-12 2024-05-17 重庆赛力斯新能源汽车设计院有限公司 汽车加热控制方法、系统、计算机设备和存储介质
CN115411410A (zh) * 2022-08-25 2022-11-29 中国第一汽车股份有限公司 一种动力电池的插枪保温控制系统、方法、车辆及介质
DE102022122765A1 (de) * 2022-09-08 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugs und Kraftfahrzeug
CN115447507B (zh) * 2022-09-14 2024-08-13 中国重汽集团济南动力有限公司 一种低压电瓶的状态管理装置及方法
CN116231171B (zh) * 2022-12-17 2024-10-11 浙江凌骁能源科技有限公司 电池热管理控制方法、装置、计算机设备和存储介质
CN116706334B (zh) * 2023-08-04 2024-01-05 宁德时代新能源科技股份有限公司 控制方法、用电装置及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205376690U (zh) * 2016-03-07 2016-07-06 宁德时代新能源科技股份有限公司 电池组热管理系统
CN107672465A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的处理方法及装置
CN108501745A (zh) * 2018-03-29 2018-09-07 南京酷朗电子有限公司 电动汽车电池分组热管理系统
WO2019002193A1 (de) * 2017-06-27 2019-01-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum vorwärmen einer batterie eines elektrisch betriebenen kraftfahrzeugs sowie ladevorrichtung
CN110015201A (zh) * 2018-01-31 2019-07-16 蜂巢能源科技有限公司 电动汽车的动力电池保温控制方法、系统及车辆

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671567B2 (en) * 2007-06-15 2010-03-02 Tesla Motors, Inc. Multi-mode charging system for an electric vehicle
KR101047413B1 (ko) * 2009-11-17 2011-07-08 기아자동차주식회사 전기자동차의 배터리 충전 제어를 이용한 실내 냉난방 장치 및 방법
US8620506B2 (en) * 2011-12-21 2013-12-31 Ford Global Technologies, Llc Method and system for thermal management of a high voltage battery for a vehicle
US20140012447A1 (en) * 2012-07-03 2014-01-09 Magna E-Car Systems Of America, Inc. Thermal management of vehicle battery pack during charging
US20140174707A1 (en) * 2012-12-21 2014-06-26 GM Global Technology Operations LLC Method and system for thermal storage in a vehicle
JP6050198B2 (ja) * 2013-08-26 2016-12-21 トヨタ自動車株式会社 蓄電システム
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置
CN103887578B (zh) 2014-03-25 2016-03-30 东风汽车公司 提高电动汽车低温续航里程的动力电池加热方法和系统
CN203766543U (zh) 2014-03-25 2014-08-13 东风汽车公司 一种提高电动汽车低温续航里程的动力电池加热系统
US20160207417A1 (en) * 2015-01-20 2016-07-21 Atieva, Inc. Preemptive EV Battery Pack Temperature Control System
US20170088007A1 (en) * 2015-09-25 2017-03-30 Atieva, Inc. External Auxiliary Thermal Management System for an Electric Vehicle
CN106183789B (zh) 2016-07-06 2018-11-13 中国第一汽车股份有限公司 一种电动车整车热管理系统及其控制方法
CN107972499A (zh) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 一种动力电池管理系统和包括其的电动汽车
US10730403B2 (en) 2017-05-30 2020-08-04 Ford Global Technologies, Llc System and method to utilize waste heat from power electronics to heat high voltage battery
CN208232842U (zh) 2018-02-12 2018-12-14 上海游侠汽车有限公司 一种电动汽车的热管理系统及电动汽车
CN108790673B (zh) 2018-04-26 2020-10-16 浙江吉利控股集团有限公司 一种混合动力汽车空调系统及其控制方法
CN108501675A (zh) * 2018-05-30 2018-09-07 安徽江淮汽车集团股份有限公司 一种电动汽车远程预热控制的方法及系统
CN109037831B (zh) 2018-06-25 2021-03-19 蔚来(安徽)控股有限公司 热管理系统及其控制方法、充换电站
CN108987850A (zh) 2018-08-09 2018-12-11 东风汽车有限公司 一种电动汽车电池温控系统及其控制方法
CN109068550B (zh) 2018-09-28 2024-03-08 重庆力华自动化技术有限责任公司 一种电机控制器水冷结构、电机控制器及电机控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205376690U (zh) * 2016-03-07 2016-07-06 宁德时代新能源科技股份有限公司 电池组热管理系统
WO2019002193A1 (de) * 2017-06-27 2019-01-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum vorwärmen einer batterie eines elektrisch betriebenen kraftfahrzeugs sowie ladevorrichtung
CN107672465A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的处理方法及装置
CN110015201A (zh) * 2018-01-31 2019-07-16 蜂巢能源科技有限公司 电动汽车的动力电池保温控制方法、系统及车辆
CN108501745A (zh) * 2018-03-29 2018-09-07 南京酷朗电子有限公司 电动汽车电池分组热管理系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028789A1 (zh) * 2021-08-30 2023-03-09 宁德时代新能源科技股份有限公司 温度确定方法与电流阈值确定方法、电池管理系统
CN114571947A (zh) * 2022-03-18 2022-06-03 中国重汽集团济南动力有限公司 一种电池冷却和乘客制冷的集成空调系统及控制方法
CN114571947B (zh) * 2022-03-18 2024-03-15 中国重汽集团济南动力有限公司 一种电池冷却和乘客制冷的集成空调系统及控制方法
CN114771355A (zh) * 2022-05-12 2022-07-22 重庆金康赛力斯新能源汽车设计院有限公司 电池热管理方法、装置、计算机设备和存储介质
CN114771355B (zh) * 2022-05-12 2024-05-24 重庆赛力斯新能源汽车设计院有限公司 电池热管理方法、装置、计算机设备和存储介质
CN114865150A (zh) * 2022-06-01 2022-08-05 中国电建集团成都勘测设计研究院有限公司 一种储能用电池系统温度管理方法及系统
CN114865150B (zh) * 2022-06-01 2024-01-30 中国电建集团成都勘测设计研究院有限公司 一种储能用电池系统温度管理方法及系统

Also Published As

Publication number Publication date
EP3919320A1 (en) 2021-12-08
US20220203863A1 (en) 2022-06-30
ES2957805T3 (es) 2024-01-25
CN112319310A (zh) 2021-02-05
EP3919320A4 (en) 2022-06-08
US11498451B2 (en) 2022-11-15
EP3919320B1 (en) 2023-08-30
CN112319310B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021023019A1 (zh) 电池组的热管理方法
AU2019409171B2 (en) Vehicle and temperature control apparatus thereof
CN112977171B (zh) 一种电动汽车及动力电池脉冲加热系统
US10780795B2 (en) Battery heating system and control method thereof
CN111354996B (zh) 车辆及其动力电池温度控制装置
US12100819B2 (en) Switch control device and method, motor controller, and battery pack heating control system
WO2021237990A1 (zh) 利用电驱动系统对动力电池加热的方法及电动汽车
CN112537180A (zh) 一种热管理系统、控制方法、装置及汽车
CN111347928A (zh) 车辆及其动力电池温度控制装置
JP2013141337A (ja) 車両の制御装置およびそれを備える車両
CN111347939A (zh) 车辆及其动力电池温度控制装置
CN112103532A (zh) 一种集成式氢能汽车热管理控制方法
CN114274823A (zh) 一种电动汽车的充电能量管理系统、方法和电动汽车
CN112622559B (zh) 一种汽车及高压控制装置
CN115107559A (zh) 电源系统
CN113733855A (zh) 一种电动汽车电池的低温快速启动系统及控制方法
JP6986811B2 (ja) 直流電源
WO2024084704A1 (ja) バッテリ暖機方法、及び、バッテリ暖機装置
CN115891689B (zh) 车载充电机、控制器、车载动力系统及电动车辆
CN214254545U (zh) 一种电动汽车锂电池低温启动装置
US20240286490A1 (en) Electrified vehicle
TWI651880B (zh) 具有溫控電池之電動車
JP2024122348A (ja) 電池昇温装置
CN116872798A (zh) 车辆电池自加热系统及方法
CN116885344A (zh) 用于电池自加热的方法和系统、以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020850104

Country of ref document: EP

Effective date: 20210902

NENP Non-entry into the national phase

Ref country code: DE