WO2021022682A1 - Procédé de commande combinée de vitesse et de pression de presse hydraulique orbitale - Google Patents

Procédé de commande combinée de vitesse et de pression de presse hydraulique orbitale Download PDF

Info

Publication number
WO2021022682A1
WO2021022682A1 PCT/CN2019/113194 CN2019113194W WO2021022682A1 WO 2021022682 A1 WO2021022682 A1 WO 2021022682A1 CN 2019113194 W CN2019113194 W CN 2019113194W WO 2021022682 A1 WO2021022682 A1 WO 2021022682A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control
master cylinder
signal
piston
Prior art date
Application number
PCT/CN2019/113194
Other languages
English (en)
Chinese (zh)
Inventor
熊义
Original Assignee
南通锻压设备如皋有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通锻压设备如皋有限公司 filed Critical 南通锻压设备如皋有限公司
Publication of WO2021022682A1 publication Critical patent/WO2021022682A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor

Definitions

  • the invention relates to a compound control method of a hydraulic press, in particular to a speed-pressure compound control method of a swinging hydraulic press.
  • the indenter In the initial stage of pressing in the orbiting forming process, the indenter needs to make a constant feed ratio movement, that is, the pressing amount of the indenter per revolution of the blank remains the same.
  • This stage requires speed control of the hydraulic cylinder driving the indenter;
  • the pressing end stage in the forming process requires the indenter to maintain a relatively constant pressing force, so as to ensure a smooth process of the blank gradually decelerating to a stop and maintaining good surface quality of the formed workpiece.
  • How to coordinate the motion control and pressure control of the hydraulic cylinder so as to realize the smooth and automatic transition from the constant feed ratio movement to the pressing force maintenance of the oscillating forging head is an urgent problem to be solved in the oscillating forging hydraulic press.
  • the purpose of the present invention is to provide a speed-pressure compound control method of the orbiting forging hydraulic machine, which can coordinate the smooth and automatic transition from speed control to pressure control of the orbiting forging forming hydraulic machine.
  • the hardware system of the present invention includes at least;
  • Displacement sensor used to detect the displacement of the master cylinder piston, the displacement signal is s;
  • the main cylinder is used to provide thrust to drive the slider and the indenter.
  • the piston's active area is A;
  • the first pressure sensor is used to detect the pressure of the action chamber of the master cylinder, and the pressure signal is p1;
  • Proportional control valve used to adjust the flow into the action chamber of the master cylinder, the control command signal is u, and the flow-pressure mapping coefficient is k;
  • the second pressure sensor is used to detect the pressure of the constant pressure oil source, and the pressure signal is p0;
  • Constant pressure oil source used to provide a constant pressure hydraulic oil source
  • the controller is used to collect signals from the displacement sensor, the first pressure sensor, and the second pressure sensor, perform control calculations, and transmit control command signals to the proportional control valve;
  • the detection end of the displacement sensor and the piston of the master cylinder belong to the same assembly;
  • the action chamber of the master cylinder is connected with the first pressure sensor oil port and the A port of the proportional control valve;
  • the P port of the proportional control valve and the second pressure sensor The oil port and the constant pressure oil source port are connected;
  • the T port of the proportional control valve is connected with the hydraulic oil tank;
  • the controller is electrically connected with the displacement sensor, the first pressure sensor, the proportional control valve, and the second pressure sensor.
  • control method of the present invention at least includes the following steps:
  • Step 1 Set the stroke switching point st; the speed signal v of the master cylinder piston is obtained after the displacement signal s is differentiated; the expected movement speed of the master cylinder piston is planned to be vd; the expected master cylinder pressure chamber pressure is pd.
  • uva is the estimated adjustment part, the expression is:
  • uvb is the feedback control part, the expression is:
  • fv(v-vd) is any control function that can make the absolute value of the velocity error (v-vd) approach zero.
  • Step 3 After the piston of the master cylinder moves to st, the controller calculates the pressure control signal up while calculating uv according to the method shown in step 2. The expression of up is
  • fp(p1-pd) is any control function that can make the absolute value of the pressure error (p1-pd) approach zero.
  • the controller compares the absolute value of the speed control signal uv and the pressure control signal up, and uses the control signal with the smaller absolute value as the control command signal u of the proportional control valve.
  • the present invention adopts the control method of estimation plus feedback to help improve the stability and accuracy of speed control.
  • the invention adopts the minimum absolute value algorithm of the control signal to ensure that the control command signal always converges during the switching process between speed control and pressure control, and avoids shock and vibration in the switching process.
  • the present invention realizes the automatic and smooth conversion of hydraulic cylinder speed control and pressure control, and meets the multi-control target demand in the swing rolling process.
  • Figure 1 is a schematic diagram of the system of the present invention.
  • Figure 2 is a control flow chart of the present invention.
  • Figure 3 is a schematic diagram of the control effect of the present invention.
  • the hardware system of the present invention at least includes;
  • Displacement sensor 1 used to detect the piston displacement of master cylinder 2, and the displacement signal is s;
  • the main cylinder 2 is used to provide thrust to drive the slider and the indenter, and the acting area of the piston is A;
  • the first pressure sensor 3 is used to detect the pressure of the action chamber of the master cylinder 2, and the pressure signal is p1;
  • the proportional control valve 4 is used to adjust the flow into the action chamber of the master cylinder 2, the control command signal is u, and the flow-pressure mapping coefficient is k;
  • the second pressure sensor 5 is used to detect the pressure of the constant pressure oil source 6, and the pressure signal is p0;
  • Constant pressure oil source 6 used to provide a constant pressure hydraulic oil source
  • the controller 7 is used to collect the signals of the displacement sensor 1, the first pressure sensor 3, and the second pressure sensor 5, execute control calculations, and transmit the control command signal to the proportional control valve 4;
  • the detection end of the displacement sensor 1 and the piston of the master cylinder 2 belong to the same assembly;
  • the action chamber of the master cylinder 2 is connected with the first pressure sensor 3 oil port and the proportional control valve 4 port A;
  • the proportional control valve 4 P The port is connected with the second pressure sensor 5 oil port and the constant pressure oil source 6 oil port;
  • the T port of the proportional control valve 4 is connected with the hydraulic oil tank;
  • the controller 7 is connected with the displacement sensor 1, the first pressure sensor 3, the proportional control valve 4,
  • the second pressure sensors 5 are electrically connected.
  • the constant pressure oil source 6 is realized by means of a constant pressure variable pump or a quantitative pump plus an overflow valve; the controller 7 generally adopts a digital controller such as PLC.
  • control method of the present invention at least includes the following steps:
  • Step 1 Set the stroke switching point st; the displacement signal s is differentiated to obtain the speed signal v of the piston of the master cylinder 2; the expected movement speed of the piston of the master cylinder 2 is vd; the expected pressure of the action chamber of the master cylinder 2 is pd.
  • uva is the estimated adjustment part, the expression is:
  • uvb is the feedback control part, the expression is:
  • fv(v-vd) is any control function that can make the absolute value of the speed error (v-vd) approach 0, and can be calculated by PID control method in practical applications.
  • Step 3 After the piston of the master cylinder 2 moves to st, the controller 7 calculates the pressure control signal up while calculating uv according to the method shown in step 2. The expression of up is
  • fp(p1-pd) is any control function that can make the absolute value of the pressure error (p1-pd) approach 0. In practical applications, it can be calculated by the PID control method.
  • the controller 7 compares the absolute value of the speed control signal uv and the pressure control signal up, and uses the control signal with a smaller absolute value as the control command signal u of the proportional control valve 4.
  • the system controls the speed of the piston of the master cylinder 2 at the beginning of the orbiting forming.
  • the master cylinder 2 drives the pressure head to move at a constant speed; when the piston stroke of the master cylinder 2 exceeds st, the system starts to perform speed-pressure compound control on the master cylinder 2.
  • p1 approaches pd, and the absolute value of uv will increase with the increase of the pressing force.
  • the stroke switching point st needs to be set according to the process test data.
  • the pressure p1 in the control chamber of the master cylinder 2 starts to rise rapidly when the piston of the master cylinder 2 runs to st, and the expected movement speed of the master cylinder 2 piston vd is planned to be a decelerating movement.
  • the stroke point sp is not set in advance.
  • the switching of the system control mode is automatically completed by comparing the absolute value of the control signal uv and up.
  • the control command signal u of the proportional control valve 4 always takes the control signal with the smallest absolute value to ensure The convergence and stability of the handover process are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Presses (AREA)

Abstract

L'invention concerne un procédé de commande combinée de la vitesse et de la pression d'une presse hydraulique orbitale. Un système matériel comprend principalement : un capteur de déplacement (1) utilisé pour mesurer le déplacement d'un piston d'un maître-cylindre ; un maître-cylindre (2) utilisé pour assurer une poussée permettant d'entraîner un coulisseau et un poussoir ; un premier capteur de pression (3) utilisé pour mesurer la pression d'une chambre d'action du maître-cylindre ; une soupape de commande proportionnelle (4) utilisée pour régler le taux d'un écoulement entrant dans la chambre d'action du maître-cylindre ; un second capteur de pression (5) utilisé pour mesurer la pression d'une source d'huile à pression constante (6) ; une source d'huile à pression constante (6) utilisée pour assurer une source d'huile hydraulique à pression constante ; et un dispositif de commande (7) utilisé pour acquérir des signaux du capteur de déplacement (1), du premier capteur de pression (3) et du second capteur de pression (5), pour effectuer une commande et un calcul, et pour émettre un signal d'instruction de commande à la soupape de commande proportionnelle (4). La commande de la vitesse et la commande de la pression de la presse hydraulique orbitale sont combinées au moyen d'un algorithme de valeur absolue minimale utilisé pour le signal de commande, ce qui permet d'obtenir une planification automatique d'une cible de commande et une commutation douce entre les modes de commande, et de réduire les difficultés de coordination entre la commande de la vitesse et la commande de la pression dans un procédé de façonnage orbital.
PCT/CN2019/113194 2019-08-06 2019-10-25 Procédé de commande combinée de vitesse et de pression de presse hydraulique orbitale WO2021022682A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910720703.4A CN110425186B (zh) 2019-08-06 2019-08-06 摆辗液压机的速度-压力复合控制方法
CN201910720703.4 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021022682A1 true WO2021022682A1 (fr) 2021-02-11

Family

ID=68414295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113194 WO2021022682A1 (fr) 2019-08-06 2019-10-25 Procédé de commande combinée de vitesse et de pression de presse hydraulique orbitale

Country Status (2)

Country Link
CN (1) CN110425186B (fr)
WO (1) WO2021022682A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898623A (zh) * 2021-09-17 2022-01-07 天津市天锻压力机有限公司 一种多功能锻造液压机的液压系统、控制系统及控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117514954B (zh) * 2024-01-08 2024-05-17 中国重型机械研究院股份公司 一种节能型挤压速度电液控制系统与控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883588A (zh) * 2014-03-03 2014-06-25 浙江大学 推耙机液压油缸碰撞缓冲系统控制方法
CN104819175A (zh) * 2013-11-19 2015-08-05 通用电气石油和天然气英国有限公司 液压流体压力控制
CN106438585A (zh) * 2016-12-09 2017-02-22 山东大学 具有缓冲功能液压缸的控制系统和控制方法
US20180128292A1 (en) * 2016-11-09 2018-05-10 Eaton Corporation Control strategy for hydraulic actuator with a pair of independent metering valves
CN108131364A (zh) * 2017-12-25 2018-06-08 徐州重型机械有限公司 一种动力传动系统及其控制方法
EP3378827A1 (fr) * 2017-03-24 2018-09-26 STILL GmbH Procédé de fonctionnement d'une installation hydraulique d'un chariot de manutention

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712207A (zh) * 2009-09-08 2010-05-26 广东工业大学 一种伺服电机驱动高性能节能型双动液压机
CN202062695U (zh) * 2010-12-30 2011-12-07 南通国谊锻压机床有限公司 一种液压机伺服泵控系统
CN102108994B (zh) * 2011-01-13 2013-10-16 太原理工大学 具有快速抑制冲击载荷的电液位置伺服系统
CN202239624U (zh) * 2011-09-20 2012-05-30 天津市天锻压力机有限公司 一种粉末液压机电液比例控制系统
CN104191643B (zh) * 2014-08-20 2016-05-25 江苏大学 单动液压机冲压速度和压边力的监测和控制系统及方法
CN106239971B (zh) * 2016-08-25 2018-04-17 江苏大学 一种液压机电液比例调节控制系统
CN107234201B (zh) * 2017-05-26 2019-01-01 武汉理工大学 一种进给速度可控的重载锻压设备液压系统及控制方法
CN108177377B (zh) * 2018-02-09 2023-05-30 扬力集团股份有限公司 液压机控制系统及其加工汽车内饰件的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819175A (zh) * 2013-11-19 2015-08-05 通用电气石油和天然气英国有限公司 液压流体压力控制
CN103883588A (zh) * 2014-03-03 2014-06-25 浙江大学 推耙机液压油缸碰撞缓冲系统控制方法
US20180128292A1 (en) * 2016-11-09 2018-05-10 Eaton Corporation Control strategy for hydraulic actuator with a pair of independent metering valves
CN106438585A (zh) * 2016-12-09 2017-02-22 山东大学 具有缓冲功能液压缸的控制系统和控制方法
EP3378827A1 (fr) * 2017-03-24 2018-09-26 STILL GmbH Procédé de fonctionnement d'une installation hydraulique d'un chariot de manutention
CN108131364A (zh) * 2017-12-25 2018-06-08 徐州重型机械有限公司 一种动力传动系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898623A (zh) * 2021-09-17 2022-01-07 天津市天锻压力机有限公司 一种多功能锻造液压机的液压系统、控制系统及控制方法
CN113898623B (zh) * 2021-09-17 2024-04-12 天津市天锻压力机有限公司 一种多功能锻造液压机的液压系统、控制系统及控制方法

Also Published As

Publication number Publication date
CN110425186B (zh) 2020-06-26
CN110425186A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2021022682A1 (fr) Procédé de commande combinée de vitesse et de pression de presse hydraulique orbitale
JP4820564B2 (ja) ダイクッション制御装置
US7918120B2 (en) Die cushion control device
CN103660359B (zh) 一种被动式四角调平液压机的液压控制系统及控制方法
US6874343B1 (en) Press brake and method of controlling bidirectional fluid pump of hydraulic cylinder of press brake
RU2401742C2 (ru) Устройство регулирования нагрузки подушки и прессовая машина, содержащая устройство регулирования нагрузки подушки
CN106640809B (zh) 变排量变压力调节负载匹配电液位置跟踪控制方法
CN104128396A (zh) 工件校直机及其校直方法
CN204842477U (zh) 热卷箱夹送辊升降液压回路
JPH07232216A (ja) プレスブレーキのラムのストロークを調整及び制御する方法並びに該方法を実施するための調整及び制御装置を有するプレスブレーキ
US10065386B2 (en) Slide motion control apparatus for mechanical press
JP5995918B2 (ja) プレス機械の横方向高剛性化装置
US20060254337A1 (en) Device for controlling the drawing process in a transfer press
CN111207123B (zh) 一种边帮开采运输单元推移油缸的同步控制方法
CN112976668B (zh) 一种改善液压机被动式调平系统的前馈补偿控制系统及方法
WO2001053016A1 (fr) Procede de controle de la vitesse du verin d'une presse a plier, presse a plier mettant en oeuvre ledit procede et procede et appareil de regulation de la position du verin de la presse a plier
CN115922533A (zh) 一种气动抛光力控装置及控制方法
CN103611767B (zh) 一种电液双缸折弯机滑块位置控制方法
CN201231269Y (zh) 液压板料折弯机的滑块行程调节机构
CN107288837A (zh) 一种变量柱塞泵及其控制方法
CN114406876A (zh) 一种钢轨打磨柔性进给装置及控制方法
JP2713773B2 (ja) 折曲げ加工機の制御方法
CN2930910Y (zh) 斜辊矫直机辊缝伺服调整装置
JPH08225804A (ja) 粉末成形プレスのホールドダウン行程時の上パンチの制御方法および制御装置
LU501666B1 (en) An Intelligent Deep Drawing Control System for Box Parts of Tailor Rolled Blanks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940246

Country of ref document: EP

Kind code of ref document: A1