WO2021020248A1 - 複合顔料、識別媒体及び真正性判定方法 - Google Patents

複合顔料、識別媒体及び真正性判定方法 Download PDF

Info

Publication number
WO2021020248A1
WO2021020248A1 PCT/JP2020/028345 JP2020028345W WO2021020248A1 WO 2021020248 A1 WO2021020248 A1 WO 2021020248A1 JP 2020028345 W JP2020028345 W JP 2020028345W WO 2021020248 A1 WO2021020248 A1 WO 2021020248A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cholesteric liquid
pigment
crystal pigment
selective reflection
Prior art date
Application number
PCT/JP2020/028345
Other languages
English (en)
French (fr)
Inventor
将 相松
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202080053760.2A priority Critical patent/CN114207083A/zh
Priority to EP20848478.2A priority patent/EP4006108A4/en
Priority to JP2021536983A priority patent/JPWO2021020248A1/ja
Priority to US17/629,871 priority patent/US20220289988A1/en
Publication of WO2021020248A1 publication Critical patent/WO2021020248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/107Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azomethine dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/128Viewing devices

Definitions

  • the present invention relates to a composite pigment, an identification medium, and an authenticity determination method.
  • the cholesteric liquid crystal resin is obtained by cholesteric orientation of a liquid crystal compound and curing while maintaining the orientation.
  • a cholesteric liquid crystal resin has a circular polarization separation function that reflects one of the left and right circularly polarized light and transmits the other circularly polarized light. It is known that in the cholesteric liquid crystal resin material, the wavelength of the reflected circular polarization shifts to the short wavelength side as the viewing angle ⁇ from the front direction increases. Using this property, the authenticity of the identification medium using the cholesteric liquid crystal resin can be identified.
  • the present inventor uses a composite pigment containing a specific first cholesteric liquid crystal pigment and a specific second cholesteric liquid crystal pigment in a predetermined ratio, and is derived from the first cholesteric liquid crystal pigment. It has been found that it is possible to make a color lighter than the color of the above visible, thereby providing an identification medium having an excellent design and an anti-counterfeiting effect.
  • the first cholesteric liquid crystal pigment a pigment having a central wavelength of the selective reflection band within a wavelength range of 400 nm or more and 800 nm or less and having a selective reflection bandwidth of 150 nm or less is used, and the second cholesteric liquid crystal pigment is used.
  • the present invention provides the following.
  • a first cholesteric liquid crystal pigment and a second cholesteric liquid crystal pigment are included.
  • the first cholesteric liquid crystal pigment is a pigment having a central wavelength of the selective reflection band within a wavelength range of 400 nm or more and 800 nm or less and having a selective reflection bandwidth of 150 nm or less.
  • the second cholesteric liquid crystal pigment is a pigment having a selective reflection bandwidth of 200 nm or more within a wavelength range of 400 nm or more and 800 nm or less. At least a part of the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment overlap.
  • a composite pigment, an ink composition and an identification medium using the composite pigment, and a method for identifying the authenticity of the identification medium, which can realize an identification medium having excellent design and anti-counterfeiting effect, can be realized.
  • FIG. 1 is a front view schematically showing an apparatus for producing a stripped piece of a resin thin film used in the production of the composite pigment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section when a corner portion of a bar of the manufacturing apparatus of FIG. 1 is cut by a plane perpendicular to the width direction of the support.
  • composition includes not only a mixture of two or more substances, but also a material consisting of a single substance, and an “agent” is a material consisting of a single substance. Others include mixtures of two or more substances.
  • (meth) acrylate means “acrylate”, “methacrylate”, or both.
  • (meth) acrylic means “acrylic", “methacrylic”, or both.
  • (Thio) Epoxy means “epoxy”, “thioepoxy”, or both.
  • iso (thio) cyanate means “isocyanate”, “isothiocyanate”, or both.
  • the composite pigment of the present invention includes a first cholesteric liquid crystal pigment and a second cholesteric liquid crystal pigment.
  • the first cholesteric liquid crystal pigment is a pigment having a central wavelength of the selective reflection band within a wavelength range of 400 nm or more and 800 nm or less, and having a selective reflection bandwidth of 150 nm or less.
  • the second cholesteric liquid crystal pigment is a pigment having a selective reflection bandwidth of 200 nm or more within a wavelength range of 400 nm or more and 800 nm or less. At least a part of the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment overlap.
  • the content of the first cholesteric liquid crystal pigment is more than 30% by weight and 80% by weight or less with respect to the total amount of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment.
  • the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment are each composed of a cholesteric liquid crystal resin.
  • the "cholesteric liquid crystal resin” means a resin material having cholesteric regularity, and means that the molecules or molecular portions constituting the resin are aligned in a state having cholesteric regularity in the resin.
  • the term "molecules in the resin have cholesteric regularity” means that the molecules in the resin have the specific regularity described below.
  • the orientation direction in the next third plane that further overlaps the second plane deviates from the orientation direction in the second plane at a slight angle.
  • the angles of the molecular axes in the planes are sequentially shifted (twisted).
  • the structure in which the direction of the molecular axis is twisted in this way becomes an optically chiral structure.
  • the cholesteric liquid crystal resin having an optically chiral structure usually has a circular polarization selective reflection function that selectively reflects circular polarization.
  • Cholesteric liquid crystal resin "selectively reflects" light in a predetermined wavelength range means that one of the unpolarized light (that is, natural light) in a predetermined wavelength range is reflected and the other circularly polarized component is reflected. It means to be transparent.
  • the "selective reflection band” refers to the range of wavelengths of circularly polarized light that is selectively reflected.
  • the “selective reflection bandwidth” is the width of the selective reflection band, and specifically, it can be a half width of the selective reflection band.
  • the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment overlap.
  • the range in which the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment overlap is preferably 80% or more, more preferably 80% or more of the entire selective reflection band of the first cholesteric liquid crystal pigment. It is 90% or more, more preferably 100% or less.
  • the range in which the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment overlap is preferably 10% or more, more preferably 10% or more, based on the entire selective reflection band of the second cholesteric liquid crystal pigment. It is 20% or more, preferably 50% or less, and more preferably 40% or less.
  • the overlapping range of the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment is equal to or more than the above lower limit value with respect to the entire selective reflection band of the first cholesteric liquid crystal pigment, in visual observation, Due to the action of the second cholesteric liquid crystal pigment, it becomes easier to express a lighter color than the color derived from the first cholesteric liquid crystal pigment.
  • the overlapping range of the selective reflection band of the first cholesteric liquid crystal pigment and the selective reflection band of the second cholesteric liquid crystal pigment is equal to or more than the above lower limit value with respect to the entire selective reflection band of the second cholesteric liquid crystal pigment, in visual observation, Due to the action of the second cholesteric liquid crystal pigment, it becomes easier to express a lighter color than the color derived from the first cholesteric liquid crystal pigment. Further, when it is not more than the above upper limit value, it is possible to prevent the color derived from the first cholesteric liquid crystal pigment from becoming too pale and becoming achromatic.
  • the selective reflection bandwidth of the first cholesteric liquid crystal pigment is 150 nm or less, and the selective reflection bandwidth of the second cholesteric liquid crystal pigment is 200 nm or more. That is, the first cholesteric liquid crystal pigment is a cholesteric liquid crystal pigment having a narrower (narrower band) selective reflection bandwidth than the second cholesteric liquid crystal pigment, and the second cholesteric liquid crystal pigment has a selective reflection band than that of the first cholesteric liquid crystal pigment.
  • a wide (broadband) cholesteric liquid crystal pigment When the identification medium using the cholesteric liquid crystal pigment having a narrow selective reflection band width alone is observed with natural light, the appearance having colors corresponding to the reflection band can be visually recognized.
  • the composite pigment contains a predetermined amount of a first cholesteric liquid crystal pigment having a selective reflection bandwidth of 150 nm or less, and includes a second cholesteric liquid crystal pigment having a selective reflection bandwidth of 200 nm or more.
  • a color lighter than the color derived from the first cholesteric liquid crystal pigment can be visually recognized.
  • the selective reflection bandwidth of the first cholesteric liquid crystal pigment is preferably 120 nm or less, more preferably 110 nm or less, preferably 30 nm or more, and more preferably 50 nm or more.
  • the selective reflection bandwidth of the second cholesteric liquid crystal pigment is preferably 200 nm or more, more preferably 300 nm or more.
  • the upper limit of the selective reflection bandwidth of the second cholesteric liquid crystal pigment is not particularly limited, but is preferably 2000 nm or less, more preferably 1000 nm or less.
  • the first cholesteric liquid crystal pigment has a central wavelength of the selective reflection band within a wavelength range of 400 nm or more and 800 nm or less.
  • the central wavelength of the selective reflection band of each cholesteric liquid crystal pigment can be the central wavelength of the region related to the half width of the selective reflection band. That is, the reflection spectrum of the cholesteric liquid crystal pigment at an incident angle of 5 ° is measured, and in the obtained reflection spectrum, the peak having the maximum intensity and the base having the minimum intensity are determined, and the minimum intensity + (maximum intensity-minimum intensity) /.
  • the wavelength ⁇ 1 on the short wavelength side and the wavelength ⁇ 2 on the long wavelength side of the peak, which show the intensity of 2 are obtained.
  • the average value (( ⁇ 1 + ⁇ 2) / 2) of these can be obtained, and the average value can be used as the center wavelength.
  • the selective reflection band of each cholesteric liquid crystal pigment ranges from the wavelength ⁇ 1 on the short wavelength side of the peak showing the intensity of minimum intensity + (maximum intensity-minimum intensity) / 2 in the reflection spectrum to the wavelength ⁇ 2 on the long wavelength side. It is in the range ( ⁇ 1 to ⁇ 2), and the selective reflection bandwidth of each cholesteric liquid crystal pigment is the difference ( ⁇ 2- ⁇ 1) between the wavelength ⁇ 2 on the long wavelength side and the wavelength ⁇ 1 on the short wavelength side.
  • the central wavelength of the selective reflection band of each cholesteric liquid crystal pigment is a thin film containing the pigment. It is the central wavelength of the selective reflection band observed when it is formed.
  • the central wavelength ⁇ (nm) of the selective reflection band has an average refractive index of n for the cholesteric liquid crystal resin and a chiral structure possessed by the cholesteric liquid crystal resin.
  • the pitch length of the (spiral structure) is P (nm)
  • n ⁇ P ⁇ cos ⁇
  • the wavelength is shorter than the central wavelength ⁇ of the band.
  • the front direction of the thin film containing the cholesteric liquid crystal pigment means the normal direction of the thin film when the thin film containing the cholesteric liquid crystal pigment is formed.
  • the central wavelength ⁇ of the selective reflection band when the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment are observed from the front with a viewing angle ⁇ can be increased by increasing the pitch length P of the chiral structure (spiral structure), for example. It can be made smaller by reducing the pitch length P.
  • Examples of the method of adjusting the pitch length of each cholesteric liquid crystal resin include a method of adjusting the type of chiral agent and a method of adjusting the amount of the chiral agent.
  • the content of the first cholesteric liquid crystal pigment is more than 30% by weight and 80% by weight or less with respect to the total amount of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment.
  • the content of the first cholesteric liquid crystal pigment is preferably 35% by weight or more, more preferably 45% by weight or more, and preferably 75% by weight or less, based on the total amount of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment. It is preferably 65% by weight or less.
  • the reflection color of the second cholesteric liquid crystal pigment as well as the reflection color of the first cholesteric liquid crystal pigment It can be visually observed by visual observation. As a result, it is possible to visually recognize a color lighter than the color derived from the first cholesteric liquid crystal pigment, and thereby, it is possible to provide a composite pigment capable of realizing an identification medium having excellent design and anti-counterfeiting effect.
  • the reflection color of the first cholesteric liquid crystal pigment and the reflection of the second cholesteric liquid crystal pigment are reflected.
  • the color becomes visible, and a color lighter than the color derived from the first cholesteric liquid crystal pigment can be visually recognized.
  • the content of the first cholesteric liquid crystal pigment is 30% by weight or less with respect to the total amount of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment, the reflected color of the first cholesteric liquid crystal pigment may be difficult to see or not visible.
  • the reflected color of the first cholesteric liquid crystal pigment can be visually recognized together with the reflected color of the second cholesteric liquid crystal pigment, and the color derived from the first cholesteric liquid crystal pigment can be visually recognized. Lighter colors can be visually recognized.
  • the average particle size of the flakes is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, preferably 120 ⁇ m or less, more preferably. Is 100 ⁇ m or less, particularly preferably 80 ⁇ m or less.
  • the particle size distribution can be measured by a laser / scattering method, and the average particle size can be measured from the particle size distribution.
  • the particle size at which the integrated value of the volume is 50% can be used as the average particle size.
  • the average particle size of flakes is a volume average unless otherwise specified.
  • the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment may have the same twisting direction as each other, or may have different twisting directions from each other.
  • the twisting direction can be determined by observing the reflected light when unpolarized light is incident on the sample containing each cholesteric liquid crystal pigment through the left and right circularly polarizing plates. That is, the twisting direction can be determined by irradiating the sample with non-polarized light from the observer side and observing the reflected light reflected by the sample and reaching the observer side.
  • the reflected light is right-handed circularly polarized light, it can be judged as a right-handed twist, and when it is left-handed circularly polarized light, it can be judged as a left-handed twist.
  • the cholesteric liquid crystal resin used as a material for the first cholesteric liquid crystal pigment is a cured product of the first liquid crystal composition containing a liquid crystal compound.
  • the cholesteric liquid crystal resin used as a material for the second cholesteric liquid crystal pigment is a cured product of the second liquid crystal composition containing a liquid crystal compound.
  • a polymerizable liquid crystal compound is preferable.
  • a liquid crystal composition containing a liquid crystal compound having polymerizability can be easily cured while maintaining an oriented state by polymerizing the liquid crystal compound.
  • a cholesteric liquid crystal compound As the liquid crystal compound, a cholesteric liquid crystal compound can be used.
  • the cholesteric liquid crystal compound is a compound capable of exhibiting cholesteric liquid crystal property.
  • a liquid crystal composition containing such a cholesteric liquid crystal compound and curing the liquid crystal composition in a state of exhibiting the cholesteric liquid crystal phase a cholesteric liquid crystal resin which is a resin material having cholesteric regularity can be obtained.
  • liquid crystal compound contained in the first liquid crystal composition and the second liquid crystal composition for example, a rod-shaped liquid crystal compound having two or more reactive groups in one molecule can be used.
  • the rod-shaped liquid crystal compound include a compound represented by the formula (1). R 3- C 3- D 3- C 5- MC 6- D 4- C 4- R 4 Equation (1)
  • R 3 and R 4 are reactive groups, which are independently a (meth) acrylic group, a (thio) epoxy group, an oxetane group, a thietanyl group, an aziridinyl group, a pyrrol group, and a vinyl group. , Allyl group, fumarate group, cinnamoyl group, oxazoline group, mercapto group, iso (thio) cyanate group, amino group, hydroxyl group, carboxyl group, and alkoxysilyl group. By having these reactive groups, it is possible to obtain a cholesteric liquid crystal resin having high strength when the liquid crystal composition is cured.
  • D 3 and D 4 are independently single-bonded, linear or branched-chain alkyl groups having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents a group selected from the group consisting of linear or branched alkylene oxide groups.
  • C 3 to C 6 are independently single-bonded, -O-, -S-, -SS-, -CO-, -CS-, -OCO-, and -CH 2.
  • M represents a mesogen group. Specifically, M may have an unsubstituted or substituent, azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylics.
  • R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms which may have a substituent examples include a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 10 carbon atoms.
  • Examples thereof include an alkylcarbonyloxy group having 7 to 7 groups and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
  • the rod-shaped liquid crystal compound preferably has an asymmetric structure.
  • the asymmetric structure is a structure in which R 3- C 3- D 3- C 5- and -C 6- D 4- C 4- R 4 are different from each other with the mesogen group M as the center in the formula (1).
  • the orientation uniformity can be further enhanced.
  • rod-shaped liquid crystal compound examples include the following compounds (B1) to (B9).
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the first liquid crystal composition and / or the second liquid crystal composition preferably contains a compound represented by the above formula (1) as a liquid crystal compound, and one or more selected from the above compounds (B1) to (B9). It is more preferable to include.
  • the first liquid crystal composition and / or the second liquid crystal composition may contain a compound represented by the following formula (2) in addition to the liquid crystal compound.
  • the compound of formula (2) can function as an orientation aid.
  • R 1 and R 2 are independently linear or branched alkyl groups having 1 to 20 carbon atoms and linear having 1 to 20 carbon atoms, respectively.
  • a branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or a (meth) acrylic group, an epoxy group, a mercapto group, an isocyanate group, an amino group, which may be mediated by any bonding group may be present.
  • a group selected from the group consisting of cyano groups may be present.
  • the alkyl group and the alkylene oxide group may not be substituted or may be substituted with one or more halogen atoms.
  • the halogen atom, hydroxyl group, carboxyl group, (meth) acrylic group, epoxy group, mercapto group, isocyanate group, amino group and cyano group are alkyl groups having 1 to 2 carbon atoms and alkylene oxides. It may be bonded to a group.
  • R 1 and R 2 include halogen atoms, hydroxyl groups, carboxyl groups, (meth) acrylic groups, epoxy groups, mercapto groups, isocyanate groups, amino groups, and cyano groups.
  • At least one of R 1 and R 2 is preferably a reactive group.
  • the compound represented by the formula (2) can be fixed in the cholesteric liquid crystal resin at the time of curing to form a stronger resin.
  • the reactive group include a carboxyl group, a (meth) acrylic group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
  • a 1 and A 2 are independently 1,4-phenylene group, 1,4-cyclohexylene group, cyclohexene-1,4-ylene group, 4,4'-biphenylene group, 4 , 4'-bicyclohexene group, and 2,6-naphthylene group represents a group selected from the group.
  • substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group. You may be. If two or more substituents are present in each of A 1 and A 2 , they may be the same or different.
  • a 1 and A 2 are groups selected from the group consisting of 1,4-phenylene groups, 4,4'-biphenylene groups, and 2,6-naphthylene groups. These aromatic ring skeletons are relatively rigid as compared with the alicyclic skeleton, have a high affinity for the rod-shaped liquid crystal compound mesogen, and have higher orientation uniformity.
  • particularly preferable compounds represented by the formula (2) include the following compounds (A1) to (A10). One of these may be used alone, or two or more of them may be used in combination at any ratio. Among the following compounds (A1) to (A10), one or more selected from the compounds (A2) and (A10) is particularly preferable.
  • the compounds (A2) and (A10) can lower the development temperature of the liquid crystal phase in the liquid crystal composition, and can maintain a wide temperature range in which the liquid crystal phase of the liquid crystal compound is exhibited.
  • the weight ratio represented by (total weight of the compound represented by the formula (2)) / (total weight of the rod-shaped liquid crystal compound) in the first liquid crystal composition or the second liquid crystal composition is preferably 0.05 or more. It is more preferably 0.1 or more, particularly preferably 0.15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.55 or less.
  • the weight ratio is preferably 0.05 or more. It is more preferably 0.1 or more, particularly preferably 0.15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.55 or less.
  • the total weight of the compounds represented by the formula (2) indicates the weight when only one kind of the compound represented by the formula (2) is used, and when two or more kinds are used, the total weight is shown. Shows the total weight.
  • the total weight of the rod-shaped liquid crystal compounds indicates the weight when only one type of rod-shaped liquid crystal compound is used, and indicates the total weight when two or more types are used.
  • the molecular weight of the compound represented by the formula (2) is preferably less than 600, and the molecular weight of the rod-shaped liquid crystal compound is preferably less than 600. It is preferably 600 or more.
  • the compound represented by the formula (2) can enter the gaps of the rod-shaped liquid crystal compound having a larger molecular weight than that, so that the orientation uniformity can be improved.
  • the first liquid crystal composition and the second liquid crystal composition may each contain a chiral agent.
  • the twisting direction of the cholesteric liquid crystal resin can be appropriately selected depending on the type and structure of the chiral agent used.
  • Specific examples of the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, and JP-A-2003-342219.
  • Those published in JP-A-2000-290315, JP-A-6-072962, US Pat. No. 6,468,444, International Publication No. 98/00428, JP-A-2007-176870, etc. can be used as appropriate.
  • chiral agent a compound represented by the following formula (3) can also be used.
  • One type of chiral agent may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of chiral agent can be arbitrarily set within a range that does not deteriorate the desired optical performance.
  • the specific amount of the chiral agent is usually 1% by weight to 60% by weight in the liquid crystal composition.
  • the first liquid crystal composition and the second liquid crystal composition may each contain a polymerization initiator.
  • the polymerization initiator include photopolymerization initiators, and compounds capable of generating radicals or acids by ultraviolet rays or visible light can be used.
  • Specific examples of the photopolymerization initiator include benzoin, benzyl dimethyl ketal, benzophenone, biacetyl, acetophenone, Michler ketone, benzyl, benzyl isobutyl ether, tetramethylthium mono (di) sulfide, 2,2-azobisisobutyronitrile, and the like.
  • 2,2-azobis-2,4-dimethylvaleronitrile benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-propane-1-one , 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoylformate, 2,2 -Diethoxyacetophenone, ⁇ -ionone, ⁇ -bromostyrene, diazoaminobenzene, ⁇ -amylcinnamic aldehyde, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-chlorobenzophenone, pp'-dichlorobenzophenone, pp'-
  • IRGACURE 184 or IRGACURE OXE02 manufactured by BASF can also be used. One of these may be used alone, or two or more of them may be used in combination at any ratio. Further, if necessary, a known photosensitizer or a tertiary amine compound as a polymerization accelerator may be used to control the curability.
  • the amount of the polymerization initiator is preferably 0.03% by weight to 7% by weight in the liquid crystal composition.
  • the first liquid crystal composition and the second liquid crystal composition may each contain a surfactant as a leveling agent.
  • a surfactant for example, one that does not inhibit the orientation can be appropriately selected and used.
  • a surfactant for example, a nonionic surfactant containing a siloxane or an alkyl fluoride group in the hydrophobic group portion is preferably mentioned.
  • oligomers having two or more hydrophobic group portions in one molecule are particularly preferable.
  • surfactants include PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652 of PolyFox of OMNOVA; FTX-209F, FTX-208G, FTX-204D; Surfron KH-40, S420; etc. of Seimi Chemical Co., Ltd. can be used.
  • one type of surfactant may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the amount of the surfactant is preferably such that the amount of the surfactant in the cholesteric liquid crystal resin is 0.05% by weight to 3% by weight.
  • Each of the first liquid crystal composition and the second liquid crystal composition may further contain an arbitrary component, if necessary.
  • the optional component include; a polymerization inhibitor for improving pot life; an antioxidant for improving durability, an ultraviolet absorber and a light stabilizer; and the like.
  • one of these optional components may be used alone, or two or more of them may be used in combination at an arbitrary ratio. The amount of these arbitrary components can be arbitrarily set as long as the desired optical performance is not deteriorated.
  • the method for producing the first liquid crystal composition and the second liquid crystal composition is not particularly limited, and the first liquid crystal composition and the second liquid crystal composition can be produced by mixing the above components, respectively.
  • the first cholesteric liquid crystal pigment is prepared by applying a coating liquid containing the first liquid crystal composition and a solvent on an appropriate support and drying as necessary to form a layer of the first liquid crystal composition, and this layer is cured. This can be produced by forming a thin film of the first cholesteric liquid crystal resin, then peeling the thin film of the first cholesteric liquid crystal resin from the support, and crushing the thin film.
  • the surface of the support Prior to the application of the coating liquid containing the first liquid crystal composition, the surface of the support may be subjected to a treatment for imparting an orientation regulating force.
  • a treatment for imparting an orientation regulating force include rubbing treatment on the surface of the support, stretching treatment of the film of the support, and the like.
  • a surface treatment such as a corona treatment may be performed in order to enhance the affinity between the surface of the support and the first liquid crystal composition.
  • a film having a resin layer made of resin can be used as the support.
  • polymers contained in the resin constituting the resin layer include chain olefin polymers, cycloolefin polymers, polycarbonates, polyesters, polysulfones, polyethersulfones, polystyrenes, polyvinyl alcohols, cellulose acetate-based polymers, and polychlorides. Examples include vinyl and polymethacrylate.
  • the resin one containing one kind of polymer alone may be used, or one containing two or more kinds of polymers in combination at an arbitrary ratio may be used.
  • the resin may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
  • the support may be a single-layer structure film having only one layer, or a multi-layer structure film having two or more layers. Therefore, the support may be a film having only the above-mentioned resin layer, or may be a film having an arbitrary layer in addition to the above-mentioned resin layer.
  • the support may have an alignment film on its surface.
  • the alignment film can be formed of, for example, a resin containing a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, or polyamide. In addition, one of these polymers may be used alone, or two or more of these polymers may be used in combination at any ratio.
  • the alignment film can be produced by applying a solution containing the above-mentioned polymer, drying, and applying a rubbing treatment.
  • the thickness of the alignment film is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the support may be an unstretched unstretched film or a stretched stretched film. Further, the support may be an isotropic film or an anisotropic film. Further, the support may be surface-treated on one side or both sides thereof. By applying the surface treatment, it is possible to improve the adhesion with other layers directly formed on the surface of the support. Examples of the surface treatment include energy ray irradiation treatment, corona treatment, and chemical treatment.
  • the thickness of the support is preferably 30 ⁇ m or more, more preferably 60 ⁇ m or more, preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less from the viewpoints of handleability during manufacturing, material cost, thinning and weight reduction. ..
  • the coating liquid containing the first liquid crystal composition can be applied by a known coating method.
  • the coating method include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, and a bar coating method.
  • orientation treatment can be performed if necessary before performing the curing step.
  • the orientation treatment can be performed, for example, by heating the layer of the first liquid crystal composition at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the orientation treatment, the liquid crystal compound in the first liquid crystal composition can be well oriented.
  • the treatment of curing the layer of the first liquid crystal composition can be performed by irradiating with energy rays one or more times.
  • energy rays include ultraviolet light, visible light and other electromagnetic waves.
  • the energy ray irradiation can be performed by irradiating light having a wavelength of 200 to 500 nm for 0.01 seconds to 3 minutes.
  • the method of peeling and crushing the thin film of the first cholesteric liquid crystal resin from the support is not particularly limited, and examples thereof include the method described in JP-A-2015-27743.
  • the thin film of the first cholesteric liquid crystal resin can be peeled from the support by using the peeling piece manufacturing apparatus shown in FIG.
  • a method for peeling the thin film of the first cholesteric liquid crystal resin using the apparatus shown in FIG. 1 will be described.
  • the "thin film of the first cholesteric liquid crystal resin” is also simply referred to as the "first resin thin film”.
  • FIG. 1 is a front view schematically showing an apparatus for producing a stripped piece of a resin thin film used in the production of the composite pigment of the present invention.
  • the peeling piece manufacturing apparatus 100 shown in FIG. 1 includes a film delivery unit 120 capable of delivering a multilayer film 110 including a support 111 and a first resin thin film (see 112 in FIG. 2), and the fed multilayer.
  • a peeling unit 130 capable of peeling the first resin thin film 112 from the film 110 and a collecting unit 140 capable of recovering the support 111 from which the first resin thin film 112 has been peeled are provided.
  • the peeling portion 130 includes a bar 134 having a corner portion 135 provided at an acute angle, and a nozzle 136 provided immediately downstream of the corner portion 135 that can inject air.
  • the angle of the corner portion 135 of the bar 134 is set so that the multilayer film 110 can be folded back at an angle ⁇ , and the corner portion has a chamfered structure.
  • the peeling of the first resin thin film using the apparatus 100 can be performed as follows.
  • the multilayer film 110 is attached to the film delivery portion 120 so that the first resin thin film 112 can be removed from the support 111 at the corner portion 135 of the bar 134 and the multilayer film 110 can be folded back.
  • the multilayer film 110 is sent out from the film feeding unit 120 in a state where the film collecting unit 140 applies tension to the multilayer film 10 in the transport direction.
  • the multilayer film 110 sent out from the film delivery unit 120 enters the peeling chamber 131 through the slit 132 and is folded back at the corner portion 135 of the bar 134.
  • the support 111 bent at the corner portion 135 usually does not break.
  • the first resin thin film 112 bent at the corner portion 135 is stressed by the bending deformation, and the first resin thin film 112 is destroyed by this stress to form a crack 113.
  • the first resin thin film 112 having cracks formed by the air ejected from the nozzle 136 is peeled off and blown off to become a peeled piece 114.
  • a part of the peeling piece 114 separates from the support 111 and is sent to the recovery path according to the flow of air injected by the nozzle 136. Further, another part of the peeling piece 114 is carried together with the support 111 in a state of being placed on the support 111 or attached to the support 111 by a force such as electrostatic attraction.
  • the support 111 from which the first resin thin film 112 has been peeled off at the corner portion 135 of the bar 134 is transported downstream. As shown in FIG. 1, when the support 111 comes to the nozzle 136 installation position, the air ejected from the nozzle 136 is blown to the cracked portion of the first resin thin film 112. By this air, the peeling piece 114 contained in the cracked portion of the first resin thin film 112 is blown off and sent to the recovery path 137. Further, the first resin thin film (not shown) that remained on the support 111 without being separated from the support 111 only by forming the crack 113 is also supported by the pressure of the air jetted from the nozzle 136. It is peeled from 111, becomes a peeled piece 114, and is sent to the collection path 137.
  • the peeled piece 114 sent to the collection path 137 is sent to a collector (not shown) on the air stream and collected.
  • the support 111 from which the first resin thin film 112 has been peeled off is conveyed to the film recovery unit 140 through the slit 133, wound around the winding core 141, and recovered.
  • the first cholesteric liquid crystal pigment having a desired particle size is obtained by pulverizing the peeled pieces of the first cholesteric liquid crystal resin peeled from the support.
  • the crushing process is usually carried out using a crusher.
  • the crusher include a ball mill, a bead mill, a roll mill, a rod mill, a jet mill, a stone mill type crusher and the like.
  • the second cholesteric liquid crystal pigment can be produced by forming a thin film of the second cholesteric liquid crystal resin on the support, peeling the thin film of the second cholesteric liquid crystal resin from the support, and crushing the thin film.
  • the operation of curing the layer of the second liquid crystal composition in a state where the pitch of the spiral structure is continuously changed by light irradiation and / or heating treatment at least once is performed on the thin film of the cholesteric liquid crystal resin. Since it is an operation to expand the reflection band, it is called a wide band processing. By performing the wide band processing, a wide reflection band can be realized even with a thin film of cholesteric liquid crystal resin having a thin thickness of, for example, 5 ⁇ m or less.
  • the peeling and crushing of the thin film of the second cholesteric liquid crystal resin is carried out in place of the thin film of the first cholesteric liquid crystal resin (first resin thin film) in the above-mentioned "peeling and crushing of the thin film of the first cholesteric liquid crystal resin". This can be done by using a thin film of resin.
  • the ink composition contains the composite pigment of the present invention and a binder resin.
  • the binder resin contains a polymer. Examples of such a polymer include a polyester polymer, an acrylic polymer, a polystyrene polymer, a polyamide polymer, a polyurethane polymer, a polyolefin polymer, and a polycarbonate polymer. Examples include coalescence and polyvinyl-based polymers.
  • One type of binder resin may be used alone, or two or more types may be used in combination at any ratio.
  • the method for producing the ink composition of the present invention is not particularly limited, and the ink composition can be produced by mixing the above components.
  • the ink composition of the present invention can form an identification medium by forming an ink layer by printing on a substrate and then curing the ink layer.
  • the material of the base material forming the ink layer is not particularly limited, and examples thereof include resin, metal, glass, and paper.
  • the printing method of the ink composition is not particularly limited, and examples thereof include screen printing, gravure printing, flexographic printing, letterpress printing, and offset printing.
  • the treatment of curing the ink layer can be performed by heating or irradiating with energy rays one or more times.
  • An example of heating is heat treatment at 150 ° C. or higher.
  • thermosetting the ink layer by heat treatment it is possible to obtain an identification medium in which a printing layer containing the composite pigment of the present invention is formed on a base material.
  • energy rays include ultraviolet light, visible light and other electromagnetic waves.
  • the energy ray irradiation can be performed by irradiating light having a wavelength of 200 to 500 nm for 0.01 seconds to 3 minutes.
  • the curing treatment of the ink layer it is possible to obtain an identification medium in which a printing layer containing the composite pigment of the present invention is formed on a base material.
  • the identification medium of the present invention contains a binder resin and a pigment dispersed in the binder resin.
  • the pigment contained in the identification medium is the composite pigment of the present invention.
  • the identification medium may be in an embodiment including a binder resin and a layer containing the composite pigment of the present invention dispersed in the binder resin, and an arbitrary layer.
  • the arbitrary layer include a base material and an adhesive layer.
  • As the material of the base material 2. Examples include the materials described in.
  • the arbitrary layer is preferably a layer having high light transmittance, more preferably a layer having a total light transmittance of 70% or more, and also.
  • a layer having a small in-plane retardation Re (for example, 5 nm or less) is preferable.
  • the identification medium is suitably used for identifying the authenticity of an article by attaching it to an article, transferring it, or the like.
  • articles whose authenticity should be identified include articles such as cash vouchers, gift certificates, tickets, certificates, and security cards.
  • the identification medium can also be used in the form of a label, a sticker, or the like for authenticity identification.
  • the method for determining the authenticity of the identification medium of the present invention is one type selected from the hue, lightness, and saturation of the reflected light by observing the reflected light from the identification medium through the left circular polarizing plate and the right circular polarizing plate.
  • the above includes the step 1 of determining whether or not there is a difference.
  • step 1 the reflected light from the identification medium is observed through the left circular polarizing plate and the right circular polarizing plate, and whether or not there is a difference in one or more types selected from the hue, lightness, and saturation of the reflected light. Is a step of determining.
  • the identification medium contains a binder resin and a pigment dispersed in the binder resin, and the pigment is the composite pigment of the present invention, and the reflected light from the identification medium is a left circular polarizing plate and a right circular polarizing plate. Observe through the board.
  • the reflected light is the reflected light when the identification medium is irradiated with natural light. Natural light means unpolarized light, and may be sunlight or artificial light.
  • the polarized light reflected by the identification medium depending on the twisting direction of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment contained in the composite pigment of the present invention is as follows. (1) When the twisting directions of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment are the same as each other: The identification medium is only circular polarization in the same direction as the twisting direction of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment. reflect.
  • the identification medium reflects one circular polarization which is the same direction as the twisting direction of the first cholesteric liquid crystal pigment, and the second cholesteric. It reflects the other circular polarization that is in the same direction as the twisting direction of the liquid crystal pigment.
  • the identification medium when the identification medium is observed with the left circular polarizing plate and the right circular polarizing plate, the light reflected by the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment contains only one of the circular polarizations.
  • the reflected light of the identification medium is visually recognized by the one circular polarizing plate that transmits the one circular polarization, and the reflected light of the identification medium is not visually recognized or difficult to be visually recognized by the other circular polarizing plate.
  • the identification medium can be determined to be genuine.
  • the identification medium does not have a selective reflection function for selectively reflecting circular polarization, and the identification medium. Can be determined not to be genuine.
  • one circular polarizing plate transmits the light reflected by the first cholesteric liquid crystal pigment and is transmitted by the second cholesteric liquid crystal pigment. Does not transmit the reflected light. Therefore, when the identification medium is observed from the vicinity in the front direction with one of the circularly polarizing plates, the light reflected by the first cholesteric liquid crystal pigment is visually recognized as the reflected light of the identification medium, but is reflected by the second cholesteric liquid crystal resin. Since the light does not pass through one of the circularly polarizing plates, the reflected light of the identification medium is not visible or is difficult to see.
  • the other circular polarizing plate does not transmit the light reflected by the first cholesteric liquid crystal pigment, but transmits the light reflected by the second cholesteric liquid crystal pigment. Therefore, when the identification medium was observed from the vicinity in the front direction with the other circularly polarizing plate, the light reflected by the first cholesteric liquid crystal pigment did not pass through the other circularly polarizing plate and was reflected by the second cholesteric liquid crystal pigment. The light is visually recognized as the reflected light of the identification medium.
  • the identification medium does not have a selective reflection function that selectively reflects circular polarization, and the identification medium is genuine. It can be determined that it is not.
  • the identification medium of the present invention has a first cholesteric liquid pigment having a central wavelength of the selective reflection band in the wavelength range of 400 nm or more and 800 nm or less and having a selective reflection bandwidth of 150 nm or less, and a wavelength in the range of 400 nm or more and 800 nm or less.
  • Whether or not a color lighter than the color derived from the first cholesteric liquid crystal pigment can be visually evaluated can be quantitatively evaluated by using a spectrophotometer or the like in addition to the visual evaluation.
  • a spectrophotometer or the like in addition to the visual evaluation.
  • any system can be used, for example, an XYZ color system, an L * a * b * color system, or the like can be used.
  • the full width at half maximum of the selective reflection band as the selective reflection bandwidth was obtained. That is, in the reflection spectrum, the base having the minimum intensity and the peak having the maximum intensity are determined, and the wavelength ⁇ 1 on the short wavelength side and the wavelength ⁇ 1 on the long wavelength side of the peak showing the intensity of the minimum intensity + (maximum intensity-minimum intensity) / 2.
  • the wavelength ⁇ 2 of the above was determined, and the average value (( ⁇ 1 + ⁇ 2) / 2) of these was used as the center wavelength of the selective reflection band of the cholesteric liquid crystal resin (pigment). Further, the wavelength ⁇ 2 to the wavelength ⁇ 1 was defined as the selective reflection band, and the width thereof (difference between ⁇ 2 and ⁇ 1: ⁇ ) was defined as the selective reflection bandwidth.
  • the particle size distribution of each pigment was measured by the laser / scattering method, and the average particle size was measured from the particle size distribution.
  • a laser diffraction / scattering type particle size distribution measuring device LA-960 manufactured by HORIBA, Ltd.
  • the twisting direction of each pigment is determined by transmitting the reflected light through the left and right circular polarizing plates when unpolarized light is incident on the multilayer films A to F (films containing each pigment) obtained in Production Examples 1 to 6. It was done by observing. That is, the multilayer film was irradiated with non-polarized light from the observer side, and the reflected light reflected by the multilayer film and reaching the observer side was observed. When the reflected light was right-handed circularly polarized light, it was judged to be right-handed twist, and when it was left-handed circularly polarized light, it was judged to be left-handed twisted.
  • S ( ⁇ ) is the spectrum of the light source, and the value of the C light source was used in this embodiment. Further, x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ) represent color matching functions.
  • X n, Y n, Z n respectively are the tristimulus values calculated from equation (17) in equation (19).
  • f (X / X n ), f (Y / Y n ), and f (Z / Z n ) are represented by the formulas (20) to (22), respectively.
  • the color difference of the origin reference (origin reference ⁇ a * b * ) and the color of the identification medium containing only the first cholesteric liquid crystal pigment are used by using the following formula (23).
  • the color difference based on the degree (pigment 1 standard ⁇ a * b * ) and the color difference based on the chromaticity of the identification medium containing only the second cholesteric liquid crystal pigment (pigment 2 standard ⁇ a * b * ) were calculated.
  • ⁇ a * b * ((a * 1- a * 2 ) 2 + (b * 1- b * 2 ) 2 ) 1/2 ...
  • a * 2 is identified that contains only pigment corresponding to the first cholesteric liquid crystal pigments used in the examples medium a *
  • b * 1 is b * of each example
  • b * 2 denotes a b * of the identification medium containing only pigment corresponding to the first cholesteric liquid crystal pigments used in each example.
  • the identification media a * and b * of Reference Example 2 containing only the pigment A are set to a * 2 and b * 2 , respectively.
  • the identification media a * and b * of Reference Example 3 containing only the pigment C are defined as a * 2 and b * 2 .
  • a * 2 is (identification medium comprising only the second cholesteric liquid crystal pigment) identification medium of Reference Example 1 of a *, b * 1 are each instance b *, b * 2 denotes a b * of the identification medium reference example 1.
  • the pigment 1 reference ⁇ a * b * is 5 or more, and the pigment 2 reference ⁇ a * b * is 10 or more, the first cholesteric liquid crystal pigment is observed when the identification medium is visually observed. A color that is lighter than the color of origin is visible.
  • the coating liquid L1 was applied onto the rubbing-treated surface of the support to form a layer (coating layer) of the liquid crystal composition.
  • the coating liquid L1 was applied by adjusting the discharge amount with a die coater so that the film thickness of the layer of the liquid crystal composition before drying was 15 ⁇ m.
  • the layer side of the liquid crystal composition was irradiated with ultraviolet rays using a high-pressure mercury lamp to polymerize the layers of the liquid crystal composition.
  • the cholesteric liquid crystal composition is cured while maintaining the cholesteric regularity, and the cholesteric liquid crystal which is a layer of the resin having cholesteric regularity is cured.
  • a thin film of resin was formed.
  • a multi-layer film A having a structure of (support) / (thin film of cholesteric liquid crystal resin) was obtained.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film A was 3 ⁇ m.
  • Production Example 2 Production of Multilayer Film B as a Material for Pigment B
  • (1-1. Coating step) the coating liquid L2 obtained by mixing the materials shown in the following table was used instead of the coating liquid L1, and the coating liquid L2 was applied.
  • the same operation as in (1-1) of Production Example 1 was performed except that the discharge amount was adjusted so that the film thickness of the coating layer before drying was 25 ⁇ m, and the liquid crystal composition was placed on the support. A layer was formed.
  • the conditions for the first ultraviolet irradiation treatment were an illuminance of 5 mW / cm 2 at a wavelength of 365 nm and an exposure amount of 300 mJ / cm 2 at a wavelength of 365 nm under an atmospheric atmosphere.
  • the conditions for the second ultraviolet irradiation treatment were an illuminance of 30 mW / cm 2 at a wavelength of 365 nm and an exposure amount of 1800 mJ / cm 2 at a wavelength of 365 nm under an atmospheric atmosphere.
  • the heat treatment was carried out in an oven.
  • the cholesteric liquid crystal composition is cured while maintaining the cholesteric regularity, and the cholesteric liquid crystal which is a layer of the resin having cholesteric regularity is cured.
  • a thin film of resin was formed.
  • a multi-layer film B having a composition of (support) / (thin film of cholesteric liquid crystal resin) was obtained.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film B was 5 ⁇ m.
  • Production Example 3 Production of Multilayer Film C as a Material for Pigment C
  • the same operation as in Production Example 1 was performed except that the coating liquid L3 obtained by mixing the materials shown in the following table was used instead of the coating liquid L1 to obtain a multilayer film C.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film C was 3 ⁇ m.
  • Production Example 4 Production of Multilayer Film D as a Material for Pigment D
  • the same operation as in Production Example 1 was performed except that the coating liquid L4 obtained by mixing the materials shown in the following table was used instead of the coating liquid L1 to obtain a multilayer film D.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film D was 3 ⁇ m.
  • Production Example 5 Production of Multilayer Film E as a Material for Pigment E
  • the same operation as in Production Example 1 was performed except that the coating liquid L5 obtained by mixing the materials shown in the following table was used instead of the coating liquid L1 to obtain a multilayer film E.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film E was 3 ⁇ m.
  • the compound (3) contained in the coating liquid L5 is a compound represented by the following formula.
  • Production Example 6 Production of Multilayer Film F as a Material for Pigment F
  • the same operation as in Production Example 1 was performed except that the coating liquid L6 obtained by mixing the materials shown in the following table was used instead of the coating liquid L1 to obtain a multilayer film F.
  • the thickness of the thin film of the cholesteric liquid crystal resin of the multilayer film F was 3 ⁇ m.
  • [Manufacturing example 7 Production of pigments A to F] (Manufacture of exfoliated pieces of thin film of cholesteric liquid crystal resin) Using the multilayer films A to F produced in Production Examples 1 to 6, peeled pieces of a thin film of cholesteric liquid crystal resin were produced by the following method using the production apparatus shown in FIG. As shown in FIG. 1, a manufacturing apparatus 100 including a film feeding unit 120, a peeling unit 130, and a film collecting unit 140 was prepared.
  • the peeling portion 130 includes a bar 134 having an acute-angled corner portion 135, and a nozzle 136 provided immediately downstream of the corner portion 135 that can inject air.
  • the corner portion 135 of the bar 134 was set so that the multilayer film 110 could be folded back at an angle ⁇ (60 °).
  • the multi-layer film 110 can be folded back from the support 111 (PET film) by removing the thin film 112 of the first cholesteric liquid crystal resin (or the thin film of the second cholesteric liquid crystal resin) from the film delivery portion 120.
  • the multilayer film 110 was attached in such an orientation.
  • the multilayer film 110 was sent out from the film feeding unit 120 in a state where the film collecting unit 140 applied tension to the multilayer film 10 in the transport direction.
  • the magnitude of the tension applied to the multilayer film 110 was set to 80 N / m.
  • air was injected from the nozzle 436 at a pressure of 0.5 MPa.
  • the multilayer film 110 was folded back at the corner portion 135 of the bar 134, and many cracks were formed. After that, the thin film 112 of the first cholesteric liquid crystal resin (or the thin film of the second cholesteric liquid crystal resin) in which the cracks were formed was peeled off and blown off by the air ejected from the nozzle 136, and the peeled piece 111A was obtained.
  • the stripped piece 111A was recovered, pulverized with a cutter mill, classified using a 51 ⁇ m sieve, and only the particles that passed through the sieve were recovered to obtain a pigment.
  • the average particle size of the obtained pigment, the center wavelength of the selective reflection band, the selective reflection band and the selective reflection bandwidth were measured. The results are shown in Tables 7-11. From these measurement results, the pigments A, C, D, E and F have a central wavelength of the selective reflection band within a wavelength range of 400 nm or more and 800 nm or less, and the selective reflection bandwidth is 150 nm or less. It was a liquid crystal pigment.
  • Pigment B was a second cholesteric liquid crystal pigment having a selective reflection bandwidth of 200 nm or more within a wavelength range of 400 nm or more and 800 nm or less.
  • the color derived from pigment A was green
  • the color derived from pigment B was silver
  • the color derived from pigment C was blue
  • the color derived from pigment D was red
  • the color derived from pigment E was green
  • the color derived from pigment F was red. ..
  • the prepared ink composition was screen-printed on a base material (black paper).
  • a screen plate a screen plate having 120 thousands per inch was used.
  • the printed surface of the base material was irradiated with ultraviolet rays using a high-pressure mercury lamp to obtain an identification medium.
  • the illuminance at a wavelength of 365 nm was 280 mW / cm 2 and the exposure amount at a wavelength of 365 nm was 400 mJ / cm 2 under a nitrogen gas atmosphere having an oxygen concentration of 400 ppm or less.
  • the obtained identification media of Reference Examples 1 to 6 were visually observed, evaluated for reflection characteristics, and observed with a polarizing plate.
  • the following table shows information on the pigments used in each example (type, center wavelength of the selective reflection band, selective reflection band, selective reflection bandwidth, average particle size, and twisting direction) together with the evaluation results.
  • Examples 1 to 9, Comparative Examples 1 to 2 Preparation of ink composition
  • the ink composition is as follows. The thing was prepared.
  • the first cholesteric liquid crystal pigment, the second cholesteric liquid crystal pigment, and the binder UV curable binder, "Recure OP 4300-2" series FG-20SC thick medium manufactured by Jujo Chemical Co., Ltd.
  • An ink composition having a solid content concentration of 10% was prepared.
  • the content of the first cholesteric liquid crystal pigment with respect to the total amount of the first cholesteric liquid crystal pigment and the second cholesteric liquid crystal pigment is the amount shown in Tables 9 to 11 (described as "content of the first cholesteric liquid crystal pigment" in the table). I tried to be.
  • the prepared ink composition was screen-printed on a base material (black paper).
  • a screen plate a screen plate having 120 thousands per inch was used.
  • the printed surface of the base material was irradiated with ultraviolet rays using a high-pressure mercury lamp to obtain an identification medium.
  • the illuminance at a wavelength of 365 nm was 280 mW / cm 2 and the exposure amount at a wavelength of 365 nm was 400 mJ / cm 2 under a nitrogen gas atmosphere having an oxygen concentration of 400 ppm or less.
  • the obtained identification medium was visually observed, evaluated for reflection characteristics, and observed with a polarizing plate.
  • the following table shows the pigment information (type, center wavelength of the selective reflection band, selective reflection band, selective reflection bandwidth, average particle size, and twisting direction) of the pigments used in each example together with the evaluation results of the examples and the comparative examples.
  • the identification medium containing the composite pigment of the present invention a lighter color than the color derived from the first cholesteric liquid crystal pigment can be visually recognized by visual observation, and by observing the circular polarizing plates, the reflected light of the identification medium by the left and right circular polarizing plates can be seen. A difference in hue was observed.
  • Comparative Example 1 in which the content of the first cholesteric liquid crystal pigment was smaller than that specified in the present invention, the color derived from the second cholesteric liquid crystal pigment could be visually recognized by visual observation, but it was derived from the first cholesteric liquid crystal pigment. I could not see the color lighter than the color of.

Abstract

第1コレステリック液晶顔料と、第2コレステリック液晶顔料と、を含み、前記第1コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ、選択反射帯域幅が150nm以下の顔料であり、前記第2コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に、200nm以上の選択反射帯域幅を有する顔料であり、前記第1コレステリック液晶顔料の選択反射帯域と、前記第2コレステリック液晶顔料の選択反射帯域とは、少なくとも一部が重なっており、前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の総量に対する、前記第1コレステリック液晶顔料の含有量が30重量%超80重量%以下である、複合顔料。

Description

複合顔料、識別媒体及び真正性判定方法
 本発明は、複合顔料、識別媒体及び真正性判定方法に関する。
 識別媒体を物品に付して、識別媒体の真正性を識別することにより、物品の偽造防止等を図ることが行われている。
 コレステリック液晶樹脂は、液晶性化合物をコレステリック配向させ、その配向を維持させたまま硬化させて得られる。このようなコレステリック液晶樹脂は、左右円偏光のうち、一方の円偏光を反射し、他方の円偏光を透過する、円偏光分離機能を有する。コレステリック液晶樹脂料では、正面方向からの視野角θが大きくなるのに従って、反射される円偏光の波長が短波長側にシフトすることが知られている。この特性を利用して、コレステリック液晶樹脂を使用した識別媒体の真正性を識別しうる。
 このようなコレステリック液晶樹脂を使用したものとして、コレステリック液晶樹脂を顔料として含む偽造防止印刷物が知られている(特許文献1を参照)。
特開2003-73600号公報
 特許文献1に記載の偽造防止印刷物においては、入射光のうち右円偏光の一部を反射する右偏光性顔料、及び入射光のうち左円偏光の一部を反射する左偏光性顔料のいずれか一方、または両方を含むインキを用いた印刷層が設けられている。この偽造防止印刷物の真偽の判定は、円偏光板を用いた真偽判定フィルターを介した目視により行いうる。
 しかしながら、従来のコレステリック液晶樹脂を顔料として含むインキを用いた印刷物においては、表現可能な色彩に限界があった。したがって、意匠性に優れ、かつ偽造防止効果を有する識別媒体が求められている。
 本発明者は、前記課題を解決するべく検討した結果、特定の第1コレステリック液晶顔料、および特定の第2コレステリック液晶顔料を、所定の割合で含む複合顔料を用いると、第1コレステリック液晶顔料由来の色よりも淡い色を視認可能とすることができ、これにより、意匠性に優れ、かつ偽造防止効果を有する識別媒体を提供できることを見出した。具体的には、第1コレステリック液晶顔料として、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ選択反射帯域幅が150nm以下であるものを用い、第2コレステリック液晶顔料として、波長400nm以上800nm以下の範囲内に200nm以上の選択反射帯域幅を有するものを用いた場合、かかる効果が得られることを見出した。すなわち、本発明は、以下を提供する。
 [1] 第1コレステリック液晶顔料と、第2コレステリック液晶顔料と、を含み、
 前記第1コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ、選択反射帯域幅が150nm以下の顔料であり、
 前記第2コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に、200nm以上の選択反射帯域幅を有する顔料であり、
 前記第1コレステリック液晶顔料の選択反射帯域と、前記第2コレステリック液晶顔料の選択反射帯域とは、少なくとも一部が重なっており、
 前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の総量に対する、前記第1コレステリック液晶顔料の含有量が30重量%超80重量%以下である、複合顔料。
 [2] 前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の総量に対する、前記第1コレステリック液晶顔料の含有量が75重量%以下である、[1]に記載の複合顔料。
 [3] 前記第1コレステリック液晶顔料の選択反射帯域幅が120nm以下である、[1]または[2]に記載の複合顔料。
 [4] 前記第1コレステリック液晶顔料と、前記第2コレステリック液晶顔料とが、互いに同一の捩じれ方向を有する、[1]~[3]のいずれか一項に記載の複合顔料。
 [5] 前記第1コレステリック液晶顔料と、前記第2コレステリック液晶顔料とが、互いに異なる捩じれ方向を有する、[1]~[3]のいずれか一項に記載の複合顔料。
 [6] 前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の、少なくとも一方がフレークであり、
 前記フレークの平均粒子径が20μm以上120μm以下である、[1]~[5]のいずれか一項に記載の複合顔料。
 [7] [1]~[6]のいずれか一項に記載の複合顔料と、バインダー樹脂と、を含むインキ組成物。
 [8]バインダー樹脂と、前記バインダー樹脂中に分散する顔料と、を含み、
 前記顔料が[1]~[6]のいずれか一項に記載の複合顔料である、識別媒体。
 [9] [8]に記載の識別媒体の真正性判定方法であって、
 前記識別媒体からの反射光を左円偏光板及び右円偏光板を介して観察して、前記反射光の色相、明度、及び彩度から選ばれる1種以上に、差があるか否かを判定する工程1を含む、真正性判定方法。
 本発明によれば、意匠性に優れ、かつ偽造防止効果を有する識別媒体を実現できる、複合顔料、当該複合顔料を用いたインキ組成物及び識別媒体、並びに前記識別媒体の真正性を識別する方法が提供できる。
図1は、本発明の複合顔料の製造において用いる樹脂薄膜の剥離片の製造装置を模式的に示す正面図である。 図2は、図1の製造装置のバーの角部分を、支持体の幅方向に垂直な面で切ったときの断面を模式的に示す断面図である。
 以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、別に断らない限り、「組成物」は2以上の物質の混合物のみならず、単一の物質からなる材料をも包含し、「剤」は、単一の物質からなる材料の他、2以上の物質の混合物を包含する。
 以下の説明において、別に断らない限り、「(メタ)アクリレート」は、「アクリレート」若しくは「メタクリレート」、又はその両方を意味する。また、「(メタ)アクリル」は、「アクリル」若しくは「メタクリル」、又はその両方を意味する。「(チオ)エポキシ」は、「エポキシ」若しくは「チオエポキシ」、又はその両方を意味する。また、「イソ(チオ)シアネート」とは、「イソシアネート」若しくは「イソチオシアネート」、又はその両方を意味する。
 [1.複合顔料]
 本発明の、複合顔料は、第1コレステリック液晶顔料と、第2コレステリック液晶顔料と、を含む。第1コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ、選択反射帯域幅が150nm以下の顔料である。第2コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に、200nm以上の選択反射帯域幅を有する顔料である。第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域とは、少なくとも一部が重なっている。第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量が30重量%超80重量%以下である。
 第1コレステリック液晶顔料及び第2コレステリック液晶顔料は、それぞれ、コレステリック液晶樹脂から構成される。
 「コレステリック液晶樹脂」とは、コレステリック規則性を有する樹脂材を意味し、樹脂を構成する分子又は分子の部分が、樹脂内でコレステリック規則性を有する状態に整列していることをいう。
 ここで、樹脂内の分子が「コレステリック規則性を有する」とは、樹脂中の分子が、以下に述べる特定の規則性を有することをいう。樹脂内の分子がコレステリック規則性を有する場合、分子は、樹脂内において、多数の分子の層をなす態様で整列する。それぞれの分子の層において、分子は、分子軸が一定の配向方向になるよう並ぶ。樹脂の層の内部のある第一の平面における配向方向に対して、当該第一の平面に重なる次の第二の平面における配向方向は、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面における配向方向は、第二の平面における配向方向から、さらに少し角度をなしてずれる。このように、重なって配列している複数の平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は光学的にカイラルな構造となる。
 光学的にカイラルな構造を有するコレステリック液晶樹脂は、通常円偏光を選択的に反射する、円偏光選択反射機能を有する。コレステリック液晶樹脂が、所定の波長範囲の光を「選択的に反射する」とは、所定の波長範囲の非偏光(即ち自然光)のうち一方の円偏光成分を反射し、他方の円偏光成分を透過することをいう。本発明において「選択反射帯域」とは、選択的に反射される円偏光の波長の範囲をいう。本発明において、「選択反射帯域幅」とは、選択反射帯域の幅であり、具体的には、選択反射帯域の半値幅としうる。
 [コレステリック液晶顔料の選択反射帯域]
 本発明において、第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域とは、少なくとも一部が重なっている。第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域とが重なりあう範囲は、第1コレステリック液晶顔料の選択反射帯域全体に対して、好ましくは80%以上、より好ましくは90%以上であり、さらに好ましくは100%以下である。第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域とが重なりあう範囲は、第2コレステリック液晶顔料の選択反射帯域全体に対して、好ましくは10%以上、より好ましくは20%以上であり、好ましくは50%以下、より好ましくは40%以下である。第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域との重なり合う範囲が第1コレステリック液晶顔料の選択反射帯域全体に対して上記下限値以上であると、目視観察において、第2コレステリック液晶顔料の作用により、第1コレステリック液晶顔料由来の色よりも淡い色の表現が容易となる。第1コレステリック液晶顔料の選択反射帯域と、第2コレステリック液晶顔料の選択反射帯域との重なり合う範囲が第2コレステリック液晶顔料の選択反射帯域全体に対して上記下限値以上であると、目視観察において、第2コレステリック液晶顔料の作用により、第1コレステリック液晶顔料由来の色よりも淡い色の表現が容易となる。また上記上限値以下であると、第1コレステリック液晶顔料由来の色が淡くなりすぎて、無彩色となることを防止できる。
 本発明において、第1コレステリック液晶顔料の選択反射帯域幅は、150nm以下であり、第2コレステリック液晶顔料の選択反射帯域幅は、200nm以上である。つまり、第1コレステリック液晶顔料は、第2コレステリック液晶顔料よりも選択反射帯域幅が狭い(狭帯域の)コレステリック液晶顔料であり、第2コレステリック液晶顔料は、第1コレステリック液晶顔料よりも選択反射帯域幅が広い(広帯域の)コレステリック液晶顔料である。選択反射帯域幅が狭いコレステリック液晶顔料を単独で用いた識別媒体を自然光により観察すると、反射帯域に応じた色彩を有する外観が視認可能である。選択反射帯域幅が広いコレステリック液晶顔料を単独で用いた識別媒体を自然光により観察すると、鏡面に近い銀色の外観が視認可能である。本発明において、複合顔料は、選択反射帯域幅が150nm以下である第1コレステリック液晶顔料を所定量含み、かつ、選択反射帯域幅が200nm以上である第2コレステリック液晶顔料を含むので、このような識別媒体を、自然光により観察を行うと第1コレステリック液晶顔料由来の色よりも淡い色を視認可能とすることができる。
 第1コレステリック液晶顔料の選択反射帯域幅は、好ましくは120nm以下、より好ましくは110nm以下であり、好ましくは30nm以上、より好ましくは50nm以上である。第2コレステリック液晶顔料の選択反射帯域幅は、好ましくは200nm以上、より好ましくは300nm以上である。第2コレステリック液晶顔料の選択反射帯域幅の上限は特にないが、好ましくは2000nm以下、より好ましくは1000nm以下である。
 第1コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有する。本発明において、各コレステリック液晶顔料の選択反射帯域の中心波長は、当該選択反射帯域の半値幅に係る領域の中心波長としうる。即ち、入射角5°におけるコレステリック液晶顔料の反射スペクトルを測定し、得られた反射スペクトルにおいて、最大強度を有するピークと最小強度を有するベースを決定し、最小強度+(最大強度-最小強度)/2の強度を示す、ピークの短波長側の波長λ1及び長波長側の波長λ2を求める。さらにこれらの平均値((λ1+λ2)/2)を求め、当該平均値を、中心波長としうる。この場合の、各コレステリック液晶顔料の選択反射帯域は、反射スペクトルにおいて最小強度+(最大強度-最小強度)/2の強度を示すピークの短波長側の波長λ1から長波長側の波長λ2までの範囲(λ1~λ2)であり、各コレステリック液晶顔料の選択反射帯域幅は前記長波長側の波長λ2と短波長側の波長λ1との差(λ2-λ1)である。
 第1コレステリック液晶顔料及び第2コレステリック液晶顔料が、コレステリック液晶樹脂を粉体又は繊維状の形態としたものである場合、各コレステリック液晶顔料の選択反射帯域の中心波長は、当該顔料を含む薄膜を形成したときに観察される選択反射帯域の中心波長である。
 各コレステリック液晶顔料を含む薄膜を正面方向からの視野角θで観察した場合における、選択反射帯域の中心波長λ(nm)は、コレステリック液晶樹脂の平均屈折率をn、コレステリック液晶樹脂が有するカイラル構造(螺旋構造)のピッチ長をP(nm)とすると、以下の式で表される。
 λ=n×P×cosθ
 したがって、各コレステリック液晶顔料を含む薄膜を正面方向からの視野角θで観察した場合(cosθ<1)の選択反射帯域の中心波長λは、正面方向から観察した場合(cosθ=1)の選択反射帯域の中心波長λと比較して、短波長となる。コレステリック液晶顔料を含む薄膜の正面方向とは、コレステリック液晶顔料を含む薄膜を形成したときの薄膜の法線方向をいう。
 第1コレステリック液晶顔料及び第2コレステリック液晶顔料を正面方向から視野角θで観察した場合の選択反射帯域の中心波長λは、例えば、カイラル構造(螺旋構造)のピッチ長Pを大きくすることで大きくでき、ピッチ長Pを小さくすることで小さくすることができる。
 各コレステリック液晶樹脂のピッチ長を調整する方法としては、例えば、カイラル剤の種類を調整したり、カイラル剤の量を調整したりする方法が挙げられる。
 [第1コレステリック液晶顔料の含有量]
 本発明において、第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量は30重量%超80重量%以下である。第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量は、好ましくは35重量%以上、より好ましくは45重量%以上であり、好ましくは75重量%以下、より好ましくは65重量%以下である。
 第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量が上記範囲内であることにより、第1コレステリック液晶顔料の反射色とともに第2コレステリック液晶顔料の反射色が目視観察により視認できる。その結果、第1コレステリック液晶顔料由来の色よりも淡い色を視認可能とすることができ、これにより、意匠性に優れ、かつ偽造防止効果を有する識別媒体を実現できる、複合顔料を提供できる。
 第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量が上記上限値以下であることにより、第1コレステリック液晶顔料の反射色とともに、第2コレステリック液晶顔料の反射色が視認可能となり、第1コレステリック液晶顔料由来の色よりも淡い色を視認することができる。第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量が、30重量%以下では、第1コレステリック液晶顔料の反射色が視認しにくいか視認できないことがあるが、前記第1コレステリック液晶顔料の含有量が、30重量%より多いことにより、第2コレステリック液晶顔料の反射色とともに第1コレステリック液晶顔料の反射色が視認可能となり、第1コレステリック液晶顔料由来の色よりも淡い色を視認することができる。
 複合顔料をインキ組成物としたときの分散性に優れるという観点から、第1コレステリック液晶顔料及び第2コレステリック液晶顔料は、少なくとも一方がフレークであることが好ましい。第1コレステリック液晶顔料、第2コレステリック液晶顔料又は両方のコレステリック液晶顔料がフレークである場合、フレークの平均粒子径は、好ましくは20μm以上、より好ましくは30μm以上であり、好ましくは120μm以下、より好ましくは100μm以下、特に好ましくは80μm以下である。フレークの平均粒子径が前記下限値以上であると、装飾性を得ることができ、フレークの平均粒子径が前記上限値以下であると、印刷適性を得ることができる。
 フレークの平均粒子径は、たとえば、レーザー・散乱法により粒度分布を測定し、粒度分布から平均粒子径を測定しうる。粒度分布において、その体積の積算値が50%の粒子径を、平均粒子径としうる。本願において、フレークの平均粒子径は、特に断らない限り体積平均である。
 [コレステリック液晶顔料の捩じれ方向]
 第1コレステリック液晶顔料と第2コレステリック液晶顔料とは、互いに同一の捩じれ方向を有していてもよいし、互いに異なる捩じれ方向を有していてもよい。捩じれ方向の決定は、各コレステリック液晶顔料を含むサンプルに非偏光を入射させたときの反射光を、左右の円偏光板を介して観察することにより行いうる。即ち、観察者側からサンプルに非偏光を照射し、サンプルで反射し観察者側に到達する反射光を観察することにより、捩れ方向の決定を行いうる。かかる反射光が右円偏光である場合は右捩じれと判断し、左円偏光である場合は左捩じれと判断することができる。
 [コレステリック液晶顔料の材料]
 第1コレステリック液晶顔料の材料となるコレステリック液晶樹脂は、液晶性化合物を含む第1液晶組成物の硬化物である。第2コレステリック液晶顔料の材料となるコレステリック液晶樹脂は、液晶性化合物を含む第2液晶組成物の硬化物である。
 第1液晶組成物及び第2液晶組成物に含まれる液晶性化合物としては、重合性を有する液晶性化合物が好ましい。重合性を有する液晶性化合物を含む液晶組成物は、その液晶性化合物を重合させることにより、配向状態を保持したまま容易に硬化させることができる。
 液晶性化合物としては、コレステリック液晶性化合物を用いうる。コレステリック液晶性化合物は、コレステリック液晶性を呈しうる化合物である。このようなコレステリック液晶性化合物を含む液晶組成物を用い、コレステリック液晶相を呈した状態で液晶組成物を硬化させることで、コレステリック規則性を有する樹脂材であるコレステリック液晶樹脂を得ることができる。
 第1液晶組成物及び第2液晶組成物に含まれる液晶性化合物としては、例えば、一分子中に2つ以上の反応性基を有する棒状液晶性化合物を用いうる。この棒状液晶性化合物としては、例えば、式(1)で表される化合物を挙げることができる。
 R3-C3-D3-C5-M-C6-D4-C4-R4 式(1)
 式(1)において、R3及びR4は、反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。これらの反応性基を有することにより、液晶組成物を硬化させた際に、強度の高いコレステリック液晶樹脂を得ることができる。
 式(1)において、D3及びD4は、それぞれ独立して、単結合、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。
 式(1)において、C3~C6は、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される基を表す。
 式(1)において、Mは、メソゲン基を表す。具体的には、Mは、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類からなる群から選択された互いに同一又は異なる2個~4個の骨格が、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-等の結合基によって結合された基を表す。
 前記メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1個~10個のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5、または-O-C(=O)-NR5が挙げられる。ここで、R5及びRは、水素原子又は炭素数1個~10個のアルキル基を表す。R及びRがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1個~6個のアルキル基を表す。
 前記「置換基を有してもよい炭素数1個~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~6個のアルコキシ基、炭素原子数2個~8個のアルコキシアルコキシ基、炭素原子数3個~15個のアルコキシアルコキシアルコキシ基、炭素原子数2個~7個のアルコキシカルボニル基、炭素原子数2個~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
 また、前記の棒状液晶性化合物は、非対称構造であることが好ましい。ここで非対称構造とは、式(1)において、メソゲン基Mを中心として、R3-C3-D3-C5-と-C6-D4-C4-R4が異なる構造のことをいう。棒状液晶性化合物として非対称構造のものを用いることにより、配向均一性をより高めることができる。
 棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B9)が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 第1液晶組成物及び/又は第2液晶組成物は、液晶性化合物として上記式(1)で表される化合物を含むことが好ましく、上記化合物(B1)~(B9)から選ばれる1種以上を含むことがより好ましい。
 第1液晶組成物及び/又は第2液晶組成物は、液晶性化合物以外に、下記式(2)で表される化合物を含みうる。式(2)の化合物は配向助剤として機能しうる。
 R1-A1-B-A2-R2 (2)
 式(2)において、R1及びR2は、それぞれ独立して、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の結合基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基である。
 前記アルキル基及びアルキレンオキサイド基は、置換されていないか、若しくはハロゲン原子で1つ以上置換されていてもよい。さらに、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1個~2個のアルキル基、及びアルキレンオキサイド基と結合していてもよい。
 R1及びR2として好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。
 また、R1及びR2の少なくとも一方は、反応性基であることが好ましい。R1及びR2の少なくとも一方として反応性基を有することにより、前記式(2)で表される化合物が硬化時にコレステリック液晶樹脂中に固定され、より強固な樹脂を形成することができる。ここで反応性基とは、例えば、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。
 式(2)において、A1及びA2はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていないか、若しくはハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。A1及びA2のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 A1及びA2として特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基からなる群より選択される基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、棒状液晶性化合物のメソゲンとの親和性が高く、配向均一性がより高くなる。
 式(2)において、Bは、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される。
 Bとして特に好ましいものとしては、単結合、-O-(C=O)-及び-CH=N-N=CH-が挙げられる。
 式(2)で表される化合物として特に好ましい具体例としては、下記の化合物(A1)~(A10)が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 下記の化合物(A1)~(A10)の中でも、特に化合物(A2)及び(A10)から選ばれる1種以上が好ましい。化合物(A2)及び(A10)は、液晶組成物における液晶相の発現温度を低くすることができ、かつ、液晶性化合物の液晶相を呈する温度範囲を広い範囲に維持することができる。
Figure JPOXMLDOC01-appb-C000002
 上記化合物(A3)において、「*」はキラル中心を表す。
 第1液晶組成物又は第2液晶組成物における、(式(2)で表される化合物の合計重量)/(棒状液晶性化合物の合計重量)で示される重量比は、好ましくは0.05以上、更に好ましくは0.1以上、特に好ましくは0.15以上であり、好ましくは1以下、より好ましくは0.65以下、特に好ましくは0.55以下である。前記の重量比を前記範囲の下限値以上にすることにより、液晶組成物の配向均一性を高めることができる。また、上限値以下にすることにより、配向均一性を高くできる。また、液晶組成物の液晶相の安定性を高くできる。ここで、式(2)で表される化合物の合計重量とは、式(2)で表される化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。同様に、棒状液晶性化合物の合計重量とは、棒状液晶性化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。
 また、式(2)で表される化合物と棒状液晶性化合物とを組み合わせて用いる場合、式(2)で表される化合物の分子量が600未満であることが好ましく、棒状液晶性化合物の分子量が600以上であることが好ましい。これにより、式(2)で表される化合物が、それよりも分子量の大きい棒状液晶性化合物の隙間に入り込むことができるので、配向均一性を向上させることができる。
 第1液晶組成物及び第2液晶組成物は、それぞれカイラル剤を含みうる。通常、コレステリック液晶樹脂の捩じれ方向は、使用するカイラル剤の種類及び構造により適宜選択できる。カイラル剤の具体例としては、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号公報、国際公開第98/00428号、特開2007-176870号公報、等に掲載されるものを適宜使用することができ、例えばBASF社パリオカラーのLC756として入手できる。カイラル剤としては、以下の式(3)で表される化合物を使用することもできる。カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 カイラル剤の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。カイラル剤の具体的な量は、液晶組成物中で、通常1重量%~60重量%である。
 第1液晶組成物及び第2液晶組成物は、それぞれ重合開始剤を含みうる。重合開始剤としては、例えば、光重合開始剤が挙げられ、紫外線又は可視光線によってラジカル又は酸を発生させうる化合物が使用できる。光重合開始剤の具体例としては、ベンゾイン、ベンジルジメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナミックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp’-ジクロロベンゾフェノン、pp’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタレン、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチレンスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。重合開始剤としては、BASF社製のIRGACURE 184やIRGACURE OXE02を用いることもできる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、必要に応じて公知の光増感剤又は重合促進剤としての三級アミン化合物を用いて、硬化性をコントロールしてもよい。
 重合開始剤の量は、液晶組成物中0.03重量%~7重量%であることが好ましい。重合開始剤の量を前記範囲の下限値以上にすることにより、重合度を高くできるので、コレステリック液晶樹脂の機械的強度を高めることができる。また、上限値以下にすることにより、液晶性化合物の配向を良好にできるので、液晶組成物の液晶相を安定にできる。
 第1液晶組成物及び第2液晶組成物は、それぞれレベリング剤として、界面活性剤を含みうる。界面活性剤としては、例えば、配向を阻害しないものを適宜選択して使用しうる。このような界面活性剤としては、例えば、疎水基部分にシロキサン又はフッ化アルキル基を含有するノニオン系界面活性剤が好適に挙げられる。中でも、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤の具体例としては、OMNOVA社のPolyFoxのPF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-3320、PF-651、PF-652;ネオス社のフタージェントのFTX-209F、FTX-208G、FTX-204D;セイミケミカル社のサーフロンのKH-40、S420;等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 界面活性剤の量は、コレステリック液晶樹脂における界面活性剤の量が0.05重量%~3重量%となるようにすることが好ましい。界面活性剤の量を前記範囲の下限値以上にすることにより、液晶組成物の空気界面における配向規制力を高くできるので、配向欠陥を防止できる。また、上限値以下にすることにより、過剰の界面活性剤がミセル構造を形成することによる面状不良を抑制できる。
 第1液晶組成物及び第2液晶組成物のそれぞれは、必要に応じてさらに任意の成分を含みうる。任意の成分としては、例えば;ポットライフ向上のための重合禁止剤;耐久性向上のための酸化防止剤、紫外線吸収剤及び光安定化剤;等を挙げることができる。また、これらの任意成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの任意の成分の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。
 第1液晶組成物及び第2液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより第1液晶組成物及び第2液晶組成物をそれぞれ製造しうる。
 [第1コレステリック液晶顔料の製造]
 第1コレステリック液晶顔料は、適切な支持体上に第1液晶組成物と溶媒とを含む塗布液を塗布して、必要に応じて乾燥して第1液晶組成物の層とし、この層を硬化することにより、第1コレステリック液晶樹脂の薄膜を形成した後、支持体から第1コレステリック液晶樹脂の薄膜を剥離し、これを破砕することにより製造しうる。
 (第1コレステリック液晶樹脂の薄膜の製造)
 第1液晶組成物を含む塗布液の塗布に先立ち、支持体の表面に、配向規制力を付与する処理を施しうる。かかる処理の例としては、支持体表面のラビング処理、支持体のフィルムの延伸処理等が挙げられる。また、支持体の表面と第1液晶組成物との親和性を高めるための、コロナ処理等の表面処理を行ってもよい。
 支持体としては、樹脂からなる樹脂層を備えるフィルムを用いうる。樹脂層を構成する樹脂が含む重合体の例を挙げると、鎖状オレフィン重合体、シクロオレフィン重合体、ポリカーボネート、ポリエステル、ポリスルホン、ポリエーテルスルホン、ポリスチレン、ポリビニルアルコール、酢酸セルロース系重合体、ポリ塩化ビニル、ポリメタクリレートなどが挙げられる。
 ここで、樹脂は、1種類の重合体を単独で含むものを用いてもよく、2種類以上の重合体を任意の比率で組み合わせて含むものを用いてもよい。また、樹脂は、本発明の効果を著しく損なわない限り、任意の配合剤を含んでいてもよい。
 また、支持体は、一層のみを備える単層構造のフィルムであってもよく、二層以上の層を備える複層構造のフィルムであってもよい。したがって、支持体は、前記の樹脂層のみを備えるフィルムであってもよく、前記の樹脂層に加えて任意の層を備えるフィルムであってもよい。
 例えば、液晶組成物を良好に配向させる観点では、支持体は、その表面に配向膜を有していてもよい。配向膜は、例えば、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド等の重合体を含む樹脂により形成しうる。また、これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。配向膜は、前記の重合体を含む溶液を塗布し、乾燥させ、ラビング処理を施すことにより製造しうる。
 配向膜の厚みは、好ましくは0.01μm以上、より好ましくは0.05μm以上であり、好ましくは5μm以下、より好ましくは1μm以下である。
 支持体は、延伸されていない未延伸フィルムであってもよく、延伸された延伸フィルムであってもよい。
 また、支持体は、等方なフィルムであってもよく、異方性を有するフィルムであってもよい。
 さらに、支持体は、その片面又は両面に表面処理が施されたものであってもよい。表面処理を施すことにより、支持体の表面に直接形成される他の層との密着性を向上させることができる。表面処理としては、例えば、エネルギー線照射処理、コロナ処理及び薬品処理などが挙げられる。
 支持体の厚みは、製造時のハンドリング性、材料のコスト、薄型化及び軽量化の観点から、好ましくは30μm以上、より好ましくは60μm以上であり、好ましくは300μm以下、より好ましくは200μm以下である。
 第1液晶組成物を含む塗布液の塗布は、既知の塗布方法により実施しうる。塗布方法の例としては、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、及びバーコーティング法が挙げられる。
 第1液晶組成物を含む塗布液を塗布して第1液晶組成物の層を形成した後、硬化の工程を行う前に、必要に応じ配向処理を行いうる。配向処理は、例えば第1液晶組成物の層を50~150℃で0.5~10分間加温することにより行いうる。当該配向処理を施すことにより、第1液晶組成物中の液晶性化合物を良好に配向させることができる。
 第1液晶組成物の層の硬化の処理は、1回以上のエネルギー線照射により行いうる。エネルギー線の例としては、紫外線、可視光及びその他の電磁波が挙げられる。エネルギー線照射は、具体的には例えば、波長200~500nmの光を0.01秒~3分照射することにより行いうる。第1液晶組成物層を硬化させると、支持体の上に第1コレステリック液晶樹脂の薄膜が形成される。
 (第1コレステリック液晶樹脂の薄膜を用いた顔料の製造)
 支持体から第1コレステリック液晶樹脂の薄膜を剥離し破砕する方法は、特に限定されないが、例えば、特開2015-27743号公報に記載の方法が挙げられる。この方法においては、支持体からの第1コレステリック液晶樹脂の薄膜の剥離を、図1に示す剥離片の製造装置を用いて行いうる。以下、図1に示す装置を用いた第1コレステリック液晶樹脂の薄膜の剥離方法について説明する。以下、「第1コレステリック液晶樹脂の薄膜」を単に「第1樹脂薄膜」ともいう。
 図1は、本発明の複合顔料の製造において用いる樹脂薄膜の剥離片の製造装置を模式的に示す正面図である。図1に示す剥離片製造装置100は、支持体111及び第1樹脂薄膜(図2の112を参照。)を備えた複層フィルム110を送り出しうるフィルム送出部120と、送られてきた複層フィルム110から第1樹脂薄膜112を剥離しうる剥離部130と、第1樹脂薄膜112を剥離された支持体111を回収しうる回収部140とを備える。
 剥離部130は、鋭角に設けられた角部分135を有するバー134、及び、角部分135の直ぐ下流に設けられた空気を噴射しうるノズル136を備えている。バー134の角部分135の角度は、複層フィルム110を角度θで折り返せるように設定されており、角部分は面取り構造となっている。
 装置100を用いた第1樹脂薄膜の剥離は、以下のようにして行いうる。フィルム送出部120に、バー134の角部分135において支持体111よりも第1樹脂薄膜112を外にして複層フィルム110を折り返せる向きで、複層フィルム110を取り付ける。そして、フィルム回収部140によって複層フィルム10に対して搬送方向に張力を与えた状態で、フィルム送出部120から複層フィルム110を送り出す。
 フィルム送出部120から送り出された複層フィルム110は、スリット132から剥離室131内に入り、バー134の角部分135において折り返される。角部分135で曲げられた支持体111は、通常、破損を生じない。一方、角部分135で曲げられた第1樹脂薄膜112は、その曲げ変形により応力が生じ、この応力によって第1樹脂薄膜112が破壊され、亀裂113が形成される。その後、ノズル136から噴射された空気により亀裂の形成された第1樹脂薄膜112が剥離し、吹き飛ばされ、剥離片114となる。剥離片114の一部は支持体111から離れ、ノズル136が噴射する空気の流れに従って回収路に送られる。また、剥離片114の別の一部は、支持体111に載った状態、又は、例えば静電引力等の力により支持体111に付着した状態で、支持体111と共に運ばれる。
 バー134の角部分135で第1樹脂薄膜112を剥離された支持体111は、下流へと搬送される。図1に示すように、支持体111が、ノズル136設置位置に来ると、ノズル136から噴射されている空気が、第1樹脂薄膜112の亀裂が形成された部分に吹き付けられる。この空気により、第1樹脂薄膜112の亀裂が形成された部分に含まれる剥離片114は吹き飛ばされ、回収路137へと送られる。また、亀裂113が形成されるだけで支持体111から剥離せず、支持体111上に残っていた第1樹脂薄膜(図示せず)も、ノズル136から噴射される空気の圧力によって、支持体111から剥離され、剥離片114となって回収路137へと送られる。
 回収路137に送られた剥離片114は、気流に乗って図示しない回収器に送られ、回収される。第1樹脂薄膜112を剥がされた支持体111は、スリット133を通ってフィルム回収部140まで搬送され、巻き芯141に巻き取られ、回収される。
 支持体から剥離された第1コレステリック液晶樹脂の剥離片を粉砕することにより、所望の粒子径を有する第1コレステリック液晶顔料を得る。粉砕の処理は、通常、粉砕機を用いて行う。粉砕機としては、例えば、ボールミル、ビーズミル、ロールミル、ロッドミル、ジェットミル、石臼式粉砕機等が挙げられる。
 [第2コレステリック液晶顔料の製造]
 第2コレステリック液晶顔料は、支持体上に第2コレステリック液晶樹脂の薄膜を形成した後、支持体から第2コレステリック液晶樹脂の薄膜を剥離し、これを破砕することにより製造しうる。
 (第2コレステリック液晶樹脂の薄膜の製造)
 第2コレステリック液晶樹脂の薄膜の製造においては、上記「第1コレステリック液晶樹脂の薄膜の製造」において、第1液晶組成物の層を硬化して第1コレステリック液晶樹脂の薄膜を形成する代わりに、第2液晶組成物の層を1回以上の、光照射及び/又は加温処理により、らせん構造のピッチを連続的に変化させた状態で当該層を硬化して第2コレステリック液晶樹脂の薄膜を形成する。
 第2液晶組成物の層を1回以上の、光照射及び/又は加温処理により、らせん構造のピッチを連続的に変化させた状態で当該層を硬化する操作は、コレステリック液晶樹脂の薄膜の反射帯域を拡張する操作であるので、広帯域化処理と呼ばれる。広帯域化処理を行うことにより、例えば5μm以下という薄い厚みのコレステリック液晶樹脂の薄膜であっても、広い反射帯域を実現できる。
 (第2コレステリック液晶樹脂の薄膜を用いた顔料の製造)
 第2コレステリック液晶樹脂の薄膜の剥離及び破砕は、上記「第1コレステリック液晶樹脂の薄膜の剥離及び破砕」において、第1コレステリック液晶樹脂の薄膜(第1樹脂薄膜)に代えて、第2コレステリック液晶樹脂の薄膜を用いることにより、行いうる。
 [2.インキ組成物]
 インキ組成物は、本発明の複合顔料と、バインダー樹脂と、を含む。
 バインダー樹脂は重合体を含むこのような重合体としては、例えば、ポリエステル系重合体、アクリル系重合体、ポリスチレン系重合体、ポリアミド系重合体、ポリウレタン系重合体、ポリオレフィン系重合体、ポリカーボネート系重合体、及びポリビニル系重合体が挙げられる。バインダー樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 本発明のインキ組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造しうる。
 本発明のインキ組成物は、基材の上に印刷することによりインキ層を形成した後、当該インキ層を硬化させることにより、識別媒体を構成しうる。インキ層を形成する基材の材料としては、特に限定されず、樹脂、金属、ガラス、及び紙が挙げられる。
 インキ組成物の印刷方法は特に限定されないが、スクリーン印刷、グラビア印刷、フレキソ印刷、活版印刷、オフセット印刷等の方法が挙げられる。
 インキ層の硬化の処理は、加熱や1回以上のエネルギー線照射により行いうる。加熱の例としては150℃以上の熱処理があげられる。熱処理によるインキ層の熱硬化により、基材の上に本発明の複合顔料を含む印刷層が形成された識別媒体を得ることができる。エネルギー線の例としては、紫外線、可視光及びその他の電磁波が挙げられる。エネルギー線照射は、具体的には例えば、波長200~500nmの光を0.01秒~3分照射することにより行いうる。インキ層の硬化処理により、基材の上に本発明の複合顔料を含む印刷層が形成された識別媒体を得ることができる。
 [3.識別媒体]
 本発明の識別媒体は、バインダー樹脂と、バインダー樹脂中に分散する顔料と、を含む。識別媒体に含まれる顔料は、本発明の複合顔料である。
 識別媒体は、バインダー樹脂及びバインダー樹脂中に分散する本発明の複合顔料を含む層と、任意の層とを含む態様としうる。任意の層としては基材、粘着層が挙げられる。基材の材料としては、2.で説明した材料が挙げられる。
 識別媒体が、視認側に任意の層を備える場合は、任意の層は、光透過性の高い層であることが好ましく、全光線透過率が70%以上の層であることがより好ましく、また面内レターデーションReの小さい(例えば5nm以下)層が好ましい。
 [識別媒体の用途]
 識別媒体は、物品に貼付、転写するなどして、物品の真正性を識別するために好適に用いられる。真正性を識別すべき物品としては、例えば、金券、商品券、チケット、証明書、セキュリティカード等の物品が挙げられる。識別媒体は、真正性識別用のラベル、シールなどの形態として用いることもできる。
 [4.識別媒体の真正性を識別する方法]
 本発明の識別媒体の真正性判定方法は、識別媒体からの反射光を左円偏光板及び右円偏光板を介して観察して、反射光の色相、明度、及び彩度から選ばれる1種以上に、差があるか否かを判定する工程1を含む。
 [工程1]
 工程1は識別媒体からの反射光を左円偏光板及び右円偏光板を介して観察して、反射光の色相、明度、及び彩度から選ばれる1種以上に、差があるか否かを判定する工程である。
 識別媒体としては、バインダー樹脂と、バインダー樹脂中に分散する顔料と、を含み、顔料が本発明の複合顔料であるものを用い、この識別媒体からの反射光を左円偏光板及び右円偏光板を介して観察する。反射光は識別媒体に自然光を照射したときの反射光である。自然光とは、非偏光を意味し、太陽光であっても、人工光であってもよい。
 本発明の複合顔料に含まれる第1コレステリック液晶顔料及び第2コレステリック液晶顔料の捩じれ方向によって、識別媒体が反射する偏光は下記のとおりとなる。
 (1)第1コレステリック液晶顔料及び第2コレステリック液晶顔料の捩じれ方向が互いに同一である場合:識別媒体は、第1コレステリック液晶顔料及び第2コレステリック液晶顔料の捩じれ方向と同一方向の円偏光のみを反射する。
 (2)第1コレステリック液晶顔料及び第2コレステリック液晶顔料の捩じれ方向が互いに異なる場合:識別媒体は、第1コレステリック液晶顔料の捩じれ方向と同一方向である一方の円偏光を反射し、第2コレステリック液晶顔料の捩じれ方向と同一方向である他方の円偏光を反射する。
 前記(1)の場合、識別媒体を左円偏光板及び右円偏光板で観察すると、第1コレステリック液晶顔料及び第2コレステリック液晶顔料により反射された光は、一方の円偏光のみを含むため、この一方の円偏光を透過させる一方の円偏光板では識別媒体の反射光が視認され、他方の円偏光板では識別媒体の反射光が視認されないか視認されにくい。
 したがって、識別媒体からの反射光を左右円偏光板により観察した場合に、左右円偏光板による識別媒体の反射光の色相、明度、及び彩度から選ばれる1種以上に差があった場合は、識別媒体は真正であると判定できる。
 また、左右円偏光板による識別媒体の反射光の色相、明度、及び彩度に、差がない場合は、識別媒体は、円偏光を選択的に反射する選択反射機能を有さず、識別媒体は真正ではないと判定できる。
 前記(2)の場合、識別媒体を左円偏光板及び右円偏光板で観察すると、一方の円偏光板は、第1コレステリック液晶顔料により反射された光を透過させ、第2コレステリック液晶顔料により反射された光を、透過させない。
 したがって、この一方の円偏光板で識別媒体を正面方向近傍から観察すると、第1コレステリック液晶顔料により反射された光が、識別媒体の反射光として視認されるが、第2コレステリック液晶樹脂により反射された光は一方の円偏光板を透過しないため、識別媒体の反射光は視認されないか視認されにくい。
 また、他方の円偏光板は、第1コレステリック液晶顔料により反射された光を透過させず、第2コレステリック液晶顔料により反射された光を透過させる。
 したがって、この他方の円偏光板で識別媒体を正面方向近傍から観察すると、第1コレステリック液晶顔料により反射された光は、他方の円偏光板を透過せず、第2コレステリック液晶顔料により反射された光が、識別媒体の反射光として視認される。
 左右円偏光板による識別媒体の反射光の色相、明度、及び彩度に、差がない場合は、識別媒体は、円偏光を選択的に反射する選択反射機能を有さず、識別媒体は真正ではないと判定できる。
 [本発明の作用・効果]
 本発明の識別媒体は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ選択反射帯域幅が150nm以下の第1コレステリック液晶顔料、および波長400nm以上800nm以下の範囲内に200nm以上の選択反射帯域幅を有する第2コレステリック液晶顔料を、所定の割合で含む複合顔料を含むので、目視観察を行った場合、選択反射帯域が狭い第1コレステリック液晶顔料の反射光と、選択反射帯域の広い第2コレステリック液晶顔料の反射光の双方が視認でき、これにより、第1コレステリック液晶顔料由来の色よりも淡い色を視認することができる。このような効果は、狭帯域のコレステリック液晶顔料を2種類用いても得られ難い効果である。したがって、本発明によれば、前述したような淡い色の表現が可能で、かつ、偽造防止効果を発現することができるので、意匠性に優れ、かつ、偽造防止効果を有する識別媒体を実現できる、複合顔料を提供できる。
 第1コレステリック液晶顔料由来の色よりも淡い色を視認可能か否かについては、目視による評価以外に、分光光度計等を用いて定量的に評価しうる。定量的に評価する際の表色系としては、任意の系を使用でき、例えば、XYZ表色系やL表色系などを使用できる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は、以下の実施例に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲から逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 [評価方法]
 (選択反射帯域の中心波長)
 各例で用いた顔料(顔料A~F)の、選択反射帯域及び選択反射帯域の中心波長を、下記の方法に従い測定した。
 下記製造例1~6で得られた複層フィルムA~Fにおける、コレステリック液晶樹脂の層を、粘着層付き黒色PETフィルム(巴川製紙所社製)に、粘着層を介して貼り合せた後、支持体を剥離して、液晶樹脂層を黒色PETフィルムに転写した。
 次いで、分光光度計(日本分光社製「V570」)により、入射角5°における液晶樹脂層の反射スペクトルを測定した。得られた反射スペクトルから、選択反射帯域幅としての、選択反射帯域の半値幅を求めた。即ち、反射スペクトルにおいて、最小強度を有するベースと最大強度を有するピークを決定し、最小強度+(最大強度-最小強度)/2の強度を示す、ピークの短波長側の波長λ1及び長波長側の波長λ2を求め、これらの平均値((λ1+λ2)/2)を、コレステリック液晶樹脂(顔料)の、選択反射帯域の中心波長とした。また、波長λ2から波長λ1までを選択反射帯域とし、その幅(λ2とλ1との差:Δλ)を選択反射帯域幅とした。
 (平均粒子径の測定)
 レーザー・散乱法により各顔料の粒度分布を測定し、粒度分布から平均粒子径を測定した。測定機器として、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、LA-960)を用いた。
 (捩じれ方向の決定)
 各顔料の捩じれ方向の決定は、製造例1~6で得られた複層フィルムA~F(各顔料を含むフィルム)に非偏光を入射したときの、反射光を左右の円偏光板を介して観察することにより行った。即ち、観察者側から複層フィルムに非偏光を照射し、複層フィルムで反射し観察者側に到達する反射光を観察した。かかる反射光が右円偏光である場合は右捩じれと判断し、左円偏光である場合は左捩じれと判断した。
 (目視観察による評価)
 自然光下、評価対象の識別媒体の目視観察を行い、どのような色が目視可能か評価した。
 (識別媒体の反射色の評価:表中「反射特性」と記載)
 分光光度計(日本分光社製、V570)により、評価対象の識別媒体の印刷層側から、入射角5°における反射スペクトルを測定した。得られた反射スペクトルを用いて下記方法に従い、L色度座標を算出し、さらに、原点基準の色差(原点基準Δa)、第1コレステリック液晶顔料(顔料A、C、DまたはE)のみを含む参考例2~6の識別媒体の色度を基準とした色差(顔料1基準Δa)、第2コレステリック液晶顔料(顔料B)のみを含む参考例1の識別媒体の色度を基準とした色差(顔料2基準Δa)を算出した。
  (STEP.1)
 測定した反射スペクトルR(λ)と以下の式(11)~(13)を用いて、三刺激値X、Y、Zを算出した。
Figure JPOXMLDOC01-appb-M000004
 ここで、S(λ)は光源のスペクトルであり本実施例ではC光源の値を使用した。また、x(λ)、y(λ)、z(λ)は等色関数を表す。
  (STEP.2)
 STEP.1で算出した三刺激値X、Y、Zを用いて、CIE 1976L色空間の明度L、a、bを算出した。算出には以下の式(14)から式(16)を利用した。
Figure JPOXMLDOC01-appb-M000005
 ここで、X、Y、Zはそれぞれ、式(17)から式(19)で算出される三刺激値である。
Figure JPOXMLDOC01-appb-M000006
 また、f(X/X)、f(Y/Y)、f(Z/Z)はそれぞれ、式(20)から式(22)で表される。
Figure JPOXMLDOC01-appb-M000007
 さらに、得られた各例のa、bの値から下記式(23)を用いて、原点基準の色差(原点基準Δa)、第1コレステリック液晶顔料のみを含む識別媒体の色度を基準とした色差(顔料1基準Δa)、第2コレステリック液晶顔料のみを含む識別媒体の色度を基準とした色差(顔料2基準Δa)を算出した。
 Δa=((a -a +(b -b )1/2・・・(23)
 原点基準Δaを算出する場合、式(23)中のa は各例のa、a は0、b は各例のb、b は0を示す。
 顔料1基準Δaを算出する場合、式(23)中のa は各例のa、a は各例で用いた第1コレステリック液晶顔料に対応する顔料のみを含む識別媒体のa、b は各例のb、b は各例で用いた第1コレステリック液晶顔料に対応する顔料のみを含む識別媒体のbを示す。例えば、実施例1の識別媒体の顔料1基準Δaを算出する場合、顔料Aのみを含む参考例2の識別媒体のa及びbを、それぞれ、a 及びb とし、実施例4の顔料1基準Δaを算出する場合、顔料Cのみを含む参考例3の識別媒体のa及びbを、a 及びb とする。
 顔料2基準Δaを算出する場合、式(23)中のa は各例のa、a は参考例1の識別媒体(第2コレステリック液晶顔料のみを含む識別媒体)のa、b は各例のb、b は参考例1の識別媒体のbを示す。
 原点基準Δaが25未満、顔料1基準Δaが5以上、かつ顔料2基準Δaが10以上であると、識別媒体を目視観察したときに、第1コレステリック液晶顔料由来の色よりも淡い色が視認可能である。
 (円偏光板観察)
 識別媒体の印刷面からの反射光を、左円偏光板及び右円偏光板を介して観察した。反射光が視認可能か否か、視認可能である場合、何色に見えるかということを目視で判断した。
 [製造例1:顔料Aの材料となる複層フィルムAの製造]
 支持体として、ポリエチレンテレフタレート(PET)フィルム(東洋紡社製「コスモシャイン(登録商標)A4100]、厚み100μm)を準備し、片面をラビング処理した。
 下記表に示す材料を混合して、液晶性化合物を含む液晶組成物(塗布液L1)を調製した。液晶性化合物(化合物(B3))及び式(2)の化合物(化合物(A2))は、それぞれ、下記式で表される化合物である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-T000009
 (1-1.塗布工程)
 支持体のラビング処理した面の上に、塗布液L1を塗布し、液晶組成物の層(塗布層)を形成した。塗布液L1の塗布は、ダイコーターにより、乾燥前の液晶組成物の層の膜厚が15μmとなるように、吐出量を調整して行った。
 (1-2.乾燥工程)
 次いで、支持体上に形成された液晶組成物の層を、オーブンにて140℃で2分間加熱する乾燥工程を行った。
 (1-3.重合工程)
 乾燥工程の後、液晶組成物の層側から、高圧水銀ランプを用いて紫外線を照射し、液晶組成物の層を重合する工程を行った。紫外線照射の条件は、酸素濃度400ppm以下である窒素ガス雰囲気下、波長365nmにおける照度を280mW/cmとし、波長365nmにおける露光量を2300mJ/cmとした。
 重合工程を行って、コレステリック規則性を有する液晶組成物の層を硬化させることにより、コレステリック規則性を保持したままコレステリック液晶組成物が硬化して、コレステリック規則性を有する樹脂の層であるコレステリック液晶樹脂の薄膜が形成された。その結果、(支持体)/(コレステリック液晶樹脂の薄膜)の構成を有する、複層フィルムAが得られた。複層フィルムAのコレステリック液晶樹脂の薄膜の厚みは、3μmであった。
 (製造例2:顔料Bの材料となる複層フィルムBの製造)
 (2-1.塗布工程)
 製造例1の(1-1.塗布工程)において、塗布液L1に代えて、下記表に示す材料を混合して得られた塗布液L2を用いたこと、および、塗布液L2の塗布を、乾燥前の塗布層の膜厚が25μmとなるように、吐出量を調整して行ったこと以外は、製造例1の(1-1)と同じ操作を行い、支持体上に液晶組成物の層を形成した。
Figure JPOXMLDOC01-appb-T000010
 (2-2.乾燥工程)
 次いで、支持体上に形成された液晶組成物の層を、オーブンにて140℃で2分間加熱する乾燥工程を行った。
 (2-3.広帯域化処理)
 乾燥工程を行った後、高圧水銀ランプを用いた紫外線照射処理と、それに続く100℃で1分間の加熱処理と、からなるプロセスを2回行った。
 1回目の紫外線照射処理の条件は、大気雰囲気下、波長365nmにおける照度を5mW/cmとし、波長365nmにおける露光量を300mJ/cmとした。2回目の紫外線照射処理の条件は、大気雰囲気下、波長365nmにおける照度を30mW/cmとし、波長365nmにおける露光量を1800mJ/cmとした。加熱処理はオーブンにより行った。
 (2-4.重合工程)
 広帯域化処理の後、液晶組成物の層側から、高圧水銀ランプを用いて紫外線を照射し、液晶組成物の層を重合する工程を行った。紫外線照射の条件は、酸素濃度400ppm以下である窒素ガス雰囲気下、波長365nmにおける照度を280mW/cmとし、波長365nmにおける露光量を2300mJ/cmとした。
 重合工程を行って、コレステリック規則性を有する液晶組成物の層を硬化させることにより、コレステリック規則性を保持したままコレステリック液晶組成物が硬化して、コレステリック規則性を有する樹脂の層であるコレステリック液晶樹脂の薄膜が形成された。その結果、(支持体)/(コレステリック液晶樹脂の薄膜)の構成を有する、複層フィルムBが得られた。複層フィルムBのコレステリック液晶樹脂の薄膜の厚みは、5μmであった。
 (製造例3:顔料Cの材料となる複層フィルムCの製造)
 製造例1において、塗布液L1に代えて、下記表に示す材料を混合して得られた塗布液L3を用いたこと以外は製造例1と同じ操作を行い、複層フィルムCを得た。複層フィルムCのコレステリック液晶樹脂の薄膜の厚みは、3μmであった。
Figure JPOXMLDOC01-appb-T000011
 (製造例4:顔料Dの材料となる複層フィルムDの製造)
 製造例1において、塗布液L1に代えて、下記表に示す材料を混合して得られた塗布液L4を用いたこと以外は製造例1と同じ操作を行い、複層フィルムDを得た。複層フィルムDのコレステリック液晶樹脂の薄膜の厚みは、3μmであった。
Figure JPOXMLDOC01-appb-T000012
 (製造例5:顔料Eの材料となる複層フィルムEの製造)
 製造例1において、塗布液L1に代えて、下記表に示す材料を混合して得られた塗布液L5を用いたこと以外は製造例1と同じ操作を行い、複層フィルムEを得た。複層フィルムEのコレステリック液晶樹脂の薄膜の厚みは、3μmであった。
Figure JPOXMLDOC01-appb-T000013
 塗布液L5に含まれる化合物(3)は、下記式で表される化合物である。
Figure JPOXMLDOC01-appb-C000014
 (製造例6:顔料Fの材料となる複層フィルムFの製造)
 製造例1において、塗布液L1に代えて、下記表に示す材料を混合して得られた塗布液L6を用いたこと以外は製造例1と同じ操作を行い、複層フィルムFを得た。複層フィルムFのコレステリック液晶樹脂の薄膜の厚みは、3μmであった。
Figure JPOXMLDOC01-appb-T000015
 [製造例7.顔料A~Fの製造]
 (コレステリック液晶樹脂の薄膜の剥離片の製造)
 製造例1~6で製造した複層フィルムA~Fを用いて、図1に示す製造装置を用いて、以下の方法によりコレステリック液晶樹脂の薄膜の剥離片を製造した。
 図1に示すように、フィルム送出部120、剥離部130、及び、フィルム回収部140を備える製造装置100を用意した。剥離部130は、鋭角に設けられた角部分135を有するバー134、及び、角部分135の直ぐ下流に設けられた空気を噴射しうるノズル136を備えていた。この際、バー134の角部分135の角度は、複層フィルム110を角度θ(60°)で折り返せるように設定した。角部分はR=0.2mm~0.3mmの面取り構造となっている。
 フィルム送出部120に、バー134の角部分135において支持体111(PETフィルム)よりも第1コレステリック液晶樹脂の薄膜112(または第2コレステリック液晶樹脂の薄膜)を外にして複層フィルム110を折り返せる向きで、複層フィルム110を取り付けた。そして、フィルム回収部140によって複層フィルム10に対して搬送方向に張力を与えた状態で、フィルム送出部120から複層フィルム110を送り出した。この際、複層フィルム110に与える張力の大きさは、80N/mに設定した。また、ノズル436からは空気を圧力0.5MPaで噴射させた。
 複層フィルム110は、バー134の角部分135において折り返され、多くの亀裂が形成された。その後、ノズル136から噴射された空気により亀裂の形成された第1コレステリック液晶樹脂の薄膜112(または第2コレステリック液晶樹脂の薄膜)が剥離し吹き飛ばされ、剥離片111Aが得られた。
 (顔料の製造)
 剥離片111Aを回収して、カッターミルで粉砕し、51μmの篩を用いて分級し、篩を通過した粒子のみを回収して顔料とした。得られた顔料の平均粒子径、選択反射帯域の中心波長、選択反射帯域及び選択反射帯域幅を測定した。結果を表7~11に示す。これらの測定結果から、顔料A、C、D、E及びFは、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ、選択反射帯域幅が150nm以下の第1コレステリック液晶顔料であった。顔料Bは、波長400nm以上800nm以下の範囲内に、200nm以上の選択反射帯域幅を有する第2コレステリック液晶顔料であった。
 顔料A由来の色は緑色、顔料B由来の色は銀色、顔料C由来の色は青色、顔料D由来の色は赤色、顔料E由来の色は緑色、顔料F由来の色は赤色であった。
 [参考例1~6]
 (インキ組成物の調製)
 製造例7で製造した顔料A~Fを用い、以下の方法でインキ組成物を調製した。
 表7及び表8に記載の顔料、バインダー(UV硬化型バインダー、十条ケミカル社製「レイキュアーOP 4300-2」シリーズFG-20SC厚盛メジウム)を混合して固形分濃度が10%のインキ組成物を調製した。
 (識別媒体の製造)
 調製したインキ組成物を基材(黒色の紙)に、スクリーン印刷した。スクリーン版として、1インチ当たりの千数が120のスクリーン版を用いた。基材の印刷面に、高圧水銀ランプを用いて紫外線照射を行い、識別媒体を得た。紫外線照射の条件は、酸素濃度400ppm以下である窒素ガス雰囲気下、波長365nmにおける照度を280mW/cmとし、波長365nmにおける露光量を400mJ/cmとした。
 得られた参考例1~6の識別媒体について、目視観察、反射特性の評価及び偏光板観察を行った。評価結果とともに、各例で用いた顔料の情報(種類、選択反射帯域の中心波長、選択反射帯域、選択反射帯域幅、平均粒子径及び捩じれ方向)を下記表に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 [実施例1~9、比較例1~2]
 (インキ組成物の調製)
 第1コレステリック液晶顔料として、製造例7で製造した顔料A、C、D、EまたはFを用い、第2コレステリック液晶顔料として製造例7で製造した顔料Bを用いて、以下の方法でインキ組成物を調製した。
 表9~表11に記載の第1コレステリック液晶顔料、第2コレステリック液晶顔料、バインダー(UV硬化型バインダー、十条ケミカル社製「レイキュアーOP 4300-2」シリーズFG-20SC厚盛メジウム)を混合して固形分濃度が10%のインキ組成物を調製した。第1コレステリック液晶顔料及び第2コレステリック液晶顔料の総量に対する、第1コレステリック液晶顔料の含有量は、表9~11に記載の量(表中「第1コレステリック液晶顔料の含有量」と記載)となるようにした。
 (識別媒体の製造)
 調製したインキ組成物を基材(黒色の紙)に、スクリーン印刷した。スクリーン版として、1インチ当たりの千数が120のスクリーン版を用いた。基材の印刷面に、高圧水銀ランプを用いて紫外線照射を行い、識別媒体を得た。紫外線照射の条件は、酸素濃度400ppm以下である窒素ガス雰囲気下、波長365nmにおける照度を280mW/cmとし、波長365nmにおける露光量を400mJ/cmとした。
 得られた識別媒体について、目視観察、反射特性の評価及び偏光板観察を行った。
 [結果]
 実施例及び比較例の評価結果とともに、各例で用いた顔料の情報(種類、選択反射帯域の中心波長、選択反射帯域、選択反射帯域幅、平均粒子径及び捩じれ方向)を下記表に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 以上の結果より、以下の事項が分かる。
 本発明の複合顔料を含む識別媒体では、目視観察により第1コレステリック液晶顔料由来の色よりも淡い色が視認可能であり、円偏光板観察により、左右の円偏光板による識別媒体の反射光の色相の差が認められた。これに対し、本発明で規定するよりも第1コレステリック液晶顔料の含有量が少ない比較例1では、目視観察により、第2コレステリック液晶顔料由来の色が視認できたが、第1コレステリック液晶顔料由来の色よりも淡い色は視認できなかった。また、本発明で規定するよりも第1コレステリック液晶顔料の含有量が多い比較例2では、目視観察により、第1コレステリック液晶顔料由来の色は視認できたが、第1コレステリック液晶顔料由来の色よりも淡い色は視認できなかった。
 以上の結果から、本発明によれば、意匠性に優れ、かつ偽造防止効果を有する識別媒体を実現できるということがわかった。
 100 樹脂薄膜の剥離片の製造装置
 110 複層フィルム
 111 支持体
 112 第1コレステリック液晶樹脂の薄膜
 113 亀裂
 114 剥離片
 120 フィルム送出部
 130 剥離部
 131 剥離室
 132 スリット
 133 スリット
 134 バー
 135 バーの角部分
 136 ノズル
 137 回収路
 140 フィルム回収部
 141 巻き芯

Claims (9)

  1.  第1コレステリック液晶顔料と、第2コレステリック液晶顔料と、を含み、
     前記第1コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に選択反射帯域の中心波長を有し、かつ、選択反射帯域幅が150nm以下の顔料であり、
     前記第2コレステリック液晶顔料は、波長400nm以上800nm以下の範囲内に、200nm以上の選択反射帯域幅を有する顔料であり、
     前記第1コレステリック液晶顔料の選択反射帯域と、前記第2コレステリック液晶顔料の選択反射帯域とは、少なくとも一部が重なっており、
     前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の総量に対する、前記第1コレステリック液晶顔料の含有量が30重量%超80重量%以下である、複合顔料。
  2.  前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の総量に対する、前記第1コレステリック液晶顔料の含有量が75重量%以下である、請求項1に記載の複合顔料。
  3.  前記第1コレステリック液晶顔料の選択反射帯域幅が120nm以下である、請求項1または2に記載の複合顔料。
  4.  前記第1コレステリック液晶顔料と、前記第2コレステリック液晶顔料とが、互いに同一の捩じれ方向を有する、請求項1~3のいずれか一項に記載の複合顔料。
  5.  前記第1コレステリック液晶顔料と、前記第2コレステリック液晶顔料とが、互いに異なる捩じれ方向を有する、請求項1~3のいずれか一項に記載の複合顔料。
  6.  前記第1コレステリック液晶顔料及び前記第2コレステリック液晶顔料の、少なくとも一方がフレークであり、
     前記フレークの平均粒子径が20μm以上120μm以下である、請求項1~5のいずれか一項に記載の複合顔料。
  7.  請求項1~6のいずれか一項に記載の複合顔料と、バインダー樹脂と、を含むインキ組成物。
  8.  バインダー樹脂と、前記バインダー樹脂中に分散する顔料と、を含み、
     前記顔料が請求項1~6のいずれか一項に記載の複合顔料である、識別媒体。
  9.  請求項8に記載の識別媒体の真正性判定方法であって、
     前記識別媒体からの反射光を左円偏光板及び右円偏光板を介して観察して、前記反射光の色相、明度、及び彩度から選ばれる1種以上に、差があるか否かを判定する工程1を含む、真正性判定方法。
PCT/JP2020/028345 2019-07-30 2020-07-21 複合顔料、識別媒体及び真正性判定方法 WO2021020248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080053760.2A CN114207083A (zh) 2019-07-30 2020-07-21 复合颜料、识别介质及真实性判断方法
EP20848478.2A EP4006108A4 (en) 2019-07-30 2020-07-21 COMPOUND PIGMENT, IDENTIFICATION MEDIA AND AUTHENTICATION PROCEDURE
JP2021536983A JPWO2021020248A1 (ja) 2019-07-30 2020-07-21
US17/629,871 US20220289988A1 (en) 2019-07-30 2020-07-21 Composite pigment, identification medium, and authenticity determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140314 2019-07-30
JP2019-140314 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020248A1 true WO2021020248A1 (ja) 2021-02-04

Family

ID=74229069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028345 WO2021020248A1 (ja) 2019-07-30 2020-07-21 複合顔料、識別媒体及び真正性判定方法

Country Status (5)

Country Link
US (1) US20220289988A1 (ja)
EP (1) EP4006108A4 (ja)
JP (1) JPWO2021020248A1 (ja)
CN (1) CN114207083A (ja)
WO (1) WO2021020248A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190481A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品
WO2023190483A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672962A (ja) 1992-08-28 1994-03-15 Asahi Denka Kogyo Kk 光学活性フェニル化合物
JPH1180733A (ja) * 1997-06-19 1999-03-26 Consortium Elektrochem Ind Gmbh 光重合可能なコレステリック液晶のコレステリック反射帯域を拡張する方法およびこの方法により製造した光学素子
JP2000290315A (ja) 1999-04-08 2000-10-17 Asahi Denka Kogyo Kk 重合性光学活性化合物
JP2001261739A (ja) * 2000-03-16 2001-09-26 Merck Patent Gmbh 広帯域液晶顔料
US6468444B1 (en) 1999-03-25 2002-10-22 Basf Aktiengesellschaft Chiral compounds and their use as chiral dopants for producing cholesteric liquid crystal compositions
JP2003066214A (ja) 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
JP2003073600A (ja) 2001-05-23 2003-03-12 Toppan Printing Co Ltd 偽造防止インキ及び偽造防止印刷物並びにその真偽判定方法
JP2003145912A (ja) * 2001-11-15 2003-05-21 Toppan Printing Co Ltd 偽造防止印刷物
JP2003313187A (ja) 2002-04-18 2003-11-06 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003342219A (ja) 2002-05-27 2003-12-03 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2004115414A (ja) 2002-09-25 2004-04-15 Asahi Denka Kogyo Kk 光学活性化合物及び該光学活性化合物を含有した液晶組成物
JP2005289881A (ja) 2004-03-31 2005-10-20 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2007176870A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd キラル剤
JP2009541047A (ja) * 2006-06-27 2009-11-26 シクパ・ホールディング・ソシエテ・アノニム コレステリック多層
JP2010196005A (ja) * 2009-02-27 2010-09-09 Dainippon Printing Co Ltd 色彩可変インキ組成物
JP2014189677A (ja) * 2013-03-27 2014-10-06 Fujifilm Corp 光干渉顔料およびその製造方法
JP2015027743A (ja) 2013-07-30 2015-02-12 日本ゼオン株式会社 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
US9800428B2 (en) 2013-02-20 2017-10-24 Panasonic Intellectual Property Corporation Of America Control method for information apparatus and computer-readable recording medium
WO2018034215A1 (ja) * 2016-08-19 2018-02-22 日本ゼオン株式会社 識別用表示媒体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128223B1 (en) * 2007-02-22 2015-11-18 Zeon Corporation Cholesteric liquid-crystal composition, circularly polarizing separation sheet, and production process
JP2011112720A (ja) * 2009-11-24 2011-06-09 Nippon Zeon Co Ltd 反射型円偏光分離素子及び液晶表示装置
US20170157972A1 (en) * 2014-06-30 2017-06-08 Zeon Corporation Identification medium, method for producing identification medium, and method for using identification medium

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672962A (ja) 1992-08-28 1994-03-15 Asahi Denka Kogyo Kk 光学活性フェニル化合物
JPH1180733A (ja) * 1997-06-19 1999-03-26 Consortium Elektrochem Ind Gmbh 光重合可能なコレステリック液晶のコレステリック反射帯域を拡張する方法およびこの方法により製造した光学素子
US6468444B1 (en) 1999-03-25 2002-10-22 Basf Aktiengesellschaft Chiral compounds and their use as chiral dopants for producing cholesteric liquid crystal compositions
JP2000290315A (ja) 1999-04-08 2000-10-17 Asahi Denka Kogyo Kk 重合性光学活性化合物
JP2001261739A (ja) * 2000-03-16 2001-09-26 Merck Patent Gmbh 広帯域液晶顔料
JP2003073600A (ja) 2001-05-23 2003-03-12 Toppan Printing Co Ltd 偽造防止インキ及び偽造防止印刷物並びにその真偽判定方法
JP2003066214A (ja) 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
JP2003145912A (ja) * 2001-11-15 2003-05-21 Toppan Printing Co Ltd 偽造防止印刷物
JP2003313187A (ja) 2002-04-18 2003-11-06 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003342219A (ja) 2002-05-27 2003-12-03 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2004115414A (ja) 2002-09-25 2004-04-15 Asahi Denka Kogyo Kk 光学活性化合物及び該光学活性化合物を含有した液晶組成物
JP2005289881A (ja) 2004-03-31 2005-10-20 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2007176870A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd キラル剤
JP2009541047A (ja) * 2006-06-27 2009-11-26 シクパ・ホールディング・ソシエテ・アノニム コレステリック多層
JP2010196005A (ja) * 2009-02-27 2010-09-09 Dainippon Printing Co Ltd 色彩可変インキ組成物
US9800428B2 (en) 2013-02-20 2017-10-24 Panasonic Intellectual Property Corporation Of America Control method for information apparatus and computer-readable recording medium
JP2014189677A (ja) * 2013-03-27 2014-10-06 Fujifilm Corp 光干渉顔料およびその製造方法
JP2015027743A (ja) 2013-07-30 2015-02-12 日本ゼオン株式会社 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
WO2018034215A1 (ja) * 2016-08-19 2018-02-22 日本ゼオン株式会社 識別用表示媒体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006108A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190481A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品
WO2023190483A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品

Also Published As

Publication number Publication date
US20220289988A1 (en) 2022-09-15
EP4006108A4 (en) 2023-08-02
JPWO2021020248A1 (ja) 2021-02-04
EP4006108A1 (en) 2022-06-01
CN114207083A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP7396275B2 (ja) 識別媒体、真正性判定方法、及び物品
WO2020261923A1 (ja) 表示媒体、真正性判定方法、及び表示媒体を含む物品
EP3330079B1 (en) Cholesteric resin laminate, production method, and use
WO2021020248A1 (ja) 複合顔料、識別媒体及び真正性判定方法
JP2015027743A (ja) 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
WO2021065484A1 (ja) 表示媒体、表示物品及び表示セット
JP2019188740A (ja) 積層体及び積層体の製造方法
EP4159454A1 (en) Authenticity determination member and authenticity determination method therefor
JPWO2019230840A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
WO2021020243A1 (ja) 複合顔料、識別媒体及び真正性判定方法
JP7099519B2 (ja) 樹脂薄膜の剥離片の製造方法
JP7380554B2 (ja) 識別媒体及び識別媒体の真正性を識別する方法
JP2021138939A (ja) 液晶顔料及びその製造方法、インキ組成物、並びに印刷物
JP7327382B2 (ja) フレーク及びその製造方法、並びに塗料
WO2021220708A1 (ja) 表示媒体及び表示物品
WO2020153349A1 (ja) 偽造防止媒体および情報カード
WO2023189967A1 (ja) 識別媒体
WO2023189966A1 (ja) 識別媒体及び物品
WO2023189787A1 (ja) 識別媒体及び物品
WO2023282063A1 (ja) 光学表示媒体
WO2023189788A1 (ja) 識別媒体及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848478

Country of ref document: EP

Effective date: 20220228