WO2021020184A1 - 転倒検知センサ - Google Patents

転倒検知センサ Download PDF

Info

Publication number
WO2021020184A1
WO2021020184A1 PCT/JP2020/027924 JP2020027924W WO2021020184A1 WO 2021020184 A1 WO2021020184 A1 WO 2021020184A1 JP 2020027924 W JP2020027924 W JP 2020027924W WO 2021020184 A1 WO2021020184 A1 WO 2021020184A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
case
reed switch
curved surface
magnetic
Prior art date
Application number
PCT/JP2020/027924
Other languages
English (en)
French (fr)
Inventor
弘一 矢島
栄一 小菅
昌哉 萩山
Original Assignee
株式会社日本アレフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本アレフ filed Critical 株式会社日本アレフ
Priority to EP20846455.2A priority Critical patent/EP3998450A4/en
Priority to US17/630,377 priority patent/US11972916B2/en
Priority to CN202080053208.3A priority patent/CN114175202A/zh
Publication of WO2021020184A1 publication Critical patent/WO2021020184A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • H01H36/0013Permanent magnet actuating reed switches characterised by the co-operation between reed switch and permanent magnet; Magnetic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/135Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by making use of contacts which are actuated by a movable inertial mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/02Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/02Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field
    • H01H35/022Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field the switch being of the reed switch type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/02Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field
    • H01H35/025Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field the switch being discriminative in different directions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/064Electric or photoelectric indication or reading means inductive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0891Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values with indication of predetermined acceleration values

Definitions

  • the present invention relates to a fall detection sensor for detecting a fall of various devices such as a fan heater, a kettle pot, and a motorcycle, for example.
  • a fall detection sensor is provided to detect a fall during use.
  • motorcycles are equipped with a fall detection sensor to prevent the outflow of gasoline when the vehicle falls.
  • a fall detection sensor many fall detection sensors using a reed switch, which has a simple configuration and does not require power supply, are known.
  • a permanent magnet and a magnetic fluid are housed in a hollow non-magnetic material case having an inclined surface on the bottom surface, and a magnetic sensitive element (lead switch) that is sensitive to the magnetism of the permanent magnet is arranged below the bottom portion.
  • the tilt sensor is disclosed. In this tilt sensor, when the object whose tilt should be detected is in an upright state, one lead of the reed switch is magnetized by arranging the permanent magnet in the center of the bottom surface of the case, and the contact of the reed switch is closed.
  • both leads of the reed switch are magnetized to the same pole by the permanent magnet and the auxiliary magnet, respectively, and a repulsive force is generated between the two leads.
  • This keeps the reed switch contacts off, but when the permanent magnet deviates from the center of the bottom of the case due to the tilt of the object, only the auxiliary magnet magnetizes one of the reed switches, so the reed switch contacts It will be closed.
  • Such switches are called normally open type or a-contacts.
  • Patent Document 2 shows a tilt sensor using a reed switch.
  • This tilt sensor is configured as shown in FIG.
  • the case 101 made of non-magnetic aluminum has a hollow portion 102 in which the cup-shaped case 101a and the lid 101b are bonded to each other by an adhesive at a portion where they overlap each other and are sealed.
  • a substantially disk-shaped permanent magnet 103 having a magnetic fluid 103a adhered to its surface is housed in the hollow portion 102.
  • the case 101 is inserted into the upper part of the pedestal 104 made of a plastic molded product and fixed with the resin 104a.
  • a reed switch 105 as a magnetically sensitive element is arranged on the printed circuit board 106, its lead terminals are soldered, and a lead wire 106a is drawn out from the printed circuit board 106.
  • the back cover 107 is fixed by engaging the claws 107a rising from the pair of opposite side portions with the recesses formed inside the pedestal 104.
  • the response angle of the tilt sensor is adjusted based on the attachment position of the amorphous magnetic piece 108 attached to the top of the pedestal 104.
  • the two leads constituting the reed switch 105 are magnetically magnetized by the magnetic force of the permanent magnet 103, so that they repel each other and turn off. It is in a state.
  • the permanent magnet 103 moves in the inclined direction in the hollow portion 102 of the non-magnetic material case 101 with the inclination, one lead of the reed switch 105 changes to the opposite pole, so that the two leads attract each other. And turn on.
  • the magnetic force of the permanent magnet 103 acts on the reed switch 105 in both the off state and the on state. Therefore, due to the tilt of the tilt sensor, the reed switch 105 is always magnetically affected by the magnetic force of the permanent magnet regardless of whether the reed switch is on or off.
  • the entire tilt sensor becomes large in the vertical direction.
  • one lead of the reed switch is magnetized to turn on the contact of the reed switch, and the permanent magnet separates as it tilts, causing the permanent magnet to separate.
  • the reed switch contacts are turned off without being affected by magnetism. Therefore, in the on state, the other lead is not magnetized by the permanent magnet, and the on state may not be stably held, and in the off state, the lead loses magnetism and is turned off.
  • the on state or the off state may not be maintained due to the influence of an external magnetic field or vibration, for example.
  • the auxiliary magnet in the off state, both leads are magnetized to the same pole and repel each other to stably maintain the off state, but in the on state, only one lead is magnetic. Since it is turned on due to the influence of the target, the on state may not be maintained due to the influence of an external magnetic field or vibration.
  • each reed of the reed switch 105 is stably maintained in the on state and the off state by being magnetically affected by the magnetic force of the permanent magnet 103 in both the on state and the off state.
  • the present inventors have prototyped a conventional tilt sensor, changed the angle of the reed switch 105 with respect to the longitudinal direction, and measured the on angle and the off angle of the reed switch 105 in various tilt directions. The measurement results shown are obtained.
  • the longitudinal direction of the reed switch 105 that is, the upper side is 0 degree
  • the angle in the tilt direction is taken clockwise
  • the line connecting the on angle in the tilt direction is represented by a solid line
  • the line connecting the off angle is a broken line. Indicated by.
  • the fall detection sensor of the present invention is attached to an object to detect a fall, and a concave curved surface whose diameter expands upward around the central axis and the upper surface of the curved surface are liquid-tight.
  • a disk-shaped magnet a magnetic fluid enclosed in a hollow portion and magnetically attracted to magnetic poles at at least both ends of the magnet, and a lead switch arranged so that contacts come to the center or near the center of the bottom of the case.
  • the central axis of the case extends in the vertical direction, and the magnet whose magnetic pole is covered with magnetic fluid follows gravity near the central axis, which is the lowest position of the curved surface of the case.
  • One lead is made by magnetizing the corresponding lead of the lead switch located directly below the magnet at each magnetic pole portion of the magnet so that the magnetization direction extends substantially parallel to the length direction of the lead switch.
  • the magnet slides along the curved surface of the case and deviates from its central axis. Since only one magnetic pole portion of the magnet is located near the central axis of the case, the magnetic pole portion magnetizes each lead of the lead switch to the same pole so that the lead switch is turned off.
  • the central axis of the case extends in the vertical direction, and the magnet is located near the central axis, which is the lowest position of the curved surface of the case according to gravity. To do.
  • the magnet is attracted by a magnetic influence so that both magnetic pole portions face each lead portion of the reed switch, and the magnet is positioned so that the magnetic pole direction extends substantially parallel to the longitudinal direction of the reed switch. Therefore, both magnetic pole portions of the magnet magnetize the leads of the reed switches facing each other, and magnetize one lead of the reed switch to the N pole and the other lead to the S pole.
  • both leads of the reed switch are attracted to each other, and the reed switch is turned on.
  • both leads of the reed switch are magnetized by the magnetic influence of the magnet and attracted to each other, the on state is stably maintained and is not easily affected by, for example, an external magnetic field or vibration.
  • the case and the reed switch are also tilted accordingly, and the central axis of the case is tilted. Therefore, as the case tilts, the magnets deviate from the central axis along the curved surface of the case in the hollow portion of the case. At this time, the magnet follows the tilting direction of the case, and its magnetic pole direction rotates with respect to the central axis. As a result, one magnetic pole portion is located on the bottom surface of the case near the central axis, and the other magnetic pole portion is separated from the central axis.
  • one magnetic pole portion of the magnet is located near the central axis of the bottom surface of the case, near the center where both leads of the reed switch face each other, and one magnetic pole portion magnetizes both leads of the reed switch to the same pole. ..
  • both leads of the reed switch repel each other, and the reed switch is turned off.
  • both leads of the reed switch are magnetized by the magnetic influence of the magnet and repel each other, so that the off state is stably maintained.
  • the bottom surface of the hollow portion of the case is defined as a concave curved surface upward, when the magnet moves along the curved surface based on gravity due to the inclination, the magnetic pole portion is moved. Since the covering magnetic fluid has a lubricating function and smoothly moves along the curved surface, more accurate inclination detection is possible. Since the reed switch is arranged horizontally in the upright position, the height of the entire fall detection sensor is low and the reed switch is compact as a whole.
  • the curved surface of the case of the fall detection sensor is preferably formed on a hemispherical surface, it is possible to always follow a constant inclination regardless of the inclination angle, and it is possible to detect the inclination more accurately.
  • the magnet a magnet having two magnetic poles on the surface having the maximum area may be used.
  • the amount of magnetic fluid is preferably selected so that the magnetic fluid magnetically attracted to each magnetic pole portion of the magnet in the hollow portion of the case does not come into contact with each other on the side surface or the upper and lower surfaces of the magnet. Magnetism.
  • the magnetic field lines that emerge from one magnetic pole portion of the magnet, go around the outside of the magnet, and enter the other magnetic pole portion do not pass through the inside of the magnetic fluid, so that many magnetic field lines pass through each lead of the reed switch located below. Therefore, each lead of the reed switch is magnetized more efficiently, and the sensitivity to inclination is increased.
  • the total length of the reed switch is preferably longer than the length of the magnet. Therefore, when the inclination angle becomes large, when the magnet moves greatly along the curved surface of the case based on gravity and the other magnetic pole portion is located near the edge of the curved surface, one magnetic pole portion is substantially curved. It will be located near the central axis of, and one of the magnetic poles will face the vicinity of the center of the reed switch and magnetize both leads.
  • 1 and 2 show an embodiment of a fall detection sensor according to the present invention
  • FIG. 3 is a diagram showing a shape and a magnetization direction of a magnet that can be used for the fall detection sensor of FIG.
  • the fall detection sensor 10 according to the present embodiment is composed of a pedestal 11, a case 12, a magnet 13, a magnetic fluid 14, a reed switch 15, and a printed circuit board 16.
  • the pedestal 11 is made of, for example, a resin material, preferably a non-magnetic material, and is fixed to an object 17 for which a fall should be detected by a screw or the like (not shown).
  • the object 17 for which a fall should be detected is hereinafter simply referred to as an object 17.
  • the pedestal 11 is provided with a case receiving portion 11a open upward on the upper surface thereof, and is provided with a recessed portion 11c via a step portion 11b near the center of the case receiving portion 11a.
  • the case 12 is made of, for example, a resin material or a non-magnetic material such as aluminum, and has a concave curved surface 12a whose diameter is opened upward around the central axis O, and the upper surface of the curved surface 12a is liquidtight. It is closed and defines the hollow portion 12c.
  • the lid member 12b is covered to close the upper surface, and a hollow portion 12c is defined between the curved surface 12a and the lid member 12b.
  • the curved surface 12a is formed, for example, as a hemisphere (see FIG. 2) having a radius of curvature r so as to draw a gentle curve in a cross section in a rotationally symmetric manner around the central axis O.
  • the entire case 12 may be integrally formed of the same material.
  • the lid member 12b is formed of a plate-shaped member made of a non-magnetic material, and is liquid-tightly bonded to the upper end of the curved surface 12a of the case 12 by ultrasonic welding or an adhesive or the like.
  • the lid member 12b is joined to the upper end of the curved surface 12a of the case 12 after the magnet 13 and the magnetic fluid 14 are housed in the hollow portion 12c of the case 12.
  • the magnet 13 and the magnetic fluid 14 are enclosed in the hollow portion 12c of the case 12.
  • the case 12 is provided with a recess 12d near the center of the lower surface thereof.
  • the recessed portion 12d is formed at a position corresponding to the recessed portion 11c of the pedestal 11 in a state where the case 12 is fitted to the case receiving portion 11a of the pedestal 11, and the printed circuit board 16 is fitted around the recessed portion 11c. It includes a second recess 12e that is positioned relative to the case 12.
  • the magnet 13 is, for example, a permanent magnet such as ferrite or neodymium, and has the shape shown in FIG.
  • the magnet 13 shown in FIG. 3A has a rectangular parallelepiped rod shape and has magnetic poles at both ends in the longitudinal direction.
  • the magnet 13 shown in FIG. 3B is a rectangle magnetized in the thickness direction of the magnet, and two magnetic poles are formed on this surface.
  • FIG. 3C shows a flat disk-shaped magnet 13 magnetized in the radial direction, and two magnetic pole surfaces are formed on the outer peripheral surface.
  • FIG. 3D shows a disk-shaped magnet 13 magnetized in the thickness direction, which has two magnetic poles on a plane.
  • the magnet 13 is selected so that its outer diameter D is smaller than the radius of curvature r of the curved surface 12a.
  • the magnetic fluid 14 has a known structure, and when it is housed in the hollow portion 12c of the case 12 together with the magnet 13, it is magnetically attracted to the magnet 13.
  • the magnet 13 moves along the surface of the curved surface 12a of the case 12 with the inclination of the object 17, as will be described later. Acts as a lubricant.
  • This magnetic fluid is a fluid in which iron oxide-based paramagnetic ultrafine particles are dispersed in a material such as isoparaffin, alkylnaphthalin, poly ⁇ olefin, and perflopolyether.
  • the magnetic fluid used for vacuum seals, bearings, speakers, and the like can be used.
  • the magnetically attracted portions near the magnetic pole portions 13a and 13b at both ends of the magnet 13 are the magnetic poles of both magnets 13.
  • the amount and the viscosity of the magnetic fluid 14 are appropriately selected so that the portions 13a and 13b do not act as a magnetic shield of the magnet 13 by coming into contact with each other on the side surface and the upper and lower surfaces of the magnet 13.
  • the viscosity of the magnetic fluid 14 ranges from 30 mPa ⁇ s to over 10000 mPa ⁇ s, but the magnetic fluid used in the present invention preferably has a viscosity of 30 mPa ⁇ s to 500 mPa ⁇ s, although it depends on the balance with the volume of the magnet. When it is desired to shorten the fall detection time, 30 mPa ⁇ s to 100 mPa ⁇ s is preferable.
  • the fall detection sensor 10 used in a vibrating environment such as a motorcycle is preferably 100 mPa ⁇ s to 500 mPa ⁇ s.
  • the viscosity of the magnetic fluid 14 may be appropriately selected according to the installation location of the fall detection sensor 10 and its operating environment.
  • the reed switch 15 has a known configuration, is arranged so that its longitudinal direction is perpendicular to the central axis O of the case 12 and the pair of reeds 15a and 15b are located near the central axis O, and is arranged on the printed circuit board 16. It is implemented in. As shown in FIG. 1, the reed switch 15 is arranged so that the contact point of the reed switch 15 is located at the center or near the center of the bottom of the case 12, that is, in the central region.
  • a pair of lead wires 15c and 15d extending from both ends of the reed switch 15 are soldered to the contact portions 16a and 16b, respectively, and the lead wires 16c and 16d are drawn to the contact portions 16a and 16b, respectively. Is connected. Although not shown, the lead wires 16c and 16d are pulled out through the pedestal 11.
  • the printed circuit board 16 is positioned and fixed to the case 12 by fitting into the second recessed portion 12e of the case 12 and fitting the lower end of the case 12 into the case receiving portion 11a of the pedestal 11. Will be done. In this way, the leads 15a and 15b of the reed switch 15 are arranged near the central axis O of the case 12.
  • the pedestal 11 is fixed to the object 17 on which the fall should be detected by a screw or the like.
  • the central axis O extends in the vertical direction, and the magnet 13 is at the lowest position of the curved surface 12a of the case 12 according to gravity, that is, the central axis. Located near O. In this state, the magnetic pole portions 13a and 13b of the magnet 13 tend to come closer to the leads 15a and 15b of the reed switch 15 by magnetic attraction, respectively. Therefore, as shown in FIGS. 1 and 2, the magnets The magnetic pole direction of 13 is positioned so as to extend substantially parallel to the longitudinal direction of the reed switch 15.
  • Each of the leads 15a and 15b of the reed switch 15 is magnetized by the corresponding magnetic pole portions 13a and 13b of the magnet 13, so that the leads 15a and 15b are magnetized to different poles and attract each other, and the reed switch 15 is turned on. It becomes.
  • the leads 15a and 15b are magnetized by the magnetic pole portions 13a and 13b of the magnet 13, the on state of the reed switch 15 is stably maintained, and for example, the influence of an external magnetic field or vibration is maintained. It is hard to receive and the risk of malfunction is eliminated.
  • the fall detection sensor 10 When the object 17 falls from the above-mentioned upright state, the fall detection sensor 10 also tilts at the same tilt angle as the object 17 as the object 17 tilts. Therefore, the case 12 and the reed switch 15 are tilted at the same tilt angle, but the magnet 13 and the magnetic fluid 14 in the hollow portion 12c of the case 12 follow gravity from the central axis O along the surface of the curved surface 12a of the case 12. It shifts and always tries to stay at the lowest position in the vertical direction of the curved surface 12a.
  • FIG. 4 shows that in the fall detection sensor of FIG. 1, when the curved surface 12a is tilted in the tilt directions of 0 degrees and 45 degrees with respect to the longitudinal direction of the reed switch 15, the tilt angles of the objects are 0 degrees and 10 degrees, respectively. It shows the relationship between the curved surface 12a of the case 12 and the magnet 13 when tilted at 20 degrees and 30 degrees, and is a cross-sectional view and a plan view in each tilting direction.
  • (I) at the top shows the case of an upright state with an inclination angle of 0 degrees, which is the same state as in FIGS. 1 and 2.
  • the second (II) shows the case where the inclination direction is 45 degrees and the inclination angle is 10 degrees.
  • the magnet 13 starts from 0 degrees. It rotates slightly in the horizontal direction toward the inclination direction and shifts in the direction opposite to the inclination direction along the curved surface 12a.
  • the magnetic pole portion 13b which is the S pole of the magnet 13
  • the magnetic attraction portion 13a which is the N pole
  • the leads 15a and 15b of the reed switch 15 are magnetized to the same pole in close proximity to the magnetic pole portions 13b of the magnet 13.
  • the third (III) and the fourth (IV) show the cases where the inclination angles are 20 degrees and 30 degrees, and the magnet 13 is displaced along the surface of the curved surface 12a in both cases.
  • the magnetic pole portion 13b of the magnet 13 keeps the state of being close to the leads 15a and 15b near the center of the reed switch 15, while the magnetic pole portion 13a is further separated from the reed switch 15 and its magnetic attraction force is further increased.
  • the leads 15a and 15b of the reed switch 15 are magnetized to the same pole due to the proximity of the magnetic pole portions 13b of the magnet 13, and the magnet 13 is inclined due to the further reduction of the magnetic attraction force. It rotates horizontally in the direction opposite to the direction and stabilizes in the direction of 45 degrees.
  • FIG. 5 shows the case 12 in which the tilt angle of the object is 0 degrees and the tilt angle is 30 degrees in the case where the curved surface 12a is tilted in each of the tilt directions of 0 degrees, 45 degrees, and 90 degrees with respect to the longitudinal direction of the lead switch 15.
  • the relationship between the curved surface 12a and the magnet 13 is shown, and is a cross-sectional view and a plan view in an inclined direction, respectively.
  • (I) at the top shows the case of an upright state with an inclination angle of 0 degrees, which is the same state as in FIGS. 1, 2 and 4 (I).
  • the second (II) shows the case where the inclination direction is 0 degrees and the inclination angle is 30 degrees.
  • the magnet 13 is moved horizontally. It shifts in the inclined direction along the curved surface 12a without rotating.
  • the magnetic pole portion 13b which is the S pole of the magnet 13
  • the magnetic pole portion 13a which is the N pole
  • the leads 15a and 15b of the reed switch 15 are magnetized to the same pole because the magnetic pole portions 13b of the magnet 13 are close to each other.
  • the third (III) and the fourth (IV) indicate the case of the inclination direction of 45 degrees (similar to the case of FIG. 4) and 90 degrees, and in each case, the magnet 13 is the surface of the curved surface 12a. It shifts along and rotates in the horizontal direction toward the opposite side of the tilt direction. As a result, the magnetic pole portion 13b of the magnet 13 is maintained in a state of being close to the leads 15a and 15b near the center of the reed switch 15, and the magnetic pole portion 13a is in a state of being separated from the reed switch 15, and the magnetic attraction force is increased. Further reduce.
  • the leads 15a and 15b of the reed switch 15 are magnetized to the same pole due to the proximity of the magnetic pole portions 13b of the magnet 13, and the magnet 13 is inclined due to the further reduction of the magnetic attraction force. It rotates horizontally to the opposite direction and stabilizes at 45 degrees.
  • the magnet 13 moves along the surface of the curved surface 12a of the case 12 following the tilting direction and the tilting angle with respect to the tilting direction of the object 17 in all directions. Therefore, by magnetizing one of the magnetic pole portions 13a or 13b to the same pole facing the leads 15a and 15b near the center of the reed switch 15, the leads 15a and 15b repel each other and the reed switch 15 is turned off. At this time, since the magnetic pole portions 13a or 13b of the magnet 13 are magnetically applied to both leads 15a and 15b, the off state of the reed switch 15 is stably maintained, and an external magnetic field or vibration is generated. It is not easily affected by such factors.
  • the fall detection sensor 10 of the present invention it is possible to detect tilt and fall in the tilt direction of the reed switch 15 in all directions, which was not possible with the conventional fall detection sensor.
  • the reed switch 15 detects an inclination or a fall
  • the reed switch 15 is turned off, so that the reed switch 15 can automatically stop the operation of the object 17 when the reed switch 15 detects an inclination or a fall.
  • the object 17 is various devices such as a fan heater and a kettle pot, the operation of these devices can be automatically stopped by the reed switch 15.
  • the reed switch 15 is hermetically sealed in a container such as glass, it is possible to provide a fall detection sensor 10 which is not easily affected by, for example, the corrosive atmosphere of the surroundings and has excellent so-called environmental resistance.
  • the material and dimensions of the magnet 13 are appropriately selected according to the size of the reed switch 15.
  • the distance between the lowest position of the curved surface 12a of the case 12 in the upright state and the reed switch 15 is appropriately selected based on the magnetic characteristics and dimensions of the permanent magnet 13 and the impression value of the reed switch 15.
  • the radius of the curved surface 12a of the case 12 is 6 ⁇ , and a neodymium magnet having a diameter D magnetized in the radial direction of 5 mm and a thickness of 1 mm is used as the magnet 13 and separated from the bottom of the curved surface 12a on the central axis O by 5 mm.
  • a reed switch RD-18B manufactured by Nippon Alef (applicant) was placed at the position to prepare a prototype of the fall detection sensor 10.
  • the fall detection sensor is tilted in the tilt directions of 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees, and 315 degrees, with the longitudinal direction of the lead switch 15 being 0 degrees.
  • the measurement results shown in FIG. 6 were obtained.
  • the on angle of each measured value is connected by a solid line, and the off angle is connected by a broken line. According to this measurement result, the off and on of the reed switch 15 were measured in all directions of the fall detection sensor 10, and it was confirmed that the fall detection sensor 10 according to the present invention detects a fall in all directions.
  • the magnet 13 is formed exclusively in the shape of a flat disk, but may have a rectangular parallelepiped shape. In this case, by opening the center of the magnet 13 up and down, the magnet 13 on which the magnetic fluid 14 is adhered can move more smoothly along the surface of the curved surface 12a of the case 12.
  • the curved surface 12a of the case 12 is formed as a hemisphere as an example, but the present invention is not limited to this, and the curved surface 12a may be a smooth concave curved surface whose radius of curvature changes continuously. .. As a result, the smooth movement of the magnet 13 along the surface of the curved surface 12a of the case 12 is ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

小型で全方位の傾斜方向に関して傾斜・転倒を検出する転倒検知センサ10であって、上方に開放した凹状の湾曲面12a及びその上端を液密的に閉鎖する蓋部材12bを備えた中空の非磁性体のケース12と、ケースの湾曲面及び蓋部材により画成した中空部12c内に収容し、長手方向に磁化した直方体や径方向に磁化した円板状の偏平な磁石13と、中空部内で磁石の径方向両端の磁極部13a,13bに磁気吸着する磁性流体14と、ケースの下方で一対のリード15a,15bをケースの中心軸付近に一体的に配置したリードスイッチ15と、から成り、正立時には中心軸が鉛直方向に延び、磁石が重力に従ってケースの湾曲面の中心軸付近で、磁化方向がリードスイッチの長さ方向に延びるように位置し、磁石の各磁極部がその直下に位置するリードスイッチの対応するリードを帯磁させて、一方のリード15aがN極に他方がS極に帯磁してオンとなり、正立状態から傾斜すると、磁石がケースの湾曲面に沿って摺動して中心軸から外れ、磁石の一方の磁極部のみが中心軸付近に位置して、磁極部が各リードを同極に帯磁させてリードスイッチがオフとなるように構成する。

Description

転倒検知センサ
 本発明は、例えばファンヒーター,湯沸かしポット等の各種機器や自動二輪車などの転倒を検知するための転倒検知センサに関する。
 従来、例えばファンヒーター,湯沸かしポット等の各種機器において、使用中の転倒を検出するために転倒検知センサが備えられる。自動二輪車では転倒時にガソリンの流出を防止するために転倒検知センサが備えられる。このような転倒検知センサとして、構成が簡単で、給電の必要のないリードスイッチを利用した転倒検知センサが数多く知られている。
 例えば特許文献1には、永久磁石と磁性流体とを底面に傾斜面を有する中空非磁性体ケースに収容し、その底部の下方に永久磁石の磁気に感応する磁気感応素子(リードスイッチ)を配置した傾斜センサが開示されている。この傾斜センサでは、傾斜を検出すべき物体が正立状態にあるときには、永久磁石がケース底面の中央に配置されることでリードスイッチの一方のリードが磁化され、リードスイッチの接点が閉じる。
 正立状態から物体が傾斜すると、永久磁石がケース底面の中央からずれることでリードスイッチの双方のリードが磁化されず、リードスイッチの接点が開放する。従って、リードスイッチの接点が閉鎖状態から開放状態に変化することにより、物体の傾斜を検出することができる。このようなスイッチは、常閉型又はb接点と呼ばれている。
 リードスイッチの下方に補助磁石を配置すると、物体の正立状態では、リードスイッチの双方のリードがそれぞれ永久磁石及び補助磁石により互いに同極に磁化され、双方のリードの間に反発力が発生することで、リードスイッチの接点はオフに維持されるが、物体の傾斜により永久磁石がケース底面の中央から外れると、補助磁石のみがリードスイッチの一方のリードを磁化するので、リードスイッチの接点が閉鎖される。このようなスイッチは、常開型又はa接点と呼ばれている。
 特許文献2にはリードスイッチを使用した傾斜センサが示されている。この傾斜センサは図7に示すように構成されている。非磁性体のアルミニウムから成るケース101は、カップ状のケース101aと蓋101bとが互いに重なる部分で接着剤により接着され、密封された中空部102を有する。中空部102には、表面に磁性流体103aが被着した略円板状の永久磁石103が収容されている。プラスチック成形品から成る台座104の上部に、ケース101が挿入され、樹脂104aで固定される。磁気感応素子としてのリードスイッチ105がプリント基板106上に配置され、そのリード端子がハンダ付けされると共に、プリント基板106からリード線106aが引き出されている。裏カバー107が、その対向する一対の辺部から立ち上がった爪107aを台座104の内部に形設した凹部に係合させることにより、固定される。台座104の頂部に貼着されたアモルファス磁性片108が、その貼着位置に基づいて傾斜センサの応答角度が調整される。
 このような傾斜センサによれば、水平状態(正立状態)では永久磁石103の磁力により、リードスイッチ105を構成する二本のリードは同極に帯磁しているので、互いに反発してオフの状態である。傾斜に伴って、非磁性体ケース101の中空部102内で永久磁石103が傾斜方向に移動することで、リードスイッチ105の一方のリードが反対の極に変わるので、二本のリードが互いに吸着してオンとなる。この場合、リードスイッチ105は、オフ状態でもオン状態でも永久磁石103の磁力が作用している。従って、傾斜センサの傾きによって、リードスイッチがオン、オフどちらの状態でも、常にリードスイッチ105は永久磁石の磁力の磁気的影響を受けている。
実開昭63-70017号公報 特開平1-170808号公報
 特許文献1による傾斜センサでは、リードスイッチが正立状態で垂直に配置されているので、傾斜センサ全体が上下方向に関して大きくなってしまう。また、永久磁石がケース底面の中央に配置された状態で、リードスイッチの一方のリードが磁化されることでリードスイッチの接点がオンとなり、傾斜に伴って永久磁石が離反することで永久磁石の磁気的影響を受けなくなってリードスイッチの接点がオフとなる。従って、オン状態では、他方のリードは永久磁石により磁化されておらず、オン状態が安定的に保持されないおそれがあると共に、オフ状態では、リードが磁気を失うことでオフ状態になるため、オン状態でもオフ状態でも、例えば外部からの磁界や振動の影響によってオン状態又はオフ状態が保持されないおそれがある。さらに、補助磁石を備えている場合は、オフ状態では、両リードが互いに同極に磁化されて互いに反発してオフ状態が安定的に保持されるものの、オン状態では、一方のリードのみが磁気的影響を受けてオン状態になるため、外部からの磁界や振動の影響によってオン状態が保持されなくなることがある。
 特許文献2の傾斜センサは、リードスイッチ105が正立状態で水平にプリント基板106上に配置されることから、傾斜センサ全体が上下方向に関して小型に構成される。また、リードスイッチ105の各リードは、オン状態でもオフ状態でも永久磁石103の磁力の磁気的影響を受けることで、オン状態及びオフ状態がそれぞれ安定的に保持される。
 しかしながら、本発明者等により従来例の傾斜センサを試作し、リードスイッチ105の長手方向に対する角度を変えて、種々の傾斜方向におけるリードスイッチ105のオン角度及びオフ角度を測定したところ、図8に示す測定結果を得た。
 図8において、リードスイッチ105の長手方向、つまり上方を0度として、時計回りに傾斜方向の角度を取り、傾斜方向におけるオン角度を結んだ線を実線で表し、オフ角度を結んだ線を破線で示す。図8によれば、リードスイッチ105の長手方向に関しては傾斜を検出することが可能であるが、リードスイッチ105の長手方向と直交する方向の傾斜に関しては、図8に符号Aで示す角度範囲において、実質的に検出することができない不感領域が存在していることが分かる。即ち、従来の傾斜センサでは、全方位での傾斜や転倒を検出することができないという課題がある。
 本発明は以上の点に鑑み、小型に構成され、全方位の傾斜方向に関して傾斜や転倒を検出することができる転倒検知センサを提供することを目的とする。
 上記目的を達成するため、本発明の転倒検知センサは、転倒を検出すべき物体に取り付けられ、中心軸の周りに上方に向かって拡径する凹状の湾曲面及び当該湾曲面の上面が液密的に閉鎖された中空の非磁性体から成るケースと、ケースの湾曲面及び閉鎖された上面により画成される中空部内に収容され、長手方向に磁極を有する磁石又は径方向に磁化された偏平な円板状の磁石と、中空部内に封入され、磁石の少なくとも両端の磁極部に磁気吸着される磁性流体と、ケースの底の中心又は中心付近に接点が来るように配置されたリードスイッチと、から構成され、物体の正立時にはケースの中心軸が鉛直方向に延びており、磁極部が磁性流体により覆われた磁石が重力に従ってケースの湾曲面の最下位置である中心軸付近でその磁化方向がリードスイッチの長さ方向にほぼ平行に延びるように位置して、磁石の各磁極部が該磁石の直下に位置するリードスイッチの対応するリードをそれぞれ帯磁させることにより、一方のリードがN極に他方のリードがS極に帯磁して互いに吸着してリードスイッチがオンとなり、物体が正立状態から傾斜すると、磁石がケースの湾曲面に沿って摺動してその中心軸から外れ、磁石の一方の磁極部のみがケースの中心軸付近に位置することにより、当該磁極部がリードスイッチの各リードを同極に帯磁させてリードスイッチがオフとなるように構成される。
 上記構成によれば、転倒を検出すべき物体が正立状態では、ケースはその中心軸が鉛直方向に延びており、磁石は重力に従ってケースの湾曲面の最下位置である中心軸付近に位置する。このとき、磁石はその両磁極部がそれぞれリードスイッチの各リード部に対向するように磁気的影響によって引き寄せられて、磁極方向がリードスイッチの長手方向にほぼ平行に延びるように位置する。従って、磁石の両磁極部が、それぞれ対向するリードスイッチのリードを帯磁させ、リードスイッチの一方のリードをN極に他方のリードをS極に帯磁させる。これにより、リードスイッチの両リードは互いに吸着し、リードスイッチがオンとなる。このとき、リードスイッチの両リードはそれぞれ磁石の磁気的影響を受けて帯磁して互いに吸着するので、オン状態が安定的に保持されて例えば外部からの磁界や振動等の影響を受けにくい。
 これに対して、転倒を検出すべき物体が傾斜すると、それに伴ってケース及びリードスイッチも傾斜し、ケースの中心軸が傾斜する。従って、ケースが傾斜するにつれて、ケースの中空部内では磁石がケースの湾曲面に沿って中心軸からずれる。このとき、磁石はケースの傾斜方向に追従して、その磁極方向が中心軸に対して回転する。その結果、一方の磁極部がケースの底面に中心軸付近に位置し、且つ他方の磁極部が中心軸から離反する。従って、磁石の一方の磁極部が、ケースの底面の中心軸付近で、リードスイッチの両リードが互いに対向する中心付近に位置し、一方の磁極部がリードスイッチの両リードを同極に帯磁させる。これにより、リードスイッチの両リードは互いに反発し、リードスイッチがオフとなる。このときリードスイッチの両リードはそれぞれ磁石の磁気的影響を受けて帯磁し互いに反発するので、オフ状態が安定的に保持される。
 ここで、ケースの中空部底面が上方に向かって凹状の湾曲面に画成されているので、傾斜に伴って、重力に基づいて磁石が湾曲面に沿って移動する際に、その磁極部を覆う磁性流体が潤滑機能を備えることもあって、円滑に湾曲面に沿って移動することから、より正確な傾斜の検出が可能である。リードスイッチは、正立状態では水平に配置されるので、転倒検知センサ全体の高さが低く全体として小型に構成される。
 本発明では転倒検知センサのケースの湾曲面が、好ましくは半球面に形成されるので、傾斜角度によらずに常に一定の傾斜追従が可能で、より正確な傾斜の検知を行なうことができる。磁石はその最大面積を有する面に二つの磁極を有する磁石を用いてもよい。
 本発明による転倒検知センサは、好ましくは、ケースの中空部内で磁石の各磁極部にそれぞれ磁気吸着された磁性流体が、磁石の側面又は上下面で互いに接触しないよう、磁性流体の量が選定される。これにより、磁石の一方の磁極部から出て磁石の外側を廻って他方の磁極部に入る磁力線が磁性流体の内部を通過しないので、下方に位置するリードスイッチの各リードを通過する磁力線が多くなり、より効率よくリードスイッチの各リードが帯磁して傾斜に対する感度が高められる。
 本発明による転倒検知センサは、好ましくは、リードスイッチの全長が磁石の長さより長い。よって傾斜角度が大きくなったとき、磁石が重力に基づいてケースの湾曲面に沿って大きく移動して他方の磁極部が湾曲面の縁部付近に位置するとき、一方の磁極部がほぼ湾曲面の中心軸付近に位置することになり、一方の磁極部がリードスイッチの中心付近に対向してその両リードを帯磁することになる。
 本発明によれば、小型に構成され、全方位の傾斜方向に関して傾斜や転倒を検出することができる、極めて優れた転倒検知センサを提供することができる。
本発明の転倒検知センサの一実施形態を示す断面図である。 図1の転倒検知センサの要部を示す概略断面図である。 図1の転倒検知センサに用いることができる磁石形状と磁化方向を示す図である。 図1の転倒検知センサにおいて、り―ドスイッチの長手方向に対して0度及び45度の傾斜方向で物体を0度,10度,20度,30度の各傾斜角度に傾けたときの、ケースの湾曲面と磁石との関係を示す断面図及び平面図である。 図1の転倒検知センサにおいて、り―ドスイッチの長手方向に対して0度,45度,90度の各傾斜方向で物体を傾けたときの傾斜角度0度及び30度の動作を概略的に示す断面図及び平面図である。 図1の転倒検知センサの種々の傾斜方向におけるオン角度及びオフ角度を示すグラフである。 従来の転倒検知センサの一例の構成を示す概略断面図である。 図7の転倒検知センサの種々の傾斜方向に関するオン角度及びオフ角度を示すグラフである。
 以下、図1~図3に示した実施形態に基づいて本発明を詳細に説明する。
 図1及び図2は、本発明による転倒検知センサの一実施形態を示し、図3は図1の転倒検知センサに用いることができる磁石の形状と磁化方向を示す図である。図に示すように、本実施形態による転倒検知センサ10は、台座11と、ケース12と、磁石13と、磁性流体14と、リードスイッチ15と、プリント基板16と、から構成されている。
 台座11は、例えば樹脂材料、好ましくは非磁性材料から構成され、転倒を検出すべき物体17に対して、図示しないネジ等により固定される。転倒を検出すべき物体17は、以下単に物体17と呼ぶ。台座11は、上面に上方に開放したケース受容部11aを備えると共に、ケース受容部11aの中央付近に段部11bを介して凹陥部11cを備える。
 ケース12は例えば樹脂材料,アルミニウム等の非磁性材料から構成され、中心軸Oの周りに上方に向かって開径した凹状の湾曲面12aを有し、この湾曲面12aは上面が液密的に閉鎖されて中空部12cを画成している。本実施形態では、上面を閉鎖するために蓋部材12bが被蓋されて湾曲面12aと蓋部材12bとの間に中空部12cが画成されている。湾曲面12aは、中心軸Oの周りに回転対称に、そして断面にてなだらかな曲線を描くように、例えば曲率半径rの半球面(図2参照)として形成されている。
 ケース12は全体が同材質で一体に形成されていてもよい。本実施形態では、蓋部材12bを非磁性材料の板状部材に構成し、超音波溶着又は接着剤等によりケース12の湾曲面12aの上端に対して液密的に接合している。この蓋部材12bは、ケース12の中空部12c内に、磁石13及び磁性流体14が収容された後、ケース12の湾曲面12aの上端に対して接合される。磁石13及び磁性流体14は、このケース12の中空部12c内に封入される。
 ケース12はその下面中央付近に凹陥部12dを備える。凹陥部12dは、ケース12が台座11のケース受容部11aに嵌合した状態にて、台座11の凹陥部11cと対応する位置に形成され、その周囲にはプリント基板16が嵌合して、ケース12に対して位置決めされる第二の凹陥部12eを備えている。
 磁石13は、例えばフェライト,ネオジム等の永久磁石であって、図3に示す形状である。図3(A)に示す磁石13は直方体の棒形状で長手方向の両端に磁極を有する。図3(B)に示す磁石13は、磁石の厚み方向に磁化された長方形であり、この面に二つの磁極が形成されている。図3(C)は、径方向に磁化された偏平な円板状の磁石13であり、外周面に二つの磁極面が形成されている。一方、図3(D)は厚み方向に磁化された円板状の磁石13であり、平面に二つの磁極を有する。例えば、図1に示す磁石13は偏平な円板状に形成され、直径方向両端の磁極部13a及び13bがそれぞれN極,S極となるように着磁されている。ここで、磁石13は、図2に示すように、その外径Dが湾曲面12aの曲率半径rより小さく選定されている。
 磁性流体14は公知の構成であって、磁石13と共にケース12の中空部12c内に収容されたとき磁石13に磁気吸着される。磁性流体14が磁石13とケース12の湾曲面12aとの間に介在することによって、後述するように物体17の傾斜に伴って磁石13がケース12の湾曲面12aの表面に沿って移動する際に潤滑材として作用する。この磁性流体は、酸化鉄系の常磁性超微粒子をイソパラフィン、アルキルナフタリン、ポリαオレフィン、パーフロポリエーテル等の材料に分散された流体である。磁性流体は、真空シールや軸受、スピーカー等に用いられている磁性流体を用いることができる。
 ここで、磁性流体14は、ケース12の中空部12c内で磁石13と共に収容されたとき、磁石13の両端の磁極部13a,13b付近にそれぞれ磁気吸着された部分が、磁石13の双方の磁極部13a,13bの間で磁石13の側面及び上下面にて互いに接触することで磁石13の磁気シールドとして作用しないよう、その量や磁性流体14の粘性が適宜に選定される。磁性流体14の粘度は30mPa・sから10000mPa・sを超えるものまであるが、本発明に用いる磁性流体は磁石の体積とのバランスにもよるが、30mPa・sから500mPa・sの粘度が好ましい。転倒検知時間を早くしたい場合には30mPa・sから100mPa・sが好ましい。自動二輪車等の振動のある環境で用いる転倒検知センサ10としては、100mPa・sから500mPa・sが好ましい。磁性流体14の粘度は、転倒検知センサ10の設置個所やその動作環境に応じて適宜に選定すればよい。これにより、磁極部13aと13bとを磁石13の外側で結ぶ磁力線が、磁気流体14内を通過することが阻止されるので、磁石13の外側で後述するリードスイッチ15に磁気的影響を与える磁力線が多くなる。
 リードスイッチ15は公知の構成で、その長手方向がケース12の中心軸Oに対して垂直に、且つその一対のリード15a,15bが中心軸O付近に位置するように配置され、プリント基板16上に実装されている。リードスイッチ15は、図1に示すようにケース12の底の中心又は中心付近、つまり中心領域に、リードスイッチ15の接点が位置するように配置される。リードスイッチ15は、その全長が磁石13の直径Dより長く、またケース12の中空部12aの最大内径つまり、図2に示すように上端における内径=2r以下に選定される。
 プリント基板16には、リードスイッチ15の両端から延びる一対のリード線15c,15dがそれぞれ接点部16a,16bにハンダ付けされると共に、各接点部16a,16bに対してそれぞれ引き出しリード線16c,16dが接続されている。引き出しリード線16c,16dは、図示しないが台座11を介して外部に引き出されている。プリント基板16は、ケース12の第二の凹陥部12e内に嵌合すると共に、ケース12の下端が台座11のケース受容部11a内に嵌合することにより、ケース12に対して位置決めされて固定される。こうして、リードスイッチ15の各リード15a,15bは、ケース12の中心軸O付近に配置される。
 本実施形態による転倒検知センサ10は、台座11が転倒を検出すべき物体17に対してネジ等により固定される。物体17が転倒せず正立している状態(正立状態)では、中心軸Oが鉛直方向に延びており、磁石13は、重力に従ってケース12の湾曲面12aの最下位置、即ち中心軸O付近に位置する。この状態では、磁石13の各磁極部13a,13bは、それぞれ磁気吸着によって、リードスイッチ15の各リード15a,15bに対してより接近しようとするため、図1及び図2に示すように、磁石13の磁極方向がリードスイッチ15の長手方向にほぼ平行に延びるように位置する。
 リードスイッチ15の各リード15a,15bは、それぞれ磁石13の対応する磁極部13a,13bにより帯磁されることで、リード15a,15bは互いに異なる極に帯磁されて互いに吸着し、リードスイッチ15がオンとなる。このとき、各リード15a及び15bは、磁石13の磁極部13a,13bによりそれぞれ帯磁されていることで、リードスイッチ15のオン状態は安定して保持され、例えば外部からの磁界や振動等の影響を受けにくく誤動作のおそれが排除される。
 上記正立状態から物体17が転倒すると、物体17が傾斜するにつれて転倒検知センサ10も物体17と同じ傾斜角度で傾斜する。従って、ケース12及びリードスイッチ15は同じ傾斜角度で傾斜するが、ケース12の中空部12c内の磁石13及び磁性流体14は重力に従って、ケース12の湾曲面12aの表面に沿って中心軸Oからずれて、常に湾曲面12aの鉛直方向最下位置に留まろうとする。
 ここで、種々の傾斜方向における磁石13の挙動について図4を及び図5を参照して説明する。図4は、図1の転倒検知センサにおいて、リードスイッチ15の長手方向に対して0度及び45度の傾斜方向で湾曲面12aが傾斜する場合について、それぞれ物体の傾斜角度を0度,10度,20度及び30度に傾けたときの、ケース12の湾曲面12aと磁石13との関係を示すもので、各傾斜方向における断面図及び平面図である。
 一番上の(I)は傾斜角度0度の正立状態の場合を示し、図1及び図2と同じ状態である。二番目の(II)は傾斜方向45度,傾斜角度10度の場合を示し、平面図にて矢印方向(傾斜方向45度)に湾曲面12aが10度だけ傾斜すると、磁石13が0度から傾斜方向に向かって僅かに水平方向に回転し、湾曲面12aに沿って傾斜方向と反対方向にずれる。これにより、磁石13のS極である磁極部13bがリードスイッチ15に接近してその磁気吸着力が増大する一方、N極である磁極部13aはリードスイッチ15から離反してその磁気吸着力が低減する。従って、断面図に示すように、リードスイッチ15のリード15a,15bは、磁石13の磁極部13bが近接して同極に帯磁される。
 同様にして、三番目の(III)及び四番目の(IV)は傾斜角度20度及び30度の場合を示し、いずれも磁石13が湾曲面12aの表面に沿ってずれる。これにより、磁石13の磁極部13bがリードスイッチ15の中心付近のリード15a,15b付近に接近した状態を保持する一方、磁極部13aはリードスイッチ15からさらに離反してその磁気吸着力がより一層低減する。従って、断面図に示すように、リードスイッチ15のリード15a,15bは、磁石13の磁極部13bが近接していることで同極に帯磁され、磁石13は磁気吸着力の一層の低減により傾斜方向と反対方向に向かって水平方向に回転し45度の方向で安定する。
 図5は、リードスイッチ15の長手方向に対して0度,45度及び90度の各傾斜方向で湾曲面12aが傾斜する場合について、物体の傾斜角度0度と傾斜角度30度におけるケース12の湾曲面12aと磁石13との関係を示し、それぞれ傾斜方向における断面図及び平面図である。
 一番上の(I)は傾斜角度0度の正立状態の場合を示し、図1,図2及び図4(I)と同じ状態である。二番目の(II)は傾斜方向0度,傾斜角度30度の場合を示し、平面図にて矢印方向(傾斜方向0度)に湾曲面12aが30度だけ傾斜すると、磁石13が水平方向に回転することなく、湾曲面12aに沿って傾斜方向にずれる。これにより、同様に、磁石13のS極である磁極部13bがリードスイッチ15に接近して磁気吸着力が増大する一方、N極である磁極部13aはリードスイッチ15から離反して磁気吸着力が低減する。従って、断面図に示すように、リードスイッチ15のリード15a,15bは、磁石13の磁極部13bが近接していることで同極に帯磁される。
 同様にして、三番目の(III)及び四番目の(IV)は、傾斜方向45度(図4の場合と同様)及び90度の場合を示し、いずれも、磁石13が湾曲面12aの表面に沿ってずれると共に、傾斜方向と反対側に向かって水平方向に関して回転する。これにより、磁石13の磁極部13bがリードスイッチ15の中心付近のリード15a,15b付近に接近した状態を保持すると共に、磁極部13aがリードスイッチ15から離反した状態となり、その磁気吸着力がより一層低減する。従って、断面図に示すように、リードスイッチ15のリード15a,15bは、磁石13の磁極部13bが近接していることで同極に帯磁され、磁石13は磁気吸着力の一層の低減により傾斜方向と反対方向まで水平方向に回転し45度の方向で安定する。
 このようにして、上記転倒検知センサ10は、物体17の全方位の傾斜方向に関して、磁石13が傾斜方向及び傾斜角度に追従してケース12の湾曲面12aの表面に沿って移動する。従って、一方の磁極部13a又は13bをリードスイッチ15の中心付近のリード15a,15bに対向して同極に帯磁させることで、リード15a,15bが互いに反発してリードスイッチ15がオフとなる。このとき、双方のリード15a,15bに、磁石13の磁極部13a又は13bが磁気的影響を与えて帯磁されるので、リードスイッチ15のオフ状態は安定して保持され、外部からの磁界や振動等の影響を受けにくい。
 本発明の転倒検知センサ10によれば、従来の転倒検知センサではできなかった、リードスイッチ15の全方位の傾斜方向に関して傾斜や転倒を検出することができる。リードスイッチ15が傾斜や転倒を検出したときには、リードスイッチ15がオフするので、傾斜や転倒を検出したときに物体17の動作をリードスイッチ15が自動的に停止することができる。例えば、物体17がファンヒーター,湯沸かしポット等の各種機器である場合には、これらの機器の動作をリードスイッチ15により自動的に停止することができる。リードスイッチ15がガラス等の容器に気密に封入されているので、例えば周囲の腐食性の雰囲気等に影響され難く、いわゆる耐環境性に優れた転倒検知センサ10を提供することができる。
 磁石13の材質や寸法は、リードスイッチ15の大きさに合わせて適宜に選定される。ケース12の湾曲面12aの正立状態における最下位置とリードスイッチ15との間隔は、永久磁石13の磁気特性及び寸法、リードスイッチ15の感動値に基づいて適宜に選定される。
 次に、上述した転倒検知センサ10の試作品に関して、種々の傾斜方向におけるオン角度及びオフ角度を測定した結果を示す。ケース12の湾曲面12aの半径を6φとし、磁石13として直径方向に磁化された直径Dが5mm,厚さ1mmのネオジム磁石を使用して、湾曲面12aの中心軸Oにおける底部から5mm離れた位置に、日本アレフ(本出願人)製のリードスイッチRD-18Bを配置して、転倒検知センサ10の試作品を作製した。
 この試作品を使用して、リードスイッチ15の長手方向を0度として、45度,90度,135度,180度,225度,270度,315度の傾斜方向に転倒検知センサを傾斜させて、リードスイッチ15がオフになる傾斜角度(オフ角度)と、傾斜を戻してリードスイッチ15が再びオンになる傾斜角度(オン角度)を測定したところ、図6に示す測定結果が得られた。図6において、各測定値のうちオン角度を実線で結び、オフ角度を破線で結んだ。この測定結果によれば、転倒検知センサ10の全方位において、それぞれリードスイッチ15のオフ及びオンが測定され、本発明による転倒検知センサ10は全方位において転倒を検出することが確認された。
 本発明はその趣旨を逸脱しない範囲において様々な形態で実施することができる。例えば、上述した実施形態においては、磁石13は、専ら偏平な円板状に形成されているが、直方体の形状であってもよい。この場合、磁石13の中央が上下に開放されることによって、磁性流体14が被着された磁石13が、ケース12の湾曲面12aの表面に沿ってより円滑に移動することが可能である。
 上述した実施形態では、ケース12の湾曲面12aは、例として半球面として形成されているが、これに限らず、その曲率半径が連続的に変化する滑らかな凹状の湾曲面であってもよい。これにより、ケース12の湾曲面12aの表面に沿った磁石13の円滑な移動が確保される。
 10…転倒検知センサ; 11…台座;
 11a…ケース受容部; 11b…段部; 11c…凹陥部;
 12…ケース; 12a…湾曲面; 12b…蓋部材; 12c…中空部; 12d…凹陥部; 12e…第二の凹陥部;
 13… 磁石;
 13a,13b…磁極部; 14…磁性流体;
 15…リードスイッチ; 15a,15b…リード; 16…プリント基板;
 16a,16b…接点部; 16c,16d…引き出しリード線;
 17…転倒を検知すべき物体(物体)

Claims (6)

  1.  転倒を検出すべき物体に取り付けられ、中心軸の周りに上方に向かって拡径する凹状の湾曲面及び当該湾曲面の上面が液密的に閉鎖された中空の非磁性体から成るケースと、
     前記ケースの湾曲面及び閉鎖された上面により画成される中空部内に収容され、長手方向に磁極を有する磁石又は径方向に磁化された偏平な円板状の磁石と、
     前記中空部内に封入され、前記磁石の少なくとも両端の磁極部に磁気吸着される磁性流体と、
     前記ケースの底の中心又は中心付近に接点が来るように配置されたリードスイッチと、から構成されており、
     前記物体の正立時には、前記ケースの中心軸が鉛直方向に延びており、前記磁極部が磁性流体により覆われた磁石が、重力に従って前記ケースの湾曲面の最下位置である中心軸付近で、その磁化方向が前記リードスイッチの長さ方向にほぼ平行に延びるように位置して、前記磁石の各磁極部が、該磁石の直下に位置する前記リードスイッチの対応するリードをそれぞれ帯磁させることにより、リードスイッチの一方のリードがN極に他方のリードがS極に帯磁して互いに吸着してリードスイッチがオンとなり、
     前記物体が正立状態から傾斜すると、前記磁石が前記ケースの湾曲面に沿って摺動して前記ケースの中心軸から外れ、前記磁石の一方の磁極部のみが前記中心軸付近に位置することにより、当該磁極部が前記リードスイッチの各リードを同極に帯磁させて前記リードスイッチがオフとなる、
    転倒検知センサ。
  2.  前記ケースの湾曲面が半球面として形成されている、請求項1記載の転倒検知センサ。
  3.  前記湾曲面の上面が蓋部材で液密的に閉鎖される、請求項1又は2記載の転倒検知センサ。
  4.  前記磁石の最大面積を有する面に二つの磁極を有する磁石を用いた、請求項1記載の転倒検知センサ。
  5.  前記ケースの中空部内で前記磁石の各磁極部にそれぞれ磁気吸着された磁性流体が、前記磁石の側面又は上下面で互いに接触しないように前記磁性流体の量が選定されている、請求項1又は4記載の転倒検知センサ。
  6.  前記リードスイッチの全長が前記磁石の長さより長い、請求項1記載の転倒検知センサ。
PCT/JP2020/027924 2019-07-27 2020-07-17 転倒検知センサ WO2021020184A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20846455.2A EP3998450A4 (en) 2019-07-27 2020-07-17 FALL DETECTION SENSOR
US17/630,377 US11972916B2 (en) 2019-07-27 2020-07-17 Fall detection sensor
CN202080053208.3A CN114175202A (zh) 2019-07-27 2020-07-17 翻倒检测传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138402A JP7258348B2 (ja) 2019-07-27 2019-07-27 転倒検知センサ
JP2019-138402 2019-07-27

Publications (1)

Publication Number Publication Date
WO2021020184A1 true WO2021020184A1 (ja) 2021-02-04

Family

ID=74229676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027924 WO2021020184A1 (ja) 2019-07-27 2020-07-17 転倒検知センサ

Country Status (5)

Country Link
US (1) US11972916B2 (ja)
EP (1) EP3998450A4 (ja)
JP (1) JP7258348B2 (ja)
CN (1) CN114175202A (ja)
WO (1) WO2021020184A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022124707A (ja) 2021-02-16 2022-08-26 日本電気株式会社 ソースコアネットワークノードの方法及びソースコアネットワークノード

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132783A (en) * 1978-04-05 1979-10-16 Tdk Electronics Co Ltd Inclination switch
JPS6370017U (ja) 1986-10-25 1988-05-11
JPH01170808A (ja) 1987-12-26 1989-07-05 Tdk Corp 傾斜センサ
JPH0763556A (ja) * 1993-08-30 1995-03-10 Kyoto Doki Kk 傾斜センサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521478B2 (ja) * 1987-06-22 1996-08-07 ティーディーケイ株式会社 傾斜センサ
JP2626037B2 (ja) * 1989-03-17 1997-07-02 松下電器産業株式会社 加速度センサ
JP2916627B2 (ja) * 1990-03-26 1999-07-05 株式会社光電製作所 傾斜角センサ
JPH0462413A (ja) * 1990-06-29 1992-02-27 Tdk Corp 傾斜センサ
US5373125A (en) * 1993-03-23 1994-12-13 Motorola, Inc. Switch assembly
JP2000065568A (ja) * 1998-08-20 2000-03-03 Matsushita Electric Ind Co Ltd 傾斜角センサ
US6301795B1 (en) * 1998-09-11 2001-10-16 Honeywell Inc. Tilt sensor using magnet and magnetic sensor
JP5005230B2 (ja) * 2006-02-13 2012-08-22 曙ブレーキ工業株式会社 傾斜センサ
CN2929651Y (zh) * 2006-03-15 2007-08-01 上海瑞可运动器材有限公司 一种倾斜传感器
DE102006061198B4 (de) * 2006-05-31 2019-07-18 Asm Automation Sensorik Messtechnik Gmbh Neigungssensor
CN201266083Y (zh) * 2008-09-17 2009-07-01 东莞市美满传感器科技有限公司 电磁感应式无接点倾斜传感器
WO2011125609A1 (ja) * 2010-04-02 2011-10-13 株式会社村田製作所 磁束検知センサ
JP4636211B1 (ja) * 2010-04-02 2011-02-23 株式会社村田製作所 磁束検知センサ
CN204115723U (zh) * 2014-11-04 2015-01-21 湖南科技学院 一种霍耳式水平检测装置
US10317208B2 (en) * 2017-03-03 2019-06-11 Philip Schafer Tilt sensor
CN106969750B (zh) * 2017-05-09 2022-12-20 河北工业大学 磁性液体全方位水平倾角传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132783A (en) * 1978-04-05 1979-10-16 Tdk Electronics Co Ltd Inclination switch
JPS6370017U (ja) 1986-10-25 1988-05-11
JPH01170808A (ja) 1987-12-26 1989-07-05 Tdk Corp 傾斜センサ
JPH0763556A (ja) * 1993-08-30 1995-03-10 Kyoto Doki Kk 傾斜センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998450A4

Also Published As

Publication number Publication date
EP3998450A4 (en) 2023-08-02
CN114175202A (zh) 2022-03-11
JP7258348B2 (ja) 2023-04-17
US11972916B2 (en) 2024-04-30
US20220285113A1 (en) 2022-09-08
JP2021022489A (ja) 2021-02-18
EP3998450A1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
EP0265877B1 (en) Tilt sensor
WO2021020184A1 (ja) 転倒検知センサ
US20020144418A1 (en) Downsized sensor unit with increased accuracy
JP2521478B2 (ja) 傾斜センサ
JP2003177051A (ja) 液面検出装置
JPH1137754A (ja) 傾斜、加速度検知装置
JPH0462413A (ja) 傾斜センサ
JPH0453530Y2 (ja)
JP4337922B2 (ja) 転倒検知装置
JP5293000B2 (ja) 転倒検知装置
CN114076588B (zh) 水平仪
JP3932768B2 (ja) 傾斜センサ
JPH07294546A (ja) 加速度センサ
JP2001084878A (ja) 傾斜スイッチ
JP3867473B2 (ja) 姿勢センサ
JPH0810142B2 (ja) 傾斜センサ
JPH03108615A (ja) 液面検出装置
JPH0455266B2 (ja)
JP2649549B2 (ja) 傾斜センサ
JPH0736013U (ja) 変位センサ
JPH05187874A (ja) 傾斜検出装置
JP2882934B2 (ja) 加速度センサ
JPH0623925Y2 (ja) 傾斜センサ
JP2021165699A (ja) 磁石ユニット及び位置検出装置
JPH0337512A (ja) 検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846455

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846455

Country of ref document: EP

Effective date: 20220211