WO2021020101A1 - 排ガス浄化フィルタ - Google Patents

排ガス浄化フィルタ Download PDF

Info

Publication number
WO2021020101A1
WO2021020101A1 PCT/JP2020/027331 JP2020027331W WO2021020101A1 WO 2021020101 A1 WO2021020101 A1 WO 2021020101A1 JP 2020027331 W JP2020027331 W JP 2020027331W WO 2021020101 A1 WO2021020101 A1 WO 2021020101A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
exhaust gas
gas purification
purification filter
filter
Prior art date
Application number
PCT/JP2020/027331
Other languages
English (en)
French (fr)
Inventor
浩章 嘉山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080016858.0A priority Critical patent/CN113646511B/zh
Priority to EP20847348.8A priority patent/EP3919169A4/en
Publication of WO2021020101A1 publication Critical patent/WO2021020101A1/ja
Priority to US17/538,596 priority patent/US11878258B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2079Other inorganic materials, e.g. ceramics the material being particulate or granular otherwise bonded, e.g. by resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/125Size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils

Definitions

  • This disclosure relates to an exhaust gas purification filter.
  • Exhaust gas emitted from internal combustion engines such as gasoline engines and diesel engines contains particulate matter called particulate (hereinafter, may be referred to as "PM" as appropriate).
  • An exhaust gas purification filter is arranged in the exhaust passage of the internal combustion engine in order to collect PM in the exhaust gas and purify the exhaust gas.
  • the exhaust gas purification filter generally has a plurality of cells extending in the filter axial direction, a porous partition wall forming the plurality of cells, and a sealing portion for alternately sealing the plurality of cells at both ends of the filter. doing.
  • an exhaust gas purification filter of this type for example, in Patent Document 1, a large number of through holes (cells) are arranged side by side in the longitudinal direction across a wall portion (partition wall) to penetrate a columnar body made of a porous ceramic.
  • a honeycomb filter for exhaust gas purification is disclosed in which a part or all of the wall portion separating the holes functions as a filter for collecting particles. This honeycomb filter for exhaust gas purification is suitably used for a diesel engine.
  • the length l of the longest side of the cross section perpendicular to the longitudinal direction of the through hole and the length L of the columnar body in the longitudinal direction are set to 60 ⁇ L / l ⁇ 500, and
  • the surface roughness Ra of the inner wall of the through hole according to JIS B 0601 is set to Ra ⁇ 100 ⁇ m.
  • the area S of the cross section perpendicular to the longitudinal direction of the through hole and the length L of the columnar body in the longitudinal direction are set to 20 ⁇ L / S ⁇ 400, and the surface of the inner wall of the through hole according to JIS B 0601.
  • the roughness Ra is Ra ⁇ 100 ⁇ m.
  • gasoline particulate filter capable of collecting PM emitted from a gasoline engine can also be used in a vehicle having a gasoline engine (hereinafter, “gasoline vehicle”). It is sometimes called “GPF").
  • PM contains solid carbon (suit) and ash (sometimes referred to as ash, ash, etc.) derived from engine oil.
  • the ash is a component that remains even after the PM regeneration treatment. Therefore, when ash is deposited on the surface of the partition wall due to long-term use, the gas permeability of the partition wall decreases, and the pressure loss (hereinafter, appropriately referred to as “pressure loss”) increases.
  • the gasoline engine has a higher exhaust gas temperature and a higher flow velocity than the diesel engine. Therefore, in gasoline vehicles, it is important to suppress the increase in pressure loss due to the residual ash accumulated due to long-term use.
  • the surface roughness Ra of the inner wall of the through hole according to JIS B 0601 (that is, the arithmetic average roughness of the inner wall of the through hole by measuring the line roughness) is 100 ⁇ m or less.
  • the surface roughness Ra of the inner wall of the inner wall exceeds 100 ⁇ m, the ash accumulated on the wall portion after the regeneration treatment of the honeycomb filter is difficult to be separated from the wall portion, and in the regeneration treatment, the ash content is caused by the high temperature gas flowing into the through hole. Is said to be because it does not move to the exhaust gas outflow side of the through hole.
  • the surface roughness Ra of the partition wall surface according to JIS B 0601 is set to 100 ⁇ m or less, so that the ash peeled from the partition wall surface facing the cell on the exhaust gas inflow side can pass through the pores in the partition wall. It can be said that this is a technology for moving the cell to the cell on the exhaust gas outflow side.
  • An object of the present disclosure is to provide an exhaust gas purification filter capable of suppressing an increase in pressure loss due to ash accumulation.
  • One aspect of the present disclosure includes a plurality of cells extending in the axial direction of the filter, a porous partition wall forming the plurality of cells, and a sealing portion for alternately sealing the plurality of cells at both ends of the filter.
  • It is an exhaust gas purification filter with The above partition wall Exhaust gas purification in which the total value of the space volume Vvv of the protruding valley and the actual volume Vmp of the protruding peak, which are the volume parameters of the partition surface by the non-contact type surface roughness measurement, is 1.8 ⁇ m 3 / ⁇ m 2 or less. In the filter.
  • the exhaust gas purification filter has the above-mentioned specific configuration, and in particular, the total value of the space volume Vvv of the protruding valley portion and the actual volume Vmp of the protruding peak portion on the partition wall surface is within a specific range. Therefore, according to the exhaust gas purification filter, it is possible to suppress an increase in pressure loss due to ash accumulation.
  • FIG. 1 is a perspective view of the exhaust gas purification filter according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the filter axial direction of the exhaust gas purification filter according to the first embodiment.
  • FIG. 3 is a diagram showing the flow of exhaust gas in the exhaust gas purification filter according to the first embodiment.
  • FIG. 4 is a diagram schematically showing a cross section of the exhaust gas purification filter according to the first embodiment along the thickness direction of the partition wall.
  • FIG. 5 is a diagram showing an example of a load curve by non-contact type surface roughness measurement in which the horizontal axis represents the load area ratio and the vertical axis represents the height, and is a protrusion which is a volume parameter of the partition wall surface. It is a figure for demonstrating the space volume Vvv of a valley part and the body volume Vmp of a protruding mountain part.
  • FIG. 6 is a diagram schematically showing the shape of the partition wall collected from the exhaust gas purification filter when measuring Vvv and Vmp.
  • FIG. 7 is a part of a view of the partition wall surface on the exhaust gas inflow side as viewed from the observation direction, and is a diagram for explaining an observation area when measuring the surface roughness of the partition wall surface.
  • FIG. 8A is a diagram schematically showing an example of the outer shape of the exhaust gas purification filter according to the first embodiment
  • FIG. 8B is a diagram showing an exhaust gas purification filter when measuring the surface roughness of the partition surface
  • FIG. 8 (c) is a diagram schematically showing the sampling position of the partition body in the radial direction (specifically, a cross-sectional view taken along the line VIIIb-VIIIb in FIG. 8 (c)), and
  • FIG. 8 (c) shows the exhaust gas purification filter. It is a figure which showed typically the sampling position of the partition body in the filter axial direction and the radial direction (specifically, the sectional view taken along the line VIIIc-VIIIc of FIG. 8B).
  • FIG. 9 is a diagram schematically showing the microstructure of PM.
  • FIG. 10 is a diagram schematically showing a mechanism for suppressing an increase in pressure loss due to ash accumulation in the exhaust gas purification filter according to the first embodiment
  • FIG. 10A is a diagram in which ash is transported to the bottom of the filter.
  • FIG. 10 (b) shows a state in which the gas is deposited, and when the partition surface is flat, the shearing force of the gas flow in the filter axial direction increases, and the transport of ash to the bottom of the filter is promoted.
  • 10 (c) shows that when the surface of the partition wall is uneven, the shearing force of the gas flow in the filter axial direction becomes insufficient, and the ash content remains attached to the surface of the partition wall. It is a diagram showing FIG.
  • FIG. 11 is a diagram for explaining a problem in the case where the state of the partition wall surface is defined by the arithmetic mean roughness Ra of the partition wall surface by the line roughness measurement specified in JIS B 0601.
  • FIG. 12 is a diagram showing an example of a gray value diagram used when measuring the bending degree of the continuous ventilation holes in the partition wall.
  • FIG. 13 is a diagram for explaining a method of measuring the initial PM collection rate in the experimental example.
  • FIG. 14 is a diagram for explaining a method of measuring pressure loss in an experimental example.
  • FIG. 15 is a diagram showing a three-dimensional unevenness image of the partition wall surface on the exhaust gas inflow side obtained for the exhaust gas purification filter of the test body 2 at the time of surface roughness measurement in the experimental example.
  • FIG. 12 is a diagram showing an example of a gray value diagram used when measuring the bending degree of the continuous ventilation holes in the partition wall.
  • FIG. 13 is a diagram for explaining a method of measuring the initial PM collection rate in the experimental example
  • FIG. 16 is a diagram showing a three-dimensional unevenness image of the partition wall surface on the exhaust gas inflow side obtained for the exhaust gas purification filter of the test body 1C at the time of surface roughness measurement in the experimental example.
  • FIG. 17 shows the total value (horizontal axis) of the spatial volume Vvv of the protruding valley portion of the partition wall surface and the actual volume Vmp of the protruding peak portion obtained by non-contact surface roughness measurement obtained in the experimental example (horizontal axis) -after ash deposition. It is a figure which showed the relationship of the pressure loss change rate (vertical axis).
  • the exhaust gas purification filter 1 has a plurality of cells 11, a partition wall 12, and a sealing portion 13.
  • the plurality of cells 11 extend in the filter axial direction X. Specifically, the plurality of cells 11 extend from the inflow end face 15 into which the exhaust gas G flows in to the outflow end face 16 in which the exhaust gas G flows out.
  • the cell shape can be, for example, a quadrangular shape as illustrated in FIG.
  • the cell shape is not limited to this, and may be, for example, a polygonal shape such as a triangular shape or a hexagonal shape, or a circular shape. Further, the cell shape may be composed of a combination of two or more different shapes.
  • the partition wall 12 forms a plurality of cells 11.
  • the partition wall 12 can be provided inside the skin portion 14 formed in a cylindrical shape such as a cylindrical shape so as to exhibit a shape such as a grid shape in a cross-sectional view perpendicular to the filter axial direction X. ..
  • the partition wall 12 and the skin portion 14 can be formed of, for example, ceramics such as cordierite.
  • the thickness of the partition wall 12 can be, for example, 120 ⁇ m to 360 ⁇ m.
  • the plurality of cells 11 have an inflow cell 111 into which the exhaust gas G flows in and an outflow cell 112 in which the exhaust gas G flows out.
  • the inflow cell 111 and the outflow cell 112 are arranged alternately so as to be adjacent to each other, for example, in the horizontal direction orthogonal to the filter axial direction X and in the vertical direction orthogonal to both the filter axial direction X and the horizontal direction. Can be formed.
  • the inflow cell 111 and the outflow cell 112 are arranged in a check pattern, for example.
  • the inflow cell 111 and the outflow cell 112 are adjacent to each other and are separated by a partition wall 12 in between.
  • the sealing portion 13 alternately seals a plurality of cells 11 at both ends of the filter. Specifically, as illustrated in FIG. 2, the sealing portion 13 seals the opening on the inflow end surface 15 side of the outflow cell 112 and the opening on the outflow end surface 16 side of the inflow cell 111. There is. Therefore, the inflow cell 111 opens on the inflow end surface 15 side, and the opening on the outflow end surface 16 side is closed by the outflow side sealing portion 13. Further, the outflow cell 112 is opened on the outflow end surface 16 side, and the opening is closed on the inflow end surface 15 side by the sealing portion 13 on the inflow side.
  • the sealing portion 13 can be formed of, for example, ceramics such as cordierite, but may be made of other materials.
  • the exhaust gas G flows into the inflow cell 111 from the inflow end surface 15 on the exhaust gas inflow side.
  • the exhaust gas G that has flowed into the inflow cell 111 flows through the inflow cell 111 and also through the porous partition wall 12 to reach the outflow cell 112.
  • the exhaust gas G that has reached the outflow cell 112 flows in the outflow cell 112.
  • the exhaust gas G that has flowed through the outflow cell 112 is discharged from the outflow end face 16 that is on the exhaust gas outflow side.
  • the partition wall 12 is formed to be porous as illustrated in FIG. That is, the partition wall 12 has pores 120 inside.
  • the partition wall 12 can have a communication ventilation hole 121 that communicates between adjacent cells 11 with the partition wall 12 in between.
  • the communication ventilation holes 121 are opened on the surface of the partition wall 12 on the gas inflow side and the surface of the partition wall 12 on the gas outflow side. That is, the communication ventilation hole 121 communicates between the inflow cell 111 and the outflow cell 112 adjacent to each other by penetrating the partition wall 12.
  • the continuous ventilation hole 121 is used as a gas flow path for the exhaust gas G.
  • the partition wall 12 may include a non-communicating ventilation hole 122 that does not communicate between adjacent cells 11 with the partition wall 12 in between, in addition to the communication ventilation hole 121.
  • the partition wall 12 has a spatial volume Vvv of the protruding valley portion 123 and a physical volume Vmp of the protruding peak portion 124, which are volume parameters of the surface of the partition wall 12 by non-contact surface roughness measurement.
  • the total value of (hereinafter, may be simply referred to as “the total value of Vvv and Vmp”) is 1.8 ⁇ m 3 / ⁇ m 2 or less.
  • Vvv and Vmp on the surface of the partition wall 12 measure the surface roughness of the surface of the partition wall 12 on the exhaust gas inflow side with a non-contact surface roughness measuring machine capable of measuring the volume parameter which is a three-dimensional roughness parameter conforming to ISO25178. Can be measured by carrying out. Details will be described later.
  • the space volume Vvv of the protruding valley portion 123 and the actual volume Vmp of the protruding peak portion 124 which are the volume parameters defined in ISO25178, will be described.
  • the load area ratio (horizontal axis) -height (vertical axis) relationship as illustrated in FIG. That is, a load curve is obtained.
  • the height when the load area ratio is 10% is defined as the boundary between the core portion 125 and the protruding mountain portion 124.
  • the height when the load area ratio is 80% is defined as the boundary between the core portion 125 and the protruding valley portion 123. That is, the load curve shown in FIG. 5 is divided into a protruding peak portion 124, a core portion 125, and a protruding valley portion 123 with the positions where the load area ratios are 10% and 80% as boundaries.
  • the actual volume of the protruding mountain portion 124 is Vmp
  • the spatial volume of the protruding valley portion 123 is Vvv.
  • the actual volume of the core portion 125 is Vmc
  • the spatial volume of the core portion 125 is Vvc.
  • Vvv and Vmp are measured as follows. Specifically, as shown in FIG. 6, the partition wall 101 is cut out from the exhaust gas purification filter 1. However, the portion where the sealing portion 13 exists is excluded.
  • the partition body 101 is a block-shaped body having a total of 9 cells of 3 cells in the vertical direction and 3 cells in the horizontal direction in a cross-sectional view perpendicular to the filter axial direction X, and the length of the filter axial direction X is 10 mm.
  • the dot region 102 marked on the end surface of the partition wall 101 shown in FIG. 6 indicates that the cell 11 marked with the dot region 102 is the outflow cell 112, and the partition wall 101 is sealed. It does not indicate that the unit 13 is provided. Therefore, the cell 11 in which the dot region 102 is not shown on the end surface of the partition wall 101 is an inflow cell 111 into which the exhaust gas G flows. Further, the outflow cell 112 is arranged at the center of the partition wall 101.
  • FIG. 7 shows a part of a view of the surface of the partition wall 12 on the exhaust gas inflow side as viewed from the observation direction.
  • the arrow Y1 shown in FIG. 6 is the observation direction, and the sign Y2 shown in FIG. 7 indicates that the arrow Y1 shown in FIG. 6 is oriented perpendicular to the paper surface and in the depth direction.
  • the carved partition wall 101 is set in the non-contact surface roughness measuring machine so that the surface of the partition wall 12 on the exhaust gas inflow side can be observed.
  • a laser depth microscope "OLS4100” manufactured by Olympus Corporation can be used as the non-contact type surface roughness measuring machine. If the laser depth microscope "OLS4100" is not available due to reasons such as discontinuation, use a successor model that can perform surface roughness measurement using the same analysis principle, such as "OLS5000" manufactured by Olympus Corporation. Can be done.
  • the surface roughness of the partition wall 12 surface on the exhaust gas inflow side is measured with a non-contact type surface roughness measuring machine.
  • the surface roughness measurement conditions are magnification: 50 times, laser wavelength: 405 nm, scanning speed: using the "high precision mode" of the measuring machine, observation field of view: 700 ⁇ m in the lateral direction, which is the same direction as the filter axial direction X, and the filter axial direction X.
  • One visual field is 500 ⁇ m in the vertical direction, which is the direction perpendicular to the vertical direction, and four continuous visual fields are defined.
  • the observation region O at the time of measuring the surface roughness of the surface of the partition wall 12 is composed of four continuous visual fields O1, O2, O3, and O4.
  • the analysis software of the non-contact type surface roughness measuring machine reads and combines the images of the four fields of view O1 to O4. Then, in analyzing the combined image, noise of height and depth information is removed. Next, a three-dimensional uneven image of the partition wall surface on the exhaust gas inflow side showing the height information on a color scale is acquired. Next, "surface roughness measurement" is performed on the three-dimensional uneven image preprocessed as described above with analysis software, and Vvv and Vmp in the partition wall 101 are derived.
  • the sum of the average value of each Vvv obtained for each of the six partition walls 101 collected from the exhaust gas purification filter 1 and the average value of each Vmp is the non-contact type surface roughness. It is the total value of the spatial volume Vvv of the protruding valley portion 123 on the surface of the partition wall 12 and the actual volume Vmp of the protruding peak portion 124 as measured.
  • the partition body 101 is located near the sealing portion 13 on the inflow end surface 15 side of the central portion 1a in the filter axial direction X passing through the central portion of the diameter of the exhaust gas purification filter 1.
  • the total value of the space volume Vvv of the protruding valley portion 123 and the actual volume Vmp of the protruding peak portion 124 on the surface of the partition wall 12 is within the above-mentioned specific range, so that the pressure loss increases due to the accumulation of the ash content 23. Can be suppressed.
  • the mechanism for obtaining such an effect will be described with reference to FIGS. 9 to 11.
  • PM2 contains solid carbon (suit) 21, which is the main component, as well as soluble organic component (SOF) 22, and ash 23 derived from engine oil and the like.
  • SOF soluble organic component
  • the ash content 23 (hereinafter, this may be referred to as wall ash content 231) deposited on the surface of the partition wall 12 closes the surface opening of the continuous ventilation hole 121 on the surface of the partition wall 12, so that the partition wall 12 causes a decrease in gas permeability and an increase in pressure loss.
  • the unevenness on the surface of the partition wall 12 is small as schematically shown in FIG. 10 (b).
  • the shearing force F in the filter axial direction X due to the exhaust gas G becomes large.
  • the shearing force F becomes larger than the bonding force between the surface of the partition wall 12 and the wall ash 231, the wall ash 231 is separated from the surface of the partition wall 12, and the separated wall ash 231 is on the gas outflow side. It is transported to the sealing portion 13 of the.
  • the transported wall ash content 231 is deposited on the filter bottom portion 10 (see FIG. 3, which can also be referred to as the most downstream portion in the inflow cell 111) at the most downstream side of the filter.
  • the ash content 23 deposited on the filter bottom portion 10 may be referred to as a bottom ash content 232.
  • the wall ash content 231 lowers the gas permeability of the partition wall 12 and thus increases the pressure loss, whereas the bottom ash content 232 does not easily reduce the gas permeability of the partition wall 12 and thus increases the pressure loss.
  • the exhaust gas purification filter 1 can increase the bottom ash content 232 more than the wall ash content 231 by setting the total value of Vvv and Vmp on the surface of the partition wall 12 to the above-mentioned specific range. That is, the exhaust gas purification filter 1 can promote the conversion of the wall ash content 231 to the bottom ash content 232 by setting the total value of Vvv and Vmp on the surface of the partition wall 12 to the above-mentioned specific range. If the bottom ash content 232 is increased, the gas permeability of the partition wall 12 can be maintained even after aged use, resulting in a low pressure loss. By the above mechanism, the exhaust gas purification filter 1 can suppress an increase in pressure loss due to the accumulation of ash 23 due to aged use.
  • Ra is the same between the partition wall surface state of FIG. 11 (a) and the partition wall surface state of FIG. 11 (b). However, in the partition surface state of FIG.
  • the wall ash content 231 does not peel off, and the pressure loss increase due to the accumulation of the ash content 23 can be suppressed. Can not.
  • the maximum height roughness Rz of the partition wall 12 surface by the line roughness measurement defined in JIS B 0601 is a parameter of only the height that does not include three-dimensional information.
  • the total value of Vvv and Vmp is preferably 1.75 ⁇ m 3 / ⁇ m 2 or less, more preferably 1.7 ⁇ m 3 /, from the viewpoint of ensuring the effect of suppressing the increase in pressure loss due to the accumulation of ash 23. It can be ⁇ m 2 or less, more preferably 1.65 ⁇ m 3 / ⁇ m 2 or less, even more preferably 1.6 ⁇ m 3 / ⁇ m 2 or less, and even more preferably 1.55 ⁇ m 3 / ⁇ m 2 or less. .. On the other hand, the total value of Vvv and Vmp can be preferably 1.1 ⁇ m 3 / ⁇ m 2 or more. This is due to the following reasons.
  • the total value of Vvv and Vmp is preferably 1.1 ⁇ m 3 / ⁇ m 2 or more.
  • the average pore diameter of the partition wall 12 can be 12 ⁇ m or more. According to this configuration, not only the ash 23 deposited on the surface of the partition wall 12 is peeled off by the shearing force of the exhaust gas G and transported to the filter bottom portion 10, but also the ash content 23 easily slips through the inside of the partition wall 12, so that the ash content 23 It becomes easier to suppress the increase in pressure loss due to deposition.
  • the average pore diameter of the partition wall 12 can be preferably 14 ⁇ m or more, more preferably 16 ⁇ m or more, from the viewpoint of facilitating the slip-through of the ash content 23. If the average pore diameter of the partition wall 12 becomes excessively large, PM2 slips through and the initial PM collection performance deteriorates.
  • the average pore diameter of the partition wall 12 is preferably 22 ⁇ m or less.
  • the average pore diameter of the partition wall 12 can be preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, still more preferably 16 ⁇ m or less, from the viewpoint of suppressing a decrease in the initial PM collection performance.
  • the porosity of the partition wall 12 can be 50% or more. According to this configuration, not only the ash 23 deposited on the surface of the partition wall 12 is peeled off by the shearing force of the exhaust gas G and transported to the filter bottom portion 10, but also the ash content 23 easily slips through the inside of the partition wall 12, so that the ash content 23 It becomes easier to suppress the increase in pressure loss due to deposition.
  • the porosity of the partition wall 12 can be preferably 55% or more, more preferably 60% or more, from the viewpoint of facilitating the slip-through of the ash content 23. On the other hand, the porosity of the partition wall 12 can be 70% or less.
  • the porosity of the partition wall 12 can be preferably 67% or less, more preferably 65% or less, from the viewpoint of improving the strength of the exhaust gas purification filter 1.
  • the average pore diameter and porosity of the partition wall 12 are measured by a mercury porosimeter using the principle of the mercury intrusion method. Specifically, a test piece is cut out from the exhaust gas purification filter 1. However, the portion where the sealing portion 13 exists is excluded. The test piece is a rectangular parallelepiped having dimensions in the direction orthogonal to the filter axial direction X of 15 mm in length ⁇ 15 mm in width and a length of 20 mm in the filter axial direction X. Next, the test piece is stored in the measurement cell of the mercury porosimeter, and the pressure inside the measurement cell is reduced.
  • mercury is introduced into the measurement cell and pressurized, and the pore diameter and the pore volume are measured from the pressure at the time of pressurization and the volume of mercury introduced into the pores of the partition wall 12 in the test piece.
  • the measurement is performed in the pressure range of 0.5 to 20000 psia.
  • 0.5 psia corresponds to 0.35 ⁇ 10 -3 kg / mm 2
  • 20000 psia corresponds to 14 kg / mm 2 .
  • the range of the pore diameter corresponding to this pressure range is 0.01 to 420 ⁇ m.
  • a contact angle of 140 ° and a surface tension of 480 dyn / cm are used.
  • the partition wall 12 can have the above-mentioned continuous ventilation hole 121 having a bending degree of less than 1.4.
  • the degree of bending of the continuous ventilation holes 121 is defined by the ratio of the average flow path length L ⁇ m of the continuous ventilation holes 121 to the thickness T ⁇ m of the partition wall 12. According to this configuration, the ash 23 easily slips through the partition wall 12 due to the small bending of the continuous ventilation hole 121 that serves as the gas flow path in the thickness direction of the partition wall 12.
  • the resistance of the continuous ventilation hole 121 that serves as the gas flow path is reduced, the ash content 23 is less likely to be caught on the hole wall surface of the continuous ventilation hole 121, and the blockage of the continuous ventilation hole 121 by the ash content 23 is suppressed. Therefore, according to the above configuration, not only the effect of suppressing the increase in pressure loss due to the ash 23 deposited on the surface of the partition wall 12 being peeled off and being transported to the filter bottom portion 10 but also the effect of suppressing the increase in pressure loss due to the promotion of slipping through the ash 23 is obtained. It will be possible to enjoy it. Therefore, according to the above configuration, it is possible to further suppress the increase in pressure loss due to the accumulation of the ash content 23.
  • the degree of bending of the continuous ventilation hole 121 can be preferably 1.4 or less, more preferably 1.3 or less, from the viewpoint of facilitating the slip-through of the ash content 23. If the degree of bending of the continuous ventilation hole 121 becomes excessively small, PM2 may slip through and the initial PM collection performance may deteriorate. From this point of view, the degree of bending of the continuous ventilation holes 121 can be preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.2 or more.
  • the degree of bending of the continuous ventilation hole 121 is measured as follows.
  • a partition piece is cut out from the exhaust gas purification filter 1. However, the portion where the sealing portion 13 exists is excluded.
  • the partition piece has a rectangular parallelepiped shape (plate shape) having a length of about 600 ⁇ m in the filter axial direction X, a width of about 600 ⁇ m in the surface direction of the partition wall 12 orthogonal to the filter axial direction X, and a thickness of the partition wall 12. Orthogonal.
  • the partition piece is embedded in resin while vacuum degassing to prepare an X-ray CT imaging sample.
  • a continuous tomographic image is acquired using an X-ray CT apparatus under imaging conditions of voltage: 80 kV, step: 0.1 °, and resolution: 0.684787 ⁇ m / pixel.
  • the continuous tomographic image is, for example, in TIFF format.
  • the obtained continuous tomographic image is read under the condition of 0.6874787 ⁇ m / voxel using the importGeo-Vol function, which is one of the interfaces of "GeoDict", which is a microstructure simulation software developed by Math2Market GmbH. ..
  • the partition piece is modeled three-dimensionally with the intersection at the time as the threshold value.
  • the noise in the three-dimensional model is removed, and the unnecessary portion is removed so as to have 900 voxel ⁇ 600 voxel ⁇ partition wall 12 thickness voxel.
  • the flow path lengths ( ⁇ m) of all the continuous ventilation holes 121 are measured.
  • PM2 flows along the flow of gas. The gas tries to flow as a fluid through the shortest flow path in the communication hole 121.
  • the flow path whose length is measured above is the shortest flow path through which the gas flows through the communication hole 121. That is, it can be said that the flow path length of the continuous ventilation hole 121 is a parameter that does not necessarily match the length of the line connecting the centers of the hole diameters of the continuous ventilation hole 121. According to GeoDic, it is possible to carry out a simulation of flowing gas through the three-dimensional model of the partition wall 12, so that only the pores through which the gas flows can be identified.
  • the average value of the flow path lengths of all the obtained continuous ventilation holes 121 is defined as the average flow path length L ⁇ m of the continuous ventilation holes 121.
  • the thickness ( ⁇ m) of the three-dimensional model is defined as the thickness T ⁇ m of the partition wall 12 when calculating the tortuosity. Then, the degree of bending of the partition wall piece is calculated by dividing the average flow path length L ⁇ m of the continuous ventilation hole 121 obtained as described above by the thickness T ⁇ m of the partition wall 12.
  • the tortuosity of the continuous ventilation holes 121 in the partition wall 12 is 6 places collected from the exhaust gas purification filter 1, specifically, the codes 1a to 1f shown in FIG. 8 similar to those at the time of measuring the total value of Vvv and Vmp described above. It is taken as the average value of each tortuosity obtained as described above for each partition piece of the portion.
  • the exhaust gas purification filter 1 is used by being arranged in the exhaust passage of a gasoline engine, that is, by being used as a GPF, its effect can be fully exhibited.
  • the exhaust gas purification filter 1 can be used by being arranged in the exhaust passage of a diesel engine, that is, can be used as a DPF (diesel particulate filter).
  • the exhaust gas purification filter 1 can be used in a state where the catalyst is not supported on the partition wall 12, or can be used in a state where the catalyst is supported on the partition wall 12.
  • the amount of the catalyst supported can be, for example, in the range of 50 g / L or more and 150 g / L or less.
  • the exhaust gas purification filter 1 described above can be manufactured, for example, as follows.
  • the ceramic raw material powder for forming the partition wall 12 In the production of the exhaust gas purification filter 1, the ceramic raw material powder for forming the partition wall 12, the binder, the solvent, the pore-forming material added as needed, and the additives such as the dispersant and the lubricant are used. Mix to prepare the clay.
  • the ceramic raw material powder for forming the partition wall 12 can be appropriately selected according to the ceramics constituting the partition wall 12. For example, if the ceramics constituting the partition wall 12 are cordierite, a magnesium source such as magnesia, an aluminum source such as alumina, and a silicon source such as silica can be included. If the ceramics constituting the partition wall 12 are aluminum titanate, a titanium source such as titania and an aluminum source such as alumina can be included.
  • the ceramics constituting the partition wall 12 are silicon carbide, a carbon source and a silicon source can be included.
  • the blending amount of each component can be appropriately adjusted so as to obtain desired ceramics.
  • a method of manufacturing the exhaust gas purification filter 1 will be described in detail by taking as an example a case where the partition wall 12 of the exhaust gas purification filter 1 is composed of cordierite.
  • a clay containing a raw material for forming cordierite Silica, talc, aluminum hydroxide, etc. are adjusted to have a cordierite composition, and binders such as methyl cellulose, pore-forming materials such as graphite, and dispersants such as anionic dispersants and cationic dispersants are used for the soil. , Lubricating oil, water and the like can be appropriately added and mixed. Alumina and kaolin may be blended so as to have a cordierite composition. Porous silica can be used as the silica. In the raw material for forming cordierite, silica and talc can be raw materials for forming pores. The pore-forming raw material is a material that forms pores 120.
  • the pore-forming raw material produces a liquid phase component at the time of firing, whereby pores 120 are formed.
  • aluminum hydroxide, alumina, and kaolin can be used as aggregate raw materials.
  • the aggregate raw material is a material that forms a ceramic portion other than the pores 120.
  • the honeycomb structure portion is a portion composed of a cell 11, a partition wall 12, and a skin portion 14.
  • the sealing portion 13 can be formed after or before firing the honeycomb structure portion. Specifically, for example, using a slurry for forming a sealing portion, the opening of the honeycomb structure portion after firing or the opening of the cell 11 of the honeycomb molded body before firing is alternately sealed and sealed by firing. The stop portion 13 can be formed.
  • the total value of the space volume Vvv of the protruding valley portion 123 and the actual volume Vmp of the protruding peak portion 124 on the surface of the partition wall 12 is, for example, the maximum value of the slit portion surface of the mold used when the honeycomb molded body is extruded.
  • the height roughness Rz (specified in JIS B0601-2001) can be adjusted to control the above-mentioned desired range.
  • the slit portion is a portion for forming a portion through which the clay passes and becomes a partition wall 12.
  • the average pore diameter and porosity of the partition wall 12 can be controlled within the above-mentioned desired ranges by, for example, adjusting the particle diameter d50 of the pore-forming raw material and the amount of the pore-forming raw material added.
  • the particle size d50 mentioned above can be obtained based on a volume-based particle size distribution by a laser diffraction type particle size distribution meter (hereinafter, the same applies and will be omitted).
  • the degree of bending of the continuous ventilation holes 121 in the partition wall 12 can be controlled within the above-mentioned desired range by, for example, promoting contact between the pore-forming raw materials in the soil. This is because when the pore-forming raw materials are in contact with each other in the liquid phase reaction, the pore-forming raw materials diffuse to form the pores 120, so that the communication of the pores 120 is improved, and as a result, the bending degree is reduced. Because it can be done.
  • an anionic dispersant, a cationic dispersant, or the like can be used at the time of preparing the clay.
  • anionic dispersant examples include Nopcospers 44-C (manufactured by Sanyo Kasei Co., Ltd.), and examples of the cationic dispersant include Nopcospers 092 (manufactured by Sanyo Kasei Co., Ltd.).
  • a predetermined amount of the pore-forming raw material (here, a mixed powder of silica and talc) is divided into two equal parts, and one of the equally divided pore-forming raw materials is given a negative charge.
  • the pore-forming raw material, the anionic dispersant, and water are pre-kneaded to obtain a first mixture.
  • an anionic dispersant is attached to one of the pore-forming raw materials.
  • the other pore-forming raw material, the cationic dispersant and water are pre-kneaded to obtain a second mixture.
  • the cationic dispersant is attached to the other pore-forming raw material.
  • the degree of bending of the continuous ventilation holes 121 in the partition wall 12 is determined by the type of dispersant, the amount of dispersant added, the pre-kneading time for mixing the pore-forming raw material and the dispersant, the number of rotations during extrusion molding, the drying time of the clay, and the like. By adjusting, it can be controlled to the above-mentioned desired range.
  • the pre-kneading time for mixing the pore-forming raw material and the dispersant is too long, the formation of the continuous ventilation holes 121 may be impaired. Therefore, the pre-kneading time is preferably adjusted appropriately. Further, if the particle size of the aggregate raw material around the pore-forming raw material becomes large, the formation of the continuous ventilation holes 121 may be impaired. Therefore, the particle size ratio between the pore-forming raw material and the aggregate raw material can be adjusted appropriately. preferable.
  • porous silica, talc, and aluminum hydroxide were prepared as raw materials for forming cordierite.
  • Porous silica and talc are raw materials for forming pores
  • aluminum hydroxide is a raw material for aggregates.
  • the mixed powder of porous silica and talc is bisected, one mixed powder is added with an anionic dispersant and water and kneaded, and the other mixed powder is mixed with a cationic dispersant. Water was added and kneaded. In this way, a slurry-like first mixture containing a negatively charged pore-forming raw material and a slurry-like second mixture containing a positively charged pore-forming raw material were obtained.
  • the amount of the anionic dispersant added to the first mixture is 2 to 15 wt% with respect to 100 wt% of the total amount of the porous silica and talc, and the amount of water added is the amount required to prepare the clay. It is half the amount of.
  • the anionic dispersant "Nopcospers 44-C” manufactured by Sanyo Chemical Industries, Ltd. was used.
  • the amount of the cationic dispersant added to the second mixture is 2 to 15 wt% with respect to 100 wt% of the total amount of the porous silica and talc.
  • the amount of water added is half the amount required to make clay.
  • the cationic dispersant "Nopcos Perth 092" manufactured by Sanyo Chemical Industries, Ltd. was used.
  • the first mixture, the second mixture, aluminum hydroxide, the dispersant, and the lubricating oil were further kneaded.
  • the clay was prepared.
  • the dispersant polyoxyethylene polyoxypropylene glycerel ether having an average molecular weight of 4550 was used.
  • the clay was extruded using a mold, and the molded honeycomb molded body was fired at 1410 ° C., and then a sealing portion was formed to obtain an exhaust gas purification filter.
  • the unevenness of the partition wall surface is reduced by adjusting the maximum height roughness Rz of the slit portion surface of the mold used during extrusion molding within the range of 1 to 15 ⁇ m, and the protrusion valley portion on the partition wall surface is reduced.
  • the total value of the space volume Vvv and the body volume Vmp of the protruding mountain portion was adjusted to the above-mentioned desired range.
  • the Rz on the surface of the slit portion of the mold was adjusted by pouring an abrasive.
  • the average pore diameter of the partition wall was adjusted to the above-mentioned desired range by changing the particle diameter d50 of the mixed powder of porous silica and talc (that is, the pore-forming material) in the range of 5 to 35 ⁇ m. Further, the porosity of the partition wall was adjusted to the above-mentioned desired range by changing the amount of the mixed powder of the porous silica and talc within the range of 40 to 70% with respect to the total amount of the raw material.
  • the addition amounts of the cationic dispersant and the anionic dispersant are changed within the range of 2 to 15 wt%, and the pre-kneading time of the first mixture and the second mixture and the mixing time of the clay are 5 to 150, respectively.
  • the degree of bending of the continuous ventilation holes was adjusted to the desired range described above.
  • the exhaust gas purification filters of Specimens 1 to 10 shown in Table 1 were obtained by combining these adjustments.
  • test bodies 1C and 2C made of an exhaust gas purification filter manufactured by Cordierite shown in Table 1 described later were prepared. Specifically, it is the same as the preparation of Specimens 1 to 10 except that the Rz on the surface of the slit portion of the mold is more than 15 ⁇ m and the particle size d50 of the mixed powder of porous silica and talc is more than 35 ⁇ m. Then, the exhaust gas purification filter of the test body 1C was obtained.
  • the Rz on the surface of the slit portion of the mold was set to more than 15 ⁇ m (Rz larger than that when the test piece 1C was prepared), and the particle size d50 of the mixed powder of porous silica and talc was set to more than 35 ⁇ m. Obtained an exhaust gas purification filter of the test body 2C in the same manner as in the preparation of the test bodies 1 to 10.
  • the exhaust gas purification filter of each test piece has a physique of ⁇ 118.4 mm (filter diameter) ⁇ L120 mm (filter length), a partition wall thickness of 8.5 mil, and a cell number of 300 cpsi. Has a structure.
  • overlap width was set to 3%, and "correction of joints between images” and “uniform brightness of luminance images” were selected. Further, in removing noise of height and depth information in the combined image, the threshold value of the brightness to be removed was set to “automatic determination”, and the removed area was set to "whole area”.
  • the porosity and average pore diameter of the partition wall were measured according to the above-mentioned measuring method.
  • an Autopore IV9500 manufactured by Shimadzu Corporation was used as the mercury porosimeter.
  • the degree of bending of the continuous ventilation holes inside the partition wall was measured according to the above-mentioned measuring method.
  • "Versa XRM-500” manufactured by Xradia was used as the X-ray CT apparatus.
  • "GeoDict 2017" sold by SCSK Corporation was used as the microstructure simulation software.
  • the initial PM collection rate was measured as follows. As shown in FIG. 13, it has a piping portion 91, a case portion 92 in which the exhaust gas purification filter 1 of the test piece is housed, and a cone portion 93 connecting the piping portion 91 and the case portion 92.
  • the test device 9 was prepared.
  • the piping portion 91 on the upstream side of the case portion 92 is connected to the engine E that generates exhaust gas.
  • a gasoline direct injection engine (displacement 2.0 L, turbo, 4-cylinder) was used as the engine E.
  • an upstream PM particle number counter 941 and a temperature sensor 95 are installed in the piping 91 on the upstream side of the case 92, respectively.
  • a downstream PM particle number counter 951 was installed in the piping 91 on the downstream side of the case 92.
  • "AVL-489" manufactured by AVL was used as the upstream PM particle number counter 941 and the downstream PM particle number counter 951. Then, the exhaust gas discharged from the engine E was passed through the exhaust gas purification filter 1 of the test body.
  • N in which is the number of PMs in the exhaust gas before flowing into the exhaust gas purification filter 1 of the test body
  • N out which is the number of PMs in the exhaust gas flowing out from the exhaust gas purification filter of the test body
  • the initial pressure drop was measured as follows. As shown in FIG. 14, it has a piping portion 91, a case portion 92 in which the exhaust gas purification filter 1 of the test piece is housed, and a cone portion 93 connecting the piping portion 91 and the case portion 92.
  • the test device 9 was prepared.
  • the piping portion 91 on the upstream side of the case portion 92 is connected to the engine E that generates exhaust gas.
  • a gasoline direct injection engine (displacement 2.0 L, turbo, 4-cylinder) was used as the engine E.
  • an upstream pressure sensor 961 and a downstream pressure sensor 971 were installed in the test apparatus 9, respectively, so that the pressure before and after the exhaust gas purification filter 1 of the test body could be measured.
  • the upstream pressure sensor 961 and the downstream pressure sensor 971 "DG-932-C" manufactured by Tokyo Aircraft Instrument Co., Ltd. was used.
  • the code 961T is a surge tank for the upstream pressure sensor 961
  • the code 971T is a surge tank for the downstream pressure sensor 971.
  • an upstream side A / F sensor 981 is installed in the upstream side piping portion 91 of the case portion 92
  • a downstream side A / F sensor 991 is installed in the downstream side piping portion 91 of the case portion 92.
  • the pressure before the exhaust gas purification filter 1 (upstream) and the pressure after the exhaust gas purification filter 1 (downstream) of the test piece are measured by the upstream pressure sensor 961 and the downstream pressure sensor 971, and the difference is regarded as the pressure loss. did.
  • the measurement conditions were controlled under the conditions of A / F: 14.6 ⁇ 0.3, intake air amount: 100 g / sec, and engine E rotation speed: 4500 rpm.
  • the exhaust gas temperature was 700 to 750 ° C.
  • the center temperature of the exhaust gas purification filter of the test piece was 600 to 650 ° C.
  • an exhaust gas purification filter 1 in an initial state in which PM and ash were not deposited and in which the catalyst was not coated was used.
  • the A / F was controlled within the range of 14.5 ⁇ 0.4, and ash was deposited on the exhaust gas purification filter of the test piece at a deposition rate of 1.3 g / L per hour.
  • the fuel supply is cut and the filter temperature is 900 ° C. after performing the PM deposition process of depositing PM for 9 minutes at an engine speed of 2500 prm and an intake manifold pressure of -10 kPa. It was carried out by repeating the regeneration processing step of burning PM for 1 minute at an engine speed of 2500 prism and an intake manifold pressure of ⁇ 90 kPa so as not to exceed the above.
  • the amount of ash accumulated was grasped by appropriately taking out the exhaust gas purification filter from the exhaust passage and measuring the weight with an offline electronic balance. As described above, 60 g / L of ash was deposited on the exhaust gas purification filter in the initial state in which PM and ash were not deposited and the catalyst was not coated, while repeating the PM regeneration treatment.
  • FIG. 15 shows a three-dimensional uneven image of the partition wall surface on the exhaust gas inflow side obtained for the exhaust gas purification filter of the test body 2 as a representative of the test bodies 1 to 10.
  • FIG. 16 shows, for comparison, a three-dimensional uneven image of the partition wall surface on the exhaust gas inflow side obtained for the exhaust gas purification filter of the test body 1C.
  • FIG. 17 shows the relationship between the total value (horizontal axis) of the spatial volume Vvv of the protruding valley portion and the actual volume Vmp of the protruding peak portion-the rate of change in pressure drop after ash deposition (vertical axis).
  • the unevenness of the partition wall surface in which the total value of the space volume Vvv of the protruding valley portion and the actual volume Vmp of the protruding peak portion on the partition wall surface into which the exhaust gas flows is within the specific range specified in the present disclosure,
  • the exhaust gas purification filters of the small test bodies 1 to 10 were able to suppress an increase in pressure loss due to ash accumulation.
  • the shearing force in the filter axial direction due to the exhaust gas increases, which causes the wall ash accumulated on the partition wall surface to peel off and be transported to the filter bottom portion, thereby maintaining the gas permeability of the partition wall surface. Because I was able to do it.
  • the reason why the effect of suppressing the pressure drop increase due to ash accumulation is saturated is considered to be as follows. That is, the exfoliation of the ash deposited on the partition wall surface by the above-mentioned mechanism occurs when the above-mentioned shearing force becomes larger than the bonding force between the partition wall surface and the wall ash.
  • the increase in pressure loss due to ash accumulation can be further suppressed by setting the average pore diameter of the partition wall 12 to 12 ⁇ m or more. This is because the ash deposited on the surface of the partition wall is not only peeled off by the shearing force of the exhaust gas and transported to the bottom of the filter, but also the ash easily slips through the partition wall.
  • the average pore diameter of the partition wall 12 exceeds 22 ⁇ m, the initial PM collection rate tends to decrease. This is because the average pore diameter of the partition wall becomes excessively large, which causes PM to pass through.
  • the present disclosure is not limited to the above-described embodiment and the above-mentioned experimental example, and various changes can be made without departing from the gist thereof. That is, although the present disclosure has been described in accordance with the embodiments, it is understood that the present disclosure is not limited to the embodiments, structures, and the like. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Abstract

排ガス浄化フィルタ(1)は、フィルタ軸方向(X)に延びる複数のセル(11)と、複数のセル(11)を区画形成する多孔質の隔壁(12)と、フィルタ両端部において複数のセル(11)を交互に目封じする封止部(13)と、を有する。排ガス浄化フィルタ(1)において、隔壁(12)は、非接触式の面粗さ測定による隔壁(12)表面の体積パラメータである突出谷部(123)の空間体積Vvvおよび突出山部(124)の実体体積Vmpの合計値が、1.8μm/μm以下とされている。

Description

排ガス浄化フィルタ 関連出願の相互参照
 本出願は、2019年7月31日に出願された日本出願番号2019-141521号に基づくもので、ここにその記載内容を援用する。
 本開示は、排ガス浄化フィルタに関する。
 ガソリンエンジン、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートと呼ばれる粒子状物質(以下、適宜「PM」ということがある。)が含まれる。この排ガス中のPMを捕集して排ガスの浄化を行うため、内燃機関の排気通路には排ガス浄化フィルタが配置される。排ガス浄化フィルタは、一般に、フィルタ軸方向に延びる複数のセルと、複数のセルを区画形成する多孔質の隔壁と、フィルタ両端部において複数のセルを交互に目封じする封止部と、を有している。
 この種の排ガス浄化フィルタとしては、例えば、特許文献1には、多数の貫通孔(セル)が壁部(隔壁)を隔てて長手方向に並設された、多孔質セラミックからなる柱状体の貫通孔を隔てる壁部の一部または全部が粒子捕集用フィルタとして機能するように構成された排ガス浄化用ハニカムフィルタが開示されている。この排ガス浄化用ハニカムフィルタは、ディーゼルエンジンに好適に用いられる。この排ガス浄化用ハニカムフィルタでは、貫通孔の長手方向に垂直な断面の最長辺の長さlと、柱状体の長手方向の長さLとが、60≦L/l≦500とされ、かつ、貫通孔の内壁のJIS B 0601による面粗度Raが、Ra≦100μmとされる。あるいは、貫通孔の長手方向に垂直な断面の面積Sと、柱状体の長手方向の長さLとが、20≦L/S≦400とされ、かつ、貫通孔の内壁のJIS B 0601による面粗度Raが、Ra≦100μmとされる。
国際公開第2003/074848号
 ガソリンエンジンから排出されるPM量は、ディーゼルエンジンから排出されるPM量に比べて圧倒的に少ない。しかしながら、PMの個数規制が導入されているため、ガソリンエンジンを有する車両(以下、「ガソリン車両」)にも、ガソリンエンジンから排出されるPMを捕集可能なガソリンパティキュレートフィルタ(以下、適宜「GPF」ということがある。)の搭載が必要となっている。
 ところで、PM中には、固体状炭素(スート)の他、エンジンオイル由来等の灰分(アッシュ、Ash等と表記されることがある。)が含まれる。灰分は、PMの再生処理後も残存する成分である。したがって、経年使用によって隔壁表面に灰分が堆積すると、隔壁のガス透過性が低下し、圧力損失(以下、適宜「圧損」という。)が上昇する。また、ガソリンエンジンは、ディーゼルエンジンに比べ、排ガスの温度が高く流速も速い。そのため、ガソリン車両では、経年使用によって堆積した残存灰分による圧損上昇を抑制することが重要となる。
 なお、上述した特許文献において、貫通孔の内壁のJIS B 0601による面粗度Ra(つまり、線粗さ測定による貫通孔の内壁の算術平均粗さ)が100μm以下とされるのは、貫通孔の内壁の面粗度Raが100μmを超えると、ハニカムフィルタの再生処理後に壁部に堆積した灰分が壁部から剥離し難く、再生処理において、貫通孔の内部に流入してきた高温のガスによって灰分が貫通孔の排ガス流出側へ移動することがないためとされている。つまり、この従来技術は、隔壁表面のJIS B 0601による面粗度Raを100μm以下とすることにより、排ガス流入側のセルに面する隔壁表面から剥がれた灰分を、隔壁内の気孔をすり抜けさせて排ガス流出側のセルへ移動させるようにする技術であるということができる。
 本開示は、灰分堆積による圧損上昇を抑制することが可能な排ガス浄化フィルタを提供することを目的とする。
 本開示の一態様は、フィルタ軸方向に延びる複数のセルと、複数の上記セルを区画形成する多孔質の隔壁と、フィルタ両端部において複数の上記セルを交互に目封じする封止部と、を有する排ガス浄化フィルタであって、
 上記隔壁は、
 非接触式の面粗さ測定による上記隔壁表面の体積パラメータである突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値が、1.8μm/μm以下である、排ガス浄化フィルタにある。
 上記排ガス浄化フィルタは、上記特定の構成を有しており、特に、隔壁表面における突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値が特定の範囲とされている。そのため、上記排ガス浄化フィルタによれば、灰分堆積による圧損上昇を抑制することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1に係る排ガス浄化フィルタの斜視図であり、 図2は、実施形態1に係る排ガス浄化フィルタのフィルタ軸方向に沿う断面図であり、 図3は、実施形態1に係る排ガス浄化フィルタにおける排ガスの流れを示した図であり、 図4は、実施形態1に係る排ガス浄化フィルタにおける隔壁の厚さ方向に沿う断面を模式的に示した図であり、 図5は、横軸が負荷面積率、縦軸が高さで表される、非接触式の面粗さ測定による負荷曲線の一例を示した図であって、隔壁表面の体積パラメータである突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpについて説明するための図であり、 図6は、VvvおよびVmpを測定する際に排ガス浄化フィルタから採取される隔壁体の形状を模式的に示した図であり、 図7は、排ガス流入側の隔壁表面を観察方向から見た図の一部であって、隔壁表面の面粗さ測定時における観察領域を説明するための図であり、 図8(a)は、実施形態1に係る排ガス浄化フィルタの外形状の一例を模式的に示した図であり、図8(b)は、隔壁表面の面粗さ測定時において、排ガス浄化フィルタの径方向における隔壁体の採取位置を模式的に示した図(具体的には図8(c)のVIIIb-VIIIb線矢視断面図)であり、図8(c)は、排ガス浄化フィルタのフィルタ軸方向および径方向における隔壁体の採取位置を模式的に示した図(具体的には図8(b)のVIIIc-VIIIc線矢視断面図)であり、 図9は、PMの微構造を模式的に示した図であり、 図10は、実施形態1に係る排ガス浄化フィルタにおいて、灰分堆積による圧損上昇が抑制されるメカニズムを模式的に示した図であり、図10(a)は、フィルタボトム部に灰分が輸送されて堆積した状態を示した図であり、図10(b)は、隔壁表面が平坦な場合にフィルタ軸方向のガス流れのせん断力が大きくなり、フィルタボトム部への灰分の輸送が促進される様子を示した図であり、図10(c)は、隔壁表面の凹凸が大きい場合にフィルタ軸方向のガス流れのせん断力が不十分となり、隔壁表面に灰分が張り付いたままの状態となることを示した図であり、 図11は、JIS B 0601に規定される線粗さ測定による隔壁表面の算術平均粗さRaにて隔壁表面の状態を規定した場合の問題点を説明するための図であり、 図12は、隔壁における連通気孔の屈曲度を測定する際に用いられるgray value図の一例を示した図であり、 図13は、実験例における初期PM捕集率の測定方法について説明するための図であり、 図14は、実験例における圧損の測定方法について説明するための図であり、 図15は、実験例における面粗さ測定時に、試験体2の排ガス浄化フィルタについて得られた排ガス流入側の隔壁表面の三次元凹凸像を示した図であり、 図16は、実験例における面粗さ測定時に、試験体1Cの排ガス浄化フィルタについて得られた排ガス流入側の隔壁表面の三次元凹凸像を示した図であり、 図17は、実験例において得られた、非接触式の面粗さ測定による隔壁表面の突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値(横軸)-灰分堆積後の圧損変化率(縦軸)の関係を示した図である。
(実施形態1)
 実施形態1の排ガス浄化フィルタ1について、図1~図12を用いて説明する。なお、図1~図3に示される両端矢印の方向を排ガス浄化フィルタ1のフィルタ軸方向Xとする。
 図1~図3に例示されるように、排ガス浄化フィルタ1は、複数のセル11と、隔壁12と、封止部13と、を有している。
 図1~図3に例示されるように、複数のセル11は、フィルタ軸方向Xに延びている。複数のセル11は、具体的には、排ガスGが流入する流入端面15から排ガスGが流出する流出端面16まで延びている。フィルタ軸方向Xに垂直な断面視において、セル形状は、例えば、図1に例示されるように、四角形状とすることができる。セル形状は、これに限定されることなく、例えば、三角形状、六角形状等の多角形や円形状などであってもよい。また、セル形状は、2種以上の異なる形状の組み合わせより構成されていてもよい。
 隔壁12は、複数のセル11を区画形成している。隔壁12は、具体的には、円筒状等の筒状に形成されたスキン部14の内側に、フィルタ軸方向Xに垂直な断面視において格子状等の形状を呈するように設けられることができる。排ガス浄化フィルタ1において、隔壁12、スキン部14は、例えば、コーディエライト等のセラミックスから形成されることができる。なお、隔壁12の厚さは、例えば、120μm~360μmとすることができる。
 複数のセル11は、排ガスGが流入する流入セル111と、排ガスGが流出する流出セル112とを有している。流入セル111と流出セル112とは、フィルタ軸方向Xに直交する横方向においても、フィルタ軸方向Xおよび横方向の双方に直交する縦方向においても、例えば、互いに隣り合うように交互に並んで形成されることができる。この場合、フィルタ軸方向Xから流入端面15または流出端面16を見たとき、流入セル111と流出セル112とが、例えば、チェック模様状に配置される。流入セル111および流出セル112は、互いに隣接しており、隔壁12を間に挟んで隔てられている。
 封止部13は、フィルタ両端部において複数のセル11を交互に目封じしている。封止部13は、具体的には、図2に例示されるように、流出セル112における流入端面15側の開口部と流入セル111における流出端面16側の開口部とを目封止している。したがって、流入セル111は、流入端面15側にて開口し、流出端面16側では開口部が流出側の封止部13によって閉塞されている。また、流出セル112は、流出端面16側にて開口し、流入端面15側では開口部が流入側の封止部13によって閉塞されている。封止部13は、例えば、コーディエライト等のセラミックスから形成されることできるが、その他の材質であってもよい。
 本実施形態では、図3に例示されるように、排ガスGは、排ガス流入側となる流入端面15より流入セル111内に流入する。流入セル111内に流入した排ガスGは、流入セル111内を流れるとともに多孔質の隔壁12内を流れて流出セル112に至る。流出セル112に至った排ガスGは、流出セル112内を流れる。流出セル112内を流れた排ガスGは、排ガス流出側となる流出端面16より排出される。
 隔壁12は、図4に例示されるように、多孔質に形成されている。つまり、隔壁12は、内部に気孔120を有している。具体的には、隔壁12は、隔壁12を挟んで隣接するセル11間を連通させる連通気孔121を有することができる。連通気孔121は、具体的には、ガス流入側の隔壁12表面およびガス流出側の隔壁12表面に開口する。つまり、連通気孔121は、隔壁12を貫通することにより、互いに隣接する流入セル111、流出セル112間を連通させている。隔壁12では、連通気孔121が排ガスGのガス流路とされる。なお、隔壁12は、連通気孔121以外にも、隔壁12を挟んで隣接するセル11間を連通させない非連通気孔122を含んでいてもよい。
 ここで、隔壁12は、図5に例示されるように、非接触式の面粗さ測定による隔壁12表面の体積パラメータである突出谷部123の空間体積Vvvおよび突出山部124の実体体積Vmpの合計値(以下、単に「VvvおよびVmpの合計値ということがある。」)が、1.8μm/μm以下とされている。隔壁12表面のVvvおよびVmpは、排ガス流入側の隔壁12表面について、ISO25178に準拠した三次元の粗さパラメータである体積パラメータを測定可能な非接触式表面粗さ測定機にて面粗さ測定を実施することにより測定することができる。詳しくは後述する。
 図5を用いて、ISO25178にて定義される体積パラメータである突出谷部123の空間体積Vvv、突出山部124の実体体積Vmpについて説明する。測定対象の表面について、非接触式表面粗さ測定機にて面粗さ測定を実施すると、図5に例示されるような、負荷面積率(横軸)-高さ(縦軸)の関係、すなわち、負荷曲線が得られる。隔壁12表面のVvvおよびVmpの測定にあたっては、図5に示されるように、負荷面積率が10%のときの高さがコア部125と突出山部124との境界とされる。また、負荷面積率が80%のときの高さがコア部125と突出谷部123との境界とされる。つまり、図5に示される負荷曲線は、負荷面積率が10%と80%の位置を境界として、突出山部124、コア部125、突出谷部123に分けられる。突出山部124の実体体積がVmpとされ、突出谷部123の空間体積がVvvとされる。なお、コア部125の実体体積はVmcとされ、コア部125の空間体積はVvcとされる。
 VvvおよびVmpは、次のようにして測定される。具体的には、図6に示されるように、排ガス浄化フィルタ1から隔壁体101を切り出す。但し、封止部13が存在する部分は除く。隔壁体101は、フィルタ軸方向Xに垂直な断面視で縦3セル×横3セルの合計9セル分からなり、フィルタ軸方向Xの長さが10mmであるブロック状体とされる。なお、図6に示した隔壁体101の端面に記されたドット領域102は、ドット領域102の記されたセル11が流出セル112であることを示したものであり、隔壁体101が封止部13を有していることを示すものではない。したがって、隔壁体101の端面にドット領域102が示されていないセル11は、排ガスGを流入させる流入セル111ということになる。また、隔壁体101における中心部には、流出セル112が配置されている。
 次いで、図6に示されるように、隔壁体101の中心部に配置された流出セル112における排ガス流入側の隔壁12表面を観察することができるように、図6の点線位置Pまで隔壁体101を削る。図7に、排ガス流入側の隔壁12表面を観察方向から見た図の一部を示す。なお、図6に示した矢印Y1が観察方向であり、図7に示した符合Y2は、図6に示した矢印Y1が紙面に対して垂直かつ奥行き方向に向いていることを示している。次いで、排ガス流入側の隔壁12表面を観察できるように、上記削り出した隔壁体101を非接触式表面粗さ測定機にセットする。非接触式表面粗さ測定機としては、オリンパス社製のレーザー深度顕微鏡「OLS4100」を用いことができる。なお、レーザー深度顕微鏡「OLS4100」が廃番等の理由により入手できない場合には、同じ解析原理によって面粗さ測定を実施することができる後継機種、例えばオリンパス社製の「OLS5000」等を用いることができる。
 次いで、非接触式表面粗さ測定機にて排ガス流入側の隔壁12表面について面粗さ測定を行う。面粗さ測定条件は、倍率:50倍、レーザー波長:405nm、走査速度:測定機の「高精度モード」使用、観察視野:フィルタ軸方向Xと同方向である横方向700μm、フィルタ軸方向Xに垂直な方向である縦方向500μmを1視野として、連続する4つの視野とされる。図7に示されるように、隔壁12表面の面粗さ測定時における観察領域Oは、連続する4つの視野O1、O2、O3、および、O4より構成される。
 次いで、非接触式表面粗さ測定機の解析ソフトにて、4つの視野O1~O4の各画像を読み込んで結合させる。次いで、結合させた画像を解析するにあたり、高さおよび深さ情報のノイズを除去する。次いで、高さ情報をカラースケールで示した排ガス流入側の隔壁表面の三次元凹凸像を取得する。次いで、上記のように前処理した三次元凹凸像に対し、解析ソフトにて「面粗さ計測」を実施し、隔壁体101におけるVvv、Vmpを導出する。
 上述のように排ガス浄化フィルタ1から採取した6か所の各隔壁体101について求めた各Vvvの平均値と、各Vmpの平均値とを足した合わせたものが、非接触式の面粗さ測定による隔壁12表面の突出谷部123の空間体積Vvvおよび突出山部124の実体体積Vmpの合計値とされる。
 隔壁体101は、具体的には、図8に示されるように、排ガス浄化フィルタ1における直径の中心部を通るフィルタ軸方向Xの、中央部分1a、流入端面15側の封止部13寄りの上流側部分1b、流出端面16側の封止部13寄りの下流側部分1c、排ガス浄化フィルタ1における半径の中心部を通るフィルタ軸方向Xの、中央部分1d、流入端面15側の封止部13寄りの上流側部分1e、流出端面16側の封止部13寄りの下流側部分1fの6か所から採取する。
 排ガス浄化フィルタ1は、隔壁12表面における突出谷部123の空間体積Vvvおよび突出山部124の実体体積Vmpの合計値が上述した特定の範囲とされていることにより、灰分23の堆積による圧損上昇を抑制することができる。以下、このような効果が得られるメカニズムを、図9~図11を用いて説明する。
 図9に示されるように、PM2は、主成分である固体状炭素(スート)21の他、可溶有機成分(SOF)22やエンジンオイル由来等の灰分23を含んでいる。排ガスGが流入する側の隔壁12表面(流入セル111に面する隔壁12表面)に捕集されたPM2が再生処理されると、PM2中に含まれていた灰分23が隔壁12表面に残存する。灰分23を含むPM2の堆積およびPM2の再生処理が繰り返されると、隔壁12表面に灰分23が堆積していく。図10(a)に示されるように、隔壁12表面に堆積した灰分23(以下、これをウォール灰分231ということがある。)は、隔壁12表面における連通気孔121の表面開口を塞ぐため、隔壁12のガス透過性を低下させ、圧損を上昇させる原因となる。
 しかしながら、隔壁12表面におけるVvvおよびVmpの合計値が上述した特定の範囲とされている排ガス浄化フィルタ1では、図10(b)に模式的に示されるように、隔壁12表面の凹凸が小さいため(隔壁12表面が平坦であるため)、排ガスGによるフィルタ軸方向Xのせん断力Fが大きくなる。そして、隔壁12表面とウォール灰分231との間の結合力よりも上記のせん断力Fが大きくなった場合に、ウォール灰分231が隔壁12表面から剥離し、剥離したウォール灰分231は、ガス流出側の封止部13の方へ輸送される。輸送されたウォール灰分231は、フィルタ最下流のフィルタボトム部10(図3参照、流入セル111における最下流部ともいうことができる)に堆積される。以下、フィルタボトム部10に堆積した灰分23をボトム灰分232ということがある。ウォール灰分231は、隔壁12のガス透過性を低下させるため圧損を上昇させるが、ボトム灰分232は、隔壁12のガス透過性を低下させ難いため圧損を上昇させ難い。このように、排ガス浄化フィルタ1は、隔壁12表面におけるVvvおよびVmpの合計値が上述した特定の範囲とされていることにより、ウォール灰分231よりもボトム灰分232を多くすることができる。つまり、排ガス浄化フィルタ1は、隔壁12表面におけるVvvおよびVmpの合計値が上述した特定の範囲とされていることにより、ウォール灰分231のボトム灰分232化を促進させることができる。ボトム灰分232が多くなれば、経年使用によっても隔壁12のガス透過性を維持することができ、低圧損となる。以上のメカニズムにより、排ガス浄化フィルタ1は、経年使用による灰分23の堆積に起因する圧損上昇を抑制することができる。
 これに対し、隔壁12表面におけるVvvおよびVmpの合計値が上述した特定の範囲とされていない排ガス浄化フィルタでは、図10(c)に模式的に示されるように、隔壁12表面の凹凸が大きいため、この凹凸が障害となって排ガスGによるフィルタ軸方向Xのせん断力Fが小さくなる。そのため、ウォール灰分231は、隔壁12表面から剥離せず、連通気孔121の表面開口を覆ったままとなる。その結果、この場合には、隔壁12のガス透過性が悪化し、圧損が上昇する。
 なお、JIS B 0601に規定される線粗さ測定による隔壁12表面の算術平均粗さRaの規定では、排ガスGによるフィルタ軸方向Xのせん断力Fが生じない部分が現れるため、この場合には灰分23の堆積による圧損上昇を抑制することができない。すなわち、図11に示されるように、図11(a)の隔壁表面状態と図11(b)の隔壁表面状態とではRaが同じになる。しかし、図11(b)の隔壁表面状態では、排ガスGによるフィルタ軸方向Xのせん断力Fが生じ難いため、ウォール灰分231の剥離が生じず、灰分23の堆積による圧損上昇を抑制することができない。また、図示はしないが、例えば、JIS B 0601に規定される線粗さ測定による隔壁12表面の最大高さ粗さRzは、三次元的な情報が含まれない高さのみのパラメータであるため、隔壁12表面の凸部高さが同じであっても凸部体積が大きい場合には、排ガスGによるフィルタ軸方向Xのせん断力Fが生じ難いため、ウォール灰分231の剥離が生じず、灰分23の堆積による圧損上昇を抑制することができない。これらに対し、隔壁12表面におけるVvvおよびVmpの合計値という指標によれば、上記のような問題が生じず、排ガスGによるフィルタ軸方向Xのせん断力Fを効率的に向上させ、灰分23の堆積による圧損上昇を抑制することができる排ガス浄化フィルタ1を得ることができる。
 VvvおよびVmpの合計値は、灰分23の堆積による圧損上昇の抑制効果を確実なものとするなどの観点から、好ましくは、1.75μm/μm以下、より好ましくは、1.7μm/μm以下、さらに好ましくは、1.65μm/μm以下、さらにより好ましくは、1.6μm/μm以下、さらにより一層好ましくは、1.55μm/μm以下とすることができる。一方、VvvおよびVmpの合計値は、好ましくは、1.1μm/μm以上とすることができる。これは次の理由による。VvvおよびVmpの合計値が小さ過ぎる、つまり、隔壁12の凹凸が過度に小さくなると、例えば、隔壁12に触媒を担持させて使用する場合に、アンカー効果による触媒の担持力が低下し、隔壁12から触媒が剥離する懸念が生じる。そのため、これらを考慮すると、VvvおよびVmpの合計値は、1.1μm/μm以上とされることが好ましい。
 排ガス浄化フィルタ1において、隔壁12の平均気孔径は、12μm以上とすることができる。この構成によれば、隔壁12表面に堆積した灰分23が排ガスGのせん断力によって剥がれてフィルタボトム部10へ輸送されるだけでなく、灰分23が隔壁12内をすり抜けやすくなるため、灰分23の堆積による圧損上昇をさらに抑制しやすくなる。隔壁12の平均気孔径は、灰分23のすり抜けを生じさせやすくするなどの観点から、好ましくは、14μm以上、より好ましくは、16μm以上とすることができる。なお、隔壁12の平均気孔径が過度に大きくなると、PM2のすり抜けが生じ、初期のPM捕集性能が低下する。そのため、隔壁12の平均気孔径は、22μm以下であるとよい。隔壁12の平均気孔径は、初期のPM捕集性能の低下抑制などの観点から、好ましくは、20μm以下、より好ましくは、18μm以下、さらに好ましくは、16μm以下とすることができる。
 排ガス浄化フィルタ1において、隔壁12の気孔率は、50%以上とすることができる。この構成によれば、隔壁12表面に堆積した灰分23が排ガスGのせん断力によって剥がれてフィルタボトム部10へ輸送されるだけでなく、灰分23が隔壁12内をすり抜けやすくなるため、灰分23の堆積による圧損上昇をさらに抑制しやすくなる。隔壁12の気孔率は、灰分23のすり抜けを生じさせやすくするなどの観点から、好ましくは、55%以上、より好ましくは、60%以上とすることができる。一方、隔壁12の気孔率は、70%以下とすることができる。この構成によれば、排ガス浄化フィルタ1自体の強度を確保しやすくなり、ケーシング時の応力やPM2の再生処理時の発熱によるクラックを抑制しやすくなる。つまり、この構成によれば、排ガス浄化フィルタ1の構造信頼性を確保しやすくなる。隔壁12の気孔率は、排ガス浄化フィルタ1の強度向上等の観点から、好ましくは、67%以下、より好ましくは、65%以下とすることができる。
 隔壁12の平均気孔径および気孔率は、水銀圧入法の原理を用いた水銀ポロシメータにより測定される。具体的には、排ガス浄化フィルタ1から試験片を切り出す。但し、封止部13が存在する部分は除く。試験片は、フィルタ軸方向Xと直交方向の寸法が縦15mm×横15mmであり、フィルタ軸方向Xの長さが20mmである直方体とされる。次いで、水銀ポロシメータの測定セル内に試験片を収納し、測定セル内を減圧する。その後、測定セル内に水銀を導入して加圧し、加圧時の圧力と試験片における隔壁12の気孔内に導入された水銀の体積より、気孔径と気孔容積とを測定する。測定は、圧力0.5~20000psiaの範囲で行う。なお、0.5psiaは、0.35×10-3kg/mmに相当し、20000psiaは14kg/mmに相当する。この圧力範囲に相当する気孔径の範囲は0.01~420μmである。圧力から気孔径を算出する際の常数としては、接触角140°および表面張力480dyn/cmを使用する。隔壁12の平均気孔径は、隔壁12の気孔径分布において、気孔径が小さい側からの累積気孔容積が50%となる気孔径(気孔容積の積算値50%における気孔径)のことである。また、隔壁12の気孔率は、次の関係式より算出することができる。
 隔壁12の気孔率(%)=総気孔容積/(総気孔容積+1/隔壁材料の真比重)×100
 なお、隔壁材料がコーディエライトの場合、コーディエライトの真比重としては2.52を用いることができる。
 排ガス浄化フィルタ1において、隔壁12は、上述した連通気孔121の屈曲度が1.4未満とすることができる。連通気孔121の屈曲度は、隔壁12の厚みTμmに対する連通気孔121の平均流路長Lμmの比で定義される。この構成によれば、隔壁12の厚み方向においてガス流路となる連通気孔121の屈曲が小さいことにより、灰分23が隔壁12をすり抜けやすくなる。つまり、上記構成によれば、ガス流路となる連通気孔121の抵抗が小さくなり、灰分23が連通気孔121の孔壁面に引っ掛かり難くなり、灰分23による連通気孔121の閉塞が抑制される。そのため、上記構成によれば、隔壁12表面に堆積した灰分23が剥がれてフィルタボトム部10へ輸送されることによる圧損の上昇抑制効果だけでなく、灰分23のすり抜け促進による圧損の上昇抑制効果も享受することが可能となる。それ故、上記構成によれば、灰分23の堆積による圧損上昇をさらに抑制することができる。
 連通気孔121の屈曲度は、灰分23のすり抜けを生じさせやすくするなどの観点から、好ましくは、1.4以下、より好ましくは、1.3以下とすることができる。なお、連通気孔121の屈曲度が過度に小さくなると、PM2のすり抜けが生じ、初期のPM捕集性能が低下するおそれがある。かかる観点から、連通気孔121の屈曲度は、好ましくは、1.0以上、より好ましくは、1.1以上、さらに好ましくは、1.2以上とすることができる。
 連通気孔121の屈曲度は、次のようにして測定される。排ガス浄化フィルタ1から隔壁片を切り出す。但し、封止部13が存在する部分は除く。隔壁片は、フィルタ軸方向Xの長さが約600μm、フィルタ軸方向Xと直交する隔壁12表面方向の幅が約600μm、厚さが隔壁12の厚さである直方体状(板状)とされる。次いで、隔壁片を真空脱気しながら樹脂包埋し、X線CT撮像サンプルとする。このサンプルについて、X線CT装置を用い、電圧:80kV、ステップ:0.1°、分解能:0.684787μm/pixelの撮像条件にて連続断層画像を取得する。連続断層画像は、例えば、TIFF形式とされる。得られた連続断層画像を、Math2Market GmbH社によって開発されたミクロ構造シミュレーションソフトである「GeoDict」のインターフェースの一つである、importGeo-Vol機能を用いて、0.6874787μm/voxelの条件にて読み込む。次いで、読み込んだ画像の骨格部(具体的にはセラミックス部分)と空間部(具体的には気孔部分)とを分離するため、図12に示されるようなgray value図における二つの山に分離した際の交差部を閾値として、隔壁片を三次元モデル化する。次いで、三次元モデルにおけるノイズを除去し、900voxel×600voxel×隔壁12厚さvoxelとなるように不要部分を除去する。次いで、この三次元モデルにつき、全ての連通気孔121の流路長(μm)を測定する。ここで、PM2は、ガスの流れに沿って流れる。ガスは、流体として、連通気孔121内で最短流路を通って流れようとする。上記にて長さを測定する流路は、連通気孔121内をガスが流れていく最短流路である。つまり、連通気孔121の流路長は、連通気孔121の孔径の中央を結んだ線の長さとは必ずしも一致しないパラメータであるといえる。GeoDictによれば、隔壁12の三次元モデルにガスを流すシミュレーションを実施することができるため、ガスが流れる気孔のみを特定することができる。得られた全ての連通気孔121の流路長の平均値が、連通気孔121の平均流路長Lμmとされる。また、三次元モデルの厚み(μm)が、屈曲度を算出する際の隔壁12の厚みTμmとされる。そして、上記のようにして求めた連通気孔121の平均流路長Lμmを隔壁12の厚みTμmで除することにより、隔壁片の屈曲度が算出される。隔壁12における連通気孔121の屈曲度は、排ガス浄化フィルタ1から採取した6か所、具体的には、上述したVvvおよびVmpの合計値の測定時と同様の図8に示される符合1a~1fの部分の各隔壁片について、上述のようにして求めた各屈曲度の平均値とされる。
 排ガス浄化フィルタ1は、ガソリンエンジンの排気通路に配置されて用いられる、つまり、GPFとして用いられることによりその効果を十分に発揮することができる。もっとも、排ガス浄化フィルタ1は、ディーゼルエンジンの排気通路に配置されて用いられる、つまり、DPF(ディーゼルパティキュレートフィルタ)として用いられることもできる。また、排ガス浄化フィルタ1は、隔壁12に触媒が担持されていない状態にて使用されることもできるし、隔壁12に触媒が担持された状態にて使用されることもできる。なお、隔壁12に触媒を担持させる場合、触媒担持量は、例えば、50g/L以上150g/L以下の範囲とすることができる。
 上述した排ガス浄化フィルタ1は、例えば、以下のようにして製造することができる。
 排ガス浄化フィルタ1の製造にあたり、隔壁12を形成するためのセラミックス原料粉と、バインダと、溶媒と、必要に応じて添加される造孔材と、分散剤、潤滑剤等の添加物などとを混合して坏土を調製する。隔壁12を形成するためのセラミック原料粉は、隔壁12を構成するセラミックスに合わせて適宜選択することができる。例えば、隔壁12を構成するセラミックスがコーディエライトであれば、マグネシア等のマグネシウム源、アルミナ等のアルミニウム源、および、シリカ等のシリコン源を含むことができる。隔壁12を構成するセラミックスがチタン酸アルミニウムであれば、チタニア等のチタン源、アルミナ等のアルミニウム源を含むことができる。隔壁12を構成するセラミックスが炭化ケイ素であれば、炭素源、および、ケイ素源を含むことができる。各成分の配合量は、所望のセラミックスを得られるように適宜調節することができる。本実施形態では、排ガス浄化フィルタ1の隔壁12をコーディエライトより構成する場合を例に用いて、排ガス浄化フィルタ1の製造方法を詳細に説明する。
 先ず、コーディエライト形成原料を含む坏土を作製する。坏土は、シリカ、タルク、水酸化アルミニウムなどをコーディエライト組成となるように調整し、さらにメチルセルロースなどのバインダ、グラファイトなどの造孔材、アニオン性分散剤やカチオン性分散剤などの分散剤、潤滑油、水等を適宜加えて混合することにより作製することができる。コーディエライト組成となるように、アルミナ、カオリンを配合してもよい。シリカとしては、多孔質シリカを用いることができる。コーディエライト形成原料において、シリカ、タルクは、気孔形成原料となりうる。気孔形成原料は、気孔120を形成する材料である。気孔形成原料は、焼成時に液相成分を生成し、これにより気孔120が形成される。一方、コーディエライト形成原料において、水酸化アルミニウム、アルミナ、カオリンは、骨材原料となりうる。骨材原料は、気孔120以外のセラミックス部分を形成する材料である。
 次いで、調製した坏土を、金型を用いて押出成形し、ハニカム成形体を成形する。次いで、ハニカム成形体を乾燥、焼成する。これにより、ハニカム構造部が形成される。ハニカム構造部は、セル11と隔壁12とスキン部14とから構成される部分である。次いで、封止部13は、ハニカム構造部の焼成後または焼成前に形成することができる。具体的には、例えば、封止部形成用のスラリーを用いて、焼成後のハニカム構造部または焼成前のハニカム成形体のセル11の開口部を交互に目封止し、焼成することにより封止部13を形成することができる。
 ここで、隔壁12表面における突出谷部123の空間体積Vvvおよび突出山部124の実体体積Vmpの合計値は、例えば、ハニカム成形体を押出成形する際に用いられる金型のスリット部表面の最大高さ粗さRz(JIS B0601-2001に規定)を調整することなどにより上述の所望の範囲に制御することができる。なお、スリット部は、坏土が通過し、隔壁12となる部分を成形するための部位である。また、隔壁12の平均気孔径、気孔率は、例えば、気孔形成原料の粒子径d50、気孔形成原料の添加量を調整することなどにより上述の所望の範囲に制御することができる。なお、上記にいう粒子径d50は、レーザー回折式粒度分布計による体積基準の粒度分布に基づいて得ることができる(以下、同様のため、省略する。)。
 また、隔壁12における連通気孔121の屈曲度は、例えば、坏土中における気孔形成原料同士の接触を促すことなどにより上述の所望の範囲に制御することができる。これは、液相反応において気孔形成原料同士が接触している場合には、気孔形成原料が拡散して気孔120となるため、気孔120の連通性が向上し、その結果として屈曲度を小さくすることができるためである。坏土中において気孔形成原料同士を選択的に接触させるために、例えば、坏土調製時にアニオン性分散剤、カチオン性分散剤などを用いることができる。なお、アニオン性分散剤としては、例えば、ノプコスパース44-C(三洋化成社製)などがあり、カチオン性分散剤としては、例えば、ノプコスパース092(三洋化成社製)などがある。
 より具体的には、所定配合量の気孔形成原料(ここでは、シリカとタルクの混合粉)を二等分し、等分された一方の気孔形成原料にマイナスの電荷を付与すべく、一方の気孔形成原料とアニオン性分散剤と水とを予混練し、第1混合物を得る。第1混合物では、一方の気孔形成原料にアニオン性分散剤が付着している。また、等分された他方の気孔形成原料にプラスの電荷を付与すべく、他方の気孔形成原料とカチオン性分散剤と水とを予混練し、第2混合物を得る。第2混合物では、他方の気孔形成原料にカチオン性分散剤が付着している。そして、第1混合物と、第2混合物と、骨材原料と、必要に応じて配合されるその他の原料等とをさらに混練する。このようにして、気孔形成原料同士の接触状態が保たれた坏土を得ることができる。隔壁12における連通気孔121の屈曲度は、分散剤の種類、分散剤の添加量、気孔形成原料と分散剤とを混合する予混練時間、押し出し成形時の回転数、坏土の乾燥時間などを調整することにより上述の所望の範囲に制御することができる。なお、気孔形成原料と分散剤とを混合する予混練の時間を長くしすぎると、連通気孔121の形成が損なわれるおそれがあるため、予混練の時間は、適正に調整されることが好ましい。また、気孔形成原料の周囲の骨材原料の粒子径が大きくなると、連通気孔121の形成が損なわれるおそれがあるため、気孔形成原料と骨材原料との粒径比も適正に調整することが好ましい。
<実験例>
-排ガス浄化フィルタの作製-
 本実験例では、上述した排ガス浄化フィルタの製造方法に従い、後述する表1に示すコーディエライト製の排ガス浄化フィルタからなる試験体1~10を作製した。なお、本実験例では、隔壁に触媒層は形成していない。
 具体的には、コージェライト形成原料として、多孔質シリカ、タルク、水酸化アルミニウムを準備した。多孔質シリカ、タルクが気孔形成原料であり、水酸化アルミニウムが骨材原料である。
 次いで、多孔質シリカとタルクとの混合粉を二等分し、一方の混合粉にはアニオン性分散剤と水とを添加して混練し、もう一方の混合粉には、カチオン性分散剤と水とを添加して混練した。このようにして、マイナス電荷が付与された気孔形成原料を含有するスラリー状の第1混合物と、プラス電荷が付与された気孔形成原料を含有するスラリー状の第2混合物を得た。第1混合物におけるアニオン性分散剤の添加量は、多孔質シリカとタルクとの合計量100wt%に対して2~15wt%であり、水の添加量は、坏土を作製するために必要な量の半量である。アニオン性分散剤としては、三洋化成工業社製の「ノプコスパース44-C」を用いた。また、第2混合物におけるカチオン性分散剤の添加量は、多孔質シリカとタルクとの合計量100wt%に対して2~15wt%である。水の添加量は、坏土を作製するために必要な量の半量である。カチオン性分散剤としては、三洋化成工業社製の「ノプコスパース092」を用いた。
 次いで、第1混合物と第2混合物と水酸化アルミニウムと分散剤と潤滑油とをさらに混錬した。このようにして、坏土を作製した。分散剤としては、平均分子量が4550であるポリオキシエチレンポリオキシプロピレングリセルエーテルを用いた。
 次いで、金型を用いて坏土を押出成形し、成形されたハニカム成形体を1410℃で焼成した後、封止部を形成することにより、排ガス浄化フィルタを得た。
 本実験例では、押出成形時に用いる金型のスリット部表面の最大高さ粗さRzを1~15μmの範囲内で調整することにより、隔壁表面の凹凸を小さくし、隔壁表面における突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値を上述した所望の範囲に調整した。なお、金型のスリット部表面のRzは、研磨剤を流し込むことによって調整した。また、多孔質シリカとタルクとの混合粉(つまり、気孔形成材料)の粒子径d50を5~35μmの範囲で変更することにより、隔壁の平均気孔径を上述した所望の範囲に調整した。また、多孔質シリカとタルクとの混合粉の量を原料全体の量に対して40~70%の範囲内で変更することにより、隔壁の気孔率を上述した所望の範囲に調整した。また、カチオン性分散剤およびアニオン性分散剤の添加量をそれぞれ2~15wt%の範囲内で変更するとともに、第1混合物および第2混合物の予混練時間、坏土の混合時間をそれぞれ5~150分の範囲で変更することにより、連通気孔の屈曲度を上述した所望の範囲に調整した。本実験例では、これらの調整の組み合わせにより、表1に示される試験体1~10の排ガス浄化フィルタを得た。
 次に、比較のため、後述する表1に示すコーディエライト製の排ガス浄化フィルタからなる試験体1C、2Cを作製した。具体的には、金型のスリット部表面のRzを15μm超とした点、多孔質シリカとタルクとの混合粉の粒子径d50を35μm超とした点以外は試験体1~10の作製と同様にして、試験体1Cの排ガス浄化フィルタを得た。また、金型のスリット部表面のRzを、15μm超(試験体1Cの作製時よりもRz大)とした点、多孔質シリカとタルクとの混合粉の粒子径d50を35μm超とした点以外は試験体1~10の作製と同様にして、試験体2Cの排ガス浄化フィルタを得た。
 なお、本実験例において、各試験体の排ガス浄化フィルタは、体格がφ118.4mm(フィルタ直径)×L120mm(フィルタ長)であり、隔壁の厚さが8.5mil、セル数が300cpsiであるセル構造を有する。
-隔壁特性の測定-
 各試験体について、上述した測定方法に従って、排ガス流入側の隔壁表面について非接触式の面粗さ測定を行い、隔壁表面における突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値を算出した。この際、非接触式の面粗さ測定は、オリンパス社製のレーザー深度顕微鏡(非接触式表面粗さ測定機)「OLS4100」を用いた。この際、OLS4100の解析ソフトによる4視野の画像の結合は、「データ処理」の中の「画像貼り合わせ」により実施した。画像貼り合わせ時には、「重なり幅」を3%とするとともに、「画像間のつなぎ目補正を行う」および「輝度画像の明るさを均一にする」を選択した。また、結合させた画像における高さおよび深さ情報のノイズ除去にあたり、除去対象とする輝度の閾値は「自動判定」とし、除去領域は「全領域」とした。
 また、各試験体について、上述した測定方法に従って、隔壁の気孔率および平均気孔径を測定した。この際、水銀ポロシメータには、島津製作所社製のオートポアIV9500を用いた。また、各試験体について、上述した測定方法に従って、隔壁内部の連通気孔の屈曲度を測定した。この際、X線CT装置には、Xradia社製の「Versa XRM-500」を用いた。また、ミクロ構造シミュレーションソフトには、SCSK社より販売される「GeoDict 2017」を用いた。
-初期PM捕集率、初期圧損、および、灰分堆積後の圧損変化率の測定-
(初期PM捕集率)
 初期PM捕集率は、具体的には、次のように測定した。図13に示されるように、配管部91と、試験体の排ガス浄化フィルタ1が内部に収容されるケース部92と、配管部91とケース部92との間を繋ぐコーン部93と、を有する試験装置9を準備した。ケース部92の上流側の配管部91は、排ガスを発生させるエンジンEに接続されている。本実験例では、エンジンEには、ガソリン直噴エンジン(排気量2.0L、ターボ、4気筒)を用いた。また、ケース部92の上流側の配管部91には、上流側PM粒子数カウンタ941、および、温度センサ95をそれぞれ設置した。一方、ケース部92の下流側の配管部91には、下流側PM粒子数カウンタ951を設置した。上流側PM粒子数カウンタ941、下流側PM粒子数カウンタ951には、AVL社製の「AVL-489」を用いた。そして、試験体の排ガス浄化フィルタ1にエンジンEから排出される排ガスを流した。このとき、試験体の排ガス浄化フィルタ1に流入する前の排ガス中のPM数であるNin、試験体の排ガス浄化フィルタから流出する排ガス中のPM数であるNoutを測定し、100×{1-(Nin-Nout)/Nin}の式より、初期PM捕集率を算出した。なお、測定条件は、温度約500℃、吸入空気量25g/secとした。また、上記の測定には、PMおよび灰分が堆積していない初期状態、かつ、触媒がコートされていない排ガス浄化フィルタ1を用いた。
(初期圧損)
 初期圧損は、具体的には、次のように測定した。図14に示されるように、配管部91と、試験体の排ガス浄化フィルタ1が内部に収容されるケース部92と、配管部91とケース部92との間を繋ぐコーン部93と、を有する試験装置9を準備した。ケース部92の上流側の配管部91は、排ガスを発生させるエンジンEに接続されている。本実験例では、エンジンEには、ガソリン直噴エンジン(排気量2.0L、ターボ、4気筒)を用いた。また、試験装置9に上流側圧力センサ961および下流側圧力センサ971をそれぞれ設置し、試験体の排ガス浄化フィルタ1前後の圧力を測定可能に構成した。上流側圧力センサ961、下流側圧力センサ971には、いずれも、東京航空計器社製の「DG-932-C」を用いた。なお、符合961Tは、上流側圧力センサ961のためのサージタンク、符合971Tは、下流側圧力センサ971のためのサージタンクである。また、ケース部92の上流側の配管部91には、上流側A/Fセンサ981、ケース部92の下流側の配管部91には、下流側A/Fセンサ991がそれぞれ設置されている。そして、上流側圧力センサ961と下流側圧力センサ971とにより、試験体の排ガス浄化フィルタ1前(上流)の圧力と排ガス浄化フィルタ1後(下流)の圧力とを測定し、その差分を圧損とした。この際、測定条件は、A/F:14.6±0.3、吸入空気量:100g/sec、エンジンEの回転数:4500rpmの条件にて制御した。その際の温度は、排ガス温度が700~750℃、試験体の排ガス浄化フィルタの中心温度が600~650℃であった。また、上記の測定には、PMおよび灰分が堆積していない初期状態、かつ、触媒がコートされていない排ガス浄化フィルタ1を用いた。
(灰分堆積後の圧損変化率)
 灰分堆積後の圧損変化率は、具体的には、次のように測定した。ガソリン直噴エンジン(排気量2.0L、ターボ、4気筒)の排気通路に試験体の排ガス浄化フィルタを組付けた。そして、隔壁への灰分堆積を加速させるため、上記エンジンへ燃料(市販のハイオクガソリン)を供給する燃料供給系にエンジンオイル(トヨタ自動車社製、「CASTLE SN5W-30」)を0.48L/時間にて添加するようにした。そして、A/Fを14.5±0.4の範囲内にて制御し、試験体の排ガス浄化フィルタに、時間あたり1.3g/Lの堆積レートにて灰分を堆積させた。具体的には、灰分の堆積は、エンジン回転数:2500prm、インテークマニホールド圧:-10kPaにて9分間PMを堆積させるというPM堆積工程を実施した後、燃料供給をカットし、フィルタ温度が900℃を超えないように、エンジン回転数:2500prm、インテークマニホールド圧:-90kPaにて1分間PMを燃焼させて再生処理を行うという再生処理工程とを繰り返すことにより実施した。この際、灰分堆積量は、適宜、排ガス浄化フィルタを排気通路から取り出し、オフラインの電子天秤にて重量を測定することにより把握した。このように、PMおよび灰分が堆積していない初期状態、かつ、触媒がコートされていない排ガス浄化フィルタに対して、PMの再生処理を繰り返し行いながら、灰分を60g/L堆積させた。
 その後は、上述した初期圧損の測定と同様にして、排ガス浄化フィルタ前(上流)の圧力と排ガス浄化フィルタ後(下流)の圧力とを測定し、その差分を灰分堆積後の圧損とした。そして、初期圧損(kPa)をPfresh、灰分堆積後の圧損(kPa)をPash-loadedとしたとき、100×(Pash-loaded-Pfresh)/Pfreshの式より算出される値の絶対値を、灰分堆積後の圧損変化率(%)として求めた。
 本実験例では、灰分堆積後の圧損変化率が250%未満であった場合を、灰分堆積による圧損上昇を抑制できていると判断した。そして、灰分堆積後の圧損変化率が220%以上250%未満であった場合を「B」、灰分堆積後の圧損変化率が210%以上220%未満であった場合を「A」、灰分堆積後の圧損変化率が210%未満であった場合を「A+」とした。但し、ガソリン車両において、初期PM捕集率は60%以上であることが好ましいため、初期PM捕集率が60%未満となったものについては、ランクを一つさげた。一方、灰分堆積後の圧損変化率が250%以上であった場合を、灰分堆積による圧損上昇を抑制できていないとして「C」とした。
 上記実験の結果をまとめて表1に示す。また、図15に、試験体1~10の代表として、試験体2の排ガス浄化フィルタについて得られた排ガス流入側の隔壁表面の三次元凹凸像を示す。また、図16に、比較として、試験体1Cの排ガス浄化フィルタについて得られた排ガス流入側の隔壁表面の三次元凹凸像を示す。また、図17に、突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値(横軸)-灰分堆積後の圧損変化率(縦軸)の関係を示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図15~図17によれば、次のことが分かる。排ガスが流入する隔壁表面における突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値が本開示にて規定される特定の範囲外とされている、隔壁表面の凹凸が大きな試験体1Cおよび試験体2Cの排ガス浄化フィルタは、灰分堆積による圧損上昇を抑制することができなかった。
 これらに対し、排ガスが流入する隔壁表面における突出谷部の空間体積Vvvおよび突出山部の実体体積Vmpの合計値が本開示にて規定される特定の範囲とされている、隔壁表面の凹凸が小さな試験体1~試験体10の排ガス浄化フィルタは、灰分堆積による圧損上昇を抑制することができた。
 これは、上述したように、排ガスによるフィルタ軸方向のせん断力が大きくなり、これによって隔壁表面に堆積したウォール灰分が剥離してフィルタボトム部へと輸送され、隔壁表面のガス透過性を維持することができたためである。なお、図17に示されるように、VvvおよびVmpの合計値が1.8μm/μm以下の領域において、灰分堆積による圧損上昇を抑制効果が飽和する理由は、以下によるものと考えられる。すなわち、上述のメカニズムによる隔壁表面に堆積した灰分の剥離は、隔壁表面とウォール灰分との間の結合力よりも上記のせん断力が大きくなった場合に発現する。したがって、VvvおよびVmpの合計値が1.8μm/μm以下の領域においては、すでにそのクライテリアを超えるせん断力になっていることが考えられ、当該領域は、ウォール灰分のフィルタボトム部への輸送が十分に生じている領域であるために、隔壁表面の凹凸をより小さくしてもその効果が僅少になるものと考えられる。
 また、表1によれば、隔壁12の平均気孔径を12μm以上とすることにより、灰分堆積による圧損上昇をさらに抑制することができることがわかる。これは、隔壁表面に堆積した灰分が排ガスのせん断力によって剥がれてフィルタボトム部へ輸送されるだけでなく、灰分が隔壁内をすり抜けやすくなったためである。但し、隔壁12の平均気孔径が22μm超になると、初期PM捕集率が低下する傾向が見られた。これは、隔壁の平均気孔径が過度に大きくなることにより、PMのすり抜けが生じたためである。
 また、表1によれば、隔壁の気孔率を50%以上とすることにより、灰分堆積による圧損上昇をさらに抑制することができることがわかる。これは、隔壁表面に堆積した灰分が排ガスのせん断力によって剥がれてフィルタボトム部へ輸送されるだけでなく、灰分が隔壁内をすり抜けやすくなったためである。
 また、表1によれば、隔壁における連通気孔121の屈曲度を1.4未満することにより、灰分堆積による圧損上昇をさらに抑制することができることがわかる。これは、ガス流路となる連通気孔の抵抗が小さくなり、灰分が連通気孔の孔壁面に引っ掛かり難くなり、灰分による連通気孔内の閉塞が抑制された結果、隔壁表面に堆積した灰分が剥がれてフィルタボトム部へ輸送されることによる圧損の上昇抑制効果だけでなく、灰分のすり抜け促進による圧損の上昇抑制効果も享受することができたためである。
 本開示は、上記実施形態、上記実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  フィルタ軸方向(X)に延びる複数のセル(11)と、複数の上記セルを区画形成する多孔質の隔壁(12)と、フィルタ両端部において複数の上記セルを交互に目封じする封止部(13)と、を有する排ガス浄化フィルタ(1)であって、
     上記隔壁は、
     非接触式の面粗さ測定による上記隔壁表面の体積パラメータである突出谷部(123)の空間体積Vvvおよび突出山部(124)の実体体積Vmpの合計値が、1.8μm/μm以下である、排ガス浄化フィルタ(1)。
  2.  上記隔壁の平均気孔径が12μm以上である、請求項1に記載の排ガス浄化フィルタ。
  3.  上記隔壁の気孔率が50%以上である、請求項1または2に記載の排ガス浄化フィルタ。
  4.  上記隔壁は、
     上記隔壁を挟んで隣接する上記セル間を連通させる連通気孔(121)を有しており、当該連通気孔の屈曲度が1.4未満である、請求項1~3のいずれか1項に記載の排ガス浄化フィルタ。
PCT/JP2020/027331 2019-07-31 2020-07-14 排ガス浄化フィルタ WO2021020101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080016858.0A CN113646511B (zh) 2019-07-31 2020-07-14 废气净化过滤器
EP20847348.8A EP3919169A4 (en) 2019-07-31 2020-07-14 EXHAUST GAS PURIFICATION FILTER
US17/538,596 US11878258B2 (en) 2019-07-31 2021-11-30 Exhaust gas purification filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-141521 2019-07-31
JP2019141521A JP6940787B2 (ja) 2019-07-31 2019-07-31 排ガス浄化フィルタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/538,596 Continuation US11878258B2 (en) 2019-07-31 2021-11-30 Exhaust gas purification filter

Publications (1)

Publication Number Publication Date
WO2021020101A1 true WO2021020101A1 (ja) 2021-02-04

Family

ID=74228591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027331 WO2021020101A1 (ja) 2019-07-31 2020-07-14 排ガス浄化フィルタ

Country Status (5)

Country Link
US (1) US11878258B2 (ja)
EP (1) EP3919169A4 (ja)
JP (1) JP6940787B2 (ja)
CN (1) CN113646511B (ja)
WO (1) WO2021020101A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009217A1 (en) * 2022-07-06 2024-01-11 Politecnico Di Torino Method, measurement apparatus and computer program product for characterization of wear traces in tribological tests

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (fr) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Filtre en nid d'abeilles pour la decontamination des gaz d'echappement et appareil de decontamination de gaz d'echappement
WO2004076027A1 (ja) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. セラミックハニカム構造体
JP2011104524A (ja) * 2009-11-18 2011-06-02 Ngk Insulators Ltd 触媒担持フィルタ、及び排ガス浄化システム
JP2012045523A (ja) * 2010-08-30 2012-03-08 Denso Corp ハニカム構造体並びにその製造方法
JP2019141521A (ja) 2018-02-23 2019-08-29 株式会社三洋物産 遊技機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563415B2 (en) * 2006-03-03 2009-07-21 Geo2 Technologies, Inc Catalytic exhaust filter device
JP5315997B2 (ja) * 2006-09-28 2013-10-16 日立金属株式会社 セラミックハニカム構造体及びセラミックハニカム構造体の製造方法
JP5272733B2 (ja) * 2006-12-27 2013-08-28 日立金属株式会社 セラミックハニカムフィルタ、及びその製造方法
JP5413310B2 (ja) 2008-03-31 2014-02-12 株式会社デンソー 多孔質ハニカム構造体の製造方法
WO2009141877A1 (ja) 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP5175777B2 (ja) 2009-03-04 2013-04-03 東京窯業株式会社 ハニカム構造体
JP5604047B2 (ja) 2009-03-10 2014-10-08 日本碍子株式会社 ハニカム構造体
CN102470310B (zh) * 2009-10-08 2014-07-23 揖斐电株式会社 废气净化装置和废气净化方法
JP2013039513A (ja) 2011-08-12 2013-02-28 Sumitomo Chemical Co Ltd ハニカムフィルタ
JP5864329B2 (ja) 2012-03-28 2016-02-17 日本碍子株式会社 ハニカム構造体
EP2832512B1 (en) 2012-03-29 2019-06-12 Ibiden Co., Ltd. Fabrication method of metal mold for extrusion forming, and honeycomb structure fabrication method
JP2013224609A (ja) 2012-04-20 2013-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP5883410B2 (ja) 2013-03-29 2016-03-15 日本碍子株式会社 ハニカム構造体の製造方法
JP6259334B2 (ja) 2014-03-20 2018-01-10 日本碍子株式会社 ハニカム構造体
JP6577895B2 (ja) * 2016-03-30 2019-09-18 日本碍子株式会社 ハニカム構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (fr) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Filtre en nid d'abeilles pour la decontamination des gaz d'echappement et appareil de decontamination de gaz d'echappement
WO2004076027A1 (ja) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. セラミックハニカム構造体
JP2011104524A (ja) * 2009-11-18 2011-06-02 Ngk Insulators Ltd 触媒担持フィルタ、及び排ガス浄化システム
JP2012045523A (ja) * 2010-08-30 2012-03-08 Denso Corp ハニカム構造体並びにその製造方法
JP2019141521A (ja) 2018-02-23 2019-08-29 株式会社三洋物産 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919169A4

Also Published As

Publication number Publication date
EP3919169A1 (en) 2021-12-08
EP3919169A4 (en) 2022-04-13
CN113646511B (zh) 2022-06-24
US20220088521A1 (en) 2022-03-24
JP6940787B2 (ja) 2021-09-29
US11878258B2 (en) 2024-01-23
CN113646511A (zh) 2021-11-12
EP3919169A8 (en) 2022-03-16
JP2021023848A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP4516017B2 (ja) セラミックハニカム構造体
JP5864329B2 (ja) ハニカム構造体
JP5859752B2 (ja) 排ガス浄化フィルタ
JP4495152B2 (ja) ハニカム構造体及びその製造方法
EP2502662A1 (en) Honeycomb filter and manufacturing method of the same
EP2502661A2 (en) Honeycomb filter and manufacturing method of the same
WO2007026803A1 (ja) ハニカム構造体及びハニカム触媒体
WO2021020101A1 (ja) 排ガス浄化フィルタ
WO2021020100A1 (ja) 排ガス浄化フィルタ
JP7230671B2 (ja) 排ガス浄化フィルタ
CN113507974B (zh) 废气净化过滤器
WO2021020015A1 (ja) 排ガス浄化フィルタ
WO2020217753A1 (ja) 排ガス浄化フィルタ
WO2020230461A1 (ja) 排ガス浄化フィルタ
WO2021020014A1 (ja) 排ガス浄化フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020847348

Country of ref document: EP

Effective date: 20210831

NENP Non-entry into the national phase

Ref country code: DE