WO2021019676A1 - 冷却装置および冷却方法 - Google Patents

冷却装置および冷却方法 Download PDF

Info

Publication number
WO2021019676A1
WO2021019676A1 PCT/JP2019/029792 JP2019029792W WO2021019676A1 WO 2021019676 A1 WO2021019676 A1 WO 2021019676A1 JP 2019029792 W JP2019029792 W JP 2019029792W WO 2021019676 A1 WO2021019676 A1 WO 2021019676A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
temperature
pipe
heat exchanger
state
Prior art date
Application number
PCT/JP2019/029792
Other languages
English (en)
French (fr)
Inventor
健人 桑原
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US17/287,586 priority Critical patent/US20210315131A1/en
Priority to PCT/JP2019/029792 priority patent/WO2021019676A1/ja
Priority to CN201980004721.0A priority patent/CN112673228B/zh
Priority to JP2020512621A priority patent/JP6832471B1/ja
Publication of WO2021019676A1 publication Critical patent/WO2021019676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • An embodiment of the present invention relates to a cooling device and a cooling method.
  • a water-cooled cooling device that supplies cooling water to a heat sink to which an electric device is thermally connected is known.
  • the problem to be solved by the present invention is to provide a cooling device and a cooling method capable of improving the reliability of the electric device to be cooled.
  • the cooling device of the embodiment includes a first heat exchanger, a first pipe, a second pipe, a bypass pipe, a flow rate changing mechanism, and a control unit.
  • first heat exchanger heat exchange is performed between the first cooling water and the second cooling water.
  • the first pipe circulates the first cooling water between the heat sink to which the electric device is thermally connected and the first heat exchanger.
  • the second pipe circulates the second cooling water between the second heat exchanger and the first heat exchanger.
  • the bypass pipe branches from the second pipe, and at least a part of the second cooling water flowing through the second pipe is returned to the second pipe without passing through the first heat exchanger.
  • the flow rate changing mechanism changes the flow rate of the second cooling water flowing into the bypass pipe from the second pipe.
  • the control unit monitors a detected value for at least one of the power loss of the electric device and the temperature of the first cooling water, and when the detected value becomes less than the first threshold value, the bypass from the second pipe.
  • the flow rate changing mechanism is controlled so as to increase the flow rate of the second cooling water flowing into the pipe, and when the detected value becomes equal to or higher than the second threshold value, the second cooling flowing into the bypass pipe from the second pipe.
  • the flow rate changing mechanism is controlled so as to reduce the flow rate of water.
  • the figure for demonstrating the 1st control mode of 1st Embodiment. The figure for demonstrating the 1st control mode of 1st Embodiment.
  • the figure for demonstrating the 2nd control mode of 1st Embodiment. The figure for demonstrating the 2nd control mode of 1st Embodiment.
  • the flowchart which shows an example of the processing flow of 1st Embodiment.
  • the figure which shows an example of the drive system of 2nd Embodiment. The figure for demonstrating the control mode of the 2nd Embodiment.
  • based on XX means “based on at least XX”, and includes the case where it is based on another element in addition to XX. Further, “based on XX” is not limited to the case where XX is directly used, but also includes the case where it is based on a calculation or processing performed on XX. "XX” is an arbitrary element (for example, arbitrary information). As used herein, the term “in the middle of YY” is not limited to the midpoint between both ends of YY, but means an arbitrary position between both ends of YY.
  • the cooling device 3 of the first embodiment will be described with reference to FIGS. 1 to 7.
  • This embodiment is an example in which the cooling device 3 is applied to the drive system (electric motor control system) 1.
  • the cooling device 3 can be widely used in systems other than the drive system. That is, the "electrical device” described later is not limited to the module of the power conversion device 2, and various electric devices for which cooling is desired are widely applicable.
  • FIG. 1 is a diagram showing an example of a drive system 1 including a cooling device 3.
  • the drive system 1 includes, for example, a power conversion device 2, a cooling device 3, an external heat exchanger 4, and an external pump 5.
  • the power conversion device 2 includes, for example, a power conversion circuit 11, a current transformer (CT) 12, a heat sink 13, and a control unit 14.
  • CT current transformer
  • the power conversion circuit 11 is connected to the AC power supply PS via the first power line 16 and is connected to the load L (for example, an electric motor) via the second power line 17, for example.
  • the power conversion circuit 11 has a plurality of switching elements and a plurality of diodes, and converts power between AC power and DC power.
  • the power conversion circuit 11 converts the AC power supplied from the AC power supply PS into DC power, further converts the converted DC power into AC power suitable for the load L, and supplies the converted DC power to the load L.
  • the current transformer 12 is provided on the second power line 17.
  • the current transformer 12 generates a detection current proportional to the magnitude of the output current based on the output current output from the power converter 2 to the second power line 17.
  • the current transformer 12 outputs the generated detection current to the control unit 14.
  • the current transformer 12 may be provided in the power conversion circuit 11 instead of the second power line 17.
  • the heat sink 13 is attached with one or more modules 11a (for example, an IGBT (Insulated Gate Bipolar Transistor) module including the switching element) constituting the power conversion circuit 11, and is thermally connected to the module 11a.
  • modules 11a for example, an IGBT (Insulated Gate Bipolar Transistor) module including the switching element
  • IGBT Insulated Gate Bipolar Transistor
  • the heat sink 13 is cooled by the flow of the first cooling water inside the heat sink 13, and promotes the cooling of the module 11a.
  • the module 11a attached to the heat sink 13 is an example of an “electric device”.
  • the module 11a will be referred to as an “electric device 11a”.
  • the control unit 14 controls a plurality of switching elements included in the power conversion circuit 11 by, for example, PWM (Pulse Width Modulation) control, and performs desired power conversion.
  • the control unit 14 includes a current detection unit 14a.
  • the current detection unit 14a calculates the current value of the output current output from the power conversion device 2 to the second power line 17 based on the detection current generated by the current transformer 12.
  • the control unit 14 controls the power conversion circuit 11 and protects the overcurrent based on the calculated current value of the output current.
  • the control unit 14 outputs the calculated current value of the output current to the control unit 29 of the cooling device 3, which will be described later.
  • the detection current generated by the current transformer 12 may be directly output to the control unit 29 of the cooling device 3, and the current value of the output current may be calculated by the control unit 29 of the cooling device 3. ..
  • the cooling device 3 includes, for example, a heat exchanger 20, a first pipe 21, a pump 22, a valve 23, a second pipe 24, a bypass pipe 25, a solenoid valve 26, a first temperature sensor 27A, a second temperature sensor 27B, and a storage unit. It has 28 and a control unit 29.
  • the heat exchanger 20 has a flow path 20a through which the first cooling water flows and a flow path 20b through which the second cooling water flows.
  • the first cooling water is cooling water that is circulated between the heat exchanger 20 and the heat sink 13 of the power conversion device 2 to cool the heat sink 13.
  • the first cooling water is, for example, pure water.
  • the second cooling water is cooling water that is circulated between the external heat exchanger 4 and the heat exchanger 20, which will be described later, and cools the first cooling water heated by the heat sink 13 by the heat exchanger 20. ..
  • the second cooling water is, for example, industrial water called outside water.
  • the heat exchanger 20 is an example of a “first heat exchanger”.
  • the first pipe 21 connects the heat exchanger 20 and the heat sink 13 of the power conversion device 2, and circulates the first cooling water between the heat exchanger 20 and the heat sink 13.
  • the first pipe 21 has a first pipe portion 21a and a second pipe portion 21b.
  • the first piping portion 21a extends between the first cooling water outlet of the heat exchanger 20 and the cooling water inlet of the heat sink 13, and guides the first cooling water cooled by the heat exchanger 20 to the heat sink 13. .
  • the second piping portion 21b extends between the cooling water outlet of the heat sink 13 and the first cooling water inlet of the heat exchanger 20, and is warmed by passing through the inside of the heat sink 13. Guide water to the heat exchanger 20.
  • the pump 22 and the valve 23 are provided in the first pipe 21.
  • the rotation speed of the pump 22 is a fixed value, and the flow rate of the first cooling water flowing through the first pipe 21 is always constant.
  • the control unit 29 described later may detect the flow rate of the first cooling water based on the signal corresponding to the rotation speed of the pump 22. ..
  • the flow rate sensor may be provided in the first pipe 21 and the detection result of the flow rate sensor may be output to the control unit 29.
  • the second pipe 24 is provided so as to connect the external heat exchanger 4 and the heat exchanger 20, which will be described later, to circulate the second cooling water between the external heat exchanger 4 and the heat exchanger 20.
  • the second pipe 24 has a first pipe portion 24a and a second pipe portion 24b.
  • the first piping portion 24a extends between the cooling water outlet of the external heat exchanger 4 and the second cooling water inlet of the heat exchanger 20, and is cooled by passing through the inside of the external heat exchanger 4.
  • the second cooling water is guided to the heat exchanger 20.
  • the second piping portion 24b extends between the second cooling water outlet of the heat exchanger 20 and the cooling water inlet of the external heat exchanger 4, and the second cooling is heated by the heat exchanger 20. Guide water to the external heat exchanger 4.
  • the bypass pipe 25 branches from the second pipe 24 and returns at least a part of the second cooling water flowing through the second pipe 24 to the second pipe 24 without passing through the heat exchanger 20.
  • one end of the bypass pipe 25 is connected in the middle of the first pipe portion 24a of the second pipe 24.
  • the other end of the bypass pipe 25 is connected in the middle of the second pipe portion 24b of the second pipe 24.
  • the solenoid valve 26 is provided in the bypass pipe 25 and changes the flow rate of the second cooling water flowing from the second pipe 24 into the bypass pipe 25.
  • the solenoid valve 26 is switched between a closed state in which the bypass pipe 25 is closed and an open state in which the bypass pipe 25 is opened, based on a control command from the control unit 29 described later.
  • the solenoid valve 26 is switched to the open state, a part of the second cooling water flows from the second pipe 24 into the bypass pipe 25. As a result, the flow rate of the second cooling water flowing from the second pipe 24 into the heat exchanger 20 is reduced.
  • the solenoid valve 26 is switched to the closed state, the second cooling water does not flow from the second pipe 24 to the bypass pipe 25.
  • the second state is a state in which the flow rate of the second cooling water flowing from the second pipe 24 into the bypass pipe 25 is larger than that in the first state.
  • the second state is a state in which the flow rate of the second cooling water flowing into the heat exchanger 20 from the second pipe 24 is smaller than that in the first state.
  • the configuration of the solenoid valve 26 is not limited to the above example.
  • the solenoid valve 26 can be controlled to a plurality of opennesses, and the flow rate of the second cooling water flowing from the second pipe 24 to the bypass pipe 25 may be switched in a plurality of stages. That is, the first state is not limited to a state in which the second cooling water does not flow through the bypass pipe 25 at all, and a relatively small amount of the second cooling water may flow through the bypass pipe 25.
  • the solenoid valve 26 is an example of a “flow rate changing mechanism”.
  • the "flow rate changing mechanism" is not limited to the solenoid valve provided in the bypass pipe 25, and may be a three-way valve provided at the connection portion between the second pipe 24 and the bypass pipe 25.
  • the bypass pipe 25 and the solenoid valve 26 are provided, for example, to suppress freezing of the first cooling water.
  • the control unit 29 receives the detection result of the first temperature sensor 27A from, for example, the first temperature sensor 27A (described later) provided in the first pipe 21.
  • the control unit 29 opens the bypass pipe 25 when the detection result of the first temperature sensor 27A satisfies a predetermined condition (for example, when the temperature of the first cooling water is less than the threshold value set for antifreezing). Controls the solenoid valve 26.
  • the flow rate of the second cooling water flowing from the second pipe 24 into the heat exchanger 20 is reduced, and the heat exchange between the first cooling water and the second cooling water in the heat exchanger 20 is suppressed.
  • the temperature of the first cooling water is already low, excessive cooling of the first cooling water is suppressed, and freezing of the first cooling water is suppressed.
  • the cooling device 3 has the above-mentioned freezing suppression function, for example, when it is assumed that the cooling device 3 is used in a place where the first cooling water may freeze (for example, a cold region).
  • the freeze suppression function is not an essential function for the cooling device 3. That is, the cooling device 3 does not have to have a freeze suppression function.
  • the bypass pipe 25 and the solenoid valve 26 may be provided for a purpose different from the suppression of freezing of the first cooling water (for example, only the suppression of temperature fluctuation of the heat sink 13 described later).
  • the first temperature sensor 27A is provided in the second piping portion 21b of the first piping 21.
  • the first temperature sensor 27A is provided at the end of the second piping portion 21b connected to the cooling water outlet of the heat sink 13.
  • the first temperature sensor 27A detects the temperature of the first cooling water (cooling water outlet temperature T out, which will be described later) at the cooling water outlet of the heat sink 13.
  • the first temperature sensor 27A may be provided on the heat sink 13 instead of the first pipe 21.
  • the detection result of the first temperature sensor 27A is output to the control unit 29.
  • the second temperature sensor 27B is provided in the first piping portion 24a of the second piping 24.
  • the second temperature sensor 27B detects a second coolant temperature (external water temperature T a to be described later) in the second cooling water inlet of the heat exchanger 20.
  • the detection result of the second temperature sensor 27B is output to the control unit 29.
  • the storage unit 28 stores various information necessary for controlling the cooling device 3.
  • the storage unit 28 stores, for example, the "current-loss characteristic" obtained at the time of designing the power conversion device 2.
  • the current-loss characteristic is a correspondence relationship between the current value of the output current of the power conversion device 2 (or the electric device 11a) and the power loss value of the power conversion device 2 (or the electric device 11a).
  • the control unit 29 controls the entire cooling device 3.
  • the control unit 29 controls the pump 22, the valve 23, and the solenoid valve 26.
  • the control unit 29 will be described in detail later.
  • the external heat exchanger 4 is arranged outside the cooling device 3, for example.
  • the external heat exchanger 4 is, for example, a cooling tower, and cools the second cooling water by bringing the second cooling water into direct or indirect contact with the atmosphere.
  • the configuration of the external heat exchanger 4 is not limited to the above example, and may be, for example, a heat exchanger accompanied by a blower.
  • the external heat exchanger 4 is an example of a “second heat exchanger”.
  • the external pump 5 is provided in the second pipe 24. When the external pump 5 is driven, the second cooling water flows in the second pipe 24.
  • the external pump 5 may be provided as a part of the cooling device 3.
  • the control unit 29 of the present embodiment has a function of suppressing temperature fluctuations of the heat sink 13. Specifically, the control unit 29 monitors the detected value for at least one of the power loss of the electric device 11a and the temperature of the first cooling water. Then, the control unit 29 controls the solenoid valve 26 so as to increase the flow rate of the second cooling water flowing from the second pipe 24 into the bypass pipe 25 when the detected value becomes less than the first threshold value. As a result, the flow rate of the second cooling water flowing from the second pipe 24 into the heat exchanger 20 is reduced, and the heat sink 13 is prevented from being excessively cooled.
  • control unit 29 reduces (for example, restores) the flow rate of the second cooling water flowing from the second pipe 24 into the bypass pipe 25 when the detected value becomes equal to or higher than the second threshold value. 26 is controlled. As a result, the flow rate of the second cooling water flowing from the second pipe 24 into the heat exchanger 20 is increased (for example, returned to the original state), and the heat sink 13 is efficiently cooled.
  • the “first threshold value” and the “second threshold value” are set to the same value (for example, the threshold value W th described later) will be described. That is, the threshold value W th , which will be described later, is an example of the “first threshold value” and also an example of the “second threshold value”.
  • the "first threshold value” and the “second threshold value” may be different values from each other.
  • control unit 29 determines whether or not a predetermined first condition described later is satisfied. Then, when it is determined that the first condition is satisfied, the control unit 29 controls the cooling device 3 in the first control mode. On the other hand, when the control unit 29 determines that the first condition is not satisfied, the control unit 29 controls the cooling device 3 in the second control mode.
  • the threshold value for switching the open / closed state of the solenoid valve 26 switching the cooling device 3 between the first state and the second state
  • the first control mode and the second control mode will be described respectively.
  • T in is the cooling water inlet temperature (the temperature of the first cooling water at the cooling water inlet of the heat sink 13) [° C.].
  • T out is the cooling water outlet temperature (the temperature of the first cooling water at the cooling water outlet of the heat sink 13) [° C.].
  • T out_H is the cooling water outlet temperature T out when it is assumed that the power conversion device 2 (electric device 11a) operates with the maximum power loss in the first state.
  • T out_H may be referred to as a "third reference temperature”.
  • T out_L is the cooling water outlet temperature T out when it is assumed that the power conversion device 2 (electric device 11a) operates with the minimum power loss in the first state.
  • T out_L may be referred to as "first reference temperature”.
  • T out_L' is the cooling water outlet temperature T out when it is assumed that the power conversion device 2 (electric device 11a) operates with the minimum power loss in the second state.
  • T out_L' may be referred to as a "second reference temperature”.
  • ⁇ T is the temperature difference between T out_H and T out_L .
  • ⁇ T' is the temperature difference between T out_H and T out_L '.
  • T a is (the temperature of the second coolant in the second cooling water inlet of the heat exchanger 20) external water temperature is [° C.].
  • W is the power loss [W] of the electric device 11a.
  • W max is the maximum power loss [W] during operation of the electric device 11a.
  • the maximum power loss W max during operation is obtained in advance according to the load pattern of the power conversion device 2 (electric device 11a) and is stored in the storage unit 28.
  • W min is the minimum power loss [W] during operation of the electric device 11a.
  • the minimum power loss W min during operation is obtained in advance according to the load pattern of the power conversion device 2 (electric device 11a) and is stored in the storage unit 28.
  • W th is a threshold value related to the power loss W of the electric device 11a set for switching the open / closed state of the solenoid valve 26 in the control for suppressing the temperature fluctuation of the heat sink 13 described above.
  • C is the specific heat [J / (g ⁇ K)] of the first cooling water. The specific heat C is stored in the storage unit 28.
  • is the density of the first cooling water [g / cm2].
  • the density ⁇ is stored in the storage unit 28.
  • Q is the flow rate [L / min] of the first cooling water.
  • the flow rate Q is obtained in advance and stored in the storage unit 28.
  • the control unit 29 may calculate the flow rate Q based on the control amount of the rotation speed of the pump 22 or the detection result of the flow rate sensor provided in the first pipe 21.
  • is the temperature efficiency (heat exchange efficiency) of the heat exchanger 20.
  • ⁇ 1 is the temperature efficiency ⁇ of the heat exchanger 20 when the solenoid valve 26 is closed (that is, when the cooling device 3 is in the first state).
  • ⁇ 2 is the temperature efficiency ⁇ of the heat exchanger 20 when the solenoid valve 26 is in the open state (that is, when the cooling device 3 is in the second state).
  • Equation (1) is a definition equation for the temperature efficiency of the heat exchanger.
  • the cooling water outlet temperature T out can be calculated by the equation (2).
  • Equation (2) can be obtained by modifying Equation (1).
  • the cooling water outlet temperature T out_H can be calculated as in the equation (3).
  • the cooling water outlet temperature T out_L can be calculated as in the equation (4).
  • the temperature difference ⁇ T can be calculated as in the equation (5).
  • FIG. 2 is a diagram for explaining the first control mode.
  • the straight line L1 in FIG. 2 shows the relationship between the power loss W of the electric device 11a and the cooling water outlet temperature T out when it is assumed that the power conversion device 2 (electric device 11a) is operated in the first state.
  • the straight line L2 in FIG. 2 shows the relationship between the power loss W of the electric device 11a and the cooling water outlet temperature T out when it is assumed that the power conversion device 2 (electric device 11a) is operated in the second state. Is shown.
  • the threshold value W th is set to switch the open / closed state of the solenoid valve 26.
  • the control unit 29 monitors the detected value of the power loss of the electric device 11a by a method described in detail later. Then, when the detected value of the power loss is in the region (region A1) equal to or higher than the threshold value W th , the control unit 29 controls the cooling device 3 to the first state by controlling the solenoid valve 26 in the closed state. On the other hand, when the detected value of the power loss is in the region (region A2) less than the threshold value W th , the control unit 29 controls the cooling device 3 to the second state by controlling the solenoid valve 26 in the open state. .. That is, in this case, the cooling device 3 is controlled by the characteristics shown by the thick line in FIG.
  • the threshold value W th is a value related to the power loss W, for example, the temperature of the first cooling water (temperature value on the straight line L1) and the second reference temperature T out_L when it is assumed that the electric device 11a is operated in the first state.
  • the difference D11 from' is set within a range (range R shown in FIG. 2) in which the difference D11 between the first reference temperature T out_L and the second reference temperature T out_L'is half or less. That is, an example of the threshold value W th is an arbitrary value within the range R. As a premise, ⁇ T' ⁇ T.
  • the threshold value W th is such that the temperature of the first cooling water (temperature value on the straight line L1) is the second reference temperature T out_L'when it is assumed that the electric device 11a is operated in the first state.
  • the value W A is set to.
  • the threshold value W th in this case is obtained by solving the following equation (9) and is calculated as in the equation (10).
  • FIG. 3 is another diagram for explaining the first control mode.
  • FIG. 3 shows another example of the threshold value W th in the first control mode.
  • the threshold value W th is such that the temperature of the first cooling water (temperature value on the straight line L2) is the third reference temperature T out_H when it is assumed that the electric device 11a is operated in the second state. It is set to the value W B. That is, in this case, the cooling device 3 is controlled by the characteristics shown by the thick line in FIG.
  • the threshold W th is such that the temperature of the first cooling water (temperature value on the straight line L1) is the second reference temperature T out_L when it is assumed that the electric device 11a is operated in the first state.
  • the value W a of the 'range between the temperature of the first coolant and the third reference temperature T out_h become values W B when the electric device 11a is assumed to have operated in the second state (FIG. 3 It may be set within the range R1) shown in.
  • FIG. 4 is a diagram for explaining the second control mode.
  • the cooling device 3 one or more of the maximum power loss W max during operation of the electric device 11a, the minimum power loss W min during operation of the electric device 11a, the outside water temperature T a , the flow rate Q of the first cooling water, and the like. Due to this, the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 may be significantly different from each other. When the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 are far apart, the cooling water outlet temperature T out regardless of whether the solenoid valve 26 is in the closed state or the open state, as shown in region A in FIG. May not fall within the range of ⁇ T'(T out_H to T out_L ').
  • the control unit 29 uses the threshold value W th'instead of the threshold value W th .
  • the threshold value W th' is a threshold value related to the power loss [W] of the electric device 11a set to switch the open / closed state of the solenoid valve 26 in the control for suppressing the temperature fluctuation of the heat sink 13. .
  • the threshold W th' is another example of the "first threshold” and another example of the "second threshold”.
  • the threshold W th ' the temperature of the first cooling water when it is assumed that was operated electrical device 11a in the first state (temperature value on the straight line L1) and the second reference temperature T OUT_L'
  • the difference between the first difference D21 and the third reference temperature T out_H is the difference between the temperature of the first cooling water (temperature value on the straight line L2) and the third reference temperature T out_H when the electric device 11a is operated in the second state.
  • the value W C is set so that the first difference D21 and the second difference D22 are the same as each other. That is, in this case, the cooling device 3 is controlled by the characteristics shown by the thick line in FIG.
  • the first difference D21 and the second difference D22 are deviation values from the range of ⁇ T'. In this case, the fluctuation range of T out is T'' (T out_L '' to T out_H ').
  • the threshold value W th'in this case is obtained by solving the following equation (13) and is calculated as in the equation (14).
  • Equation (19) is a condition when W th'is set in W C in FIG.
  • FIG. 5 is another diagram for explaining the second control mode.
  • FIG. 5 shows another example of the threshold value W th'in the second control mode.
  • the threshold W th ' is first cooling water temperature when it is assumed that operating the electric device 11a in the second state (temperature value on the straight line L2) and a third reference temperature T out_h
  • the value W D is set to. That is, in this case, the cooling device 3 is controlled by the characteristics shown by the thick line in FIG.
  • the threshold value W th' has a value W C in which the first difference D21 and the second difference D22 described above are the same as each other, and the electric device 11a is operated in the second state.
  • the temperature of the first cooling water (temperature value on the straight line L2) may be set within the range (range R2 shown in FIG. 5) between the value W D and the third reference temperature T out_H .
  • this equation (20) is a looser condition than the equation (19). Therefore, it is not necessary to dare to define the equation (20), and even if W th'is set in W D , the solenoid valve 26 is controlled if the condition of the equation (19) is not satisfied. It may not be.
  • FIG. 6 is a block diagram showing a functional configuration of the control unit 29.
  • the control unit 29 includes, for example, a control mode determination unit 31, a threshold value setting unit 32, a current value acquisition unit 33, a power loss calculation unit 34, a comparison unit (monitoring unit) 35, an opening / closing determination unit 36, and a solenoid valve operation circuit 37. Including. In the following description, it is assumed that the solenoid valve 26 is in the closed state at the start of operation of the cooling device 3.
  • the control mode determination unit 31 is, for example, the flow rate Q of the first cooling water stored in the storage unit 28, the specific heat C of the first cooling water stored in the storage unit 28, and the first cooling water stored in the storage unit 28.
  • the density ⁇ of, the cooling water outlet temperature T out detected by the first temperature sensor 27A, the outside water temperature T a detected by the second temperature sensor 27B, and the power loss W detected by the power loss calculation unit 34. Calculate the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20. For example, these temperature efficiencies ⁇ 1 and ⁇ 2 operate the cooling device 3 in advance in the first state and the second state in the preliminary operation of the drive system 1, and the cooling water outlet temperature T out detected at that time. advance is calculated based on the external water temperature T a, and the power loss W.
  • control mode determination unit 31 sets the calculated temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 and the maximum operating power loss W max and the minimum operating power loss W min stored in the storage unit 28. Based on this, it is determined whether or not the first condition of the following equation (21) is satisfied.
  • control mode determination unit 31 determines that the first condition is satisfied, the control mode determination unit 31 determines to control the cooling device 3 in the first control mode, and notifies the threshold value setting unit 32 that the cooling device 3 is controlled in the first control mode. To do.
  • the control mode determination unit 31 determines that the first condition is not satisfied, the calculated temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 and the maximum operating power loss stored in the storage unit 28 are stored. Based on W max and the minimum power loss during operation W min , it is determined whether or not the second condition of the following equation (22) is satisfied.
  • control mode determination unit 31 determines that the second condition is satisfied, the control mode determination unit 31 determines to control the cooling device 3 in the second control mode, and notifies the threshold value setting unit 32 that the cooling device 3 is controlled in the second control mode. To do.
  • the control unit 29 keeps the solenoid valve 26 in the closed state.
  • the threshold value setting unit 32 sets the threshold value W th as a switching point for switching the open / closed state of the solenoid valve 26.
  • the value of the threshold value W th an arbitrary value within the above-mentioned range R1 is selected in advance with reference to FIG. 3, and for example, when it is assumed that the electric device 11a is operated in the first state, the first cooling water The value W A at which the temperature of (the temperature value on the straight line L1) becomes the second reference temperature T out_L'is set.
  • the threshold value setting unit 32 sets the threshold value W th'as a switching point for switching the open / closed state of the solenoid valve 26.
  • the value of the threshold value W th ' an arbitrary value within the above-mentioned range R2 is selected in advance with reference to FIG. 5, and for example, the above-mentioned first difference D21 and the second difference D22 are the same as each other.
  • W B is set.
  • the threshold value setting unit 32 outputs the set threshold value W th or threshold value W th'to the comparison unit 35.
  • the current value acquisition unit 33 receives the current value of the output current of the power conversion device 2 detected by the control unit 29 of the power conversion device 2 from the control unit 29 of the power conversion device 2. The current value acquisition unit 33 outputs the current value of the received output current to the power loss calculation unit 34.
  • the power loss calculation unit 34 calculates the power loss W of the electric device 11a based on the current value received from the current value acquisition unit 33 and the current-loss characteristic stored in the storage unit 28.
  • the power loss calculation unit 34 outputs the calculated power loss W of the electric device 11a to the comparison unit 35.
  • the power loss W of the electric device 11a is an example of a “detection value” used as a monitoring target.
  • the comparison unit (monitoring unit) 35 monitors the power loss W calculated by the power loss calculation unit 34.
  • the comparison unit 35 compares the threshold value W th (or threshold value W th ') set by the threshold value setting unit 32 with the power loss W calculated by the power loss calculation unit 34 at a predetermined cycle. ..
  • the comparison unit 35 outputs the comparison result between the power loss W and the threshold value W th (or the threshold value W th ′) to the open / close determination unit 36.
  • the opening / closing determination unit 36 Based on the comparison result of the comparison unit 35, the opening / closing determination unit 36 reduces the power loss W, and the threshold value W th (or the threshold value W th ') starts from the state where the power loss W is equal to or higher than the threshold value W th (or threshold value W th '). If it drops below, it decides to open the solenoid valve 26.
  • the opening / closing determination unit 36 decides to open the solenoid valve 26
  • the opening / closing determination unit 36 outputs a command for opening the solenoid valve 26 to the solenoid valve operation circuit 37.
  • closing determination unit 36 based on the comparison result of the comparison unit 35 increases the power loss W is, the threshold power loss W is a state of less than the threshold value W th (or the threshold W th ') W th (or threshold W When it increases more than th '), it is decided to close the solenoid valve 26.
  • the opening / closing determination unit 36 decides to close the solenoid valve 26
  • the opening / closing determination unit 36 outputs a command for closing the solenoid valve 26 to the solenoid valve operation circuit 37.
  • the solenoid valve operation circuit 37 When the solenoid valve operation circuit 37 receives a command for opening the solenoid valve 26 from the opening / closing determination unit 36, the solenoid valve operation circuit 37 outputs a control signal corresponding to the open state to the solenoid valve 26 to change the solenoid valve 26 from the closed state to the open state. Migrate. On the other hand, when the solenoid valve operation circuit 37 receives a command for closing the solenoid valve 26 from the opening / closing determination unit 36, the solenoid valve operating circuit 37 outputs a control signal corresponding to the closed state to the solenoid valve 26 and opens the solenoid valve 26 from the open state. Move to the closed state.
  • FIG. 7 is a flowchart showing an example of the processing flow of the control unit 29.
  • the control unit 29 calculates the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 based on the cooling water outlet temperature T out , the outside water temperature T a , the flow rate Q of the first cooling water, and the power loss W. (S101). This process of S101 is performed in advance by operating the cooling device 3 in advance in each of the first state and the second state in the preliminary operation of the drive system 1 as described above.
  • control unit 29 determines whether or not the first condition is satisfied based on the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20, the maximum power loss W max during operation, and the minimum power loss W min during operation. (S102).
  • control unit 29 determines that the first condition is satisfied (S102: YES)
  • the control unit 29 sets a threshold value W th as a threshold value for switching the open / closed state of the solenoid valve 26 (S103). Then, the control unit 29 proceeds to the process of S107.
  • control unit 29 determines that the first condition is not satisfied (S102: NO)
  • the temperature efficiencies ⁇ 1 and ⁇ 2 of the heat exchanger 20 the maximum power loss W max during operation, and the minimum during operation Based on the power loss W min , it is determined whether or not the above second condition is satisfied (step 104).
  • control unit 29 determines that the second condition is satisfied (S104: YES)
  • the control unit 29 sets the threshold value W th'as a threshold value for switching the state of the solenoid valve 26 (S105).
  • control unit 29 determines that the above second condition is not satisfied (S104: NO)
  • the control unit 29 does not perform the temperature fluctuation suppression control in this method (S106), and ends this flow.
  • control unit 29 calculates the power loss W of the electric device 11a based on the voltage value of the output current of the power conversion device 2 (or the electric device 11a) and the current-loss characteristic during the operation of the cooling device 3. (S107). Next, the control unit 29 determines whether or not the calculated power loss W is equal to or greater than the threshold value W th (or threshold value W th ′) (S108).
  • the control unit 29 controls the solenoid valve 26 to be in the open state (S109).
  • the control unit 29 controls the solenoid valve 26 to the closed state (S110).
  • the control unit 29 determines whether or not there is a command to stop the operation of the cooling device 3 (S111). When there is no command to stop the operation of the cooling device 3 (S111: NO), the control unit 29 repeats the processes from S107 to S110 in a predetermined cycle. On the other hand, when there is a command to stop the operation of the cooling device 3 (S111: YES), the control unit 29 stops the operation of the cooling device 3. As a result, the processing of this flow is completed.
  • the control unit 29 monitors the detected value regarding the power loss of the electric device 11a, and when the detected value becomes less than the first threshold value, the control unit 29 flows into the bypass pipe 25 from the second pipe 24.
  • the solenoid valve 26 is controlled so as to increase the flow rate of the cooling water, and when the detected value becomes equal to or higher than the second threshold value, the solenoid valve 26 is electromagnetically controlled so as to reduce the flow rate of the second cooling water flowing from the second pipe 24 to the bypass pipe 25. Controls the valve 26.
  • the temperature fluctuation of the heat sink 13 can be suppressed to the width of ⁇ T'. As a result, the temperature fluctuation of the heat sink 13 can be reduced. If the temperature fluctuation of the heat sink 13 can be reduced, the reliability of the electric device 11a can be improved by increasing the thermal cycle withstand capability of the electric device 11a.
  • the cooling device 3 is a bypass pipe that branches from the second pipe 24 and returns at least a part of the second cooling water flowing through the second pipe 24 to the second pipe 24 without passing through the heat exchanger 20.
  • the solenoid valve 26 changes the flow rate of the second cooling water flowing from the second pipe 24 into the bypass pipe 25. According to such a configuration, even if the cooling device does not have an inverter function (cooling device whose flow rate cannot be adjusted), the temperature fluctuation of the heat sink 13 can be reduced and the reliability of the electric device 11a can be improved.
  • the value related to the power loss of the electric device 11a is monitored as the detected value. According to such a configuration, it is not necessary to measure the water quality of the cooling water in comparing the threshold value with the detected value. Further, when controlling by the water temperature detection, but inevitably delayed control response because there is a time constant for the change of the water temperature, the current value can perform quick control response to changes instantaneously.
  • FIG. 8 is a diagram showing an example of the drive system 1 of the second embodiment.
  • FIG. 9 is a diagram showing a control mode of the second embodiment.
  • the first threshold value T out_thL and the second threshold value T out_thH are set as the threshold values related to the temperature of the first cooling water instead of the threshold value W th related to the power loss (FIG. 9). reference).
  • the comparison unit 35 of the control unit 29 periodically compares, for example, the cooling water outlet temperature T out detected by the first temperature sensor 27A with the first threshold value T out_thL and the second threshold value T out_thH . Then, the control unit 29 controls to open the solenoid valve 26 when the cooling water outlet temperature T out drops below T out_thL in the state where the solenoid valve 26 is closed. On the other hand, the control unit 29 controls to close the solenoid valve 26 when the cooling water outlet temperature T out increases to T out_thH or more in the state where the solenoid valve 26 is open.
  • the first threshold value T Out_thL as the threshold relating to the temperature of the first cooling water' threshold W th to power loss and the second threshold value T Out_thH 'is set .
  • the usage of the first threshold value T out_thL'and the second threshold value T out_thH ' is the same as that of the first threshold value T out_thL and the second threshold value T out_thH .
  • the first threshold value T out_thL and the second threshold value T out_thH are different values, for example, but may be the same value.
  • the first threshold value T out_thL'and the second threshold value T out_thH' are different values, for example, but may be the same value.
  • the cooling device 3 may be designed to consistently meet the first condition.
  • the control unit 29 does not need to determine between the first control mode and the second control mode, and the threshold value W th (or the first threshold value T out_thL and the second threshold value T out_thH ) is always set as the threshold value. You may.
  • the cooling device 3 may be designed so as not to satisfy the first condition and always satisfy the second condition.
  • the control unit 29 does not need to determine between the first control mode and the second control mode, and the threshold value W th '(or the first threshold value T out_thL ' and the second threshold value T out_thH ') is always set as the threshold value. It may be set.
  • control unit 29 may be, for example, an LSI (Large Scale Integration), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field-Programmable Gate). It is realized by hardware (circuit part; including circuitry) such as Array). All or part of the control unit 29 is a software function realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a computer program (software) stored in a memory (not shown). It may be a department, or it may be realized by the collaboration between the hardware and the software function department.
  • the embodiment is not limited to the above example.
  • the electric device 11a attached to the heat sink 13 is not limited to the IGBT module, and may be another type of electric device.
  • the cooling device 3 has a bypass pipe 25 and a solenoid valve 26.
  • the cooling device 3 does not have to have the bypass pipe 25.
  • the cooling device 3 may have a pump provided in the second pipe 24, which has a variable rotation speed and the like and can change the flow rate of the second cooling water flowing through the second pipe 24.
  • the pump is an example of a "flow rate changing mechanism".
  • the control unit of the cooling device monitors the detected value for at least one of the power loss of the electric device and the temperature of the first cooling water, and the detected value is the first threshold value.
  • the flow rate changing mechanism is controlled so as to increase the flow rate of the second cooling water flowing from the second pipe to the bypass pipe when the value is less than the second value, and when the detected value becomes equal to or higher than the second threshold value, the bypass from the second pipe is used.
  • the flow rate changing mechanism is controlled so as to reduce the flow rate of the second cooling water flowing into the pipe. According to such a configuration, it is possible to improve the reliability of the electric device to be cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Inverter Devices (AREA)

Abstract

実施形態の冷却装置は、第1熱交換器と、第1配管と、第2配管と、バイパス配管と、流量変更機構と、制御部とを備えている。前記制御部は、電気装置の電力損失と第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、前記検出値が第1閾値未満になる場合に前記第2配管から前記バイパス配管に流入する第2冷却水の流量を増やすように前記流量変更機構を制御し、前記検出値が第2閾値以上になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御する。

Description

冷却装置および冷却方法
 本発明の実施形態は、冷却装置および冷却方法に関する。
 電気装置が熱的に接続されたヒートシンクに冷却水を供給する水冷式の冷却装置が知られている。
日本国特開2017-11852号公報
 本発明が解決しようとする課題は、冷却対象である電気装置の信頼性向上を図ることができる冷却装置および冷却方法を提供することである。
 実施形態の冷却装置は、第1熱交換器と、第1配管と、第2配管と、バイパス配管と、流量変更機構と、制御部とを備えている。前記第1熱交換器では、第1冷却水と第2冷却水との間で熱交換が行われる。前記第1配管は、電気装置が熱的に接続されたヒートシンクと前記第1熱交換器との間で前記第1冷却水を循環させる。前記第2配管は、第2熱交換器と前記第1熱交換器との間で前記第2冷却水を循環させる。前記バイパス配管は、前記第2配管から分岐し、前記第2配管を流れる前記第2冷却水の少なくとも一部を、前記第1熱交換器を通さずに前記第2配管に戻す。前記流量変更機構は、前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を変更する。前記制御部は、前記電気装置の電力損失と前記第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、前記検出値が第1閾値未満になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を増やすように前記流量変更機構を制御し、前記検出値が第2閾値以上になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御する。
第1の実施形態のドライブシステムの一例を示す図。 第1の実施形態の第1制御モードを説明するための図。 第1の実施形態の第1制御モードを説明するための図。 第1の実施形態の第2制御モードを説明するための図。 第1の実施形態の第2制御モードを説明するための図。 第1の実施形態の制御部の機能構成を示すブロック図。 第1の実施形態の処理流れの一例を示すフローチャート。 第2の実施形態のドライブシステムの一例を示す図。 第2の実施形態の制御モードを説明するための図。
 以下、実施形態の冷却装置および冷却方法を、図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。
 本明細書で言う「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。さらに「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。本明細書で言う「YYの途中」とは、YYの両端の間の中間点に限定されず、YYの両端の間の任意の位置を意味する。
 (第1の実施形態)
 図1から図7を参照し、第1の実施形態の冷却装置3について説明する。本実施形態は、冷却装置3がドライブシステム(電動機制御システム)1に適用された例である。ただし、冷却装置3は、ドライブシステム以外のシステムにも広く利用可能である。すなわち、後述する「電気装置」は、電力変換装置2のモジュールに限定されず、冷却が望まれる種々の電気装置が広く該当する。
 <1.ドライブシステムの全体構成>
 図1は、冷却装置3を含むドライブシステム1の一例を示す図である。ドライブシステム1は、例えば、電力変換装置2と、冷却装置3と、外部熱交換器4と、外部ポンプ5とを含む。
 <2.電力変換装置の構成>
 まず、電力変換装置2について説明する。電力変換装置2は、例えば、電力変換回路11、変流器(CT:Current Transformer)12、ヒートシンク13、および制御部14を含む。
 電力変換回路11は、例えば、第1電力線16を介して交流電源PSに接続されるとともに、第2電力線17を介して負荷L(例えば電動機)に接続されている。電力変換回路11は、複数のスイッチング素子および複数のダイオードを有し、交流電力と直流電力との間で電力を変換する。例えば、電力変換回路11は、交流電源PSから供給された交流電力を直流電力に変換し、変換した直流電力を負荷Lに適した交流電力にさらに変換して負荷Lに供給する。
 変流器12は、第2電力線17に設けられている。変流器12は、電力変換装置2から第2電力線17に出力される出力電流に基づきその出力電流の大きさに比例した検出用電流を生成する。変流器12は、生成した検出用電流を制御部14に出力する。なお変流器12は、第2電力線17に代えて、電力変換回路11に設けられてもよい。
 ヒートシンク13は、電力変換回路11を構成する1つ以上のモジュール11a(例えば上記スイッチング素子を含むIGBT(Insulated Gate Bipolar Transistor)モジュール)が取り付けられ、そのモジュール11aと熱的に接続されている。ヒートシンク13の内部には、後述する第1冷却水が流れる流路が設けられている。ヒートシンク13は、ヒートシンク13の内部を第1冷却水が流れることで冷却され、モジュール11aの冷却を促進する。ヒートシンク13に取り付けられたモジュール11aは、「電気装置」の一例である。以下では説明の便宜上、モジュール11aを「電気装置11a」と称する。
 制御部14は、例えば、PWM(Pulse Width Modulation)制御により電力変換回路11に含まれる複数のスイッチング素子を制御し、所望の電力変換を行う。制御部14は、電流検出部14aを含む。電流検出部14aは、変流器12により生成された検出用電流に基づき、電力変換装置2から第2電力線17に出力される出力電流の電流値を算出する。制御部14は、算出された出力電流の電流値に基づき、電力変換回路11の制御および過電流保護などを行う。本実施形態では、制御部14は、算出された出力電流の電流値を後述する冷却装置3の制御部29に出力する。なおこれに代えて、変流器12により生成された検出用電流が冷却装置3の制御部29に直接に出力され、冷却装置3の制御部29によって出力電流の電流値が算出されてもよい。
 <3.冷却装置の構成>
 次に、冷却装置3について説明する。冷却装置3は、例えば、熱交換器20、第1配管21、ポンプ22、バルブ23、第2配管24、バイパス配管25、電磁弁26、第1温度センサ27A、第2温度センサ27B、記憶部28、および制御部29を有する。
 熱交換器20は、第1冷却水が流れる流路20aと、第2冷却水が流れる流路20bとを有する。熱交換器20では、第1冷却水と第2冷却水との間で熱交換が行われる。第1冷却水は、熱交換器20と電力変換装置2のヒートシンク13との間で循環され、ヒートシンク13を冷却する冷却水である。第1冷却水は、例えば純水である。一方で、第2冷却水は、後述する外部熱交換器4と熱交換器20との間で循環され、ヒートシンク13で温められた第1冷却水を熱交換器20で冷却する冷却水である。第2冷却水は、例えば、外水と呼ばれる工業用水である。熱交換器20は、「第1熱交換器」の一例である。
 第1配管21は、熱交換器20と、電力変換装置2のヒートシンク13とを繋ぎ、熱交換器20とヒートシンク13との間で第1冷却水を循環させる。例えば、第1配管21は、第1配管部21aと、第2配管部21bとを有する。第1配管部21aは、熱交換器20の第1冷却水出口と、ヒートシンク13の冷却水入口との間に延びており、熱交換器20で冷却された第1冷却水をヒートシンク13に導く。一方で、第2配管部21bは、ヒートシンク13の冷却水出口と、熱交換器20の第1冷却水入口との間に延びており、ヒートシンク13の内部を通ることで温められた第1冷却水を熱交換器20に導く。
 ポンプ22およびバルブ23は、第1配管21に設けられている。バルブ23が開かれ、ポンプ22が駆動されると、第1冷却水は、第1配管21内を流れる。本実施形態では、ポンプ22の回転数が固定値であり、第1配管21を流れる第1冷却水の流量は常に一定である。なお、第1配管21を流れる第1冷却水の流量が変動する場合、後述する制御部29は、ポンプ22の回転数に対応する信号に基づき、第1冷却水の流量を検出してもよい。またこれに代えて、第1配管21に流量センサが設けられ、流量センサの検出結果が制御部29に出力されてもよい。
 第2配管24は、後述する外部熱交換器4と熱交換器20とを繋ぐように設けられ、外部熱交換器4と熱交換器20との間で第2冷却水を循環させる。例えば、第2配管24は、第1配管部24aと、第2配管部24bとを有する。第1配管部24aは、外部熱交換器4の冷却水出口と、熱交換器20の第2冷却水入口との間に延びており、外部熱交換器4の内部を通ることで冷却された第2冷却水を熱交換器20に導く。一方で、第2配管部24bは、熱交換器20の第2冷却水出口と、外部熱交換器4の冷却水入口との間に延びており、熱交換器20で温められた第2冷却水を外部熱交換器4に導く。
 バイパス配管25は、第2配管24から分岐し、第2配管24を流れる第2冷却水の少なくとも一部を、熱交換器20を通さずに第2配管24に戻す。例えば、バイパス配管25の一端は、第2配管24の第1配管部24aの途中に接続されている。バイパス配管25の他端は、第2配管24の第2配管部24bの途中に接続されている。
 電磁弁26は、バイパス配管25に設けられ、第2配管24からバイパス配管25に流入する第2冷却水の流量を変更する。本実施形態では、電磁弁26は、後述する制御部29からの制御指令に基づき、バイパス配管25を閉じる閉状態と、バイパス配管25を開く開状態との間で切り替えられる。電磁弁26が開状態に切り替えられると、第2配管24からバイパス配管25に第2冷却水の一部が流入する。その結果、第2配管24から熱交換器20に流入する第2冷却水の流量が減少する。一方で、電磁弁26が閉状態に切り替えられると、第2配管24からバイパス配管25に第2冷却水が流入しなくなる。その結果、第2配管24から熱交換器20に流入する第2冷却水の流量が増加する。すなわち、冷却装置3は、電磁弁26によって、「第1状態」と「第2状態」との間で切り替えられる。第2状態は、第1状態と比べて第2配管24からバイパス配管25に流入する第2冷却水の流量が多い状態である。言い換えると、第2状態は、第1状態と比べて第2配管24から熱交換器20に流入する第2冷却水の流量が少ない状態である。
 なお、電磁弁26の構成は、上記例に限定されない。例えば、電磁弁26は、複数の開き度に制御可能であり、第2配管24からバイパス配管25に流入する第2冷却水の流量を複数段階で切り替えることができてもよい。すなわち、上記第1状態は、バイパス配管25を第2冷却水が全く流れない状態に限定されず、相対的に少量の第2冷却水がバイパス配管25を流れる状態でもよい。電磁弁26は、「流量変更機構」の一例である。なお、「流量変更機構」は、バイパス配管25に設けられた電磁弁に限定されず、第2配管24とバイパス配管25との接続部に設けられた三方向弁などでもよい。
 本実施形態では、バイパス配管25および電磁弁26は、例えば第1冷却水の凍結抑制のために設けられている。詳しく述べると、後述する制御部29は、例えば第1配管21に設けられた第1温度センサ27A(後述)から、第1温度センサ27Aの検出結果を受け取る。制御部29は、第1温度センサ27Aの検出結果が所定の条件を満たす場合(例えば、第1冷却水の温度が凍結防止用に設定された閾値未満である場合)、バイパス配管25を開くように電磁弁26を制御する。これにより、第2配管24から熱交換器20に流入する第2冷却水の流量が減少し、熱交換器20での第1冷却水と第2冷却水との熱交換が抑制される。これにより、第1冷却水の温度がすでに低い場合に第1冷却水を過度に冷却することが抑制され、第1冷却水の凍結が抑制される。
 冷却装置3は、例えば、冷却装置3が第1冷却水の凍結のおそれがある場所(例えば寒冷地)で使用されることが想定される場合に、上記凍結抑制機能を持つ。ただし、凍結抑制機能は、冷却装置3にとって必須の機能ではない。すなわち、冷却装置3は、凍結抑制機能を有しなくてもよい。言い換えると、バイパス配管25および電磁弁26は、第1冷却水の凍結抑制とは異なる目的(例えば、後述するヒートシンク13の温度変動抑制のみ)のために設けられたものでもよい。
 第1温度センサ27Aは、第1配管21の第2配管部21bに設けられている。例えば、第1温度センサ27Aは、第2配管部21bのなかでヒートシンク13の冷却水出口に接続された端部に設けられている。第1温度センサ27Aは、ヒートシンク13の冷却水出口における第1冷却水の温度(後述する冷却水出口温度Tout)を検出する。なお、第1温度センサ27Aは、第1配管21に代えて、ヒートシンク13に設けられてもよい。第1温度センサ27Aの検出結果は、制御部29に出力される。
 第2温度センサ27Bは、第2配管24の第1配管部24aに設けられている。第2温度センサ27Bは、熱交換器20の第2冷却水入口における第2冷却水の温度(後述する外水温度Ta)を検出する。第2温度センサ27Bの検出結果は、制御部29に出力される。
 記憶部28は、冷却装置3の制御に必要な各種情報を記憶している。記憶部28は、例えば、電力変換装置2の設計時に求められた「電流―損失特性」を記憶している。電流―損失特性とは、電力変換装置2(または電気装置11a)の出力電流の電流値と、電力変換装置2(または電気装置11a)の電力損失の値との対応関係である。
 制御部29は、冷却装置3の全体を制御する。例えば、制御部29は、ポンプ22、バルブ23、および電磁弁26を制御する。なお、制御部29については、詳しく後述する。
 <4.外部熱交換器および外部ポンプ>
 次に、外部熱交換装置4および外部ポンプ5について説明する。
 外部熱交換器4は、例えば、冷却装置3の外部に配置されている。外部熱交換器4は、例えばクーリングタワーであり、第2冷却水を大気と直接または間接的に接触させることで第2冷却水を冷却する。ただし、外部熱交換器4の構成は、上記例に限定されず、例えば送風機を伴う熱交換器でもよい。外部熱交換器4は、「第2熱交換器」の一例である。
 外部ポンプ5は、第2配管24に設けられている。外部ポンプ5が駆動されると、第2冷却水は、第2配管24内を流れる。なお、外部ポンプ5は、冷却装置3の一部として設けられてもよい。
 <5.制御部の機能構成>
 次に、制御部29の機能構成について説明する。本実施形態の制御部29は、ヒートシンク13の温度変動を抑制する機能を持つ。具体的には、制御部29は、電気装置11aの電力損失と第1冷却水の温度とのうち少なくとも一方に関する検出値を監視する。そして、制御部29は、前記検出値が第1閾値未満になる場合に、第2配管24からバイパス配管25に流入する第2冷却水の流量を増やすように電磁弁26を制御する。これにより、第2配管24から熱交換器20に流入する第2冷却水の流量を減らし、ヒートシンク13が過度に冷却されることを抑制する。一方で、制御部29は、前記検出値が第2閾値以上になる場合に、第2配管24からバイパス配管25に流入する第2冷却水の流量を減らす(例えば元に戻す)ように電磁弁26を制御する。これにより、第2配管24から熱交換器20に流入する第2冷却水の流量を増やし(例えば元に戻し)、ヒートシンク13の冷却を効率的に行う。
 本実施形態では、前記検出値として、電気装置11aの電力損失に関する値が監視される例について説明する。具体的には、本実施形態では、電力変換装置2(または電気装置11a)の出力電流の電流値に基づいて電気装置11aの電力損失そのものが監視される。一方で、前記検出値として第1冷却水の温度に関する値が監視される例については、第2の実施形態として後述する。
 また本実施形態では、上記「第1閾値」と「第2閾値」とが同じ値(例えば後述する閾値Wth)に設定される例について説明する。すなわち、後述する閾値Wthは、「第1閾値」の一例であるとともに、「第2閾値」の一例である。なお、「第1閾値」と「第2閾値」とは、互いに異なる値でもよい。
 <5.1 制御の概要>
 本実施形態では、制御部29は、後述する所定の第1条件が満たされるか否かを判定する。そして、制御部29は、第1条件が満たされると判定した場合、第1制御モードで冷却装置3を制御する。一方で、制御部29は、第1条件が満たされないと判定した場合、第2制御モードで冷却装置3を制御する。第1制御モードと第2制御モードとでは、電磁弁26の開閉状態を切り替える(冷却装置3を第1状態と第2状態とで切り替える)ための閾値の値が異なる。以下、第1制御モードおよび第2制御モードについてそれぞれ説明する。
 <5.2 第1制御モード>
 ここで先に、いくつかの物理量について定義する。
 Tinは、冷却水入口温度(ヒートシンク13の冷却水入口における第1冷却水の温度)[℃]である。
 Toutは、冷却水出口温度(ヒートシンク13の冷却水出口における第1冷却水の温度)[℃]である。
 Tout_Hは、第1状態において電力変換装置2(電気装置11a)が最大電力損失で運転したと仮定した場合における冷却水出口温度Toutである。以下ではTout_Hを「第3基準温度」と称することがある。
 Tout_Lは、第1状態において電力変換装置2(電気装置11a)が最低電力損失で運転したと仮定した場合における冷却水出口温度Toutである。以下ではTout_Lを「第1基準温度」と称することがある。
 Tout_L’は、第2状態において電力変換装置2(電気装置11a)が最低電力損失で運転したと仮定した場合における冷却水出口温度Toutである。以下ではTout_L’を「第2基準温度」と称することがある。
 ΔTは、Tout_HとTout_Lとの温度差である。
 ΔT’は、Tout_HとTout_L’との温度差である。
 Taは、外水温度(熱交換器20の第2冷却水入口における第2冷却水の温度)[℃]である。
 Wは、電気装置11aの電力損失[W]である。
 Wmaxは、電気装置11aの運転時最大電力損失[W]である。なお、運転時最大電力損失Wmaxは、電力変換装置2(電気装置11a)の負荷パターンに応じて予め求められ、記憶部28に記憶されている。
 Wminは、電気装置11aの運転時最低電力損失[W]である。なお、運転時最低電力損失Wminは、電力変換装置2(電気装置11a)の負荷パターンに応じて予め求められ、記憶部28に記憶されている。
 Wthは、上述したヒートシンク13の温度変動を抑制する制御において、電磁弁26の開閉状態を切り替えるために設定される電気装置11aの電力損失Wに関する閾値である。
 Cは、第1冷却水の比熱[J/(g・K)]である。比熱Cは、記憶部28に記憶されている。
 ρは、第1冷却水の密度[g/cm2]である。密度ρは、記憶部28に記憶されている。
 Qは、第1冷却水の流量[L/min]である。流量Qは、予め求められ記憶部28に記憶されている。ただし、流量Qが変動する場合は、制御部29は、ポンプ22の回転数の制御量または第1配管21に設けられた流量センサの検出結果などに基づいて流量Qを算出してもよい。
 εは、熱交換器20の温度効率(熱交換効率)である。
 ε1は、電磁弁26が閉状態における(すなわち冷却装置3が第1状態における)熱交換器20の温度効率εである。
 ε2は、電磁弁26が開状態における(すなわち冷却装置3が第2状態における)熱交換器20の温度効率εである。
 熱交換器20の温度効率εは、式(1)のように算出することができる。式(1)は、熱交換器の温度効率の定義式である。
Figure JPOXMLDOC01-appb-M000006
 冷却水出口温度Toutは、式(2)のように算出することができる。式(2)は、式(1)を変形することで得ることができる。
Figure JPOXMLDOC01-appb-M000007
 冷却水出口温度Tout_Hは、式(3)のように算出することができる。
Figure JPOXMLDOC01-appb-M000008
 冷却水出口温度Tout_Lは、式(4)のように算出することができる。
Figure JPOXMLDOC01-appb-M000009
 温度差ΔTは、式(5)のように算出することができる。
Figure JPOXMLDOC01-appb-M000010
 冷却水出口温度Tout_L’は、式(6)のように算出することができる。
Figure JPOXMLDOC01-appb-M000011
 温度差ΔT’は、式(7)のように算出することができる。
Figure JPOXMLDOC01-appb-M000012
 温度差ΔTと温度差ΔT’との差分は、式(8)のように算出することができる。
Figure JPOXMLDOC01-appb-M000013
 図2は、第1制御モードを説明するための図である。図2中の直線L1は、第1状態において電力変換装置2(電気装置11a)が運転したと仮定した場合における、電気装置11aの電力損失Wと冷却水出口温度Toutとの関係を示す。一方で、図2中の直線L2は、第2状態において電力変換装置2(電気装置11a)が運転したと仮定した場合における、電気装置11aの電力損失Wと冷却水出口温度Toutとの関係を示す。
 本実施形態では、電磁弁26の開閉状態を切り替えるため閾値Wthが設定される。そして、制御部29は、詳しくは後述する方法で電気装置11aの電力損失の検出値を監視する。そして、制御部29は、電力損失の検出値が閾値Wth以上の領域(領域A1)にある場合、電磁弁26を閉状態に制御することで、冷却装置3を第1状態に制御する。一方で、制御部29は、電力損失の検出値が閾値Wth未満の領域(領域A2)にある場合、電磁弁26を開状態に制御することで、冷却装置3を第2状態に制御する。すなわちこの場合、冷却装置3は、図2中に太線で示される特性で制御される。
 次に、第1制御モードでの閾値Wthの一例について説明する。
 閾値Wthは、電力損失Wに関する値として、例えば、第1状態において電気装置11aが運転したと仮定した場合における第1冷却水の温度(直線L1上の温度値)と第2基準温度Tout_L’との差D11が第1基準温度Tout_Lと第2基準温度Tout_L’との差Dの半分以下となる範囲(図2中に示す範囲R)内に設定される。すなわち、閾値Wthの一例は、範囲R内の任意の値である。なお前提として、ΔT’<ΔTである。
 図2に示す例では、閾値Wthは、第1状態において電気装置11aが運転したと仮定した場合に第1冷却水の温度(直線L1上の温度値)が第2基準温度Tout_L’となる値WAに設定されている。
 この場合の閾値Wthは、以下の式(9)を解くことによって求められ、式(10)のように算出される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 図3は、第1制御モードを説明するための別の図である。図3は、第1制御モードでの閾値Wthの別の例を示す。図3に示す例では、閾値Wthは、第2状態において電気装置11aが運転したと仮定した場合に第1冷却水の温度(直線L2上の温度値)が第3基準温度Tout_Hとなる値WBに設定されている。すなわちこの場合、冷却装置3は、図3中に太線で示される特性で制御される。
 すなわち、1つの観点によれば、閾値Wthは、第1状態において電気装置11aが運転したと仮定した場合に第1冷却水の温度(直線L1上の温度値)が第2基準温度Tout_L’となる値WAと、第2状態において電気装置11aが運転したと仮定した場合に第1冷却水の温度が第3基準温度Tout_Hとなる値WBとの間の範囲(図3中に示す範囲R1)内に設定されればよい。
 <5.3 第2制御モード>
 次に、第2制御モードについて説明する。
 図4は、第2制御モードを説明するための図である。ここで冷却装置3では、電気装置11aの運転時最大電力損失Wmaxや電気装置11aの運転時最低電力損失Wmin、外水温度Ta、第1冷却水の流量Qなどのうち1つ以上に起因して、熱交換器20の温度効率εとεが大きくかけ離れる場合がある。熱交換器20の温度効率εとεが大きくかけ離れる場合、図4中の領域Aに示すように、電磁弁26が閉状態と開状態とのいずれの状態でも冷却水出口温度ToutがΔT’(Tout_H ~Tout_L’)の範囲内に収まらない場合がある。
 このような現象が生じる条件は、下記の式(11)が満たされる場合であり、変形して式(12)となる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 すなわち、式(12)の条件が満たされる場合は、上述した第1制御モードではなく、第1制御モードとは異なる第2制御モードで冷却装置3を制御することが好ましい。
 この場合、制御部29は、閾値Wthに代えて、閾値Wth’を用いる。閾値Wth’は、閾値Wthと同様に、ヒートシンク13の温度変動を抑制する制御において、電磁弁26の開閉状態を切り替えるために設定される電気装置11aの電力損失[W]に関する閾値である。閾値Wth’は、「第1閾値」の別の一例であるとともに、「第2閾値」の別の一例である。
 図4に示す例では、閾値Wth’は、第1状態において電気装置11aを運転したと仮定した場合における第1冷却水の温度(直線L1上の温度値)と第2基準温度Tout_L’との差を第1差D21、第2状態において電気装置11aを運転したと仮定した場合における第1冷却水の温度(直線L2上の温度値)と第3基準温度Tout_Hとの差を第2差D22とした場合、第1差D21と第2差D22とが互いに同じになる値WCに設定される。すなわちこの場合、冷却装置3は、図4中に太線で示される特性で制御される。第1差D21および第2差D22は、ΔT’の範囲からの逸脱値である。この場合、Toutの変動幅は、T’’(Tout_L’’~Tout_H’)となる。
 この場合の閾値Wth’は、以下の式(13)を解くことによって求められ、式(14)のように算出される。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 またこの場合の所量の計算式は、以下の式(15)~(17)のようになり、低減できるToutの変動幅は、式(18)のようになる。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 この場合、Toutの変動幅を低減するためには、式(18)の右辺分子が0よりも大きいことが条件である。その条件を満たす場合は、以下の式(19)のようになる。
Figure JPOXMLDOC01-appb-M000024
 すなわち、式(19)の条件が満たされない場合は、閾値Wth’において電磁弁26を開状態に切り替えると、Toutの変動幅が逆に増大してしまう。このため式(19)の条件が満たされない場合は、電磁弁26の制御は行わない。なお、式(19)は、図4中のWCにWth’が設定される場合の条件である。
 図5は、第2制御モードを説明するための別の図である。図5は、第2制御モードでの閾値Wth’の別の例を示す。図5に示す例では、閾値Wth’は、第2状態において電気装置11aを運転したと仮定した場合に第1冷却水の温度(直線L2上の温度値)が第3基準温度Tout_Hとなる値WDに設定されている。すなわちこの場合、冷却装置3は、図5中に太線で示される特性で制御される。
 すなわち、1つの観点によれば、閾値Wth’は、上述した第1差D21と第2差D22とが互いに同じになる値WCと、第2状態において電気装置11aを運転したと仮定した場合に第1冷却水の温度(直線L2上の温度値)が第3基準温度Tout_Hとなる値WDとの間の範囲(図5中に示す範囲R2)内に設定されればよい。
 なお、図5中のWにWth’が設定される場合、電磁弁26の制御を行わない条件(式(19)に相当する条件)は、以下の式(20)の条件が満たされないことでもよい。
Figure JPOXMLDOC01-appb-M000025
 ただし、この式(20)は、式(19)よりも緩い条件である。このため、式(20)を敢えて定義する必要はなく、WにWth’が設定される場合であっても、式(19)の条件を満たさない場合には電磁弁26の制御を行わないようにしてもよい。
 <5.4 制御部の機能構成>
 図6は、制御部29の機能構成を示すブロック図である。制御部29は、例えば、制御モード判定部31、閾値設定部32、電流値取得部33、電力損失算出部34、比較部(監視部)35、開閉決定部36、および電磁弁操作回路37を含む。なお以下の説明において、電磁弁26は、冷却装置3の運転開始時では閉状態にあるものとする。
 制御モード判定部31は、例えば、記憶部28に記憶された第1冷却水の流量Q、記憶部28に記憶された第1冷却水の比熱C、記憶部28に記憶された第1冷却水の密度ρ、第1温度センサ27Aにより検出された冷却水出口温度Tout、第2温度センサ27Bにより検出された外水温度Ta、および電力損失算出部34により検出された電力損失Wに基づき、熱交換器20の温度効率ε,εを算出する。例えば、これら温度効率ε,εは、ドライブシステム1の予備運転で冷却装置3を予め第1状態と第2状態とのそれぞれで運転し、そのときに検出された冷却水出口温度Tout、外水温度Ta、および電力損失Wに基づき予め算出される。
 次に、制御モード判定部31は、算出した熱交換器20の温度効率ε,εと、記憶部28に記憶された運転時最大電力損失Wmaxおよび運転時最低電力損失Wminとに基づき、以下の式(21)である第1条件が満たされるか否かを判定する。
Figure JPOXMLDOC01-appb-M000026
 制御モード判定部31は、上記第1条件が満たされると判定した場合、冷却装置3を第1制御モードで制御することを決定し、第1制御モードで制御することを閾値設定部32に通知する。
 一方で、制御モード判定部31は、上記第1条件が満たされないと判定した場合、算出した熱交換器20の温度効率ε,εと、記憶部28に記憶された運転時最大電力損失Wmaxおよび運転時最低電力損失Wminとに基づき、以下の式(22)である第2条件が満たされるか否かを判定する。
Figure JPOXMLDOC01-appb-M000027
 制御モード判定部31は、上記第2条件が満たされると判定した場合、冷却装置3を第2制御モードで制御することを決定し、第2制御モードで制御することを閾値設定部32に通知する。一方で、制御部29は、上記第2条件が満たされないと判定された場合、電磁弁26を閉状態に維持する。
 閾値設定部32は、制御モード判定部31により第1制御モードで冷却装置3を制御すると決定された場合、電磁弁26の開閉状態を切り替える切替点として閾値Wthを設定する。閾値Wthの値は、図3を参照して上述した範囲R1内の任意の値が予め選定されており、例えば、第1状態において電気装置11aが運転したと仮定した場合に第1冷却水の温度(直線L1上の温度値)が第2基準温度Tout_L’となる値WAが設定される。
 一方で、閾値設定部32は、制御モード判定部31により第2制御モードで冷却装置3を制御すると決定された場合、電磁弁26の開閉状態を切り替える切替点として閾値Wth’を設定する。閾値Wth’の値は、図5を参照して上述した範囲R2内の任意の値が予め選定されており、例えば、上述した第1差D21と第2差D22とが互いに同じになる値WBが設定される。閾値設定部32は、設定した閾値Wthまたは閾値Wth’を比較部35に出力する。
 電流値取得部33は、電力変換装置2の制御部29により検出された電力変換装置2の出力電流の電流値を、電力変換装置2の制御部29から受け取る。電流値取得部33は、受け取った出力電流の電流値を、電力損失算出部34に出力する。
 電力損失算出部34は、電流値取得部33から受け取る電流値と、記憶部28に記憶された電流―損失特性とに基づき、電気装置11aの電力損失Wを算出する。電力損失算出部34は、算出した電気装置11aの電力損失Wを比較部35に出力する。電気装置11aの電力損失Wは、監視対象として用いられる「検出値」の一例である。
 比較部(監視部)35は、電力損失算出部34により算出された電力損失Wを監視する。本実施形態では、比較部35は、閾値設定部32により設定された閾値Wth(または閾値Wth’)と、電力損失算出部34により算出された電力損失Wとを所定の周期で比較する。比較部35は、電力損失Wと閾値Wth(または閾値Wth’)との比較結果を開閉決定部36に出力する。
 開閉決定部36は、比較部35の比較結果に基づき、電力損失Wが減少し、電力損失Wが閾値Wth(または閾値Wth’)以上の状態から閾値Wth(または閾値Wth’)未満に低下した場合に、電磁弁26を開くことを決定する。開閉決定部36は、電磁弁26を開くことを決定した場合、電磁弁26を開くための指令を電磁弁操作回路37に出力する。
 一方で、開閉決定部36は、比較部35の比較結果に基づき、電力損失Wが増加し、電力損失Wが閾値Wth(または閾値Wth’)未満の状態から閾値Wth(または閾値Wth’)以上に増加した場合に、電磁弁26を閉じることを決定する。開閉決定部36は、電磁弁26を閉じることを決定した場合、電磁弁26を閉じるための指令を電磁弁操作回路37に出力する。
 電磁弁操作回路37は、電磁弁26を開くための指令を開閉決定部36から受け取った場合、開状態に対応した制御信号を電磁弁26に出力し、電磁弁26を閉状態から開状態に移行させる。一方で、電磁弁操作回路37は、電磁弁26を閉じるための指令を開閉決定部36から受け取った場合、閉状態に対応した制御信号を電磁弁26に出力し、電磁弁26を開状態から閉状態に移行させる。
 <5.4 処理流れ>
 次に、制御部29の処理流れについて説明する。
 図7は、制御部29の処理流れの一例を示すフローチャートである。制御部29は、まず、冷却水出口温度Tout、外水温度Ta、第1冷却水の流量Q、および電力損失Wに基づき、熱交換器20の温度効率ε,εを算出する(S101)。このS101の処理は、上述したようにドライブシステム1の予備運転で冷却装置3を予め第1状態と第2状態とのそれぞれで運転することで、予め行われる。
 次に、制御部29は、熱交換器20の温度効率ε,εと、運転時最大電力損失Wmaxおよび運転時最低電力損失Wminとに基づき、上記第1条件が満たされるか否かを判定する(S102)。
 制御部29は、上記第1条件が満たされると判定した場合(S102:YES)、電磁弁26の開閉状態を切り替える閾値として、閾値Wthを設定する(S103)。そして、制御部29は、S107の処理に進む。
 一方で、制御部29は、上記第1条件が満たされないと判定した場合(S102:NO)、熱交換器20の温度効率ε,εと、運転時最大電力損失Wmaxおよび運転時最低電力損失Wminとに基づき、上記第2条件が満たされるか否かを判定する(ステップ104)。
 制御部29は、上記第2条件が満たされると判定した場合(S104:YES)、電磁弁26の状態を切り替える閾値として、閾値Wth’を設定する(S105)。
 一方で、制御部29は、上記第2条件が満たされないと判定した場合(S104:NO)、本方式での温度変動の抑制制御は行わず(S106)、本フローを終了する。
 これらS102からS106までの計算は、S101で求められた温度効率ε,εに基づき予め行われる。また、これらS101からS106までの計算は、計算式のパラメータ(例えば第1冷却水の流量Q、運転時最大電力損失Wmax、運転時最低電力損失Wminなど)が更新されたタイミングで再計算される。そして、制御部29は、S107からS110までの処理を冷却装置3の実際の運転時(冷却装置3を用いた冷却時)に行う。
 すなわち、制御部29は、冷却装置3の運転時に、電力変換装置2(または電気装置11a)の出力電流の電圧値と、電流―損失特性とに基づき、電気装置11aの電力損失Wを算出する(S107)。次に、制御部29は、算出された電力損失Wが閾値Wth(または閾値Wth’)以上であるか否かを判定する(S108)。
 制御部29は、電力損失Wが閾値Wth(または閾値Wth’)以上である場合(S108:YES)、電磁弁26を開状態に制御する(S109)。一方で、制御部29は、電力損失Wが閾値Wth(または閾値Wth’)未満である場合(S108:NO)、電磁弁26を閉状態に制御する(S110)。
 次に、制御部29は、冷却装置3の運転停止の指令があるか否かを判定する(S111)。制御部29は、冷却装置3の運転停止の指令がない場合(S111:NO)、所定の周期でS107からS110までの処理を繰り返す。一方で、制御部29は、冷却装置3の運転停止の指令がある場合(S111:YES)、冷却装置3の運転を停止する。これにより、本フローの処理が終了する。
 (作用)
 比較例として、上記のような温度変動抑制の制御が行われない場合を考える。この場合、ヒートシンク13の温度は、図2中のΔTの幅で変動することになる。ヒートシンク13の温度変動が大きい場合、例えば、ヒートシンク13と電気装置11aとの熱膨張率の違いにより、ヒートシンク13と電気装置11aとの間に設けられたグリースが外部に流出し、ヒートシンク13と電気装置11aとの熱接続性が低下する場合がある。その結果、電気装置11aが高温になりやすく、電気装置11aの信頼性が低下する場合がある。
 一方で、本実施形態では、制御部29は、電気装置11aの電力損失に関する検出値を監視し、前記検出値が第1閾値未満になる場合に第2配管24からバイパス配管25に流入する第2冷却水の流量を増やすように電磁弁26を制御し、前記検出値が第2閾値以上になる場合に第2配管24からバイパス配管25に流入する第2冷却水の流量を減らすように電磁弁26を制御する。このような構成によれば、ヒートシンク13の温度変動をΔT’の幅に抑えることができる。これにより、ヒートシンク13の温度変動を小さくすることができる。ヒートシンク13の温度変動を小さくすることができると、電気装置11aのサーマルサイクル耐量の増加を通じて電気装置11aの信頼性向上を図ることができる。
 本実施形態では、冷却装置3は、第2配管24から分岐し、第2配管24を流れる第2冷却水の少なくとも一部を、熱交換器20を通さずに第2配管24に戻すバイパス配管25を有する。電磁弁26は、第2配管24からバイパス配管25に流入する第2冷却水の流量を変更する。このような構成によれば、インバータ機能が無い冷却装置(流量が調整できない冷却装置)であってもヒートシンク13の温度変動を小さくし、電気装置11aの信頼性向上を図ることができる。
 本実施形態では、前記検出値として、電気装置11aの電力損失に関する値が監視される。このような構成によれば、閾値と検出値との比較において、冷却水の水温を測定する必要が無い。また、水温検出により制御する場合、水温の変化には時定数があるためどうしても制御応答が遅れるが、電流値は瞬時に変化するため迅速な制御応答を行うことができる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。本実施形態では、検出値として、第1冷却水の温度が直接監視される点で、第1の実施形態とは異なる。なお以下に説明する以外の構成は、第1の実施形態と同じである。
 図8は、第2の実施形態のドライブシステム1の一例を示す図である。図9は、第2の実施形態の制御モードを示す図である。本実施形態では、第1制御モードでは、電力損失に関する閾値Wthの代わりに、第1冷却水の温度に関する閾値として第1閾値Tout_thLと第2閾値Tout_thHとが設定されている(図9参照)。
 制御部29の比較部35は、例えば第1温度センサ27Aにより検出された冷却水出口温度Toutと、第1閾値Tout_thLおよび第2閾値Tout_thHとを周期的に比較する。そして、制御部29は、電磁弁26が閉じている状態において、冷却水出口温度ToutがTout_thL未満に低下する場合に、電磁弁26を開くように制御する。一方で、制御部29は、電磁弁26が開いている状態において冷却水出口温度ToutがTout_thH以上に増加するに、電磁弁26を閉じるように制御する。
 また本実施形態では、第2制御モードでは、電力損失に関する閾値Wth’代わりに、第1冷却水の温度に関する閾値として第1閾値Tout_thL’と第2閾値Tout_thH’とが設定されている。なお、第1閾値Tout_thL’と第2閾値Tout_thH’の使用方法は、第1閾値Tout_thLおよび第2閾値Tout_thHと同様である。
 このような構成によっても、ヒートシンク13の温度変動を抑制し、冷却対象である電気装置の信頼性向上を図ることができる。なお、第1閾値Tout_thLおよび第2閾値Tout_thHは、例えば互いに異なる値であるが、互いに同じ値でもよい。同様に、第1閾値Tout_thL’と第2閾値Tout_thH’は、例えば互いに異なる値であるが、互いに同じ値でもよい。
 (変形例)
 次に、第1および第2の実施形態の変形例について説明する。例えば外水温度Taや第1冷却水の流量Qが実質的に一定である場合、冷却装置3は、上記第1条件を常に満たすように設計されてもよい。この場合、制御部29は、第1制御モードと第2制御モードとの判定を行う必要はなく、閾値として常に閾値Wth(または第1閾値Tout_thLおよび第2閾値Tout_thH)が設定されていてもよい。
 同様に、冷却装置3は、上記第1条件を満たさず、且つ、上記第2条件を常に満たすように設計されてもよい。この場合、制御部29は、第1制御モードと第2制御モードとの判定を行う必要はなく、閾値として常に閾値Wth’(または第1閾値Tout_thL’と第2閾値Tout_thH’)が設定されていてもよい。
 上述した実施形態および変形例において、制御部29の全部または一部は、例えば、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、またはFPGA(Field-Programmable Gate Array)などのハードウェア(回路部;circuitryを含む)によって実現される。なお、制御部29の全部または一部は、例えば、CPU(Central Processing Unit)のようなハードウェアプロセッサが不図示のメモリに格納されたコンピュータプログラム(ソフトウェア)を実行することにより実現されるソフトウェア機能部でもよく、ハードウェアとソフトウェア機能部との協働によって実現されてもよい。
 以上、いくつかの実施形態および変形例について説明した。ただし、実施形態は、上記例に限定されない。例えば、ヒートシンク13に取り付けられる電気装置11aは、IGBTモジュールに限定されず、他の種類の電気装置でもよい。
 上述した実施形態では、冷却装置3は、バイパス配管25および電磁弁26を有した。なお、冷却装置3は、バイパス配管25を有しなくてもよい。この場合、冷却装置3は、第2配管24に設けられて、回転数などが可変であり第2配管24を流れる第2冷却水の流量を変更可能なポンプを有してもよい。この場合、ポンプは、「流量変更機構」の一例である。
 以上説明した少なくともひとつの実施形態によれば、冷却装置の制御部は、電気装置の電力損失と第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、前記検出値が第1閾値未満になる場合に第2配管からバイパス配管に流入する第2冷却水の流量を増やすように流量変更機構を制御し、前記検出値が第2閾値以上になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御する。このような構成によれば、冷却対象である電気装置の信頼性向上を図ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1…ドライブ装置、2…電力変換装置、3…冷却装置、4…外部熱交換器(第2熱交換器)、11…電力変換回路、11a…モジュール(電気装置)、13…ヒートシンク、20…熱交換器(第1熱交換器)、21…第1配管、24…第2配管、25…バイパス配管、26…電磁弁(流量変更機構)、29…制御部。

Claims (10)

  1.  第1冷却水と第2冷却水との間で熱交換が行われる第1熱交換器と、
     電気装置が熱的に接続されたヒートシンクと前記第1熱交換器との間で前記第1冷却水を循環させる第1配管と、
     第2熱交換器と前記第1熱交換器との間で前記第2冷却水を循環させる第2配管と、
     前記第2配管から分岐し、前記第2配管を流れる前記第2冷却水の少なくとも一部を、前記第1熱交換器を通さずに前記第2配管に戻すバイパス配管と、
     前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を変更する流量変更機構と、
     前記電気装置の電力損失と前記第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、前記検出値が第1閾値未満になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を増やすように前記流量変更機構を制御し、前記検出値が第2閾値以上になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御する制御部と、
     を備えた冷却装置。
  2.  前記制御部は、前記検出値として、前記電気装置の電力損失に関する値を監視する、
     請求項1に記載の冷却装置。
  3.  前記冷却装置は、前記流量変更機構によって、第1状態と、前記第1状態と比べて前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量が多い第2状態との間で切り替えられ、
     前記第1状態において前記電気装置が最低電力損失で運転したと仮定した場合における前記第1冷却水の温度を第1基準温度とし、前記第2状態において前記電気装置が最低電力損失で運転したと仮定した場合における前記第1冷却水の温度を第2基準温度とした場合、
     前記第1閾値は、前記第1状態において前記電気装置が運転したと仮定した場合における前記第1冷却水の温度と前記第2基準温度との差が前記第1基準温度と前記第2基準温度との差の半分以下となる範囲内に設定されている、
     請求項1に記載の冷却装置。
  4.  前記第1状態における前記第1熱交換器の熱交換効率をε、前記第2状態における前記第1熱交換器の熱交換効率をε、前記電気装置の運転時最大電力損失をWmax、前記電気装置の運転時最低電力損失をWmin、前記第1状態において前記電気装置が最大電力損失で運転したと仮定した場合における前記第1冷却水の温度を第3基準温度とした場合、
     前記制御部は、
    Figure JPOXMLDOC01-appb-M000001
    である第1条件が満たされるか否かを判定し、
     前記制御部は、前記第1条件が満たされると判定した場合、前記冷却装置を第1制御モードで制御し、
     前記第1制御モードでは、
     前記第1閾値は、前記第1状態において前記電気装置が運転したと仮定した場合に前記第1冷却水の温度が前記第2基準温度となる値と、前記第2状態において前記電気装置が運転したと仮定した場合に前記第1冷却水の温度が前記第3基準温度となる値との間の範囲内に設定されている、
     請求項3に記載の冷却装置。
  5.  前記制御部は、前記第1条件が満たされないと判定した場合、前記冷却装置を第2制御モードで制御し、
     前記第2制御モードでは、
     前記第1状態において前記電気装置を運転したと仮定した場合における前記第1冷却水の温度と前記第2基準温度との差を第1差、前記第2状態において前記電気装置を運転したと仮定した場合における前記第1冷却水の温度と前記第3基準温度との差を第2差とした場合、
     前記第1閾値は、前記第1差と前記第2差とが互いに同じになる値と、前記第2状態において前記電気装置を運転したと仮定した場合に前記第1冷却水の温度が前記第3基準温度となる値との間の範囲内に設定されている、
     請求項4に記載の冷却装置。
  6.  前記制御部は、前記流量変更機構を第2制御モードで制御する場合、
    Figure JPOXMLDOC01-appb-M000002
    である第2条件が満たされるか否かを判定し、
     前記制御部は、前記第2条件が満たされない場合、前記第1状態から前記第2状態への切り替えを行わない、
     請求項5に記載の冷却装置。
  7.  前記第1状態における前記第1熱交換器の熱交換効率をε、前記第2状態における前記第1熱交換器の熱交換効率をε、前記電気装置の運転時最大電力損失をWmax、前記電気装置の運転時最低電力損失をWmin、前記第1状態において前記電気装置が最大電力損失で運転したと仮定した場合における前記第1冷却水の温度を第3基準温度とした場合、
     前記冷却装置は、
    Figure JPOXMLDOC01-appb-M000003
    である条件を満たすように構成され、
     前記第1閾値は、前記第1状態において前記電気装置を運転したと仮定した場合に前記第1冷却水の温度が前記第2基準温度となる値と、前記第2状態において前記電気装置を運転したと仮定した場合に前記第1冷却水の温度が前記第3基準温度となる値との間の範囲内に設定されている、
     請求項3に記載の冷却装置。
  8.  前記第1状態における前記第1熱交換器の熱交換効率をε、前記第2状態における前記第1熱交換器の熱交換効率をε、前記電気装置の運転時最大電力損失をWmax、前記電気装置の運転時最低電力損失をWmin、前記第1状態において前記電気装置が最大電力損失で運転したと仮定した場合における前記第1冷却水の温度を第3基準温度、前記第1状態において前記電気装置を運転したと仮定した場合における前記第1冷却水の温度と前記第2基準温度との差を第1差、前記第2状態において前記電気装置を運転したと仮定した場合における前記第1冷却水の温度と前記第3基準温度との差を第2差とした場合、
     前記冷却装置は、
    Figure JPOXMLDOC01-appb-M000004
    である条件と、
    Figure JPOXMLDOC01-appb-M000005
    である条件と、を満たすように構成され、
     前記第1閾値は、前記第1差と前記第2差とが互いに同じになる値と、前記第2状態において前記電気装置を運転したと仮定した場合に前記第1冷却水の温度が前記第3基準温度となる値との間の範囲内に設定されている、
     請求項3に記載の冷却装置。
  9.  第1冷却水と第2冷却水との間で熱交換が行われる第1熱交換器と、
     電気装置が熱的に接続されたヒートシンクと前記第1熱交換器との間で前記第1冷却水を循環させる第1配管と、
     第2熱交換器と前記第1熱交換器との間で前記第2冷却水を循環させる第2配管と、
     前記第2配管から前記第1熱交換器に流入する前記第2冷却水の流量を変更可能な流量変更機構と、
     前記電気装置の電力損失と前記第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、前記検出値が第1閾値未満になる場合に前記第2配管から前記第1熱交換器に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御し、前記検出値が第2閾値以上になる場合に前記第2配管から前記第1熱交換器に流入する前記第2冷却水の流量を増やすように前記流量変更機構を制御する制御部と、
     を備えた冷却装置。
  10.  冷却装置を用いて電気装置を冷却する冷却方法であって、
     前記冷却装置は、
     第1冷却水と第2冷却水との間で熱交換が行われる第1熱交換器と、
     電気装置が熱的に接続されたヒートシンクと前記第1熱交換器との間で前記第1冷却水を循環させる第1配管と、
     第2熱交換器と前記第1熱交換器との間で前記第2冷却水を循環させる第2配管と、
     前記第2配管から分岐し、前記第2配管を流れる前記第2冷却水の少なくとも一部を、前記第1熱交換器を通さずに前記第2配管に戻すバイパス配管と、
     前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を変更する流量変更機構と、を有し、
     前記冷却方法は、
     前記電気装置の電力損失と前記第1冷却水の温度とのうち少なくとも一方に関する検出値を監視し、
     前記検出値が第1閾値未満になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を増やすように前記流量変更機構を制御し、
     前記検出値が第2閾値以上になる場合に前記第2配管から前記バイパス配管に流入する前記第2冷却水の流量を減らすように前記流量変更機構を制御する、
     ことを含む冷却方法。
PCT/JP2019/029792 2019-07-30 2019-07-30 冷却装置および冷却方法 WO2021019676A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/287,586 US20210315131A1 (en) 2019-07-30 2019-07-30 Cooling device and cooling method
PCT/JP2019/029792 WO2021019676A1 (ja) 2019-07-30 2019-07-30 冷却装置および冷却方法
CN201980004721.0A CN112673228B (zh) 2019-07-30 2019-07-30 冷却装置及冷却方法
JP2020512621A JP6832471B1 (ja) 2019-07-30 2019-07-30 冷却装置および冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029792 WO2021019676A1 (ja) 2019-07-30 2019-07-30 冷却装置および冷却方法

Publications (1)

Publication Number Publication Date
WO2021019676A1 true WO2021019676A1 (ja) 2021-02-04

Family

ID=74229414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029792 WO2021019676A1 (ja) 2019-07-30 2019-07-30 冷却装置および冷却方法

Country Status (4)

Country Link
US (1) US20210315131A1 (ja)
JP (1) JP6832471B1 (ja)
CN (1) CN112673228B (ja)
WO (1) WO2021019676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120047A1 (en) * 2021-07-16 2023-01-18 BAE SYSTEMS plc Cooling system
WO2023285784A1 (en) * 2021-07-16 2023-01-19 Bae Systems Plc Cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166339A (ja) * 1995-12-15 1997-06-24 Miura Co Ltd 冷水装置
JP2008253098A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 冷却システムおよびそれを備える車両
US20130027884A1 (en) * 2011-07-25 2013-01-31 International Business Machines Corporation Valve controlled, node-level vapor condensation for two-phase heat sink(s)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081737B2 (ja) * 1999-10-06 2008-04-30 日立金属株式会社 冷却装置
JP4615335B2 (ja) * 2005-03-11 2011-01-19 東京エレクトロン株式会社 温度制御システム及び基板処理装置
US8395896B2 (en) * 2007-02-24 2013-03-12 Hewlett-Packard Development Company, L.P. Redundant cooling systems and methods
JP4780479B2 (ja) * 2008-02-13 2011-09-28 株式会社日立プラントテクノロジー 電子機器の冷却システム
US7808783B2 (en) * 2008-02-25 2010-10-05 International Business Machines Corporation Multiple chip module cooling system and method of operation thereof
US8208258B2 (en) * 2009-09-09 2012-06-26 International Business Machines Corporation System and method for facilitating parallel cooling of liquid-cooled electronics racks
JP2011225134A (ja) * 2010-04-21 2011-11-10 Toyota Motor Corp 車両用冷却システム
JP5501179B2 (ja) * 2010-09-27 2014-05-21 三機工業株式会社 フリークーリング併用中温熱源システム
US8514575B2 (en) * 2010-11-16 2013-08-20 International Business Machines Corporation Multimodal cooling apparatus for an electronic system
CN102270926B (zh) * 2011-08-26 2014-04-09 株洲变流技术国家工程研究中心有限公司 一种车载大功率变流器冷却方法及冷却系统
US8824143B2 (en) * 2011-10-12 2014-09-02 International Business Machines Corporation Combined power and cooling rack supporting an electronics rack(S)
US20160120059A1 (en) * 2014-10-27 2016-04-28 Ebullient, Llc Two-phase cooling system
CN105674666A (zh) * 2016-03-07 2016-06-15 上海市城市排水有限公司 一种泵站冷却水循环系统及其控制方法
CN208794819U (zh) * 2018-08-01 2019-04-26 元亮科技有限公司 大规模集中循环冷却系统
US11445635B2 (en) * 2020-09-24 2022-09-13 Baidu Usa Llc Cooling loops for buffering cooling capacity variations
US11729953B2 (en) * 2021-01-07 2023-08-15 Baidu Usa Llc Pressure based regulating design in fluid conditioning and distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166339A (ja) * 1995-12-15 1997-06-24 Miura Co Ltd 冷水装置
JP2008253098A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 冷却システムおよびそれを備える車両
US20130027884A1 (en) * 2011-07-25 2013-01-31 International Business Machines Corporation Valve controlled, node-level vapor condensation for two-phase heat sink(s)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120047A1 (en) * 2021-07-16 2023-01-18 BAE SYSTEMS plc Cooling system
WO2023285784A1 (en) * 2021-07-16 2023-01-19 Bae Systems Plc Cooling system

Also Published As

Publication number Publication date
CN112673228B (zh) 2022-11-11
JP6832471B1 (ja) 2021-02-24
US20210315131A1 (en) 2021-10-07
CN112673228A (zh) 2021-04-16
JPWO2021019676A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
US6215682B1 (en) Semiconductor power converter and its applied apparatus
KR102232186B1 (ko) 온도 조절 장치
US9395249B2 (en) Wide range temperature control system for semiconductor manufacturing equipment using thermoelectric element
US11186165B2 (en) Heat distribution device for hybrid vehicle
JP6832471B1 (ja) 冷却装置および冷却方法
CN107070364B (zh) 空调器、电机驱动器及其的防过热控制方法和装置
CN103095098B (zh) 变频器散热冷却系统及其控制方法和装置
EP3121040B1 (en) Temperature control system for electric car
CN112976999B (zh) 针对多热源直流储能装置的集成式热管理系统及控制方法
JP5287365B2 (ja) 電力変換装置およびそのファン故障検出方法
CN114929000A (zh) 一种WBG和Si器件混合的电源水冷系统及其控制策略
JP3320385B2 (ja) 氷蓄熱式空調システムの制御方法
EP3121046B1 (en) Temperature control system for electric car
CN112013523A (zh) 对制冷设备的变频器温度进行控制的方法、装置和空调系统
JPH07143615A (ja) 電気車の電力変換手段の冷却装置
CN111503935B (zh) 半导体调温装置控制系统及方法
EP2600510A1 (en) Heating a converter with circulating currents
EP3496251A1 (en) Dc link circuit, electric power converter, vehicle and method for controlling a dc link circuit of an electric power converter
KR101397421B1 (ko) 열전소자 온도제어 시스템
JP6619393B2 (ja) 電力変換装置
EP4212725A1 (en) Hydraulic system control
JP5673699B2 (ja) 電力変換装置の冷却システム
US20220289017A1 (en) Motor unit, temperature control system, and vehicle
US11424619B2 (en) Arrangement having a converter
US20230023466A1 (en) System and methods for battery and cabin cooling in electric vehicles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020512621

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939261

Country of ref document: EP

Kind code of ref document: A1