WO2021017073A1 - 光编码器的光电池和光磁编码器的解码装置 - Google Patents

光编码器的光电池和光磁编码器的解码装置 Download PDF

Info

Publication number
WO2021017073A1
WO2021017073A1 PCT/CN2019/102987 CN2019102987W WO2021017073A1 WO 2021017073 A1 WO2021017073 A1 WO 2021017073A1 CN 2019102987 W CN2019102987 W CN 2019102987W WO 2021017073 A1 WO2021017073 A1 WO 2021017073A1
Authority
WO
WIPO (PCT)
Prior art keywords
output port
signal output
sine
cosine
signal
Prior art date
Application number
PCT/CN2019/102987
Other languages
English (en)
French (fr)
Inventor
鄢鹏飞
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021017073A1 publication Critical patent/WO2021017073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/56Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using electric or magnetic means

Definitions

  • the present invention relates to the technical field of encoder signal processing, in particular to a photocell of an optical encoder and a decoding device of a photomagnetic encoder.
  • Encoder is a device that converts angular displacement or linear displacement into electrical signals. It mainly detects changes in optical, magnetic, or electrical signals along with the rotation of the rotating shaft through photosensitive elements, magnetic induction sensors, or inductive components, etc. , And determine the rotation displacement based on this change.
  • circuit chips of various loads are required, which requires more chip components to be installed on the circuit board of the encoder. Make the chip circuit on the circuit board complicated.
  • the purpose of the present invention is to provide a photocell of an optical encoder and a decoding device of an optical-magnetic hybrid encoder, which simplifies the structure of the circuit components inside the encoder, and is reasonable for the miniaturization of the encoder.
  • the present invention provides a photocell of an optical encoder.
  • the photocell is used to receive the optical signal sent by the light source through the code channel, and generate a positive sinusoidal signal, a reverse sinusoidal signal, and a sinusoidal signal according to the optical signal.
  • At least an operational amplifier single-ended output circuit and a comparator circuit are integrated in the photovoltaic cell
  • the photovoltaic cell includes a sine signal output port, a forward sine signal output port, a reverse sine signal output port, a sine digital signal output port, a cosine signal output port, a forward cosine signal output port, a reverse cosine signal output port, and a cosine Digital signal output port;
  • the operational amplifier single-ended output circuit is used to process the forward sine signal and the reverse sine signal, and output the sine signal through the sine signal output port; Signal and the reverse cosine signal, and outputting the cosine signal through the cosine signal output port;
  • the comparator circuit is used to process the forward sine signal and the reverse sine signal, and output a sine digital signal through the sine digital signal output port; it is also used to compare the forward and cosine signal and the The reverse cosine signal, and output the cosine digital signal through the cosine digital signal output port;
  • the forward sine signal output port, the reverse sine signal output port, the forward cosine signal output port, and the reverse cosine signal output port are used to output a forward sine signal, a reverse sine signal, and a sine signal, respectively. Forward cosine signal and reverse cosine signal.
  • the sine signal output port includes a main code channel sine signal output port, a segment code sine signal output port, and a vernier code sine signal output port;
  • the forward sine signal output port and the reverse sine signal output port are respectively a main code forward sine signal output port and a main code reverse sine signal output port;
  • the sine digital signal output port includes a main code sine digital signal output port, a segment code sine digital signal output port, and a vernier code sine digital signal output port;
  • the cosine signal output port includes a main code channel cosine signal output port, a segment code cosine signal output port, and a vernier code cosine signal output port;
  • the forward cosine signal output port and the reverse cosine signal output port are respectively a main code forward cosine signal output port and a main code reverse cosine signal output port;
  • the cosine digital signal output port includes a main code cosine digital signal output port, a segment code cosine digital signal output port, and a vernier code cosine digital signal output port.
  • the photovoltaic cell also integrates two operational amplifier differential circuits
  • one of the operational amplifier differential circuits is used to process the main code forward sine signal and the main code reverse sine signal generated according to the optical signal, and pass the forward sine signal output port and the reverse sine signal.
  • the sine signal output port respectively outputs the main code differential forward sine signal and main code differential reverse sine signal after differential operation;
  • the other operational amplifier differential circuit is used to process the main code forward cosine signal and the main code reverse cosine signal generated from the optical signal, and pass the forward cosine signal output port and the reverse cosine signal
  • the output ports respectively output the main code differential forward cosine signal and main code differential reverse cosine signal after differential operation.
  • the present invention also provides a decoding device of a magneto-optical encoder, which includes the photocell, a processor, and a magnetic field sensor chip as described in any one of the above;
  • the processor is used to communicate with the sine signal output port, the forward sine signal output port, the reverse sine signal output port, the sine digital signal output port, the cosine signal output port, the forward cosine signal output port, and the reverse cosine of the photovoltaic cell.
  • the signal output port and the cosine digital signal output port are connected, and are connected to the magnetic induction chip, and the absolute position is calculated according to the output signal of the photovoltaic cell and the output signal of the magnetic induction chip.
  • main code forward sine signal output port and main code reverse sine signal output port of the photocell respectively pass through two external differential circuits and The processors are connected.
  • the magnetic field sensing chip includes a second magnetic sensing chip located at the center of the magnetic steel facing the optical magnetic encoder and two orthogonal first magnetic sensing chips facing the edge of the magnetic steel.
  • the output port of the second magnetic sensor chip is connected to the processor through an external differential circuit.
  • the first magnetic induction chip is an AMR chip
  • the second magnetic induction chip is any one of a TMR chip, a GMR chip, an AMR chip or a first magnetic induction chip.
  • the op amp single-ended output circuit and the comparator circuit are integrated in the photocell; and the op amp single-ended output circuit and the comparator are used to analyze the sinusoidal signal generated based on the optical signal.
  • Reverse sine signal, forward cosine signal, and reverse cosine signal are processed, so that the photocell can directly output sine signal, cosine signal, sine digital signal and cosine digital signal; at the same time, it can also output single-ended output without op amp
  • the forward sine signal, reverse sine signal, forward cosine signal, and reverse cosine signal processed by the circuit and the comparator are processed by the circuit and the comparator.
  • the photovoltaic cell in this application can output sine, cosine, sine digital, and cosine digital signals, forward sine signals, reverse sine signals, forward cosine signals, reverse cosine signals, and other signals, realizing the correction of sine and cosine signals
  • the present invention also provides a decoding device of the magneto-optical encoder, which has the above-mentioned beneficial effects.
  • FIG. 1 is a schematic diagram of a circuit frame of a photovoltaic cell provided by an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a decoding device of a magneto-optical encoder provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection structure between a photovoltaic cell and a processor provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a magnetic encoding component in a magneto-optical encoder provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a connection structure between a processor and a magnetic induction chip provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a circuit frame of a photovoltaic cell provided by an embodiment of the present invention.
  • the photovoltaic cell may specifically include:
  • the photocell 10 is used to receive the optical signal sent by the light source through the code channel, and generate a forward sine signal, a reverse sine signal, a forward cosine signal, and a reverse cosine signal according to the optical signal; it is characterized in that the photocell 10 is at least integrated with the optical signal Put a single-ended output circuit 11 and a comparator circuit 12;
  • the photocell 10 includes a sine signal output port, a forward sine signal output port, a reverse sine signal output port, a sine digital signal output port, a cosine signal output port, a forward cosine signal output port, a reverse cosine signal output port, and a cosine digital signal output port.
  • the operational amplifier single-ended output circuit 11 is used to process the forward sine signal and the reverse sine signal, and output the sine signal through the sine signal output port; it is also used to process the forward cosine signal and the reverse cosine signal, and pass The cosine signal output port outputs the cosine signal;
  • the comparator circuit 12 is used to process the forward sine signal and the reverse sine signal, and output the sine digital signal through the sine digital signal output port; it is also used to process the forward cosine signal and the reverse cosine signal, and pass the cosine digital signal The output port outputs the cosine digital signal;
  • the forward sine signal output port, reverse sine signal output port, forward cosine signal output port, and reverse cosine signal output port are used to output forward sine signal, reverse sine signal, forward cosine signal and reverse cosine signal, respectively .
  • the photocell 10 When the photocell 10 receives the light transmitted through the code track of the code disk, it can generate analog signals accordingly, that is, a forward sine signal, a reverse sine signal, a forward cosine signal, and a reverse cosine signal, as shown in Figure 1. It can be expressed by sin+, sin-, cos+, cos- respectively.
  • the op amp single-ended output circuit 11 and the comparator circuit 12 are integrated in the photovoltaic cell 10 in this application.
  • the operational amplifier single-ended output circuit 11 is equivalent to an amplifying circuit, which can output a sine signal according to the forward sine signal and the reverse sine signal.
  • the sine signal is equivalent to the signal obtained by expanding the amplitude of the positive sine signal by 2 times .
  • the cosine signal and the forward cosine signal output by the operational amplifier single-ended output circuit 11 also have the same corresponding relationship.
  • the comparator circuit 12 mainly outputs a sine digital signal by comparing the magnitude of the forward sine signal and the reverse sine signal; similarly, the pre-digital signal is also obtained by comparing the forward cosine signal and the reverse cosine signal.
  • the comparator circuit 12 is specifically a comparator, which is a commonly used circuit element, and will not be described in detail here.
  • the forward sine signal, the reverse sine signal, the forward cosine signal, and the reverse cosine signal need to be processed separately; in the actual circuit, each group of the forward sine signal and the reverse The sine signal jointly configures an op amp single-ended output circuit and a comparator circuit; and each group of forward cosine signals and reverse cosine signals jointly configures an op amp single-ended output circuit 11 and a comparator circuit 12; that is, It is said that the op amp single-ended output circuit 11 and the comparator circuit 12 for the forward and reverse sine signals and the forward and reverse cosine signals are not shared.
  • the photocell 10 in the present application outputs the photoelectric signal processed by the operational amplifier single-ended output circuit 11 and the comparator circuit 12, Output analog signals such as forward sine signal, reverse sine signal, forward cosine signal, reverse cosine signal, etc. to meet the different calculation requirements of the processor.
  • the op amp single-ended output circuit 11 and the comparator circuit 12 are integrated in the photovoltaic cell 10, which improves the calculation and processing capabilities of the photovoltaic cell 10 for signals to a certain extent, thereby reducing the gap between the processor and the photovoltaic cell 101.
  • the circuit component distribution structure on the circuit board is simplified, which conforms to the development trend of miniaturization of the encoder.
  • FIG. 1 is a block diagram of the chip structure for the vernier code.
  • it may include:
  • the sine signal output port includes the main code channel sine signal output port, the segment code sine signal output port and the vernier code sine signal output port;
  • the forward sine signal output port and the reverse sine signal output port are respectively the main code forward sine signal output port and the main code reverse sine signal output port;
  • the sine digital signal output port includes the main code sine digital signal output port, the segment code sine digital signal output port, and the vernier code sine digital signal output port;
  • the cosine signal output port includes the main code channel cosine signal output port, the segment code cosine signal output port and the vernier code cosine signal output port;
  • the forward cosine signal output port and the reverse cosine signal output port are respectively the main code forward cosine signal output port and the main code reverse cosine signal output port;
  • the cosine digital signal output port includes the main code cosine digital signal output port, the segment code cosine digital signal output port, and the vernier code cosine digital signal output port
  • the vernier code channel includes a main code channel M, a segment code channel N, and a vernier code channel S.
  • the signal generated according to the main code channel M includes the main code M_sin+ (the main code forward sine signal), the main code M_sin- (the main code reverse sine signal), and the main code M_cos+ (the main code forward cosine signal) ,
  • the main code M_cos- that is, the main code reverse cosine signal
  • the signal generated according to the segment code channel N includes the segment code N_sin+, the segment code N_sin-, the segment code N_cos+, and the segment code N_cos-;
  • the signal generated according to the cursor code channel S includes the cursor code S_sin+, the cursor code S_sin-, the cursor code S_cos+, and the cursor code S_cos-.
  • the processor when the processor performs the calculation based on the photovoltaic cell, it needs to calculate the more accurate reticle phase angle according to the main code M_sin+, main code M_sin-, main code M_cos+, and main code M_cos- of the analog signal of the main code channel M ; Without using the analog signal of segment code channel N and vernier code channel S.
  • the output ports for the signal of the main code channel M include the main code sine signal port output M_sin, the main code forward sine signal port output M_sin+, and the main code reverse sine signal port output M_sin-, And the main code cosine digital signal port output M_sin_Pulse; correspondingly, the pre-signal is also the corresponding four output ports to output four signals.
  • the specific port output mode please refer to Figure 1 and the relevant output mode of the sine corresponding signal. I will not repeat it here. .
  • segment code channel N only the segment code sine signal output port outputs N_sin (that is, the segment code sine signal), the segment code sine digital signal output port outputs N_sin_Pulse (the segment code sine digital signal), and the segment code cosine signal output port outputs N_cos. (I.e. segment code cosine signal), segment code cosine digital signal output port output N_cos_Pulse (ie segment code cosine digital signal); similarly, for the vernier code channel S only need to be used to output the vernier code S_sin, the vernier code S_sin_Pulse, the vernier code S_cos The port of the cursor code S_cos_Pulse will not be repeated here.
  • the processor calculates the absolute position according to the output signal of the photovoltaic cell 10
  • the processor cannot directly calculate these four signals. It also needs to perform differential operations on the four analog signals through a differential circuit before the processor can perform differential operations, that is, it needs to be between the processor and the photovoltaic cell. Configure the differential circuit.
  • it may further include:
  • the photovoltaic cell 10 also integrates two operational amplifier differential circuits 13;
  • An operational amplifier differential circuit 13 is used to process the main code forward sine signal and the main code reverse sine signal generated according to the optical signal, and respectively output the difference operation through the forward sine signal output port and the reverse sine signal output port. After the main code differential forward sine signal and the main code differential reverse sine signal;
  • the other op amp differential circuit processes the main code forward cosine signal and the main code reverse cosine signal generated according to the optical signal, and outputs the difference operation through the forward cosine signal output port and the reverse cosine signal output port.
  • the main code differential forward cosine signal and the main code differential reverse cosine signal are processed by the other op amp differential circuit.
  • two op amp differential circuits 13 are integrated in the photovoltaic cell 10, respectively, for the main code forward sine signal and the main code reverse sine signal, the forward cosine signal and the main code reverse cosine signal. Two sets of signals are processed.
  • the op-amp differential circuit 13 may or may not be integrated in the photovoltaic cell 10 of the present invention. If the op amp differential circuit 13 is not integrated in the photovoltaic cell 10, the forward sine signal output port, the reverse sine signal output port, the forward cosine signal output port, and the reverse cosine signal output port can be directly output according to the optical signal generation
  • the output port is output.
  • the integrated op-amp differential circuit 13 in the photovoltaic cell 10 is a preferred embodiment of the present application.
  • the photovoltaic cell 10 in the present invention may also be a chip that does not integrate the op-amp differential circuit 13, which does not affect the present invention.
  • the present invention also provides a decoding device of a magneto-optical encoder, as shown in FIG. 2, which is a structural block diagram of the decoding device of a magneto-optical encoder provided by an embodiment of the present invention.
  • the decoding device may include:
  • the photovoltaic cell 10, the processor 20, and the magnetic field sensor chip 30 described in any of the above embodiments;
  • the processor 30 is used for the sine signal output port, forward sine signal output port, reverse sine signal output port, sine digital signal output port, cosine signal output port, forward cosine signal output port, and reverse cosine signal output of the photocell
  • the port and the cosine digital signal output port are connected, and are connected to the magnetic induction chip 30, and the absolute position is calculated according to the output signal of the photocell 10 and the output signal of the magnetic induction chip 30.
  • optical-magnetic hybrid encoder it not only has the advantages of anti-pollution and strong anti-interference of the magnetic encoder, but also has the advantages of the optical encoder to measure the height accurately.
  • photoelectric hybrid encoders also have circuit elements corresponding to magnetic encoders, which further increases the number of circuit elements on the circuit board.
  • the photocell 10 integrated with at least the op amp single-ended output circuit 11 and the comparator circuit 12 is adopted in this embodiment, which is beneficial to the simplification of the circuit elements of the magneto-optical encoder, thereby solving the problem of circuit elements in the magneto-optical encoder.
  • the large number and complex layout are conducive to the wide application of magneto-optical encoders.
  • it may further include:
  • the main code forward sine signal output port and main code reverse sine signal output port of the photocell 10 respectively pass through two external differential circuits 40 and the processor 20 phase connection.
  • FIG. 3 is a schematic diagram of the connection structure of the photovoltaic cell and the processor provided by an embodiment of the present invention.
  • the photocell 10 in Figure 3 is applied to the encoder of the vernier code channel. Because the entire circuit diagram has more output ports, the sine signal output port and sine digital signal of the main code channel M are omitted in Figure 3 The signal output port, the cosine signal output port, and the cosine digital signal output port may have these four output ports in practical applications, and the four ports are also directly connected to the processor 20.
  • the main code forward sine signal output port and the main code reverse sine signal output port are connected to an external differential circuit, and the main code forward cosine signal output port and the main code reverse cosine signal The output ports are commonly connected to an external differential circuit 40.
  • the photoelectric code channel is the vernier code channel
  • the absolute position is calculated according to the signal output by the photovoltaic cell 10
  • the analog signal of the main code channel M needs to be obtained with higher accuracy, that is, the main Code M_sin+, main code M_sin-, main code M_cos+, main code M_cos-.
  • the photovoltaic cell 10 without the built-in operational amplifier differential circuit 13 it is also necessary to configure a differential circuit to process the analog signal and then input it to the processor 20, that is, configure an external differential that connects the photovoltaic cell 10 and the processor 20. Circuit 40.
  • the operational amplifier differential circuit 13 integrated in the photovoltaic cell 10 and the external differential circuit 40 in this application have the same functions and functions, so their circuit structures are also the same and similar, and can be adjusted according to actual applications. , But the basic principle of the circuit can be the same.
  • an external differential circuit 40 can also be provided between the analog signal output port of the main code channel M of the photovoltaic cell 10 and the processing 20 to meet the calculation requirements.
  • each output of the photovoltaic cell 10 can be directly connected to the processor 20, and There is no need to connect through the external differential circuit 40.
  • it may further include:
  • the magnetic field sensing chip 30 includes a first magnetic sensing chip 31 located at the center of the magnetic steel facing the optical magnetic encoder and two orthogonal second magnetic sensing chips 32 facing the edge of the magnetic steel.
  • the first magnetic induction chip is an AMR chip
  • the second magnetic induction chip is any one of a TMR chip, a GMR chip, an AMR chip, or the first magnetic induction chip.
  • the present invention does not exclude the use of other embodiments with similar functional chips.
  • FIG. 4 is a schematic structural diagram of a magnetic encoding component in a magneto-optical encoder provided by an embodiment of the present invention.
  • the magnetic steel in Figure 4 is a circular magnet composed of a semicircular N pole and a semicircular S pole.
  • the AMR chip 31 is arranged on the rotation center axis of the magnetic steel, and the two Hall chips are arranged at the edge of the magnetic steel.
  • the measurement directions are both parallel to the tangential direction of the magnet, and the measurement directions of the two Hall chips are perpendicular to each other, thereby realizing the orthogonal measurement of the two.
  • FIG. 4 shows that the AMR chip is the first magnetic sensing chip 31 and the Hall chip is the second magnetic sensing chip 32, which will not be repeated here.
  • the two Hall chips each output a period of square wave signals, and the difference between the two square wave signals is 90 degrees;
  • the AMR chip is used to output two cycles of sine signal and two cycles of cosine signal every time the magnetic steel rotates one circle.
  • the current absolute position is in different sector areas.
  • the high and low levels output by the two second magnetic sensing chips 32 have different combinations; accordingly, according to The different combinations of the high and low levels output by the two second magnetic sensing chips 32 can determine the number of cycles of the sine and cosine signals output by the first magnetic sensing chip 31 and then calculate the absolute position value.
  • the first magnetic sensing chip 31 can also output only one cycle of sine and cosine signals when the magnetic steel rotates once, the absolute position can be calculated without using the second magnetic sensing chip 32 to detect changes in the magnetic field.
  • the accuracy of the absolute position calculated by this method is low. Therefore, in this embodiment, the combination of two second magnetic sensing chips 32 and one first magnetic sensing chip 31 is a preferred embodiment.
  • it may further include:
  • the output port of the first magnetic sensor chip 31 is connected to the processor 20 through an external differential circuit 40.
  • FIG. 5 is a schematic diagram of a connection structure between a processor and a magnetic induction chip provided by an embodiment of the present invention.
  • the output of the first magnetic sensor chip 31 is also an analog signal of sine and cosine, in order for the processor 20 to calculate a more accurate absolute position, it is necessary to set an external differential between the first magnetic sensor chip 31 and the processor 20
  • the circuit 40 of course, the external differential circuit 40 in the present application can also be integrated in the first magnetic sensor chip 31, which is not specifically limited in the present invention.
  • the external differential circuit 40 between the first magnetic sensor chip 31 and the processor 20 has the same circuit structure as the external differential circuit 40 between the photovoltaic cell 10 and the processor 20.
  • the specific Ground circuit parameters can be selected according to actual conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

一种光编码器的光电池(10)及光磁编码器的解码装置,光电池(10)中至少集成有运放单端输出电路(11)和比较器电路(12);并分别通过运放单端输出电路(11)以及比较器电路(12)对基于光信号产生的正反向正弦信号和正反向余弦信号进行处理,使得光电池(10)可直接输出正弦信号、余弦信号、正弦数字信号和余弦数字信号;与此同时还可以输出未经过运放单端输出电路(11)以及比较器电路(12)处理的正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号。这种光电池(10)实现了对正余弦信号的各种处理,减小光电池(10)和处理器(20)之间连接电路的数量,进而简化线路板上的电路结构,有利于编码器的小型化应用。

Description

光编码器的光电池和光磁编码器的解码装置
本申请要求于2019年7月26日提交中国专利局、申请号为201910683237.7、发明名称为“光编码器的光电池和光磁编码器的解码装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及编码器信号处理技术领域,特别是涉及一种光编码器的光电池和光磁编码器的解码装置。
背景技术
编码器是把角位移或直线位移转换成电信号的一种装置,主要是通过光敏元件、磁感应传感器、或者电感部件等感应部件检测随着旋转轴的旋转,光、磁、或电信号的变化,并基于这一变化确定旋转的位移量。
在将光信号、磁信号、电信号进行处理运算中,需要采用各种负载的电路芯片,也就要求编码器的线路板上需要设置的芯片部件较多。使得线路板上的芯片线路复杂。
发明内容
本发明的目的是提供一种光编码器的光电池和一种光磁混合编码器的解码装置,简化了编码器内部的电路元件的结构,有理于编码器的小型化发展。
为解决上述技术问题,本发明提供一种光编码器的光电池,所述光电池用于接收光源通过码道发送的光信号,并根据所述光信号生成正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号;
所述光电池中至少集成有运放单端输出电路和比较器电路;
所述光电池包括正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口;
其中,所述运放单端输出电路用于对所述正向正弦信号和所述反向正 弦信号进行处理,并通过所述正弦信号输出端口输出正弦信号;还用于对所述正向余弦信号和所述反向余弦信号,并通过所述余弦信号输出端口输出余弦信号;
所述比较器电路用于对所述正向正弦信号和所述反向正弦信号进行处理,并通过所述正弦数字信号输出端口输出正弦数字信号;还用于对所述正向余弦信号和所述反向余弦信号,并通过所述余弦数字信号输出端口输出余弦数字信号;
所述正向正弦信号输出端口、所述反向正弦信号输出端口、所述正向余弦信号输出端口、所述反向余弦信号输出端口分别用于输出正向正弦信号、反向正弦信号、正向余弦信号以及反向余弦信号。
其中,所述正弦信号输出端口包括主码道正弦信号输出端口、段码正弦信号输出端口以及游标码正弦信号输出端口;
所述正向正弦信号输出端口、所述反向正弦信号输出端口分别为主码正向正弦信号输出端口、主码反向正弦信号输出端口;
所述正弦数字信号输出端口包括主码正弦数字信号输出端口、段码正弦数字信号输出端口、游标码正弦数字信号输出端口;
所述余弦信号输出端口包括主码道余弦信号输出端口、段码余弦信号输出端口以及游标码余弦信号输出端口;
所述正向余弦信号输出端口、所述反向余弦信号输出端口分别为主码正向余弦信号输出端口、主码反向余弦信号输出端口;
所述余弦数字信号输出端口包括主码余弦数字信号输出端口、段码余弦数字信号输出端口、游标码余弦数字信号输出端口。
其中,所述光电池还集成有两个运放差分电路;
其中,一个所述运放差分电路分别用于对根据所述光信号生成主码正向正弦信号和主码反向正弦信号进行处理,并通过所述正向正弦信号输出端口、所述反向正弦信号输出端口分别输出经过差分运算后的主码差分正向正弦信号和主码差分反向正弦信号;
另一个所述运放差分电路用于对根据所述光信号生成主码正向余弦信号和主码反向余弦信号进行处理,并通过所述正向余弦信号输出端口、 所述反向余弦信号输出端口分别输出经过差分运算后的主码差分正向余弦信号和主码差分反向余弦信号。
本发明还提供了一种光磁编码器的解码装置,包括如上任一项所述的光电池、处理器、磁场感应芯片;
所述处理器用于和所述光电池的正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口相连接,且和所述磁感应芯片相连接,根据所述光电池的输出信号和所述磁感应芯片的输出信号进行绝对位置的解算。
其中,所述光电池的主码正向正弦信号输出端口和主码反向正弦信号输出端口、主码正向余弦信号输出端口和主码反向余弦信号输出端口分别通过两个外置差分电路和所述处理器相连接。
其中,所述磁场感应芯片包括设于正对光磁编码器的磁钢的中心位置的第二磁感芯片和正对所述磁钢边缘位置的两个正交第一磁感芯片。
其中,所述第二磁感芯片的输出端口通过外置差分电路和所述处理器相连接。
其中,所述第一磁感应芯片为AMR芯片,所述第二磁感芯片为TMR芯片、GMR芯片、AMR芯片或者第一磁感芯片中的任意一种。
本发明所提供的光编码器的光电池,光电池中至少集成有运放单端输出电路、和比较器电路;并分别通过运放单端输出电路以及比较器对基于光信号产生的正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号进行处理,使得光电池可直接输出正弦信号、余弦信号、正弦数字信号和余弦数字信号;与此同时还可以输出未经过运放单端输出电路以及比较器处理的正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号。
本申请中的光电池,可输出正弦信号、余弦信号、正弦数字信号和余弦数字信号、正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号等信号,实现了对正余弦信号的各种处理,简化了后续绝对位置解算过程中对光电池输出的信号的处理过程,减小光电池和处理器之间连接电路的数量,进而简化线路板上的电路结构,有利于编码器的小型化应用。
本发明还提供了一种光磁编码器的解码装置,具有上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的光电池的电路框架示意图;
图2为本发明实施例提供的光磁编码器的解码装置的结构框图;
图3为本发明实施例提供的光电池和处理器的连接结构示意图;
图4为本发明实施例提供的光磁编码器中磁编码组件的结构示意图;
图5为本发明实施例提供的处理器和磁感应芯片的连接结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,图1为本发明实施例提供的光电池的电路框架示意图。该光电池具体可以包括:
光电池10用于接收光源通过码道发送的光信号,并根据光信号生成正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号;其特征在于,光电池10中至少集成有运放单端输出电路11、和比较器电路12;
光电池10包括正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信 号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口;
其中,运放单端输出电路11用于对正向正弦信号和反向正弦信号进行处理,并通过正弦信号输出端口输出正弦信号;还用于对正向余弦信号和反向余弦信号,并通过余弦信号输出端口输出余弦信号;
比较器电路12用于对正向正弦信号和反向正弦信号进行处理,并通过正弦数字信号输出端口输出正弦数字信号;还用于对正向余弦信号和反向余弦信号,并通过余弦数字信号输出端口输出余弦数字信号;
正向正弦信号输出端口、反向正弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口分别用于输出正向正弦信号、反向正弦信号、正向余弦信号以及反向余弦信号。
在光电池10接收到通过码盘的码道透过的光线,可以相应地生成模拟信号,也即是正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号,如图1中所示,可分别用sin+、sin-、cos+、cos-表示。
常规的光电池在生成四种模拟信号后,会直接将该模拟信号输出。但是根据该光电池输出的信号进行解算绝对位置的处理器,并不能直接针对该模拟信号进行解算,因此就需要在光电池和处理器之间增加相应的电路元件,用于对模拟型号进行各种不同的运算处理。而该电路元件和光电池以及处理器均设于编码器的线路板中,并且线路板的面积有限,而如果对处理器解算的绝对位置的精度要求越高,对模拟信号进行处理的中间电路元件也就越复杂,也就相应的要求线路板的面积越大,进而编码器的体积也就越大,不符合行业内对编码器小型化发展的应用需求。
为此,本申请中将光电池10中集成了运放单端输出电路11和比较器电路12。运放单端输出电路11相当于一个放大电路,可以根据正向正弦信号和反向正弦信号输出一个正弦信号,该正弦信号的相当于将正向正弦信号的幅值扩大2倍而获得的信号。同理,对于通过运放单端输出电路11输出的余弦信号和正向余弦信号也具有相同的对应关系。
对于运放单端输出电路11,是现有技术中已经存在的电路结构,在本实施例中仅仅是将这一电路结构集成于光电池中,因此本申请中对其具体地电路结构不做具体说明。
比较器电路12主要是通过比较正向正弦信号和反向正弦信号的大小,输出正弦数字信号;同理预先数字信号也是通过比较正向余弦信号和反向余弦信号获得的。对于比较器电路12具体即是一个比较器,是目前应用较为普遍的一种电路元件,在此不再详细说明。
需要说明的是,本申请中需要分别对正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号进行处理;在实际电路中,需要为每一组正向正弦信号和反向正弦信号共同配置一个运放单端输出电路和一个比较器电路;而每一组正向余弦信号和反向余弦信号共同配置一个运放单端输出电路11和一个比较器电路12;也即是说针对正反向正弦信号和正反向余弦信号的运放单端输出电路11和比较器电路12是不共用的。
另外,为了提高绝对位置的解算精度,处理器往往还需要获得模拟信号,因此本申请中的光电池10在输出经过运放单端输出电路11和比较器电路12处理后的光电信号之后,还输出正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号等模拟信号,以满足处理器不同的解算需求。
综上,本申请中在光电池10中集成有运放单端输出电路11和比较器电路12,在一定程度上提高了光电池10对信号的运算处理能力,进而减少了处理器和光电池101之间的电路元件,在保证处理器高精度解算出绝对位置的基础上,简化了线路板上的电路元件分布结构,符合编码器小型化的发展趋势。
为了进一步地对本发明的技术方案进行说明,下面以用于具有三圈码道的游标码道的光信号的光电池为例进行说明。具体地,可以参考图1,图1中的光电池即为针对游标码到的芯片结构框图。
具体地,在本发明的一种具体实施例中,可以包括:
光电池10中集成有六个运放单端输出电路11,和六个比较器电路12;
正弦信号输出端口包括主码道正弦信号输出端口、段码正弦信号输出端口以及游标码正弦信号输出端口;
正向正弦信号输出端口、反向正弦信号输出端口分别为主码正向正弦信号输出端口、主码反向正弦信号输出端口;
正弦数字信号输出端口包括主码正弦数字信号输出端口、段码正弦数字信号输出端口、游标码正弦数字信号输出端口;
余弦信号输出端口包括主码道余弦信号输出端口、段码余弦信号输出端口以及游标码余弦信号输出端口;
正向余弦信号输出端口、反向余弦信号输出端口分别为主码正向余弦信号输出端口、主码反向余弦信号输出端口;
余弦数字信号输出端口包括主码余弦数字信号输出端口、段码余弦数字信号输出端口、游标码余弦数字信号输出端口
需要说明的是,游标码道包括主码道M、段码道N以及游标码道S。
其中,根据主码道M生成的信号包括主码M_sin+(即主码正向正弦信号)、主码M_sin-(即主码反向正弦信号)、主码M_cos+(即主码正向余弦信号)、主码M_cos-(即主码反向余弦信号);
类似地,根据段码道N生成的信号包括段码N_sin+、段码N_sin-、段码N_cos+、段码N_cos-;
根据游标码道S生成的信号包括游标码S_sin+、游标码S_sin-、游标码S_cos+、游标码S_cos-。
其中,处理器在根据光电池进行解算时,需要根据主码道M的模拟信号主码M_sin+、主码M_sin-、主码M_cos+、以及主码M_cos-解算出精确度较高的刻线相位角;而无需用到段码道N和游标码道S的模拟信号。因此,光电池10的输出端口中,针对主码道M的信号的输出端口就包括主码正弦信号端口输出M_sin、主码正向正弦信号端口输出M_sin+、主码反向正弦信号端口输出M_sin-、以及主码余弦数字信号端口输出M_sin_Pulse;相应地预先信号也是相应的四个输出端口输出四个信号,至于具体端口输出方式参考图1和正弦对应信号的相关输出方式即可,在此不再赘述。
而针对段码道N只需要段码正弦信号输出端口输出N_sin(即段码正弦信号)、段码正弦数字信号输出端口输出N_sin_Pulse(即段码正弦数字信号)、段码余弦信号输出端口输出N_cos(即段码余弦信号)、段码余弦数字信号输出端口输出N_cos_Pulse(即段码余弦数字信号);类似地,针对游标 码道S只需要用于输出游标码S_sin、游标码S_sin_Pulse、游标码S_cos、游标码S_cos_Pulse的端口,在此不再重复说明。
另外,结合图1可知光电池10中,针对每一对根据光信号生成的正反向正弦信号和每一对根据光信号生成的正反向余弦信号均需要分别配置一个运放单端输出电路11和比较器电路12。因此,光电池10中集成有6个运放单端输出电路11和6个比较器电路12分别对主码道M的正反向正弦信号、主码道M的正反向余弦信号、段码道N的正反向正弦信号、段码道N的正反向余弦信号、游标码道S的正反向正弦信号、游标码道S的正反向余弦信号六对信号进行处理。
如前,处理器在根据光电池10的输出信号解算绝对位置时,若对解算结果的精确度要求较高,就需要获得主码道的主码M_sin+、主码M_sin-、主码M_cos+、主码M_cos-等模拟信号。但是处理器并不能直接对这四个信号进行解算,还需要经过差分电路对这四个模拟信号进行差分运算后,处理器才能进行差分运算,也即是说需要在处理器和光电池之间配置差分电路。为了进一步简化本申请的中电路元件的结构,在本发明的另一具体实施例中,还可以进一步地包括:
光电池10还集成有两个运放差分电路13;
一个运放差分电路13分别用于对根据光信号生成主码正向正弦信号和主码反向正弦信号进行处理,并通过正向正弦信号输出端口、反向正弦信号输出端口分别输出经过差分运算后的主码差分正向正弦信号和主码差分反向正弦信号;
另一个所述运放差分电路对根据光信号生成主码正向余弦信号和主码反向余弦信号进行处理,并通过正向余弦信号输出端口、反向余弦信号输出端口分别输出经过差分运算后的主码差分正向余弦信号和主码差分反向余弦信号。
具体地,如图1所示,在光电池10中集成了两个运放差分电路13,分别对主码正向正弦信号和主码反向正弦信号、正向余弦信号和主码反向余弦信号两组信号进行处理。
当然需要说明的是,本发明中的光电池10中可以集成有运放差分电路13也可以不集成运放差分电路13。若光电池10中未集成运放差分电路13,则正向正弦信号输出端口、反向正弦信号输出端口、正向余弦信号输出端口、以及反向余弦信号输出端口就可以直接分别输出根据光信号生成的主码M_sin+、主码M_sin-、主码M_cos+、主码M_cos-等模拟信号;如果光电池中集成有运放差分电路13,则根据光信号生成的主码M_sin+、主码M_sin-、主码M_cos+、主码M_cos-等模拟信号就需要先经过运放差分电路13处理后,再分别从正向正弦信号输出端口、反向正弦信号输出端口、正向余弦信号输出端口、以及反向余弦信号输出端口就输出。
光电池10中集成运放差分电路13,是本申请中的一种优选的实施例,本发明中的光电池10也可以是不集成运放差分电路13的芯片,对此,也并不影响本发明中技术方案的实现,因此两种实施方式应当都属于本申请的保护范围。
本发明中还提供了一种光磁编码器的解码装置,如图2所示,图2为本发明实施例提供的光磁编码器的解码装置的结构框图。该解码装置可以包括:
如上任意实施例所述的光电池10、处理器20、磁场感应芯片30;
处理器30用于和光电池的正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口相连接,且和磁感应芯片30相连接,根据光电池10的输出信号和磁感应芯片30的输出信号进行绝对位置的解算。
对于光磁混合编码器而言,既具有磁编码器的抗污染、抗干扰性强的优点,又具有光编码器测量精确对高的优点。但是相对于纯粹的光编码器而言,光电混合编码器还存在磁编码器对应的电路元件,进一步使得线路板上的电路元件增多。为此,本实实施例中采用至少集成有运放单端输出电路11和比较器电路12的光电池10,有利于光磁编码器的电路元件的简化,从而解决了光磁编码器中电路元件数量较多,布局复杂的问题,有利 于光磁编码器的广泛应用。
可选地,在本发明的另一具体实施例中,还可以进一步地包括:
光电池10的主码正向正弦信号输出端口和主码反向正弦信号输出端口、主码正向余弦信号输出端口和主码反向余弦信号输出端口分别通过两个外置差分电路40和处理器20相连接。
对于光电池10和处理器20之间的连接关系,可参考图3,图3为本发明实施例提供的光电池和处理器的连接结构示意图。
需要说明的是,图3中的光电池10是应用于游标码道的编码器中,因整个电路图的输出端口较多,在图3中省去了主码道M的正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、余弦数字信号输出端口,在实际应用中,是可以存在这四个输出端口的,且四个端口也是直接和处理器20相连接的。
具体地,如图3所示,主码正向正弦信号输出端口和主码反向正弦信号输出端口共同连接一个外置差分电路,而主码正向余弦信号输出端口和主码反向余弦信号输出端口共同连接一个外置差分电路40。
如前,针对光电码道为游标码道的实施例中,在根据光电池10输出的信号解算绝对位置时,若要解算出精确度较高的需要获得主码道M的模拟信号,即主码M_sin+、主码M_sin-、主码M_cos+、主码M_cos-。且对于未内置有运放差分电路13的光电池10而言,还需要配置差分电路对该模拟信号进行处理后再输入至处理器20,也即是配置连接光电池10和处理器20的外置差分电路40。
需要说明的是,本申请中的集成于光电池10中的运放差分电路13和外置差分电路40的功能作用相同,因此其电路结构也是相同和近似的,可以根据实际应用做适应性的调整,但其电路基本原理可以相同。
但是对于已经内置有运放差分电路13的光电池10而言,可能存在因例如差分运算的放大倍数、以及电路中各种参数设置不同等等原因,造成光电池10中集成的运放差分电路13对主码道M的模拟信号的差分运算的要求和处理器20解算需要的差分运算需求并不一致。因此,在这种情况下,也可以在光电池10的主码道M的模拟信号输出端口和处理20之间设置一 个外置差分电路40,以满足运算需求。
当然,对于光电池10中内置的运放差分电路13输出的主码道M的模拟信号,如果和处理器20解算需要的信号一致,则光电池10的各个输出即可直接连接处理器20,而无需通过外置差分电路40连接。
可选地,在本发明的另一具体实施例中,还可以进一步地包括:
磁场感应芯片30包括设于正对光磁编码器的磁钢的中心位置的第一磁感芯片31和正对磁钢边缘位置的两个正交第二磁感芯片32。
具体地,对于第一磁感应芯片为AMR芯片,第二磁感芯片为TMR芯片、GMR芯片、AMR芯片或者第一磁感芯片中的任意一种。当然本发明中也并不排除采用其他具有类似功能芯片的实施例。
如图4所示,图4为本发明实施例提供的光磁编码器中磁编码组件的结构示意图。图4中磁钢为圆形磁体,由半圆形N极和半圆形S极组成,AMR芯片31设于磁钢的旋转中心轴上,两个霍尔芯片设置在磁钢边缘位置,且测量方向均和磁钢的切线方向平行,两个霍尔芯片的测量方向相互垂直,进而实现二者的正交测量。其中,图4是以AMR芯片为第一磁感芯片31,霍尔芯片为第二磁感芯片32进行表示的,对此不再赘述。
另外,磁钢每旋转一圈,两个霍尔芯片各输出一个周期的方波信号,且两个方波信号相差90度;
AMR芯片用于磁钢每旋转一周,输出两个周期的正弦信号和两个周期的余弦信号。
若将圆形的磁钢划分为四个90度的扇形区域,那么当前绝对位置处于不同的扇形区域是,两个第二磁感芯片32输出的高低电平存在不同的组合;相应地,根据两个第二磁感芯片32输出的高低电平不同的组合,即可确定当前位置对应于第一磁感芯片31输出的第几个周期的正余弦信号,进而解算出绝对位置值。
尽管第一磁感芯片31也可以在磁钢旋转一圈时,只输出一个周期的正余弦信号,而此时无需采用第二磁感芯片32检测磁场变化,即可解算出绝对位置,但是这种解算方式解算出的绝对位置的精度较低。因此,本实施例中采用两个第二磁感芯片32和一个第一磁感芯片31结合,是一种优选 的实施方式。
可选地,在本发明的另一具体实施例中,还可以进一步地包括:
第一磁感芯片31的输出端口通过外置差分电路40和处理器20相连接。
具体地,如图5所示,图5为本发明实施例提供的处理器和磁感应芯片的连接结构示意图。
因为第一磁感芯片31输出的也是正余弦的模拟信号,因此,为了处理器20能够解算出更为精确的绝对位置,需要再第一磁感芯片31和处理器20之间设置外置差分电路40,当然,本申请中的外置差分电路40也可以集成在第一磁感芯片31中,对此,本发明中不做具体限定。
如图3和图5所示,第一磁感芯片31和处理器20之间的外置差分电路40,和光电池10于处理器20之间的外置差分电路40的电路结构相同,至于具体地电路参数,可以根据实际情况选择。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

Claims (8)

  1. 一种光编码器的光电池,所述光电池用于接收光源通过码道发送的光信号,并根据所述光信号生成正向正弦信号、反向正弦信号、正向余弦信号、反向余弦信号;其特征在于,所述光电池中至少集成有运放单端输出电路和比较器电路;
    所述光电池包括正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口;
    其中,所述运放单端输出电路用于对所述正向正弦信号和所述反向正弦信号进行处理,并通过所述正弦信号输出端口输出正弦信号;还用于对所述正向余弦信号和所述反向余弦信号,并通过所述余弦信号输出端口输出余弦信号;
    所述比较器电路用于对所述正向正弦信号和所述反向正弦信号进行处理,并通过所述正弦数字信号输出端口输出正弦数字信号;还用于对所述正向余弦信号和所述反向余弦信号,并通过所述余弦数字信号输出端口输出余弦数字信号;
    所述正向正弦信号输出端口、所述反向正弦信号输出端口、所述正向余弦信号输出端口、所述反向余弦信号输出端口分别用于输出正向正弦信号、反向正弦信号、正向余弦信号以及反向余弦信号。
  2. 如权利要求1所述的光编码器的光电池,其特征在于,所述正弦信号输出端口包括主码道正弦信号输出端口、段码正弦信号输出端口以及游标码正弦信号输出端口;
    所述正向正弦信号输出端口、所述反向正弦信号输出端口分别为主码正向正弦信号输出端口、主码反向正弦信号输出端口;
    所述正弦数字信号输出端口包括主码正弦数字信号输出端口、段码正弦数字信号输出端口、游标码正弦数字信号输出端口;
    所述余弦信号输出端口包括主码道余弦信号输出端口、段码余弦信号输出端口以及游标码余弦信号输出端口;
    所述正向余弦信号输出端口、所述反向余弦信号输出端口分别为主码 正向余弦信号输出端口、主码反向余弦信号输出端口;
    所述余弦数字信号输出端口包括主码余弦数字信号输出端口、段码余弦数字信号输出端口、游标码余弦数字信号输出端口。
  3. 如权利要求2所述的光编码器的光电池,其特征在于,所述光电池还集成有两个运放差分电路;
    其中,一个所述运放差分电路分别用于对根据所述光信号生成主码正向正弦信号和主码反向正弦信号进行处理,并通过所述正向正弦信号输出端口、所述反向正弦信号输出端口分别输出经过差分运算后的主码差分正向正弦信号和主码差分反向正弦信号;
    另一个所述运放差分电路用于对根据所述光信号生成主码正向余弦信号和主码反向余弦信号进行处理,并通过所述正向余弦信号输出端口、所述反向余弦信号输出端口分别输出经过差分运算后的主码差分正向余弦信号和主码差分反向余弦信号。
  4. 一种光磁编码器的解码装置,其特征在于,包括如权利要求1至3任一项所述的光电池、处理器、磁场感应芯片;
    所述处理器用于和所述光电池的正弦信号输出端口、正向正弦信号输出端口、反向正弦信号输出端口、正弦数字信号输出端口、余弦信号输出端口、正向余弦信号输出端口、反向余弦信号输出端口、以及余弦数字信号输出端口相连接,且和所述磁感应芯片相连接,根据所述光电池的输出信号和所述磁感应芯片的输出信号进行绝对位置的解算。
  5. 如权利要求4所述的光磁编码器的解码装置,其特征在于,所述光电池的主码正向正弦信号输出端口和主码反向正弦信号输出端口、主码正向余弦信号输出端口和主码反向余弦信号输出端口分别通过两个外置差分电路和所述处理器相连接。
  6. 如权利要求4所述的光磁编码器的解码装置,其特征在于,所述磁场感应芯片包括设于正对光磁编码器的磁钢的中心位置的第一第二磁感芯片和正对所述磁钢边缘位置的两个正交第二磁感芯片。
  7. 如权利要求6所述的光磁编码器的解码装置,其特征在于,所述第二磁感芯片的输出端口通过外置差分电路和所述处理器相连接。
  8. 如权利要求6所述的光磁编码器的解码装置,其特征在于,所述第一磁感应芯片为AMR芯片,所述第二磁感芯片为TMR芯片、GMR芯片、AMR芯片或者第一磁感芯片中的任意一种。
PCT/CN2019/102987 2019-07-26 2019-08-28 光编码器的光电池和光磁编码器的解码装置 WO2021017073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910683237.7 2019-07-26
CN201910683237.7A CN110243401B (zh) 2019-07-26 2019-07-26 光编码器的光电池和光磁编码器的解码装置

Publications (1)

Publication Number Publication Date
WO2021017073A1 true WO2021017073A1 (zh) 2021-02-04

Family

ID=67893631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102987 WO2021017073A1 (zh) 2019-07-26 2019-08-28 光编码器的光电池和光磁编码器的解码装置

Country Status (2)

Country Link
CN (1) CN110243401B (zh)
WO (1) WO2021017073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413941A (zh) * 2021-12-29 2022-04-29 歌尔光学科技有限公司 光电池探测系统、编码控制方法、处理芯片、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829201A (ja) * 1994-07-18 1996-02-02 Nikon Corp 多回転アブソリュートエンコーダ
US20090243599A1 (en) * 2008-03-31 2009-10-01 Harmonic Drive Systems Inc. Multiple-rotation absolute encoder
CN203964930U (zh) * 2014-05-26 2014-11-26 四川科奥达技术有限公司 一种光磁编码器
CN108801301A (zh) * 2018-05-31 2018-11-13 苏州汇川技术有限公司 编码器系统
CN109520529A (zh) * 2018-12-29 2019-03-26 苏州汇川技术有限公司 编码器读头及编码器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604191B2 (ja) * 1995-03-10 2004-12-22 ソニー株式会社 記録再生装置、記録装置
CN204334521U (zh) * 2014-12-23 2015-05-13 乐清市中洋电子科技有限公司 一种编码器的信号处理线路板
CN208635816U (zh) * 2018-05-31 2019-03-22 苏州汇川技术有限公司 编码器系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829201A (ja) * 1994-07-18 1996-02-02 Nikon Corp 多回転アブソリュートエンコーダ
US20090243599A1 (en) * 2008-03-31 2009-10-01 Harmonic Drive Systems Inc. Multiple-rotation absolute encoder
CN203964930U (zh) * 2014-05-26 2014-11-26 四川科奥达技术有限公司 一种光磁编码器
CN108801301A (zh) * 2018-05-31 2018-11-13 苏州汇川技术有限公司 编码器系统
CN109520529A (zh) * 2018-12-29 2019-03-26 苏州汇川技术有限公司 编码器读头及编码器

Also Published As

Publication number Publication date
CN110243401A (zh) 2019-09-17
CN110243401B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
JP6549676B2 (ja) 絶対角度位置の測定
US8466672B2 (en) Method of processing encoder signals
US10627209B2 (en) Angle sensor system
US10436611B2 (en) Rotation angle measuring apparatus and measuring method
US11255698B2 (en) Magnetic position sensor arrangement
CN108155910B (zh) 一种基于fpga的高速正余弦编码器解码方法
JP2018506033A (ja) 隣接する回転輪の磁気干渉を解消可能な直読式メータ
CN206095144U (zh) 一种带自校正的感应同步器测量系统
US10352728B2 (en) Angle sensor, correction method for use therewith, and angle sensor system
JPH09119823A (ja) 位置センサ
WO2021017074A1 (zh) 一种光磁混合编码器系统
US8030916B2 (en) Magnetic rotary encoder and method for iteratively aligning magnet relative to magnetic sensors
WO2021017075A1 (zh) 混合编码器的位置确定方法、装置、设备及可读存储介质
CN104062609A (zh) 检测电路、半导体集成电路装置和磁场旋转角检测装置
WO2021017073A1 (zh) 光编码器的光电池和光磁编码器的解码装置
CN110932514A (zh) 一种无刷电机及电机转子位置的检测方法
CN103557830A (zh) 一种兼容多种传感器的测角板卡
CN109506681B (zh) 基于硅霍尔效应的磁编码器芯片结构
JP2022524488A (ja) 外部磁場の角度及び強度を測定する電子回路
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
CN214149128U (zh) 一种磁栅传感器
CN112698253B (zh) 一种数字化三轴tmr磁传感系统
CN206989977U (zh) 莫尔条纹式光栅信号的细分及辨向预处理电路
JP6806689B2 (ja) 自動磁気流量記録デバイス
CN112729100A (zh) 一种旋变式角度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939591

Country of ref document: EP

Kind code of ref document: A1