WO2021017075A1 - 混合编码器的位置确定方法、装置、设备及可读存储介质 - Google Patents

混合编码器的位置确定方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2021017075A1
WO2021017075A1 PCT/CN2019/102989 CN2019102989W WO2021017075A1 WO 2021017075 A1 WO2021017075 A1 WO 2021017075A1 CN 2019102989 W CN2019102989 W CN 2019102989W WO 2021017075 A1 WO2021017075 A1 WO 2021017075A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
electrical signal
hybrid encoder
magnetic
square wave
Prior art date
Application number
PCT/CN2019/102989
Other languages
English (en)
French (fr)
Inventor
鄢鹏飞
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021017075A1 publication Critical patent/WO2021017075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/56Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using electric or magnetic means

Definitions

  • the present invention relates to the technical field of encoders, and in particular to a method, device, equipment and computer-readable storage medium for determining the position of a hybrid encoder.
  • the photoelectric encoder is a type of sensor that is composed of a photoelectric code disk with an axis in the center, on which there are circular light and dark engraved lines, and a photoelectric transmitter and receiver device to read and obtain signals. It is mainly used to measure displacement or angle.
  • the photoelectric encoder has the advantages of high measurement accuracy, but also has the disadvantages of easy pollution and poor anti-interference ability.
  • the magnetoelectric encoder adopts a magnetoelectric design. It uses magnetic induction devices and changes in the magnetic field to generate a changing electrical signal and use it to provide the absolute position of the rotor. The use of magnetic devices replaces the traditional code disc, which makes up for the photoelectric encoder. Some defects are more earthquake-resistant, corrosion-resistant, pollution-resistant, highly reliable, and simpler in structure.
  • the optical-magnetic hybrid encoder is an encoder that integrates an optical encoder and a magnetic encoder. It not only has the advantages of high precision of a photoelectric encoder, but also has the advantages of anti-vibration and anti-pollution of the magnetic encoder.
  • the purpose of the present invention is to provide a method, device, equipment and computer readable storage medium for determining the position of a hybrid encoder, which improves the accuracy and precision of the absolute position calculated by the hybrid encoder.
  • the present invention provides a method for determining the position of a hybrid encoder, including:
  • the first electrical signal includes the one-period square wave signal outputted by the two first magnetic sensing chips each time the magnetic steel rotates one revolution, and the two-period sine wave outputted by the second magnetic sensing chip.
  • Signal and two periods of cosine signal; and the phase difference of the two square wave signals is 90 degrees;
  • the position information of the hybrid encoder is determined according to the scribe line value and the circle value and the scribe line phase angle.
  • the obtaining the first electrical signal corresponding to the photoelectric signal in the hybrid encoder includes:
  • the obtaining the engraved line value and the circle value of the absolute position at the current moment according to the first electrical signal includes:
  • the obtaining the circle value according to the square wave signal output by the two first magnetic induction chips includes:
  • the number of photoelectric code channels in the hybrid encoder is not less than two;
  • the second electrical signal includes the electrical signal obtained by converting the optical signals of at least two of the photoelectric code channels collected by the reading head.
  • the reticle value obtained according to the first electrical signal is compared with the reticle value of the optical encoding to determine whether the hybrid encoder is available.
  • the application also provides a device for determining the position of a hybrid encoder, including:
  • the signal acquisition module is used to acquire the first electrical signal output by the magnetic field sensing chip in the hybrid encoder and the second electrical signal output by the photosensitive element; wherein the magnetic field sensing chip includes two first magnetic sensing chips and The second magnetic sensing chip, the first electrical signal includes obtaining one-period square wave signals output by the two first magnetic sensing chips each time the magnetic steel rotates one revolution, and the second magnetic sensing chip output Two periods of sine signal and two periods of cosine signal; and the phase difference of the two square wave signals is 90 degrees;
  • the first solution module is configured to obtain the engraved line value and the circle value of the absolute position at the current moment according to the first electrical signal;
  • the second solution module is configured to obtain the reticle phase angle of the absolute position at the current moment according to the second electrical signal
  • the position determination module is configured to determine the position information of the hybrid encoder according to the scribe line value and the circle value and the scribe line phase angle.
  • the first solution module specifically includes:
  • a range determining unit configured to determine the position range of the absolute position at the current time according to the square wave signals output by the two first magnetic sensing chips at the current time;
  • a reticle value calculation unit configured to determine the reticle value of the absolute position at the current moment according to the position range and the sine signal and the cosine signal at the current moment;
  • the lap value calculation unit is configured to obtain the lap value according to the two square wave signals.
  • the coil value calculation unit is specifically configured to determine the cumulative coil value according to the cumulative cycle number of the square wave signal output by the first magnetic induction chip; according to the square wave signals output by the two first magnetic induction chips at the current moment Correcting the accumulated circle value with the engraved line value at the current moment to obtain the circle value.
  • the application also provides a device for determining the position of a hybrid encoder, including:
  • Memory used to store computer programs
  • the processor is configured to implement the steps of the method for determining the position of the hybrid encoder as described in any one of the preceding items when the computer program is executed.
  • the present application also provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for determining the position of the hybrid encoder as described in any of the above step.
  • the method for determining the position of a hybrid encoder includes acquiring a first electrical signal output by a magnetic field sensor chip in the hybrid encoder and a second electrical signal output by a photosensitive element; wherein the magnetic field sensor chip includes two first electrical signals.
  • the first electrical signal includes one cycle of square wave signals output by the two first magnetic sensor chips and two cycles output by the second magnetic sensor chip for each revolution of the magnetic steel.
  • the sine signal and the two-period cosine signal; and the phase difference of the two square wave signals is 90 degrees; according to the first electrical signal, the absolute position of the current moment of the scale value and the circle value are obtained; according to the second electrical signal, the current The reticle phase angle of the absolute position at the time; the position information of the hybrid encoder is determined according to the reticle value, the circle value and the reticle phase angle.
  • the method for determining the position of the hybrid encoder in this application is based on the respective characteristics of the magnetic encoder and the optical encoder, and the first electrical signal output by the magnetic sensor chip is calculated to obtain the absolute position of the engraved line value and the circle value, and the output of the photosensitive element
  • the second electrical signal is combined to calculate the absolute position of the reticle phase angle to obtain a more accurate position value; in addition, every time the magnet rotates, the second magnetic sensor chip outputs two-period sine and cosine signals, which is beneficial
  • the reliability of the reticle value and the circle value calculated by the second electrical signal is improved, thereby improving the calculation accuracy of the hybrid encoder.
  • the entire calculation process is simple and the accuracy is high, which is beneficial to the wide application of the hybrid encoder.
  • the application also discloses a position determining device, equipment and computer-readable storage medium of the hybrid encoder, which have the above-mentioned beneficial effects.
  • FIG. 1 is a schematic flowchart of a method for determining a position of a hybrid encoder according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a magnetic encoding assembly provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for determining a position of a hybrid encoder according to another embodiment of the present invention.
  • FIG. 4 is a coordinate schematic diagram of the corresponding relationship between the output signals of the first magnetic sensing chip and the second magnetic sensing chip;
  • Fig. 5 is a structural block diagram of a device for determining a position of a hybrid encoder provided by an embodiment of the present invention.
  • the applicant fully considered the respective characteristics of the optical encoder and the magnetic encoder, and proposed a method, device, equipment and computer-readable storage medium for determining the position of a hybrid encoder.
  • FIG. 1 is a schematic flowchart of a method for determining a position of a hybrid encoder according to an embodiment of the present invention.
  • the method can include:
  • Step S11 Obtain the first electrical signal output by the magnetic field sensing chip in the hybrid encoder and the second electrical signal output by the photosensitive element.
  • the magnetic field sensing chip includes two first magnetic sensing chips and a second magnetic sensing chip
  • the first electrical signal includes obtaining the output of each of the two first magnetic sensing chips for each revolution of the magnetic steel.
  • the hybrid encoder in this embodiment includes components of an optical encoder and components of a magnetic encoder.
  • the optical encoder includes a code disc with grating lines, a light source and a photosensitive element;
  • the magnetic encoder includes a magnetic sensor chip. Both the code disc and the magnet are connected with the rotating spindle. When the rotating spindle rotates, the code disc and the magnet will also rotate. Accordingly, the photosensitive element is used to sense the light signal that changes with the rotation of the code disc and output the corresponding The second signal; the magnetic sensing chip set around the magnet is used to sense the magnetic field intensity that changes with the rotation of the magnet, and output the corresponding first signal.
  • FIG. 2 is a schematic structural diagram of a magnetic encoding assembly provided by an embodiment of the present invention.
  • the magnetic field induction chip includes two first magnetic induction chips orthogonally arranged at the edge of the magnetic steel in the hybrid encoder. , And a second magnetic sensor chip located at the center of the magnetic steel, and the measurement directions of the two first magnetic sensors are parallel to the tangent direction of the edge of the magnetic steel, and the measurement directions of the two first magnetic sensors are mutually vertical.
  • the two first magnetic sensing chips are located directly on the magnetic steel, and are located at the ends of the two perpendicular diameters of the magnetic steel. Therefore, when the magnetic steel rotates, the two first magnetic sensing chips The output signals are 90 degrees out of phase.
  • Step S12 Obtain the engraved line value and the circle value of the absolute position at the current moment according to the first electrical signal.
  • the encoder its absolute position is mainly used to characterize the physical position of the encoder or the magnet at a certain moment in the process of rotation; if the absolute position of the initial moment of rotation is obtained, the absolute position of the current moment is obtained.
  • the position can know the angular displacement of the encoder's total rotation, and even calculate the angular velocity of rotation.
  • the reading head when calculating the absolute position, the reading head (that is, the photosensitive element) reads the position of the code disc as the absolute position.
  • the absolute position referred to in this embodiment is also the position where the reading head reads the engraved line at the current moment.
  • the current reticle value of the grating code disc cannot be calculated according to the magnetic field information sensed by the magnetic sensor chip, but the relative positional relationship between the magnetic steel and the grating code disc is determined, then the magnetic induction There must be a certain correspondence between the first electrical signal output by the chip and the second electrical signal output by the photosensitive element.
  • the absolute position information of the magnetic steel can be calculated through the first electrical signal, and then converted into the absolute position of the code disc, so as to realize the consistency of the position information of the optical encoder and the magnetic encoder.
  • the absolute position of the engraved line value refers to the number of engraved lines that the current reading head reads from the 0 engraved line specified on the code wheel; and the circle value refers to the rotation from the code wheel to the current moment , The total number of turns of the code wheel.
  • Step S13 Obtain the reticle phase angle of the absolute position at the current moment according to the second electrical signal.
  • the optical encoder can further calculate the current absolute position based on the intensity of the light received by the photosensitive element and calculate the specific position on the grating ruled line at the current moment, and express it with the ruled phase angle. For example, if the absolute position of the current moment is at the junction of a pair of bright and dark stripes, the phase angle of the reticle is ⁇ ; if the absolute position of the current position is at the middle position of the dark stripes in a pair of bright and dark stripes, the phase angle of the reticle is for
  • Step S14 Determine the position information of the hybrid encoder according to the reticle value, the lap value and the reticle phase angle.
  • the measurement accuracy is often relatively low, and it is often difficult to achieve the same accuracy as the optical encoder according to its magnetic field changes. Even if the same accuracy is solved, there are still large errors.
  • the magnetic encoder in this embodiment can replace the reference code track to a certain extent, and determine the reticle value and the circle value of the optical encoder.
  • an encoder that is a combination of an optical encoder and a magnetic encoder is used, and after the signals measured by the two encoders are separately calculated, the more accurate position data of the two encoders are selected for connection Combination to obtain a more accurate absolute position; and in the first electrical signal of the absolute position in the magnetic encoder, the second magnetic sensor chip can output two cycles of signals when the magnetic steel rotates once, which is equivalent to When calculating the absolute position, divide the angular displacement of one revolution into more and smaller position units, and calculate that the absolute position is in that small position unit, which is beneficial to improve the reticle value calculated by the first electrical signal The accuracy of the sum circle value, thereby improving the accuracy of the entire encoder.
  • the method for determining the position of the hybrid encoder uses the magnetic encoder to calculate more accurate absolute position information.
  • the output of the two encoders After the electrical signals are separately calculated, the solution results are combined and connected, so as to obtain more accurate and precise absolute position information, which improves the measurement performance of the hybrid encoder and is beneficial to the wide application of the hybrid encoder.
  • FIG. 3 is a position determination of a hybrid encoder provided by another embodiment of the present invention.
  • Schematic flow diagram of the method. The method may specifically include:
  • Step S21 Obtain the square wave signals respectively output by the two first magnetic sensing chips, and the sine and cosine signals output by the second magnetic sensing chips.
  • the two square wave signals are 90 degrees out of phase.
  • FIG. 4 is a coordinate schematic diagram of the corresponding relationship between the output signals of the first magnetic sensing chip and the second magnetic sensing chip.
  • the first magnetic sensing chip can output a period of square wave signal every time the magnetic steel rotates once, and the square wave signals of the two first magnetic sensing chips are 90 degrees out of phase; correspondingly, every time the magnetic steel rotates,
  • the second magnetic sensor chip can output two periods of sine signal and cosine signal.
  • Step S22 Determine the position range of the absolute position at the current time according to the two square wave signals at the current time.
  • the current absolute position information can be further obtained according to the sine signal a and cosine signal b output by the second magnetic sensor chip.
  • the reason why it is necessary for the second magnetic sensor chip to output two cycles of sine and cosine signals for each revolution of the magnet is to calculate a more accurate absolute position based on the sine and cosine signals.
  • the second magnetic sensor chip can also output only one cycle of sine and cosine signals when the magnetic steel rotates once, and the absolute position can be calculated without using the first magnetic sensor chip to detect changes in the magnetic field, this solution The accuracy of the absolute position calculated by the calculation method is low. Therefore, in this embodiment, the combination of two first magnetic sensing chips and a second magnetic sensing chip outputting two periodic sine and cosine signals is a preferred embodiment.
  • Step S23 According to the position range and the sine signal and the cosine signal at the current moment, determine the reticle value of the absolute position at the current moment.
  • the first magnetic sensor chip Because for the first magnetic sensor chip, every time the magnet rotates, it can output a square wave signal of one cycle. Then according to the number of square wave cycles output by the first magnetic sensor chip, the current cumulative rotation of the magnetic steel can be obtained. The value of the circle.
  • the specific process of calculating the circle value may further include:
  • the accumulated circle value is corrected to obtain the circle value.
  • the first first magnetic sensor chip outputs a high level
  • the second first magnetic sensor chip outputs a low level.
  • the count is 0; as the magnetic steel rotates , When the first first magnetic sensor chip outputs high level and the second first magnetic sensor chip outputs high level, the count is 1, and so on, when the first first magnetic sensor chip outputs high voltage When the second first magnetic sensor chip outputs low level, the count is increased to 4. Therefore, the lap value can be obtained by dividing the count value by 4.
  • the count value needs to be corrected by combining the square waves output by the two first magnetic sensing chips at the current moment and the absolute position of the current moment.
  • the magnetic steel is divided into four fan-shaped areas, which are set as the first quadrant area, the second quadrant area, the third quadrant area and the fourth quadrant area.
  • the division of the quadrant area and the quadrant area of the rectangular coordinate system The division is the same.
  • the zero point of the coil value is aligned with the zero position of the absolute position of the encoder single circle, and coincides with the boundary between the first quadrant area and the fourth quadrant area.
  • the count values of the two first magnetic sensors must be the same
  • the absolute position of the encoder corresponds to one-to-one.
  • the count value is 0, and the current absolute position of the encoder should be in the first quadrant area, and the count value is 1, and the current absolute position of the encoder should be in the second quadrant area.
  • the situation that needs to be corrected is at the junction of each quadrant area. Due to the noise of the sine and cosine analog signal, the position value of the encoder single-turn position is unstable, for example, it may jump between the first quadrant area and the second quadrant area. However, the count value of the first magnetic sensor chip will not jump due to hysteresis.
  • Step S24 Obtain the second electrical signal output by the photosensitive element.
  • Step S25 Obtain the phase angle of the main code track and the phase angle of the auxiliary code track at the current moment according to the second electrical signal.
  • Step S26 According to the difference between the phase angle of the main code channel scribe line and the auxiliary code channel scribe line phase angle, the optical coding scribe line value of the absolute position at the current moment is obtained.
  • Step S27 Compare the reticle value of the optical encoding with the reticle value of the absolute position to determine whether the hybrid encoder is available, if not, the output hybrid encoder is not available, if yes, go to step S28.
  • Step S28 The phase angle of the main code track scribed line is connected with the scribed value of the absolute position and the circle value to obtain absolute position information.
  • steps S21 to S23 and steps S24 to S25 in this embodiment there is no inevitable sequence between steps S21 to S23 and steps S24 to S25 in this embodiment, and they can be performed in parallel.
  • step S25 is mainly a step implemented for an optical encoder having a vernier code track with more than two turns.
  • the reticle phase difference between the main code channel and the auxiliary code channel and the reticle value have a unique correspondence relationship. Based on this correspondence relationship, the optical coding engraving can be calculated Line value.
  • the optical encoder reticle value calculated by the optical encoder can be compared with the reticle value calculated by the magnetic encoder. If the difference between the two is too large, it means that the encoder has a serious fault, such as , The contamination is serious, or the installation of the magnetic encoder is faulty, etc., it needs to be disassembled and tested by the staff.
  • the code channel of the optical encoder can also be a Gray code channel or an encoder of an M sequence code channel, and both can directly calculate the corresponding optical encoding reticle value, and realize the comparison with the reticle value calculated by the magnetic encoder.
  • the code channel in the optical encoder of this embodiment does not exclude the use of an incremental single-turn code channel.
  • the single-turn code channel cannot directly calculate the score line value, and there is no need to compare the score line value.
  • After obtaining the reticle phase angle directly connect the reticle phase angle with the coil value and the reticle value calculated by the magnetic encoder.
  • optical encoders with absolute code channels that can calculate the reticle value
  • the present invention does not exclude an embodiment in which an optical encoder with an absolute code channel only calculates the phase angle of the reticle, and then combines the reticle value and the coil value calculated by the magnetic encoder.
  • the following describes the position determining device of the hybrid encoder provided by the embodiment of the present invention.
  • the position determining device of the hybrid encoder described below and the position determining method of the hybrid encoder described above can be referred to each other.
  • Fig. 5 is a structural block diagram of a device for determining a position of a hybrid encoder according to an embodiment of the present invention.
  • the device for determining a position of a hybrid encoder may include:
  • the signal acquisition module 100 is used to acquire the first electrical signal output by the magnetic field sensing chip in the hybrid encoder and the second electrical signal output by the photosensitive element; wherein the magnetic field sensing chip includes two first magnetic sensing chips and a first magnetic sensing chip. Two magnetic sensing chips, the first electrical signal includes obtaining one-period square wave signals output by each of the two first magnetic sensing chips for each revolution of the magnetic steel, and the output of the second magnetic sensing chip Two periods of sine signal and two periods of cosine signal; and the phase difference of the two square wave signals is 90 degrees;
  • the first solution module 200 is configured to obtain the scribe line value and the circle value of the absolute position at the current moment according to the first electrical signal;
  • the second solution module 300 is configured to obtain the reticle phase angle of the absolute position at the current moment according to the second electrical signal
  • the position determining module 400 is used to determine the position information of the hybrid encoder according to the reticle value, the circle value and the reticle phase angle.
  • it may further include:
  • the first solution module 200 specifically includes:
  • the range determining unit is used to determine the position range of the absolute position at the current time according to the two square wave signals at the current time;
  • the reticle value calculation unit is used to determine the reticle value of the absolute position at the current moment according to the position range and the sine and cosine signals at the current moment;
  • the circle value calculation unit is used to obtain the circle value according to the square wave signals output by the two first magnetic induction chips.
  • it may further include:
  • the lap value calculation unit is specifically used to determine the cumulative lap value according to the cumulative cycle number of the square wave signal output by the first magnetic sensor chip; according to the square wave signal output by the two first magnetic sensor chips at the current moment and the scribe line at the current moment The value corrects the accumulated lap value to obtain the lap value.
  • it may further include:
  • the number of photoelectric code channels in the hybrid encoder is not less than two; the second electrical signal includes the electrical signal obtained by optical signal conversion of at least two photoelectric code channels collected by the reading head.
  • it may further include:
  • the second calculation module is also specifically used to obtain the phase angle of at least two photoelectric code track scribe lines at the current moment according to the second electrical signal; obtain the optical encoding scribe line value of the absolute position at the current moment according to the difference of the phase angles ; Comparing the reticle value obtained by the second magnetic sensing chip with the reticle value of the optical encoding to determine whether the hybrid encoder is available.
  • the position determining device of the hybrid encoder of this embodiment is used to implement the aforementioned method for determining the position of the hybrid encoder. Therefore, the specific implementation of the device for determining the position of the hybrid encoder can be seen in the foregoing implementation of the method for determining the position of the hybrid encoder.
  • the example part, for example, the signal acquisition module 100, the first solution module 200, the second solution module 300, and the position determination module 400 are respectively used to implement steps S11, S12, S13 and S14 in the position determination method of the hybrid encoder. Therefore, for the specific implementation manner, reference may be made to the description of the respective parts of the embodiment, which is not repeated here.
  • This application also provides an embodiment of a device for determining a position of a hybrid encoder, and the device may include:
  • Memory used to store computer programs
  • the processor is configured to implement the steps of the method for determining the position of the hybrid encoder as described in any of the above embodiments when the computer program is executed.
  • This application also provides a computer-readable storage medium, which may specifically include
  • a computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method for determining the position of the hybrid encoder as described in any of the above embodiments are realized.
  • RAM random access memory
  • ROM read-only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM , Or any other form of storage medium known in the technical field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种混合编码器的位置确定方法,包括获取混合编码器中的磁感芯片输出的第一电信号,以及光敏元件输出的第二电信号(S11);根据第一电信号,获得当前时刻的绝对位置的刻线值和圈数值(S12);根据第二电信号,获得当前时刻的绝对位置的刻线相位角(S13);进而确定混合编码器的位置信息(S14)。该混合编码器的位置确定方法,整个解算过程简单,精准度高,有利于混合编码器的广泛应用。还提供一种混合编码器的位置确定装置、设备以及计算机可读存储介质。

Description

混合编码器的位置确定方法、装置、设备及可读存储介质
本申请要求于2019年7月26日提交中国专利局、申请号为201910684250.4、发明名称为“混合编码器的位置确定方法、装置、设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及编码器技术领域,特别是涉及一种混合编码器的位置确定方法、装置、设备及计算机可读存储介质。
背景技术
光电编码器是由一个中心有轴的光电码盘,其上有环形明暗相间的刻线,有光电发射和接收器件读取并获得信号的一类传感器,主要用来测量位移或角度。光电编码器具有测量精度高的优点,同时也存在易污染,抗干扰能力差的缺点。
磁电式编码器采用磁电式设计,通过磁感应器件、利用磁场的变化来产生变化的电信号并用其提供转子的绝对位置,利用磁器件代替了传统的码盘,弥补了光电编码器的这一些缺陷,更具抗震、耐腐蚀、耐污染、可靠性高、结构更简单。
光磁混合编码器是一种集成有光编码器和磁编码器为一体的编码器,既具有光电编码器的高精度的优点,又具有磁编码器抗震、抗污染等优点。
发明内容
本发明的目的是提供一种混合编码器的位置确定方法、装置、设备及计算机可读存储介质,提高了混合编码器解算的绝对位置的精准度和精确度。
为解决上述技术问题,本发明提供一种混合编码器的位置确定方法,包括:
获取所述混合编码器中的磁场感应芯片输出的第一电信号,以及光敏 元件输出的第二电信号;其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度;
根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;
根据所述第二电信号,获得当前时刻的绝对位置的刻线相位角;
根据所述刻线值和圈数值以及所述刻线相位角,确定所述混合编码器的位置信息。
其中,所述获取所述混合编码器中的光电信号对应的第一电信号包括:
所述根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值包括:
根据当前时刻的两个所述第一磁感芯片输出所述方波信号,确定当前时刻的绝对位置的位置范围;
根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号,确定当前时刻的绝对位置的刻线值;
根据两个所述方波信号,获得所述圈数值。
其中,所述根据两个所述第一磁感芯片输出方波信号,获得圈数值包括:
根据所述第一磁感芯片输出的方波信号的累计周期数,确定累计圈数值;
根据当前时刻两个第一磁感芯片输出的方波信号和当前时刻的所述刻线值对所述累计圈数值进行矫正,获得所述圈数值。
其中,所述混合编码器中的光电码道的数量不少于两个;
所述第二电信号包括读数头采集的至少两个所述光电码道的光信号转换获得的电信号。
其中,还包括:
根据所述第二电信号,获得当前时刻至少两个光电码道刻线的相位 角;
根据所述相位角的差值,获得当前时刻的绝对位置的光编码刻线值;
将根据所述第一电信号获得的所述刻线值和所述光编码刻线值对比,判断所述混合编码器是否可用。
本申请还提供了一种混合编码器的位置确定装置,包括:
信号获取模块,用于获取所述混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号;其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度;
第一解算模块,用于根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;
第二解算模块,用于根据所述第二电信号,获得当前时刻的绝对位置的刻线相位角;
位置确定模块,用于根据所述刻线值和圈数值以及所述刻线相位角,确定所述混合编码器的位置信息。
其中,所述第一解算模块具体包括:
范围确定单元,用于根据当前时刻的两个所述第一磁感芯片输出所述方波信号,确定当前时刻的绝对位置的位置范围;
刻线值解算单元,用于根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号,确定当前时刻的绝对位置的刻线值;
圈数值解算单元,用于根据两个所述方波信号,获得所述圈数值。
其中,所述圈数值解算单元具体用于根据所述第一磁感芯片输出的方波信号的累计周期数,确定累计圈数值;根据当前时刻两个第一磁感芯片输出的方波信号和当前时刻的所述刻线值对所述累计圈数值进行矫正,获得所述圈数值。
本申请还提供了一种混合编码器的位置确定设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上任一项所述混合编码器的位置确定方法的步骤。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一项所述混合编码器的位置确定方法的步骤。
本发明所提供的混合编码器的位置确定方法,包括获取混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号;其中,磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,第一电信号包括磁钢每旋转一周,获取两个第一磁感芯片各输出的一个周期的方波信号,以及第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个方波信号相位相差90度;根据第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;根据第二电信号,获得当前时刻的绝对位置的刻线相位角;根据刻线值和圈数值以及刻线相位角,确定混合编码器的位置信息。
本申请中的混合编码器的位置确定方法,基于磁编码器和光编码器各自的特性,将磁感芯片输出的第一电信号解算出绝对位置的刻线值和圈数值,和光敏元件输出的第二电信号解算出绝对位置的刻线相位角相结合,获得更为准确的位置值;另外,磁钢每旋转一圈,第二磁感芯片输出的两个周期的正余弦信号,有利于提高通过第二电信号解算出的刻线值和圈数值的可靠性,进而提高混合编码器解算精度,整个解算过程简单,精准度高,有利于混合编码器的广泛应用。
本申请中还公开了混合编码器的位置确定装置、设备以及计算机可读存储介质,具有上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附 图。
图1为本发明实施例提供的混合编码器的位置确定方法的流程示意图;
图2为本发明实施例提供的磁编码组件的结构示意图;
图3为本发明另一实施例提供的混合编码器的位置确定方法的流程示意图;
图4为第一磁感芯片和第二磁感芯片的输出信号的对应关系的坐标示意图;
图5为本发明实施例提供的混合编码器的位置确定装置的结构框图。
具体实施方式
目前对于混合编码器的种类存在多种,针对不同的混合编码器也存在不同的绝对位置的解算方式。但目前尚且不存在一种标准化的解算方式,并且对光编码器和磁电编码器的解算结果如何进行结合,也不存在明确的结合方式。
为此申请人充分考虑光编码器和磁编码器各自的特性,提出了一种混合编码器的位置确定方法、装置、设备以及计算机可读存储介质。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,图1为本发明实施例提供的混合编码器的位置确定方法的流程示意图。该方法可以包括:
步骤S11:获取混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号。
其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输 出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度。
具体地,本实施例中的混合编码器包含有光编码器的组件和磁编码器的组件。光编码器中包括带有光栅刻线的码盘,光源以及光敏元件;磁编码器中包括磁感芯片。码盘和磁钢均和旋转主轴相连接,当旋转主轴旋转时,码盘和磁钢也会随之旋转,相应地,光敏元件用于感应随码盘的旋转而变化的光信号并输出相应的第二信号;设于磁钢周围的磁感芯片用于感应随磁钢旋转而变化的磁场强度,并输出相应的第一信号。
如图2所示,图2为本发明实施例提供的磁编码组件的结构示意图,磁场感应芯片包括正交设于正对混合编码器中的磁钢的边缘位置的两个第一磁感芯片,以及设于正对磁钢的中心位置的第二磁感芯片,且两个第一磁感芯片的测量方向均和磁钢边缘切线方向平行,且两个第一磁感芯片的测量方向相互垂直。由图2可知,两个第一磁感芯片在正对磁钢上位置,分别位于磁钢两个相互垂直的直径的端部,因此,当磁钢发生旋转时,两个第一磁感芯片输出的信号相位相差90度。
步骤S12:根据第一电信号,获得当前时刻的绝对位置的刻线值和圈数值。
对于编码器而言,其绝对位置主要是用于表征码盘或者是磁钢在旋转过程中,某一时刻所对应的物理位置;若获得旋转的初始时刻的绝对位置,再获得当前时刻的绝对位置,即可知编码器总的旋转的角位移,甚至计算出旋转的角速度等等。
在光编码器中,在解算绝对位置时,是以读数头(即光敏元件)读取码盘的刻线位置作为绝对位置。
本实施例中所指的绝对位置也是当前时刻读数头读取刻线的位置。对于磁编码器而言,根据磁感芯片感应到的磁场信息,并不能解算出光栅码盘的当前刻线值,但是磁钢和光栅码盘之间的相对位置关系是确定的,那么磁感芯片输出的第一电信号与光敏元件输出的第二电信号之间必然存在一定的对应关系。
为此,可以通过第一电信号解算出磁钢的绝对位置信息后,再转化为 码盘的绝对位置,进而实现光编码器和磁编码器表征位置信息的一致性。
而绝对位置的刻线值,是指当前读数头读取的刻线是从码盘上规定的0条刻线起,第几条刻线;而圈数值是指从码盘开始旋转到当前时刻,码盘一共旋转了多少圈。
步骤S13:根据第二电信号,获得当前时刻的绝对位置的刻线相位角。
对于光编码器而言,存在较高的测量精确度,例如,对于码盘上的光栅刻线而言是存在一定宽度的,仅仅获得该光栅刻线的刻线值,并不是一个准确地绝对位置,因此,光编码器还可以进一步基于光敏元件接收的光照的强弱,解算出当前的绝对位置位于当前时刻的光栅刻线上的具体位置,并用刻线相位角表示。比如,若当前时刻的绝对位置是位于一对明暗条纹的交界位置,则刻线相位角为π;若当前位置的绝对位置是位于一对明暗条纹中暗条纹的中间位置,则刻线相位角为
Figure PCTCN2019102989-appb-000001
步骤S14:根据刻线值和圈数值以及刻线相位角,确定混合编码器的位置信息。
对于磁编码器而言,其测量精确度往往相对较低,根据其磁场变化往往难以到达和光编码器相同的精确度,即便解算到相同的精确度,也是存在较大误差的。
而当光编码器受油污污染和震动等外界环境的干扰时,往往并不能获得正确的刻线值和圈数值,且对于增量式的光编码器而言,还需要专门设置参考码道。而本实施例中的磁编码器可以在一定程度上代替该参考码道,而确定出光编码器的刻线值和圈数值。
为此,本实施例中采用光编码器和磁编码器组合后的编码器,并将两种编码器测得的信号进行分别解算后,选取两种编码器中较为精准的位置数据进行衔接组合,进而获得更为准确地绝对位置;并且磁编码器中解算绝对位置的第一电信号中,第二磁感芯片在磁钢旋转一周时,可以输出两个周期的信号,相当于在解算绝对位置时,将旋转一周的角位移划分为更多更小的多个位置单元,并解算出绝对位置处于那个小的位置单元内,有 利于提高第一电信号解算出的刻线值和圈数值的精准度,进而提高整个编码器的精准度。
综上,本申请中提供的混合编码器的位置确定方法,基于磁编码器解算出更为精准的绝对位置信息后,针对光编码器和磁编码器各自的优势,将两种编码器输出的电信号分别进行解算之后,对解算结果进行组合衔接,从而获得更为精准度高、精确度高的绝对位置信息,提升了混合编码器的测量性能,有利于混合编码器的广泛应用。
基于上述实施例,为了对上述实施例的具体实现过程进行更详细介绍,下面以具体实施例进行说明,如图3所示,图3为本发明另一实施例提供的混合编码器的位置确定方法的流程示意图。该方法具体可以包括:
步骤S21:获取两个第一磁感芯片分别输出的方波信号,和第二磁感芯片输出的正弦信号和余弦信号。
具体地,两个方波信号相位相差90度。
如图4所示,图4为第一磁感芯片和第二磁感芯片的输出信号的对应关系的坐标示意图。图4中磁钢每旋转一周,第一磁感芯片即可输出一个周期的方波信号,且两个第一磁感芯片的方波信号相位相差90度;相应地,磁钢每旋转一周,第二磁感芯片可输出两个周期的正弦信号和余弦信号。
步骤S22:根据当前时刻的两个方波信号,确定当前时刻的绝对位置的位置范围。
根据图4可知,若将磁钢划分为四个90度的扇形区域,那么当前绝对位置处于不同的扇形区域时,两个第一磁感芯片输出的高低电平存在不同的组合;相应地,根据两个第一磁感芯片输出的高低电平不同的组合,即可确定当前位置对应于第二磁感芯片输出的第几个周期的正余弦信号,也即是绝对位置所在的位置范围。
例如图4所示,当第一个第一磁感芯片输出的是高电平,第二个第一磁感芯片输出的是低电平;即可确定出第二磁感芯片当前输出的是第一个周期内的正余弦信号,再根据第二磁感芯片输出的正弦信号a和余弦信号b,即可进一步获得当前的绝对位置信息。
需要说明的是,之所以需要磁钢每旋转一圈,第二磁感芯片输出两个周期的正余弦信号,是为了基于正余弦信号解算出更精准的绝对位置。尽管第二磁感芯片也可以在磁钢旋转一圈时,只输出一个周期的正余弦信号,而此时无需采用第一磁感芯片检测磁场变化,即可解算出绝对位置,但是这种解算方式解算出的绝对位置的精度较低。因此,本实施例中采用两个第一磁感芯片和一个输出两个周期正余弦信号的第二磁感芯片结合,是一种优选的实施方式。
步骤S23:根据位置范围和当前时刻的正弦信号和余弦信号,确定当前时刻的绝对位置的刻线值。
因为对于第一磁感芯片而言,磁钢每旋转一圈,即可输出一个周期的方波信号,那么根据第一磁感芯片累计输出的方波周期数,即可获得磁钢当前累计旋转的圈数值。
可选地,在本发明的具体实施例中,解算圈数值的具体过程还可以包括:
根据第一磁感芯片输出的方波信号的累计周期数,确定累计圈数值;
根据当前时刻两个第一磁感芯片输出的方波信号和当前时刻的刻线值对累计圈数值进行矫正,获得圈数值。
需要说明的是,在根据第一磁感芯片输出的方波信号的累计周期数,获得累计圈数值时,为了获得更为准确地圈数值,是根据两个第一磁感芯片输出的方波信号结合分析计数而获得的。
例如,参照图4,从起始位置开始,第一个第一磁感芯片输出高电平,第二个第一磁感芯片输出低电平,此时计数为0;随着磁钢的旋转,当第一个第一磁感芯片输出高电平,第二个第一磁感芯片输出高电平时,此时计数为1,依次类推,当出现第一个第一磁感芯片输出高电平,第二个第一磁感芯片输出低电平时,计数就增加为4。因此圈数值就可以根据计数值除以4而获得。但是,为了由于意外情况使得计数产生跳变误差,就需要结合当前时刻的两个第一磁感芯片输出的方波和当前时刻的绝对位置的刻线值对计数值进行矫正。
如前所述,将磁钢划分为四个扇形区域,设定为第一象限区域、第二 象限区域、第三象限区域和第四象限区域,该象限区域的划分和直角坐标系的象限区域划分相同,其中,圈数值的零点和编码器单圈绝对位置零位对齐,且和第一象限区域与第四象限区域的界线重合,那么,两个第一磁感芯片的计数值就必须和编码器绝对位置一一对应,比如计数值为0,此时编码器当前绝对位置应在第一象限区域,计数值为1,编码器当前绝对位置应在第二象限区域。需要矫正的情况在各个象限区域的交界处,编码器单圈位置由于正余弦模拟量信号的噪声,解算出的位置值不稳定,比如可能在第一象限区域和第二象限区域之间跳动,但是第一磁感芯片的计数值因为磁滞原因是不会跳动的,这时,如果编码器单圈绝对位置在第一象限区域,而第一磁感芯片计数值在第二象限区域,那么就需要对第一磁感芯片的计数值减1,把它矫正到第一象限区域,和当前的编码器绝对位置对应上。
步骤S24:获取光敏元件输出的第二电信号。
步骤S25:根据第二电信号,获得当前时刻主码道刻线相位角和辅助码道刻线相位角。
步骤S26:根据主码道刻线相位角和辅助码道刻线相位角的差值,获得当前时刻的绝对位置的光编码刻线值。
步骤S27:将光编码刻线值和绝对位置的刻线值对比,判断混合编码器是否可用,若否,则输出混合编码器不可用,若是,进入步骤S28。
步骤S28:将主码道刻线相位角和绝对位置的刻线值以及圈数值进行衔接结合,获得绝对位置信息。
需要说明的是,本实施例中步骤S21至步骤S23和步骤S24至步骤S25之间并不存在必然的先后顺序,可以并行进行。
另外,对于上述步骤S25主要是针对具有两圈以上的游标码道的光编码器所实施的步骤。对于具有多圈码道的游标码道而言,主码道和辅助码道之间的刻线相位差和刻线值具有唯一的对应关系,基于这一对应关系,即可解算出光编码刻线值。
为了保证编码器的可用性,可以将根据光编码器解算出的光编码刻线值和磁编码器解算出的刻线值进行对比,若两者相差过大,则说明编码器 存在严重故障,例如,受污染严重,或者磁编码器安装存在故障等等,需要工作人员重新拆卸检测。
本实施例中仅仅是以游标码道的编码器为例进行说明。对于光编码器的码道还可以是格雷码道或者M序列码道的编码器,均可以直接解算出相应的光编码刻线值,实现和磁编码器解算的的刻线值的对比。
另外,本实施例的光编码器中的码道也不排除采用增量式的单圈码道,单圈码道是无法直接解算出刻线值的,也就无需进行刻线值的对比,在获得刻线相位角之后,直接将刻线相位角和磁编码器解算出的圈数值以及刻线值进行衔接组合即可。
当然,对于可以解算出刻线值的绝对式码道的光编码器,也并不必然要求解算出刻线值,对解算出的刻线值和磁编码器解算出的刻线值进行对比矫正,是一种优选的实施例。本发明中并不排除具有绝对式码道的光编码器只解算出刻线相位角后,和磁编码器的解算出的刻线值以及圈数值衔接结合的实施例。
下面对本发明实施例提供的混合编码器的位置确定装置进行介绍,下文描述的混合编码器的位置确定装置与上文描述的混合编码器的位置确定方法可相互对应参照。
图5为本发明实施例提供的混合编码器的位置确定装置的结构框图,参照图5混合编码器的位置确定装置可以包括:
信号获取模块100,用于获取混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号;其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度;
第一解算模块200,用于根据第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;
第二解算模块300,用于根据第二电信号,获得当前时刻的绝对位置 的刻线相位角;
位置确定模块400,用于根据刻线值和圈数值以及刻线相位角,确定混合编码器的位置信息。
可选地,在本发明的另一具体实施例中,还可以进一步地包括:
第一解算模块200具体包括:
范围确定单元,用于根据当前时刻的两个方波信号,确定当前时刻的绝对位置的位置范围;
刻线值解算单元,用于根据位置范围和当前时刻的正弦信号和余弦信号,确定当前时刻的绝对位置的刻线值;
圈数值解算单元,用于根据两个第一磁感芯片输出的方波信号,获得圈数值。
可选地,在本发明的另一具体实施例中,还可以包括:
圈数值解算单元具体用于根据第一磁感芯片输出的方波信号的累计周期数,确定累计圈数值;根据当前时刻两个第一磁感芯片输出的方波信号和当前时刻的刻线值对累计圈数值进行矫正,获得圈数值。
可选地,在本发明的另一具体实施例中,还可以包括:
混合编码器中的光电码道的数量不少于两个;第二电信号包括读数头采集的至少两个光电码道的光信号转换获得的电信号。
可选地,在本发明的另一具体实施例中,还可以包括:
第二解算模块具体还用于,根据第二电信号,获得当前时刻至少两个光电码道刻线的相位角;根据相位角的差值,获得当前时刻的绝对位置的光编码刻线值;将第二磁感芯片解算获得的刻线值和光编码刻线值对比,判断混合编码器是否可用。
本实施例的混合编码器的位置确定装置用于实现前述的混合编码器的位置确定方法,因此混合编码器的位置确定装置中的具体实施方式可见前文中的混合编码器的位置确定方法的实施例部分,例如,信号获取模块100,第一解算模块200,第二解算模块300,位置确定模块400,分别用于实现上述混合编码器的位置确定方法中步骤S11,S12,S13和S14,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再赘 述。
本申请中还提供了一种混合编码器的位置确定设备的实施例,该设备可以包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上任意实施例所述混合编码器的位置确定方法的步骤。
本申请中还提供了一种计算机可读存储介质,具体可以包括
计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任意实施例所述混合编码器的位置确定方法的步骤。
对于该计算机可读存储介质,具体可以是随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
具体地,专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

Claims (10)

  1. 一种混合编码器的位置确定方法,其特征在于,包括:
    获取所述混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号;其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度;
    根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;
    根据所述第二电信号,获得当前时刻的所述绝对位置的刻线相位角;
    根据所述刻线值和所述圈数值以及所述刻线相位角,确定所述混合编码器的位置信息。
  2. 如权利要求1所述的混合编码器的位置确定方法,其特征在于,所述根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值包括:
    根据当前时刻的两个所述第一磁感芯片输出所述方波信号,确定当前时刻的绝对位置的位置范围;
    根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号,确定当前时刻的绝对位置的刻线值;
    根据两个所述方波信号,获得所述圈数值。
  3. 如权利要求2所述的混合编码器的位置确定方法,其特征在于,所述根据两个所述方波信号,获得所述圈数值包括:
    根据所述第一磁感芯片输出的方波信号的累计周期数,确定累计圈数值;
    根据当前时刻两个所述第一磁感芯片输出的方波信号和当前时刻的所述刻线值对所述累计圈数值进行矫正,获得所述圈数值。
  4. 如权利要求1所述的混合编码器的位置确定方法,其特征在于,所述混合编码器中的光电码道的数量不少于两个;
    所述第二电信号包括读数头采集的至少两个所述光电码道的光信号转换获得的电信号。
  5. 如权利要求4所述的混合编码器的位置确定方法,其特征在于,还包括:
    根据所述第二电信号,获得当前时刻至少两个光电码道刻线的相位角;
    根据所述相位角的差值,获得当前时刻的绝对位置的光编码刻线值;
    将根据所述第一电信号获得的所述刻线值和所述光编码刻线值对比,判断所述混合编码器是否可用。
  6. 一种混合编码器的位置确定装置,其特征在于,包括:
    信号获取模块,用于获取所述混合编码器中的磁场感应芯片输出的第一电信号,以及光敏元件输出的第二电信号;其中,所述磁场感应芯片包括两个第一磁感芯片和第二磁感芯片,所述第一电信号包括所述磁钢每旋转一周,获取两个所述第一磁感芯片各输出的一个周期的方波信号,以及所述第二磁感芯片输出的两个周期的正弦信号和两个周期的余弦信号;且两个所述方波信号相位相差90度;
    第一解算模块,用于根据所述第一电信号,获得当前时刻的绝对位置的刻线值和圈数值;
    第二解算模块,用于根据所述第二电信号,获得当前时刻的所述绝对位置的刻线相位角;
    位置确定模块,用于根据所述刻线值和圈数值以及所述刻线相位角,确定所述混合编码器的位置信息。
  7. 如权利要求6所述的混合编码器的位置确定装置,其特征在于,所述第一解算模块具体包括:
    范围确定单元,用于根据当前时刻的两个所述第一磁感芯片输出所述方波信号,确定当前时刻的绝对位置的位置范围;
    刻线值解算单元,用于根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号,确定当前时刻的绝对位置的所述刻线值;
    圈数值解算单元,用于根据两个所述方波信号,获得所述圈数值。
  8. 如权利要求7所述的混合编码器的位置确定装置,其特征在于,所述圈数值解算单元具体用于根据所述第一磁感芯片输出的方波信号的累计 周期数,确定累计圈数值;根据当前时刻两个第一磁感芯片输出的方波信号和当前时刻的所述刻线值对所述累计圈数值进行矫正,获得所述圈数值。
  9. 一种混合编码器的位置确定设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至5任一项所述混合编码器的位置确定方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述混合编码器的位置确定方法的步骤。
PCT/CN2019/102989 2019-07-26 2019-08-28 混合编码器的位置确定方法、装置、设备及可读存储介质 WO2021017075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910684250.4 2019-07-26
CN201910684250.4A CN110260900B (zh) 2019-07-26 2019-07-26 混合编码器的位置确定方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021017075A1 true WO2021017075A1 (zh) 2021-02-04

Family

ID=67911923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102989 WO2021017075A1 (zh) 2019-07-26 2019-08-28 混合编码器的位置确定方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN110260900B (zh)
WO (1) WO2021017075A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157024B (zh) * 2019-12-27 2021-06-18 深圳市越疆科技有限公司 偏移补偿方法、装置、电子设备及计算机可读存储介质
CN113050699B (zh) * 2020-08-30 2024-01-12 惠州华阳通用电子有限公司 一种基于磁编码器的控制方法及装置
CN112945283B (zh) * 2021-02-05 2022-11-04 浙江禾川科技股份有限公司 绝对编码器的圈数解码方法、装置、系统
CN113074619B (zh) * 2021-03-18 2022-11-25 浙江禾川科技股份有限公司 传感器安装位置确定方法、装置、设备及存储介质
CN113063450B (zh) * 2021-03-18 2022-11-04 浙江禾川科技股份有限公司 编码器中传感器位置调整方法、装置、设备及存储介质
CN113847934A (zh) * 2021-09-24 2021-12-28 深圳市灵犀自动化技术有限公司 混合编码器的位置确定方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276180A1 (en) * 2008-04-30 2009-11-05 Michael Schneider Measuring Device with Two-channel Sampling
JP2009294073A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp アブソリュートエンコーダ
CN103323039A (zh) * 2012-03-19 2013-09-25 山洋电气株式会社 编码器
CN103983290A (zh) * 2014-05-06 2014-08-13 上海精浦机电有限公司 复合型绝对值编码器
CN103983291A (zh) * 2014-05-26 2014-08-13 四川科奥达技术有限公司 一种光磁编码器及其编码方法
CN203881354U (zh) * 2014-05-06 2014-10-15 上海精浦机电有限公司 复合型编码器
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
CN207832208U (zh) * 2018-03-01 2018-09-07 沈阳中光电子有限公司 光磁混合式编码器
CN108592956A (zh) * 2017-02-14 2018-09-28 日本电产三协株式会社 旋转编码器及其绝对角度位置检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259911A (ja) * 1992-03-13 1993-10-08 Matsushita Electric Ind Co Ltd ロータリエンコーダ
JPH08166255A (ja) * 1994-12-14 1996-06-25 Nikon Corp 多回転アブソリュートエンコーダ
US6140636A (en) * 1998-03-23 2000-10-31 Hewlett-Packard Company Single track encoder for providing absolute position information
JP5332308B2 (ja) * 2008-05-22 2013-11-06 株式会社ジェイテクト 位置決め装置及び工作機械装置
CN201215488Y (zh) * 2008-05-27 2009-04-01 上海精浦机电有限公司 绝对值与增量信号双输出的编码器
CN100587408C (zh) * 2008-07-17 2010-02-03 南京通晟自控系统有限公司 滚轮式轨道移动机械行走位置检测装置
CN204388869U (zh) * 2015-01-12 2015-06-10 江苏金陵自控技术有限公司 一种磁电式绝对值编码器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276180A1 (en) * 2008-04-30 2009-11-05 Michael Schneider Measuring Device with Two-channel Sampling
JP2009294073A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp アブソリュートエンコーダ
CN103323039A (zh) * 2012-03-19 2013-09-25 山洋电气株式会社 编码器
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
CN103983290A (zh) * 2014-05-06 2014-08-13 上海精浦机电有限公司 复合型绝对值编码器
CN203881354U (zh) * 2014-05-06 2014-10-15 上海精浦机电有限公司 复合型编码器
CN103983291A (zh) * 2014-05-26 2014-08-13 四川科奥达技术有限公司 一种光磁编码器及其编码方法
CN108592956A (zh) * 2017-02-14 2018-09-28 日本电产三协株式会社 旋转编码器及其绝对角度位置检测方法
CN207832208U (zh) * 2018-03-01 2018-09-07 沈阳中光电子有限公司 光磁混合式编码器

Also Published As

Publication number Publication date
CN110260900A (zh) 2019-09-20
CN110260900B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021017075A1 (zh) 混合编码器的位置确定方法、装置、设备及可读存储介质
AU2006336718B2 (en) Rotary encoder
US6922899B2 (en) Rotary encoder
CN110940371B (zh) 一种旋转磁电编码器的校准方法、装置及设备
JP4984269B2 (ja) 複合自己校正機能付き角度検出器
JP2009524039A (ja) 回転エンコーダー装置、および、方法
CN110081837A (zh) 一种通过利用测角圆光栅及读数头检测轴系晃动及偏心误差的方法
CN110345976B (zh) 一种光磁混合编码器系统
CN114636387B (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
JP2012118064A (ja) インクリメンタル位置測定機構の位置信号を監視するための監視ユニットおよび方法
JPH0643892B2 (ja) 測角誤差の補正装置
CN206773000U (zh) 双轴速率位置转台角速率检定装置
CN108827190B (zh) 基于双自准直仪的高精度测角误差检测装置及其检测方法
AU2002319092B2 (en) Code (ring) with two pairs of periodic line patterns
RU83133U1 (ru) Шпиндельный узел
CN102650535B (zh) 一种消除震动对增量式光学编码器测量影响的方法
KR20230116785A (ko) 다중 그룹 버니어 인코딩 디스크, 광전 인코더 및 광원 위치 해산 방법
RU200017U1 (ru) Шпиндельный узел повышенной точности углового компаратора
CN210014791U (zh) 一种编码器
JPS61149822A (ja) 位相誤差補正装置
CN218097829U (zh) 一种光电轴角编码器分度误差的检测装置
CN110785633B (zh) 编码器
RU2310167C2 (ru) Способ определения режимов работы синусно-косинусных датчиков
Axenenko Automatic Error Correcting in Angular Transducers
RU2181524C2 (ru) Способ измерения погрешности двухфазного синусно-косинусного датчика перемещения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939377

Country of ref document: EP

Kind code of ref document: A1