WO2021017074A1 - 一种光磁混合编码器系统 - Google Patents

一种光磁混合编码器系统 Download PDF

Info

Publication number
WO2021017074A1
WO2021017074A1 PCT/CN2019/102988 CN2019102988W WO2021017074A1 WO 2021017074 A1 WO2021017074 A1 WO 2021017074A1 CN 2019102988 W CN2019102988 W CN 2019102988W WO 2021017074 A1 WO2021017074 A1 WO 2021017074A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
optical
absolute position
signal
chip
Prior art date
Application number
PCT/CN2019/102988
Other languages
English (en)
French (fr)
Inventor
鄢鹏飞
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021017074A1 publication Critical patent/WO2021017074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/56Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using electric or magnetic means

Definitions

  • the present invention relates to the technical field of encoders, in particular to an optical-magnetic hybrid encoder system.
  • the optical encoder is a type of sensor that is composed of a photoelectric code disc with a shaft in the center, a ring of light and dark engraved lines on it, and a photoelectric transmitter and receiver device to read and obtain signals. It is mainly used to measure displacement or angle.
  • the photoelectric encoder has the advantage of high measurement accuracy, but also has the disadvantages of easy pollution and poor anti-interference ability.
  • the optical encoder has become the most widely used encoder in the industry due to its high measurement accuracy. However, due to the weak anti-pollution and anti-interference ability of the optical encoder, the application of the optical encoder is limited.
  • the purpose of the present invention is to provide a magneto-optical hybrid encoder system, which improves the measurement accuracy of the magneto-optical encoder and is beneficial to the wide application of the magneto-optical hybrid encoder.
  • the present invention provides a magneto-optical hybrid encoder system, which includes a photocell for sensing the change of the optical signal of the code channel and generating the corresponding optical coding signal;
  • a magnetic sensor chip used to sense the magnetic field change of the magnet steel to generate a magnetic encoding signal, wherein the magnet steel and the code disc provided with the code track are arranged on the same rotating main shaft;
  • the processors respectively connected to the photovoltaic cell and the magnetic sensor chip are used to calculate a first absolute position according to the optical encoding signal; to calculate a second absolute position according to the magnetic encoding signal; and to connect the first
  • the phase angle of the reticle in the absolute position, the reticle value of the second absolute position, and the lap value of the second absolute position are used to obtain multi-turn absolute position information.
  • the magnet includes a semicircular N magnetic pole and a semicircular S magnetic pole;
  • the magnetic sensor includes a first magnetic sensor chip and a second magnetic sensor chip
  • the first magnetic sensing chip includes two orthogonally arranged chips, and each time the magnetic steel rotates one turn, the first magnetic field chip outputs a period of square wave signal; and two first magnetic sensing chips The phase difference of the output signal is 90 degrees;
  • the second magnetic induction chip is used for outputting two periods of sine signal and two periods of cosine signal every time the magnetic steel rotates one circle.
  • the two first magnetic induction chips are both arranged at positions facing the edge of the magnetic steel; the second magnetic induction chips are arranged at the center position facing the magnetic steel.
  • the first magnetic sensor chip is any one of a TMR chip, a GMR chip or an AMR chip, and the magnetic sensor chip is an AMR chip.
  • the magnetic steel is arranged at the center of the code disc.
  • processor is specifically used for:
  • processor is specifically further used for:
  • the reticle value, reticle phase angle, and circle value of the first absolute position and the second absolute position are compared one by one to determine whether the encoder is available.
  • processor is specifically further used for:
  • the reticle value, reticle phase angle, and circle value of the first absolute position and the second absolute position are respectively and the reticle value, reticle phase angle, and circle value of the standard absolute position obtained by the solution of the standard encoder
  • the numerical values are compared, and the two sets of absolute positions are corrected according to the comparison results.
  • the code channel on the code disk is any one of a vernier code channel, a Gray code channel or an M sequence code channel.
  • the code channel on the code disk is a vernier code channel;
  • the photocell has a built-in arithmetic single-ended output circuit, a comparator circuit and a differential arithmetic circuit.
  • the optical-magnetic hybrid encoder system includes a photocell; a magnetic sensor chip that senses changes in the magnetic field at the center of the magnet; and a Hall chip that senses changes in the magnetic field at the edge of the magnet.
  • the processor is used to calculate the absolute position reticle phase angle according to the optical encoding signal; generate the absolute position reticle value and circle value according to the magnetic encoding signal; connect the reticle phase angle, the reticle value and the Lap value to obtain absolute position information of multiple laps.
  • the absolute position can be calculated by combining the optical encoding signal and the magnetic encoding signal.
  • the absolute position can be calculated separately based on the optical encoding signal and the magnetic encoding signal.
  • each selects two sets of absolute position data for connection and combination to obtain more accurate position data.
  • the magnetic encoding signal is generated based on the magnetic field changes corresponding to the center position and the edge position of the magnetic steel respectively, which is beneficial to improve the measurement accuracy of the magnetic encoder, thereby improving the measurement accuracy of the entire magneto-optical encoder. Conducive to the wide application of optical and magnetic hybrid encoders.
  • FIG. 1 is a schematic diagram of a framework of an optical-magnetic hybrid encoder system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a partial structure of an optical-magnetic hybrid encoder provided by an embodiment of the present invention
  • FIG. 3 is a coordinate schematic diagram of the corresponding relationship between the output signals of the first magnetic sensing chip and the second magnetic sensing chip.
  • Fig. 1 is a schematic diagram of a framework of a magneto-optical hybrid encoder system provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a partial structure of a photo-magnetic hybrid encoder provided by an embodiment of the present invention.
  • Photocell 1 that senses the change of the optical signal of the code channel 4 and generates the corresponding optical coding signal
  • the magnetic induction chip 2 used to sense the magnetic field change of the magnet 6 to generate a magnetic encoding signal, wherein the magnet 6 and the code disk 5 provided with the code track 4 are arranged on the same rotating spindle 7;
  • the processor 3 respectively connected to the photovoltaic cell 1 and the magnetic sensor chip 2; wherein the processor 3 is used to calculate the first absolute position according to the optical encoding signal; to calculate the second absolute position value according to the magnetic encoding signal; connect the first absolute The phase angle of the reticle in the position, the reticle value of the second absolute position, and the lap value of the second absolute position, to obtain multi-turn absolute position information.
  • the photocell 1 is the same as the sensing element used to detect the optical signal on the code track 4 of the code disc 5, and the relative position of the code disc 5 is similar to that of the conventional optical encoder, and will not be described in detail here.
  • the code disc 5 and the magnet 6 When the rotating spindle 7 rotates, the code disc 5 and the magnet 6 will also rotate, and the light emitted by the light source 8 received by the photocell 1 through the grating engraved lines of the code track 4 also changes with the changes in the light and dark stripes of the grating. In turn, the corresponding optical encoding signal is output, and the magnetic sensor chip 2 used to sense the change of the magnetic field when the magnet 6 rotates can also output the corresponding magnetic encoding signal as the magnet 6 rotates.
  • the code disc 5 with the code track 4, the rotating spindle 7 and the photocell 1 together form the main components of the optical encoder.
  • the optical coding signal output by the photocell 1 the complete absolute position can be calculated.
  • the optical encoding signal output by the photovoltaic cell 1 is set as the first absolute position.
  • the magnetic sensor chip 2 induces the magnetic field change at the position of the magnetic steel chip 6 caused by the rotation of the magnetic steel 6, and then the output magnetic encoding signal can also determine a set of absolute positions. In this embodiment, it is set as the second absolute position. position.
  • the processor 3 can calculate two sets of absolute positions respectively based on the encoding signals output by the photovoltaic cell 1 and the magnetic sensor chip 2, but the absolute positions calculated by the optical encoding signal are based on the photovoltaic cell It is based on the relative position of the code disc 5, and the absolute position calculated by the magnetic encoding signal is based on the relative position of the magnetic sensor chip 2 with respect to the magnetic steel 6. However, the rotation between the code wheel 5 and the magnetic steel 6 is further synchronized, and the relative position between the photocell 1 and the magnetic sensor chip 2 is fixed.
  • the second absolute position is calculated by the magnetic encoder in this application, it can be
  • the conversion is expressed by the relative position between the photocell 1 and the code disc 5, that is, both the first absolute position and the second absolute position are expressed in the way of characterizing the absolute position in the optical encoder.
  • the magnetic encoder has the characteristics of anti-pollution and anti-vibration interference, and the accuracy of the resolved absolute position is relatively lower than that of the optical encoder.
  • the coded signals obtained by the optical encoder and the magnetic encoder can calculate the absolute position reticle value
  • the reticle value calculated by the magnetic encoder is often inaccurate; on the contrary, for the optical encoder, Once affected by oil pollution, vibration interference, etc., it is often difficult to calculate the accurate marking value and circle value.
  • a more accurate part of the absolute positions calculated by the two encoders is selected for connection and combination, so as to obtain a more accurate absolute position.
  • the two encoders in this embodiment can independently calculate the absolute position. When one encoder fails, the other encoder can also play a redundant role.
  • the existing optical-magnetic hybrid encoder in the technology does not have redundant functions.
  • the optical signal data collected by the optical encoding component can also calculate the reticle value, so the number of code tracks 4 on the code disc 5 must be no less than two turns.
  • the code wheel 5 with a single-turn code track can also realize the technical solution of the present application. Therefore, the type of code channel 4 can be selected according to actual needs.
  • the optical-magnetic hybrid encoder system in this application has the function of fault tolerance and redundancy; in addition, in view of the respective advantages of the optical encoder and the magnetic encoder, the electrical output of the two encoders After the signals are solved separately, the solution results are combined and connected, so as to obtain more accurate and precise absolute position information, which improves the measurement performance of the hybrid encoder and is beneficial to the wide application of the hybrid encoder.
  • it may further include:
  • the magnetic sensing chip 2 includes a first magnetic sensing chip 21 and a second magnetic sensing chip 22;
  • the first magnetic sensing chip 21 includes two orthogonally arranged chips, and each time the magnetic steel 6 rotates one turn, the first magnetic field chip 21 outputs a square wave signal of one period; and the phase of the output signals of the two first magnetic sensing chips 21 The difference is 90 degrees;
  • the second magnetic induction chip 22 is used to output two periods of sine signal and two periods of cosine signal every time the magnetic steel rotates one circle.
  • the magnetic steel 6 in Figure 2 includes a semicircular N magnetic pole and a semicircular S magnetic pole.
  • the physical positions of the two first magnetic sensing chips 21 facing the edge of the magnetic steel 6 differ by 90 degrees radians, then The phases of the signals output by the two first magnetic sensing chips 21 are also different by 90 degrees.
  • the second magnetic sensing chip 22 in FIG. 2 is arranged at a position facing the center of the magnetic steel 6.
  • the second magnetic sensor chip 22 can also be arranged at a position facing the edge of the magnetic steel 6, but because the magnetic sensor chip 2 and the photovoltaic cell 1 need to be arranged on the circuit board, the chip on the circuit board There are many, therefore, the second magnetic sensing chip 22 is arranged in a position facing the center of the magnetic steel 6, which can make the chip layout on the circuit board more compact.
  • the magnetic steel 6 it is not necessary to use a circular magnetic steel, it may also be a circular magnetic steel, and half of the ring is N pole and half of the ring is S pole. The technical solution will not be repeated in this application.
  • a square wave signal needs to be output, and specifically, any one of a Hall chip, a TMR chip, a GMR chip, or an AMR chip may be used; for the second magnetic sensing chip 22, It is necessary to output two sine and cosine signals when the magnetic steel rotates once, so the second magnetic induction chip 22 may be an AMR chip.
  • FIG. 3 is a coordinate schematic diagram of the corresponding relationship between the output signals of the first magnetic sensing chip and the second magnetic sensing chip.
  • each first magnetic sensing chip 21 can respectively output a period of square wave signal, and the square wave signals of the two first magnetic sensing chips 21 differ by 90 degrees; accordingly, the magnetic
  • the second magnetic sensor chip 22 can output a sine signal and a cosine signal of several cycles.
  • the magnetic steel 6 is arranged at the center of the code disc 5 and is arranged in the same plane as the code disc 5.
  • both the magnet 6 and the code disk 5 need to rotate with the rotating spindle 7, and the diameter of the magnet 6 is generally not larger than the inner ring of the code track 4 on the code disk 5, in order to reduce the space volume of the encoder as much as possible,
  • the magnet 6 is set at the center position of the code disc 5, so that the code disc 5 and the magnet 6 are in the same plane and can rotate with the rotating main shaft 7, making the structure of the code disc 5 and the magnet 6 more compact and reasonable.
  • the overall structure of the small encoder Of course, the code wheel 5 and the magnet 6 are not arranged in the same plane, and the technical solution of the present application can also be realized.
  • the processor 3 is specifically configured to: The two square wave signals at the moment determine the position range of the second absolute position at the current moment; according to the position range and the sine and cosine signals at the current moment, determine the scale value of the second absolute position at the current moment; according to the first magnetic
  • the cumulative cycle number of the square wave signal output by the sensor chip is used to obtain the circle value of the second absolute position.
  • FIG. 3 there are four combinations of high and low levels output by the two first magnetic sensing chips 21. Because the cycle starting point of the square wave signal of the first magnetic induction chip 21 and the cycle starting point of the sine-cosine signal of the second magnetic induction chip 22 have a certain degree of synchronization, and the cycle duration is 2 times the relationship; then according to the two first The different combinations of the high and low levels output by the magnetic sensing chip 21 can determine the current position corresponding to the sine and cosine signal of the second magnetic sensing chip 22 output, that is, the position range of the second absolute position. The magnitude of the sine and cosine values currently output by the second magnetic sensor chip 22 can be solved to calculate the current second absolute position.
  • the current output of the second magnetic sensor chip 22 is It is the sine and cosine signal in the first period.
  • the sine signal output by the second magnetic sensor chip 22 is a and the pre-signal is b, and the current second absolute position can be further obtained.
  • the reason why the second magnetic sensor chip 22 outputs two cycles of sine and cosine signals every time the magnet 6 rotates one turn is to calculate a more accurate first absolute position based on the sine and cosine signals.
  • the second magnetic sensor chip 22 can also output only one cycle of sine and cosine signals when the magnet 6 rotates once, the second absolute position can be calculated without using the first magnetic sensor chip 21 to detect changes in the magnetic field. , But the accuracy of the second absolute position calculated by this method is low. Therefore, in this embodiment, the combination of two first magnetic sensing chips 21 and one second magnetic sensing chip 22 is a preferred embodiment.
  • the first magnetic sensing chip 21 outputs a square wave signal for one cycle every time the magnetic steel 6 rotates, the number of turns can be obtained according to the number of cycles of the square wave signal of the first magnetic sensing chip 21.
  • it may further include:
  • the code track 4 on the code disc 5 is a vernier code track; the photocell 1 has a built-in operation single-ended output circuit, a comparator circuit and a differential operation circuit.
  • optical coding signal output by the photovoltaic cell 1 is generally an analog signal, but the processor 3 cannot perform calculation processing on the optical coding signal, and a differential circuit needs to be set between the photovoltaic cell 1 and the processor 3. , Operation single-ended output circuit, and comparator circuit.
  • the photovoltaic cell 1 when the photovoltaic cell 1 receives the optical signal of the main code channel M of the vernier code, it can generate the M_Sin+ signal, M_Sin- signal, M_Cos+ signal, M_Cos- signal, and the M_Sin+ signal and M_Sin- signal need to pass through the single-ended output circuit of calculation Process and generate the M_Sin signal.
  • the M_Sin signal has the same period as the M_Sin+ signal and has twice the amplitude; the M_Sin+ signal and M_Sin- signal also need to be processed by the comparator circuit to output the M_Sin_Pulse digital signal; M_Sin+ signal and M_Sin- The signal also needs to be processed by a differential operation circuit to output the M_Sin+ signal and M_Sin- signal after the differential operation.
  • circuits such as a single-ended arithmetic output circuit, a comparator circuit, and a differential arithmetic circuit are integrated in the photovoltaic cell, thereby reducing the circuit elements between the photovoltaic cell 1 and the processor 3, and the magnetic sensor chip 2 is on the circuit board.
  • the above setting provides enough space, which is conducive to the development of miniaturization of the encoder.
  • the processor 3 in the present application can independently calculate two absolute positions based on the optical coding signal and the magnetic coding signal, so the two absolute positions can be mutually redundant. But on this basis, the two can also be used as a mutual correction function. Therefore, in another specific embodiment of the present invention, the processor 3 may also be used for:
  • the reticle value, reticle phase angle, and circle value of the first absolute position and the second absolute position are compared one by one to determine whether the encoder is available.
  • the first absolute position calculated by the optical encoding signal and the second absolute position calculated by the magnetic encoding signal are the same within the allowable error range. Therefore, once the absolute position difference calculated by the two methods is large, it means that the photoelectric hybrid encoder must fail.
  • the processor 3 can compare the two absolute position values after calculating the two sets of absolute position values. For example, if the reticle values of the two sets of absolute positions differ by 1/4 of the code track, it is obvious , The magneto-optical hybrid encoder has a fault, and the cause of the fault can be determined according to the actual situation.
  • the processor 3 may also be specifically used to: compare the reticle value, reticle phase angle, and circle value of the first absolute position and the second absolute position to the standard value, respectively.
  • the reticle value, reticle phase angle and circle value of the standard absolute position obtained by the encoder's solution are compared, and the two sets of absolute positions are corrected according to the comparison result.
  • the processor 3 can respectively calculate two sets of absolute positions based on the optical encoding signal and the magnetic encoding signal for mutual comparison and correction; however, this correction method cannot accurately determine whether the optical encoding signal has a deviation or the magnetic encoding signal. There is a deviation. Therefore, in this embodiment, by obtaining the absolute position of the standard encoder as the reference standard, the reason for the deviation of the resolved absolute position can be accurately determined.
  • the absolute position calculated by the optical encoder signal and the magnetic encoder signal is used for comparison and correction, which can be applied to the correction of the magneto-optical encoder in the actual measurement, and the measurement result of the encoder can be measured in real time.
  • the function of monitoring is to detect the fault of the encoder in the measurement process in time to ensure the reliability of the measurement results of the magneto-optical encoder.
  • the calibration method in this application can be applied to the calibration inspection before the magneto-optical encoder is put into use.

Abstract

一种光磁混合编码器系统,包括光电池(1);感应正对磁钢(6)中心位置磁场变化的磁感芯片(2);感应正对磁钢(6)边缘位置磁场变化的霍尔芯片。处理器(3)用于根据光编码信号解算出绝对位置的刻线相位角;根据磁编码信号生成绝对位置的刻线值和圈数值;衔接所述刻线相位角、所述刻线值以及所述圈数值,获得多圈绝对位置信息。该系统分别根据两种解算方式的精确度,各选取两组绝对位置的部分数据进行衔接组合,从而获得较为准确的位置数据;另外,磁编码信号是基于分别对应于磁钢(6)中心位置和边缘位置两种不同位置的磁场变化而生成的,提高整个光磁编码器的测量精度,有利于光磁混合编码器的广泛应用。

Description

一种光磁混合编码器系统
本申请要求于2019年7月26日提交中国专利局、申请号为201910683239.6、发明名称为“一种光磁混合编码器系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及编码器技术领域,特别是涉及一种光磁混合编码器系统。
背景技术
光编码器是由一个中心有轴的光电码盘,其上有环形明暗相间的刻线,有光电发射和接收器件读取并获得信号的一类传感器,主要用来测量位移或角度。光电编码器具有测量精确度高的优点,同时也存在易污染,抗干扰能力差的缺点。光编码器是因其测量精确度高的特点,成为目前行业内应用最为广泛的编码器。但是光编码器因为抗污染、抗干扰能力弱,也使得光编码器的应用受到一定的限制。
另外,目前还存在一种光磁混合编码器,通过结合检测的光信号和电信号共同解算出位置信息。这种编码器能够在一定程度上减小污染、震动等方面的干扰对解算出的位置信息的准确度的影响。
发明内容
本发明的目的是提供一种光磁混合编码器系统,提高光磁编码器的测量精度,有利于光磁混合编码器的广泛应用。
为解决上述技术问题,本发明提供一种光磁混合编码器系统,包括用于感应码道的光信号的变化,生成相应的光编码信号的光电池;
用于感应磁钢的磁场变化,生成磁编码信号的磁感芯片,其中,所述磁钢和设置有所述码道的码盘设于同一旋转主轴上;
和所述光电池以及所述磁感芯片分别相连接的处理器,用于根据所述光编码信号解算出第一绝对位置;根据所述磁编码信号解算出第二绝对位置;衔接所述第一绝对位置中的刻线相位角、所述第二绝对位置的刻线值 以及所述第二绝对位置的圈数值,获得多圈绝对位置信息。
其中,所述磁钢包括半圆形N磁极和半圆形S磁极;
所述磁感片包括第一磁感芯片和第二磁感芯片;
所述第一磁感芯片包括两个正交设置的芯片,且所述磁钢每旋转一圈,所述第一磁场芯片输出一个周期的方波信号;且两个所述第一磁感芯片输出信号的相位差为90度;
所述第二磁感芯片用于所述磁钢每旋转一周,输出两个周期的正弦信号和两个周期的余弦信号。
其中,两个所述第一磁感芯片均设于正对所述磁钢边缘位置处;所述第二磁感芯片设于正对所述磁钢中心位置处。
其中,所述第一磁感芯片为TMR芯片、GMR芯片或AMR芯片任意一种,所述磁感芯片为AMR芯片。
其中,所述磁钢设置在所述码盘的中心位置。
其中,所述处理器具体用于:
根据当前时刻的两个所述方波信号,确定当前时刻的第二绝对位置的位置范围;根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号,确定当前时刻的所述第二绝对位置的刻线值;根据所述第一磁感芯片输出的方波信号的累计周期数,获得所述第二绝对位置的圈数值。
其中,所述处理器具体还用于:
将所述第一绝对位置和所述第二绝对位置的刻线值、刻线相位角以及圈数值进行一一对比,判断所述编码器是否可用。
其中,所述处理器具体还用于:
将所述第一绝对位置和所述第二绝对位置的刻线值、刻线相位角以及圈数值分别和标准编码器的解算获得的标准绝对位置的刻线值、刻线相位角以及圈数值进行对比,并根据对比结果对两组所述绝对位置进行校正。
其中,所述码盘上的码道为游标码道、格雷码道或M序列码道中的任意一种码道。
其中,所述码盘上的码道为游标码道;所述光电池为内置有运算单端输出电路、比较器电路以及差分运算电路。
本发明所提供的光磁混合编码器系统,包括用于光电池;感应正对磁钢中心位置磁场变化的磁感芯片;感应正对磁钢边缘位置磁场变化,霍尔芯片。处理器用于根据所述光编码信号解算出绝对位置的刻线相位角;根据磁编码信号生成绝对位置的刻线值和圈数值;衔接所述刻线相位角、所述刻线值以及所述圈数值,获得多圈绝对位置信息。
相对于现有技术的光磁混合编码器的中结合光编码信号和磁编码信号共同解算出绝对位置的方式而言,本申请是分别基于光编码信号和磁编码信号即可分别解算出绝对位置,且根据两种解算方式的精确度,各选取两组绝对位置的部分数据进行衔接组合,从而获得较为准确地位置数据。另外,磁编码信号是基于分别对应于磁钢中心位置和边缘位置两种不同位置的磁场变化而生成的,有利于提高磁编码器的测量精度,进而提高整个光磁编码器的测量精度,有利于光磁混合编码器的广泛应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的光磁混合编码器系统的框架示意图;
图2为本发明实施例提供的光磁混合编码器的局部结构示意图;
图3为第一磁感芯片和第二磁感芯片的输出信号的对应关系的坐标示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,图1为本发明实施例提供的光磁混合编码器系统的框架示意图,图2为本发明实施例提供的光磁混合编码器的局部结构示意图,该系统可以包括:
感应码道4的光信号的变化,生成相应的光编码信号的光电池1;
用于感应磁钢6的磁场变化,生成磁编码信号的磁感芯片2,其中,磁钢6和设置有码道4的码盘5设于同一旋转主轴7上;
和光电池1以及磁感芯片2分别相连接的处理器3;其中,处理器3用于根据光编码信号解算出第一绝对位置;根据磁编码信号解算出第二绝对位置值;衔接第一绝对位置中的刻线相位角、第二绝对位置的刻线值以及第二绝对位置的圈数值,获得多圈绝对位置信息。
具体地,对于光电池1是用于感应检测码盘5的码道4上的光信号的感应元件相同,和码盘5的相对位置与常规光编码器中设置方式类似,在此不详细赘述。
当旋转主轴7旋转时,码盘5和磁钢6也会随之旋转,光电池1接收到的光源8通过码道4的光栅刻线发射的光线,也随着光栅明暗条纹的变化而变化,进而输出相应的光编码信号,用于感应磁钢6旋转时磁场的变化的磁感芯片2,也随着磁钢6的旋转可以输出相应的磁编码信号。
本实施例中的带有码道4的码盘5、旋转主轴7以及光电池1共同形成了光编码器的主要部件,根据光电池1输出的光编码信号,是可以解算出完整的绝对位置的,本申请中将通过光电池1输出的光编码信号设为第一绝对位置。而同理,通过磁感芯片2感应磁钢6旋转导致的磁感芯片所在位置的磁场变化,进而输出的磁编码信号,也可以决算出一组绝对位置,本实施例中设为第二绝对位置。
对于本实施例中光磁混合编码器而言,处理器3可以根据光电池1和磁感芯片2输出的编码信号可以分别解算出两组绝对位置,但是光编码信号解算出的绝对位置是基于光电池和码盘5之间的相对位置而言的,而磁 编码信号解算出的绝对位置是基于磁感芯片2相对于磁钢6的相对位置而言的。但是码盘5和磁钢6之间的旋转是同步进一步的,而光电池1和磁感芯片2之间的相对位置固定,因此,本申请中通过磁编码器解算出第二绝对位置之后,可以转换为以光电池1和码盘5之间的相对位置进行表示,也即是说第一绝对位置和第二绝对位置均是以光编码器中表征绝对位置的方式进行表示。
但是对于磁编码器而言,其优势是具有抗污染、抗振动干扰的特性,而解算出的绝对位置的精确度相对于光编码器而言,精度相对较低。例如尽管光编码器和磁编码磁分别获得的编码信号均可以解算出绝对位置的刻线值,但磁编码器解算出的刻线值往往是不准确的;反之,对于光编码器而言,一旦受到油污污染、震动干扰等影响,往往会难以计算出准确地刻线值以及圈数值。
因此,本实施例中根据光编码器和磁编码器各自的优势特点,选取两种编码器解算出的绝对位置中较为准确地一部分进行衔接组合,从而获得更为准确地绝对位置。并且本实施例中两种编码器均可以独立解算出绝对位置,当一种编码器出现故障时,另一种编码器还能够起到冗余的作用。
目前已有的光磁混合编码中,尽管也是分别输出光编码信号和磁编码信号,但是在进行绝对位置解算时,两种数据需要相互参照,而无法独立解算出绝对位置值,因此现有技术中的光磁混合编码器并不具有冗余的功能。
另外,基于上述论述,可知,本实施例中不论码盘5上是采用哪一种码道4根据光编码信号只要能够解算出当前刻线的相位角即可。具体地,可以采用游标码码道、格雷码码道、M序列码道、单圈码道中的任意一种码道,对此,本实施例中不做具体限定。
在实际进行绝对位置解算时,为了获得更为精准的绝对位置,往往考虑将光编码组件和电编码组件分别解算出来的绝对位置进行相互矫正,以减小测量误差,获得更为精准的测量结果。因此,这就要求光编码组件采集的光信号数据也能解算出刻线值,那么码盘5上码道4的数量就要求不少于两圈。而对于不要求解算出完整的第一绝对位置的实施例中,采用单 圈码道的码盘5也能实现本申请的技术方案。因此,对于码道4的种类,可以根据实际需要进行选择。
本申请中的光磁混合编码器系统相对于现有的混合编码器而言,具有容错冗余的功能;另外,针对光编码器和磁编码器各自的优势,将两种编码器输出的电信号分别进行解算之后,对解算结果进行组合衔接,从而获得更为精准度高、精确度高的绝对位置信息,提升了混合编码器的测量性能,有利于混合编码器的广泛应用。
基于上述实施例,如图2所示,在本发明的另一具体实施例中还可以进一步地包括:
磁感芯片2包括第一磁感芯片21和第二磁感芯片22;
第一磁感芯片21包括两个正交设置的芯片,且磁钢6每旋转一圈,第一磁场芯片21输出一个周期的方波信号;且两个第一磁感芯片21输出信号的相位差为90度;
第二磁感芯片22用于磁钢每旋转一周,输出两个周期的正弦信号和两个周期的余弦信号。
如图2所示,在图2中磁钢6包括半圆形N磁极和半圆形S磁极,两个第一磁感芯片21正对磁钢6边缘上的物理位置相差90度弧度,那么两个第一磁感芯片21输出的信号相位也就相差90度。另外图2中第二磁感芯片22设置在正对磁钢6中心的位置。在实际应用中,该第二磁感芯片22也可以设置在正对磁钢6边缘位置处,但是因为磁感芯片2以及光电池1等部件均需要设置在线路板上,使得线路板上的芯片较多,因此将该第二磁感芯片22设置在正对磁钢6中心位置,可以使得线路板上芯片布局更为紧凑。
进一步地,对于磁钢6而言,也并不一定采用圆形磁钢,还可以是圆环形磁钢,且半个圆环为N极半个圆环为S极也能实现本申请的技术方案,对此本申请中不再赘述。
对于第一磁感芯片21而言,需要输出方波信号,具体地可以采用霍尔芯片、TMR芯片、GMR芯片、或者AMR芯片中的任意一种磁感芯片; 对于第二磁感芯片22,需要在磁钢旋转一圈时,输出两个正余弦信号,那么第二磁感芯片22具有可以是AMR芯片。
如图3所示,图3为第一磁感芯片和第二磁感芯片的输出信号的对应关系的坐标示意图。图3中磁钢6每旋转一周,每个第一磁感芯片21即可分别输出一个周期的方波信号,且两个第一磁感芯片21的方波信号相差90度;相应地,磁钢6每旋转一周,第二磁感芯片22可输出量个周期的正弦信号和余弦信号。
另外,在图3中磁钢6设置在码盘5的中心处,和码盘5设置在同一平面内。
因为磁钢6和码盘5均需要随着旋转主轴7旋转,且磁钢6的直径一般不大于码盘5上码道4的内环,为了尽可能的缩小编码器的空间体积,可以将磁钢6设置在码盘5的中心位置,使得码盘5和磁钢6在同一平面内,共同可随旋转主轴7旋转,使得码盘5和磁钢6的结构设置更为紧凑合理,减小编码器的整体结构。当然码盘5和磁钢6不设置在同一平面内,也能实现本申请的技术方案。
可选地,基于第一磁感芯片21输出的方波信号,和第二磁感芯片22输出正弦信号以及余弦信号,在本发明另一具体实施例中,处理器3具体用于:根据当前时刻的两个方波信号,确定当前时刻的第二绝对位置的位置范围;根据位置范围和当前时刻的正弦信号和余弦信号,确定当前时刻的第二绝对位置的刻线值;根据第一磁感芯片输出的方波信号的累计周期数,获得第二绝对位置的圈数值。
根据图3可知,两个第一磁感芯片21输出的高低电平存在四种组合状态。因为第一磁感芯片21的方波信号的周期起始点和第二磁感芯片22的正余弦信号的周期起点具有一定的同步性,且周期时长是2倍的关系;那么根据两个第一磁感芯片21输出的高低电平不同的组合,即可确定当前位置对应于第二磁感芯片22输出的第几个周期的正余弦信号,也即是第二绝对位置的位置范围,在根据第二磁感芯片22当前输出的正余弦值的大小,即可解算出当前的第二绝对位置。
例如图3所示,当第一个第一磁感芯片输出的是高电平,第二个第一磁感芯片输出的是低电平;即可确定出第二磁感芯片22当前输出的是第一个周期内的正余弦信号,在根据第二磁感芯片22输出的正弦信号为a,预先信号为b,即可进一步获得当前的第二绝对位置。
需要说明的是,之所以在磁钢6每旋转一圈,第二磁感芯片22输出两个周期的正余弦信号,是为了基于正余弦信号解算出更精准的第一绝对位置。尽管第二磁感芯片22也可以在磁钢6旋转一圈时,只输出一个周期的正余弦信号,而此时无需采用第一磁感芯片21检测磁场变化,即可解算出第二绝对位置,但是这种解算方式解算出的第二绝对位置的精度较低。因此,本实施例中采用两个第一磁感芯片21和一个第二磁感芯片22结合,是一种优选的实施方式。
另外,因为磁钢6每旋转一圈,第一磁感芯片21输出一个周期的方波信号,因此根据第一磁感芯片21的方波信号的周期数即可获得圈数值。
可选地,在本发明的另一具体实施例中,还可以进一步地包括:
码盘5上的码道4为游标码道;光电池1为内置有运算单端输出电路、比较器电路以及差分运算电路。
需要说明的是,对于光电池1输出的光编码信号,一般都是模拟量信号,但是处理器3并不能对该光编码信号进行解算处理,而需要在光电池1和处理器3中间设置差分电路、运算单端输出电路、以及比较器电路。
例如,当光电池1接收到游标码的主码道M的光信号后,可生成M_Sin+信号、M_Sin-信号、M_Cos+信号、M_Cos-信号,其中,M_Sin+信号和M_Sin-信号需要通过运算单端输出电路处理,生成M_Sin信号,M_Sin信号为和M_Sin+信号具有相同周期,且幅值增大两倍的信号;M_Sin+信号和M_Sin-信号还需要通过比较器电路处理,输出M_Sin_Pulse数字信号;M_Sin+信号和M_Sin-信号还需要通过差分运算电路处理,输出进行差分运算后的M_Sin+信号和M_Sin-信号。
对于主码道的M_Cos+信号、M_Cos-信号也需要进行类似的处理,而针对游标码中的段码道N和游标码道S的信号则只需要运算单端输出电路、比较器电路处理即可;且针对每个码道的正弦信号和余弦信号进行处 理的运算单端输出电路、比较器电路以及差分运算电路是相互独立的,也就要求处理器3和光电池1之间需要设置较多运算单端输出电路、比较器电路以及差分运算电路。
因此,在线路板上需要设置较为复杂的电路结构,且在光磁混合的编码器中,线路板上还需要同时设置多个磁感芯片,进一步使得线路板上的空间较为拥挤。
本实施例中将运算单端输出电路、比较器电路以及差分运算电路等电路集成在光电池中,从而减小了光电池1和处理器3中之间的电路元件,为磁感芯片2在线路板上的设置提供足够的空间,有利于编码器小型化的发展。
如前所述,本申请中的处理器3可以根据光编码信号和磁编码信号可以分别独立解算出两个绝对位置,因此两个绝对位置可以互为冗余的作用。但是在此基础上,二者也可以用作相互校正的功能。因此,在本发明的另一具体实施例中,该处理器3还可以用于:
将所述第一绝对位置和所述第二绝对位置的刻线值、刻线相位角以及圈数值进行一一对比,判断所述编码器是否可用。
在正常情况下,通过光编码信号解算出的第一绝对位置与磁编码信号算出的第二绝对位置,在误差允许范围内是相同的。因此,如果一旦两种方式解算出的绝对位置相差较大,则说明光电混合编码器必然出现故障。
本申请基于上述原理,处理器3可以在分别解算出两组绝对位置值后,对两个绝对位置值进行对比,例如,若两组绝对位置的刻线值相差1/4的码道,显然,该光磁混合编码器存在故障,至于故障原因可以根据实际情况判断确定。
可选地,在本发明的另一实施例中,该处理器3具体还可以可以用于:将第一绝对位置和第二绝对位置的刻线值、刻线相位角以及圈数值分别和标准编码器的解算获得的标准绝对位置的刻线值、刻线相位角以及圈数值进行对比,并根据对比结果对两组绝对位置进行校正。
如上所述,处理器3尽管可以根据光编码信号和磁编码信号,分别解 算出两组绝对位置进行相互对比校正;但是这种校正方式并不能准确判断出是光编码信号出现偏差还是磁编码信号出现偏差。因此,本实施例中通过获得标准编码器的绝对位置作为参考标准,即可准确地判断出解算出的绝对位置出现偏差的原因。
另外,上一实施例中,采用中光编码信号和磁编码信号解算出的绝对位置进行对比校正,可以应用于光磁编码器在实际测量中的校正,起到实时对编码器的测量结果进行监测的作用,以便能够及时发现编码器在测量过程中的故障问题,以保证光磁编码器的测量结果的可靠性。而本申请中的校正方法,可以应用于光磁编码器投入使用前的校正检验。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,本发明实施例提供的上述技术方案中与现有技术中对应技术方案实现原理一致的部分并未详细说明,以免过多赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

Claims (10)

  1. 一种光磁混合编码器系统,其特征在于,包括用于感应码道的光信号的变化,生成相应的光编码信号的光电池;
    用于感应磁钢的磁场变化,生成磁编码信号的磁感芯片,其中,所述磁钢和设置有所述码道的码盘设于同一旋转主轴上;
    和所述光电池以及所述磁感芯片分别相连接的处理器,用于根据所述光编码信号解算出第一绝对位置;根据所述磁编码信号解算出第二绝对位置;衔接所述第一绝对位置中的刻线相位角、所述第二绝对位置的刻线值以及所述第二绝对位置的圈数值,获得多圈绝对位置信息。
  2. 如权利要求1所述的光磁混合编码器系统,其特征在于,所述磁钢包括半圆形N磁极和半圆形S磁极;
    所述磁感片包括第一磁感芯片和第二磁感芯片;
    所述第一磁感芯片包括两个正交设置的芯片,且所述磁钢每旋转一圈,所述第一磁场芯片输出一个周期的方波信号;且两个所述第一磁感芯片输出信号的相位差为90度;
    所述第二磁感芯片用于所述磁钢每旋转一周,输出两个周期的正弦信号和两个周期的余弦信号。
  3. 如权利要求2所述的光磁混合编码器系统,其特征在于,两个所述第一磁感芯片均设于正对所述磁钢边缘位置处;所述第二磁感芯片设于正对所述磁钢中心位置处。
  4. 如权利要求2所述的光磁混合编码器系统,其特征在于,所述第一磁感芯片为TMR芯片、GMR芯片或AMR芯片任意一种,所述磁感芯片为AMR芯片。
  5. 如权利要求2所述的光磁混合编码器系统,其特征在于,所述磁钢设置在所述码盘的中心位置。
  6. 如权利要求2所述的光磁混合编码器系统,其特征在于,所述处理器具体用于:
    根据当前时刻的两个所述方波信号,确定当前时刻的第二绝对位置的位置范围;根据所述位置范围和当前时刻的所述正弦信号和所述余弦信号, 确定当前时刻的所述第二绝对位置的刻线值;根据所述第一磁感芯片输出的方波信号的累计周期数,获得所述第二绝对位置的圈数值。
  7. 如权利要求6所述的光磁混合编码器系统,其特征在于,所述处理器具体还用于:
    将所述第一绝对位置和所述第二绝对位置的刻线值、刻线相位角以及圈数值进行一一对比,判断所述编码器是否可用。
  8. 如权利要求6所述的光磁混合编码器系统,其特征在于,所述处理器具体还用于:
    将所述第一绝对位置和所述第二绝对位置的刻线值、刻线相位角以及圈数值分别和标准编码器的解算获得的标准绝对位置的刻线值、刻线相位角以及圈数值进行对比,并根据对比结果对两组所述绝对位置进行校正。
  9. 如权利要求1至8任一项所述的光磁混合编码器系统,其特征在于,所述码盘上的码道为游标码道、格雷码道或M序列码道中的任意一种码道。
  10. 如权利要求1至8任一项所述的光磁混合编码器系统,其特征在于,所述码盘上的码道为游标码道;所述光电池为内置有运算单端输出电路、比较器电路以及差分运算电路。
PCT/CN2019/102988 2019-07-26 2019-08-28 一种光磁混合编码器系统 WO2021017074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910683239.6 2019-07-26
CN201910683239.6A CN110345976B (zh) 2019-07-26 2019-07-26 一种光磁混合编码器系统

Publications (1)

Publication Number Publication Date
WO2021017074A1 true WO2021017074A1 (zh) 2021-02-04

Family

ID=68180380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102988 WO2021017074A1 (zh) 2019-07-26 2019-08-28 一种光磁混合编码器系统

Country Status (2)

Country Link
CN (1) CN110345976B (zh)
WO (1) WO2021017074A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175296A1 (en) 2022-03-14 2023-09-21 Dyson Technology Limited Encoder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220190A (zh) * 2020-01-19 2020-06-02 苏州技兴智能设备有限公司 一种光磁旋转式多圈绝对值编码器
CN113847934A (zh) * 2021-09-24 2021-12-28 深圳市灵犀自动化技术有限公司 混合编码器的位置确定方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151423A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 光磁気式エンコ−ダ
CN102322881A (zh) * 2011-05-30 2012-01-18 扬州电力设备修造厂 一种非接触式无源保持光磁多回转绝对位置传感器
CN103983291A (zh) * 2014-05-26 2014-08-13 四川科奥达技术有限公司 一种光磁编码器及其编码方法
CN108474673A (zh) * 2016-01-18 2018-08-31 株式会社尼康 编码器装置、驱动装置、载物台装置及机器人装置
CN207832208U (zh) * 2018-03-01 2018-09-07 沈阳中光电子有限公司 光磁混合式编码器
CN109029511A (zh) * 2018-07-25 2018-12-18 苏州少士电子科技有限责任公司 一种双编码高精度磁编码器及具有其的电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140636A (en) * 1998-03-23 2000-10-31 Hewlett-Packard Company Single track encoder for providing absolute position information
CN104457801A (zh) * 2014-10-30 2015-03-25 贵州航天凯山石油仪器有限公司 一种适用于井下作业的电机编码器
CN204388869U (zh) * 2015-01-12 2015-06-10 江苏金陵自控技术有限公司 一种磁电式绝对值编码器
CN205228479U (zh) * 2015-12-02 2016-05-11 深圳怡化电脑股份有限公司 一种磁编码器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151423A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 光磁気式エンコ−ダ
CN102322881A (zh) * 2011-05-30 2012-01-18 扬州电力设备修造厂 一种非接触式无源保持光磁多回转绝对位置传感器
CN103983291A (zh) * 2014-05-26 2014-08-13 四川科奥达技术有限公司 一种光磁编码器及其编码方法
CN108474673A (zh) * 2016-01-18 2018-08-31 株式会社尼康 编码器装置、驱动装置、载物台装置及机器人装置
CN207832208U (zh) * 2018-03-01 2018-09-07 沈阳中光电子有限公司 光磁混合式编码器
CN109029511A (zh) * 2018-07-25 2018-12-18 苏州少士电子科技有限责任公司 一种双编码高精度磁编码器及具有其的电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175296A1 (en) 2022-03-14 2023-09-21 Dyson Technology Limited Encoder

Also Published As

Publication number Publication date
CN110345976B (zh) 2020-03-27
CN110345976A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2021017074A1 (zh) 一种光磁混合编码器系统
US8466672B2 (en) Method of processing encoder signals
WO2021017075A1 (zh) 混合编码器的位置确定方法、装置、设备及可读存储介质
CN106706012B (zh) 编码盘、应用该编码盘的光电测角编码器及其工作方法
WO2021114419A1 (zh) 一种旋转磁电编码器的校准方法、装置及设备
US4794251A (en) Apparatus for measuring lengths or angles
US10724877B2 (en) Compact pseudorandom scale and read head for an inductive type absolute position encoder
CN108155910B (zh) 一种基于fpga的高速正余弦编码器解码方法
CN103925933A (zh) 一种多圈绝对磁编码器
US9880023B2 (en) Direct read metering device and direct read water meter
CN206300667U (zh) 编码盘、应用该编码盘的光电测角编码器
CN101529210A (zh) 旋转角度检测系统
JP5893360B2 (ja) インクリメンタル位置測定機構の位置信号を監視するための監視ユニットおよび方法
CN110081837A (zh) 一种通过利用测角圆光栅及读数头检测轴系晃动及偏心误差的方法
CN206773000U (zh) 双轴速率位置转台角速率检定装置
CN203203607U (zh) 一种多圈绝对磁编码器
JP2000241157A (ja) 測角システム
CN103557830A (zh) 一种兼容多种传感器的测角板卡
CN111982164B (zh) 多磁道扇区定位离轴绝对值编码器
CN110906959B (zh) 一种一主多副齿轮结构的磁电式绝对编码器的实现方法
WO2021017073A1 (zh) 光编码器的光电池和光磁编码器的解码装置
CN210014791U (zh) 一种编码器
CN106767600B (zh) 一种高精度同步监测旋转体转角及径向位移的系统
WO2023109100A1 (zh) 多组游标码盘、光电编码器及光源位置解算方法
CN112729100A (zh) 一种旋变式角度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939532

Country of ref document: EP

Kind code of ref document: A1