WO2023109100A1 - 多组游标码盘、光电编码器及光源位置解算方法 - Google Patents

多组游标码盘、光电编码器及光源位置解算方法 Download PDF

Info

Publication number
WO2023109100A1
WO2023109100A1 PCT/CN2022/103993 CN2022103993W WO2023109100A1 WO 2023109100 A1 WO2023109100 A1 WO 2023109100A1 CN 2022103993 W CN2022103993 W CN 2022103993W WO 2023109100 A1 WO2023109100 A1 WO 2023109100A1
Authority
WO
WIPO (PCT)
Prior art keywords
vernier
group
code
light source
cursor
Prior art date
Application number
PCT/CN2022/103993
Other languages
English (en)
French (fr)
Inventor
周凯
Original Assignee
苏州汇川控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川控制技术有限公司 filed Critical 苏州汇川控制技术有限公司
Priority to EP22905462.2A priority Critical patent/EP4249857A1/en
Priority to KR1020237017370A priority patent/KR20230116785A/ko
Publication of WO2023109100A1 publication Critical patent/WO2023109100A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34792Absolute encoders with analogue or digital scales with only digital scales or both digital and incremental scales
    • G01D5/34794Optical encoders using the Vernier principle, i.e. incorporating two or more tracks having a (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders

Definitions

  • the present application relates to the technical field of encoders, in particular to a multi-group vernier code disc, a photoelectric encoder and a method for calculating the position of a light source.
  • the encoder effectively improves its working accuracy.
  • the absolute rotary encoder because of its absolute uniqueness and anti-interference in each position, has been more and more widely used in angle, length measurement and positioning control in various industrial systems.
  • significant technical requirements are placed on the effective resolution of the encoder.
  • a general photoelectric encoder only depicts a set of vernier code tracks on the code disc. On a code disc with the same area, the more code tracks, the narrower the code tracks. If the code tracks are too narrow, the analog signal will be highly sensitive to the optical signal. Due to the influence of the number conversion itself error and circuit noise, even if the converted result has only a slight error with the real value, if the code tracks in the vernier are too dense, it will cause an absolute position error. At present, the photoelectric encoders with high physical resolution on the market all have the problem of absolute position calculation errors when calculating the position of the light source on the code disc.
  • the main purpose of this application is to provide a multi-group vernier code wheel, a photoelectric encoder and a method for calculating the position of the light source, aiming at solving the problem of calculating the position of the light source on the code wheel by the photoelectric encoder with high physical resolution in the prior art. , there is a technical problem of absolute position calculation error.
  • the present application proposes a multi-group vernier code disc, the multi-group vernier code disc includes: a vernier ring with the rotation center of the multi-group vernier code disc as the center, and the vernier ring includes multiple end-to-end cursor groups;
  • identification code tracks with the same number as the vernier group inside and/or outside the ring of the vernier ring, and there is a first phase difference between the starting ends of each identification code track, and the starting ends of each identification code track There is a second phase difference between the start end and the start end of the corresponding cursor group.
  • the present application also provides a photoelectric encoder, the photoelectric encoder includes the above-mentioned multiple groups of vernier code discs.
  • the present application also provides a method for calculating the position of the light source, and the method for calculating the position of the light source includes:
  • Fig. 1 is a schematic structural view of the first embodiment of multiple sets of vernier code discs of the present application
  • Fig. 2 is the first structural schematic diagram of the second embodiment of multiple sets of vernier code discs of the present application
  • Fig. 3 is a schematic diagram of the connection of the vernier groups in the second embodiment of the multiple groups of vernier code discs of the present application;
  • Fig. 4 is a second structural schematic diagram of the second embodiment of the multi-group vernier code disc of the present application.
  • FIG. 5 is a schematic diagram of the third structure of the second embodiment of multiple sets of vernier code discs of the present application.
  • FIG. 6 is a schematic flow chart of the first embodiment of the light source position calculation method of the present application.
  • FIG. 7 is a schematic flowchart of a second embodiment of the method for calculating the position of a light source in the present application.
  • FIG. 1 is a schematic diagram of the structure of the second electrode layer in the first embodiment of the multi-group vernier code disc of the present application.
  • the multiple sets of vernier code discs include: a vernier ring with the rotation center of the multiple sets of vernier code discs as the center, and the vernier ring includes a plurality of end-to-end connected vernier groups 10;
  • identification code tracks 20 having the same number as the vernier group 10 inside and/or outside the ring of the vernier ring, there is a first phase difference ⁇ 1 between the starting ends of each identification code track, and each identification code There is a second phase difference ⁇ 2 between the beginning of the track 20 and the beginning of the corresponding cursor group 10 .
  • the code wheel of the photoelectric encoder usually includes a vernier group 10 , and the number of code channels in the vernier group needs to be increased when adjusting the accuracy of the encoder. Under the condition that the area of the vernier group 10 remains unchanged, increasing the number of code channels tends to reduce the width of the code channels, making the code channels denser and causing the analog signals in the code channels to be very sensitive to the light source signal.
  • the cursor ring is a ring structure composed of a plurality of cursor groups 10 connected end to end.
  • the number of cursor groups 10 may be two, three, four, etc.
  • the vernier group 10 may include a vernier track and a main track.
  • a vernier is a movable micrometer scale.
  • the vernier group 10 on the code wheel utilizes the phase difference between the vernier code track and the main code track to accurately measure the position of the light source irradiated on the code wheel.
  • the specific usage method of the vernier group is the same as that of the vernier caliper, and the specific principle can refer to the vernier caliper, which will not be repeated here.
  • the second phase difference ⁇ 2 between the start end of each identification code track and the start end of the corresponding vernier group 10 may be the same or different, which may be determined according to the actual situation. Not limited.
  • the second phase difference ⁇ 2 between the starting end of each identification code track and the starting end of the corresponding vernier group 10 can be used to distinguish the corresponding angular position information of the vernier group 10 and the identification code track 20 on the code wheel.
  • the above-mentioned second phase difference ⁇ 2 can be a value greater than 0, for example: 45 degrees, 60 degrees, 90 degrees, 180 degrees, etc., which can be determined according to the actual situation, which is not limited in the embodiment of this specification.
  • the identification code track 20 may be configured to divide the code wheel into multiple areas equally, so as to determine the position of the vernier group 10 on the code wheel.
  • the identification code track 20 including the mark and the identification code track 20 not including the mark will output different signals.
  • the first identification code track can output a high-level signal
  • the other identification code channels can output low-level signals.
  • the identification code track 20 can be arranged on the inner side or the outer side of the vernier ring, and of course the vernier code track can also be set separately, one part is arranged on the inner side of the vernier ring, and the other part is arranged on the outer side of the vernier ring.
  • the identification code track 20 does not need to perform analog-to-digital conversion, and the state corresponding to the current identification code track can be identified by connecting the signal to the comparator circuit.
  • the state of the identification code track 20 may be a bright state and a dark state, or a high level state and a low level state, etc.
  • each identification code track 20 on the code wheel may be the same or different, and may be determined according to actual conditions, which is not limited in the embodiment of this specification.
  • the code disc when the light source shines on the PCB board through the code disc, certain traces of the light source will be left on the code disc.
  • the traces of the light source passing through the code wheel of multiple vernier groups must be on a certain vernier group 10 , and the position of the traces of the light source can be measured by using the vernier group 10 , so as to determine the initial position information of the traces of the light source on the vernier group 10 .
  • Different identification code tracks 20 correspond to different areas on the code disc. According to the The precise position of the trace of the light source on the code wheel can be determined by combining the area position information corresponding to the area with the initial position information of the trace of the light source on the vernier group.
  • three vernier groups 10 and three identification code tracks 20 are set on the code wheel, wherein the first vernier group occupies a 120-degree sector of 0-120 degrees on the code wheel with the zero line 30 as the starting point area, the second cursor group occupies a 120-degree fan-shaped area of 120-240 degrees, and the third cursor group occupies a 120-degree fan-shaped area of 240-360 degrees.
  • the starting ends of the three identification code tracks 20 are 60 degrees apart from the starting ends of the vernier group 10 at the corresponding positions.
  • the first identification code track occupies a 120-degree fan-shaped area of 60-180 degrees
  • the second identification code track Occupying a 120-degree fan-shaped area of 180-300 degrees
  • the third identification track occupies a 120-degree fan-shaped area of 300-360 degrees and 0-60 degrees.
  • the position of the light source on the cursor group can be determined according to the cursor group where the trace of the light source is located, for example, the trace of the light source is located at 80 degrees from the cursor group Initial position; then obtain the state of the identification code channel, if the third identification code channel outputs a high-level signal at this time, and the other two identification code channels output low-level signals, then the trace of the light source is in the third identification code channel the corresponding area.
  • the area corresponding to the third identification code track is 300-360 degrees and the 120-degree fan-shaped area of 0-60 degrees.
  • the 300-360 degrees corresponding to the third identification code track belong to the 60-120 degrees of the third cursor group.
  • the 0-60 degrees corresponding to the three identification code tracks belong to the 0-60 degrees of the first cursor group, and the trace of the light source is located at the 80-degree position of the cursor group, so it can be determined that the trace of the light source is located in the third cursor group, and is the same as
  • the 80-degree position of the third vernier group combined with the specific position on the code wheel, can be used to obtain the target position corresponding to the trace of the light source, which is the 320-degree position of the zero line 30 clockwise rotation.
  • the initial position is the position of the trace of the light source passing through the code disc on the corresponding cursor group
  • the target position is the specific position of the trace of the light source on the code disc.
  • a multi-group vernier code disc includes: a vernier ring with the rotation center of the multi-group vernier code disc as the center, and the vernier ring includes a plurality of head and tail Connected vernier group; the inside and/or outside of the vernier ring are provided with the same identification code track as the number of the vernier group, and there is a first phase difference between the starting ends of each identification code track, and each There is a second phase difference between the start end of the identification code track and the start end of the corresponding vernier group.
  • the initial position of the light source on the cursor group is determined through the cursor group, and then the target position of the light source on the code wheel is determined according to the identification code track and the initial position , can more accurately calculate the exact position of the light source on multiple sets of vernier code discs.
  • the vernier group includes a main code track 102 , a vernier code track 101 and a segment code track 103 which are set with the rotation center of the plurality of sets of vernier code discs as a circle center.
  • the main code track 102 and the vernier code track 101 are two code tracks configured to measure the specific position of the trace of the light source on the vernier group.
  • the unit scale between the main code track 102 and the vernier code track 101 has a certain first unit phase difference.
  • the segment code track 103 is a code track with a second unit phase difference with the vernier code track 101 .
  • the initial position of the trace of the light source on the current vernier group can be determined by using the principle of vernier caliper distance measurement through the main code track 102 , the vernier code track 101 and the segment code track 103 .
  • the plurality of cursor groups 10 include a first cursor group 110 and a second cursor group 120, the starting end of the first cursor group 110 and the end point of the second cursor group 120 terminal connection;
  • the first vernier group 110 is set on one side of the zero scale line 30 of the multiple sets of vernier code discs
  • the second vernier set 120 is set on the other side of the zero scale line 30 of the multiple sets of vernier code discs.
  • the identification code track 20 includes: a first identification code track 210 and a second identification code track 220;
  • the starting end of the first identification code track 210 is set by rotating the preset angle clockwise or counterclockwise relative to the starting end of the first vernier group 110; the starting end of the second identification code track 220 is relative to the first The starting ends of the two vernier groups 120 rotate clockwise or counterclockwise to set the preset angle.
  • the first identification code track 210 can be set by rotating the preset angle clockwise with the starting end of the corresponding first cursor group 110
  • the second identification code track 220 can be set with the corresponding second cursor group.
  • the starting end of the group 120 is also rotated clockwise to set a preset angle; of course, the first identification code track 210 can also be set to be rotated counterclockwise with the corresponding starting end of the first vernier group 110 to set a preset angle
  • the second identification code track 220 can be The starting end of the corresponding second cursor group 120 is also rotated counterclockwise to set the preset angle.
  • the first identification code track 210 and the second identification code track 220 may also be set in other possible manners, which may be determined according to actual conditions, which is not limited in the embodiment of this specification.
  • the first vernier group 110 can occupy a 180-degree fan-shaped area of 0-180 degrees on the code wheel starting from the zero mark line 30, and the second vernier group 120 can occupy a 180-degree fan-shaped area of 180-360 degrees. .
  • the starting ends of the two identification code tracks lag behind the starting ends of the cursor groups at the corresponding positions by 45 degrees. Of course, other angles are also possible. No specific restrictions are made here.
  • the first identification code track occupies a space of 45-225 degrees. 180-degree fan-shaped area, the second identification track occupies a 180-degree fan-shaped area of 225-360 degrees and 0-45 degrees.
  • the position of the light source on the cursor group can be determined according to the cursor group where the trace of the light source is located, for example, the trace of the light source is located at 120 degrees of the cursor group Initial position; then obtain the state of the identification code track, if the first identification code channel 210 outputs a high-level signal at this time, and the second identification code channel 220 outputs a low-level signal, then the trace of the light source is in the first identification code channel
  • the area corresponding to 210 is 45-225 degrees. Among them, 45-180 degrees belong to the area corresponding to the first cursor group 110, and 180-225 degrees belong to the 0-45 degrees corresponding to the second cursor group 120.
  • the initial position is 120 degrees
  • the trace of the light source is in the first cursor group. 110, and at 120 degrees of the first vernier group 110, and then determine that the trace of the light source is at the target position of 120 degrees on the multiple groups of vernier code discs.
  • the first vernier group 110 is arranged on the right side of the zero reticle 30, the second vernier group 120 is arranged on the left side of the zero reticle 30, and the first vernier group The start end of 110 is connected with the end end of the second vernier group 120 at the zero mark line 30 .
  • the starting end of the first identification code track 210 is set by rotating the preset angle clockwise relative to the starting end of the first cursor group 110 ; the second identification code track 220 The starting end of the second vernier group 120 is rotated counterclockwise to the preset angle setting relative to the starting end of the second cursor group 120 .
  • the first identification code track is set outside the ring of the vernier ring
  • the second identification code track 220 is set inside the ring of the vernier ring.
  • the first identification code track can also be set inside the ring of the vernier ring
  • the second identification code track can be set outside the ring of the vernier ring. Specifically, it can be set according to the actual situation. Hence, this is not limited by the embodiment of this specification.
  • the first identification code track 210 and the second identification code track 220 divide multiple groups of vernier code discs into four areas equally, the first identification area A, the second identification area B, the third identification area The identification area C and the fourth identification area D. It should be noted here that neither the first identification code track 210 nor the second identification code track 220 includes the first identification area A, but both the first identification code track 210 and the second identification code track 220 include the third identification area D .
  • both the first identification code track 210 and the second identification code track 220 When both the first identification code track 210 and the second identification code track 220 output a low level, the trace of the light source on the code disc is in the first identification area A; when the first identification code track 210 outputs a high level, the second identification When the code track 220 outputs a low level, the trace of the light source on the code wheel is in the second identification area B; when both the first identification code track 210 and the second identification code track 220 output a high level, the trace of the light source on the code wheel is in In the third identification area C; when the first identification code track 210 outputs a low level and the second identification code track 220 outputs a high level, the trace of the light source on the code wheel is in the fourth identification area D.
  • the trace of the light source on the code disc When the trace of the light source on the code disc is in the second identification area B, it can directly indicate that the trace of the light source is in the first identification code track 210; similarly, when the trace of the light source on the code disc is in the fourth identification area D , which can directly indicate that the trace of the light source is in the second identification code track 220 .
  • the trace of the light source When the trace of the light source is in the first identification area A or the fourth identification area D, it needs to be determined according to the initial position of the trace of the light source on the corresponding cursor group.
  • the preset area is 45 degrees
  • the first identification area A if the initial position is between 0-45 degrees, the trace of the light source is in the first identification area; if the initial position is between 135-180 degrees, Then the trace of the light source is in the second identification area B.
  • the third identification area C which will not be repeated here.
  • This embodiment provides a multi-group vernier code disc
  • the multi-group vernier code disc includes: a vernier ring with the rotation center of the multi-group vernier code disc as the center, and the vernier ring includes a plurality of end-to-end connections Vernier group; the inside and/or outside of the vernier ring are provided with the same number of identification code tracks as the number of the vernier group, and there is a first phase difference between the starting ends of each identification code track. There is a second phase difference between the starting end of the corresponding cursor group and the starting end of the corresponding cursor group.
  • the initial position of the light source on the cursor group is determined through the cursor group, and then the light source is determined on the code wheel according to the area corresponding to the identification code track and the initial position
  • the target position of the target can be more accurately calculated the exact position of the light source on multiple sets of vernier code discs.
  • the present application also provides a photoelectric encoder, which includes multiple sets of vernier code discs as described above.
  • the specific structure of the multiple groups of vernier code discs refers to the above-mentioned embodiments. Since the photoelectric encoder adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the functions brought by the technical solutions of the above-mentioned embodiments, and will not repeat them here. A repeat.
  • FIG. 6 is a schematic flow chart of the first embodiment of the light source position calculation method of the present application. Based on FIG. The first embodiment of a method for calculating the position of a light source.
  • the manufacturing method of multiple groups of vernier code discs includes:
  • Step S10 Obtain the current main analog quantity of the main code track and the current cursor analog quantity of the vernier code track in the cursor group where the light source is located.
  • the current main analog quantity refers to the specific quantized value simulated on the main code channel in the current state.
  • the current cursor analog value refers to the specific quantitative value simulated on the cursor code track in the current state.
  • the current main analog quantity is equivalent to the value of the main scale in the vernier caliper, and the current cursor analog quantity is equivalent to the value of the vernier ruler.
  • the current main analog quantity and the current cursor analog quantity can be obtained directly through the traces of the light source at the corresponding scale positions on multiple groups of vernier code discs.
  • it can also be obtained by other methods, and the specific method is not limited. .
  • Step S20 Determine the initial position information of the light source in the cursor group where the light source is located according to the current main analog value and the current cursor analog value.
  • the initial position information refers to the position information of the trace of the light source in the cursor group where it is located.
  • the initial position information of the trace of the light source in the cursor group can be calculated directly through the calculation method of the cursor group.
  • the calculation method of the vernier group is the same as that of the vernier caliper, and will not be repeated here.
  • Step S30 Obtain level state information of each identified code channel.
  • the level status information is information used to reflect the current status of each identification code channel.
  • the level state information may be the high level state or the low level state corresponding to the identification code channel, and may also be the lighting state or the extinguishing state of the light emitting device set by the identification code.
  • the level state information can be collected by a multimeter, and of course the level state information can also be determined by collecting the bright state of each identification code channel.
  • Step S40 Determine the cursor group information where the light source is located according to the level state information and the initial position information.
  • the collected voltage values corresponding to each identification code channel can be input into one input terminal of the comparator respectively, and a reference voltage is set at the other input terminal of the comparator, and according to the output of the comparator As a result, the level state information of each identified code channel is determined. For example, the voltage value of the voltage value information corresponding to the first identification code track 210 is greater than the reference voltage, and the comparator outputs a high-level signal at this time, indicating that the trace of the light source is in the first identification code track 210; If the voltage value of the voltage value information is less than the reference voltage, the comparator outputs a low-level signal at this time, indicating that the trace of the light source is not in the second identification code track 220 .
  • an identification code track includes the positions of two cursor groups, it can be determined which cursor group the trace of the light source is in according to the initial position information.
  • Step S50 Determine the target position information of the light source on the code wheel according to the initial position information and the vernier group information.
  • the target position information refers to the position information on the code wheel of traces of the light source passing through multiple groups of vernier code wheels.
  • the initial position information on the vernier group where the trace of the light source is located and determining the specific vernier group it can be determined according to the area on the code disc corresponding to each vernier group that the trace of the light source is located in multiple groups of vernier specific position on the code wheel.
  • a light source position calculation method obtains the current main analog quantity of the main code track in the cursor group where the light source is located and the current cursor analog quantity of the cursor code track; according to the The current main analog quantity and the current cursor analog quantity determine the initial position information of the light source in the cursor group where the light source is located; obtain the level state information of each identification code channel; according to the level state information and the The initial position information determines the vernier group information where the light source is located; the target position information of the light source on the code wheel is determined according to the initial position information and the vernier group information.
  • the initial position of the light source on the cursor group can be determined based on multiple cursor groups. Further, the light source can be determined according to the identification code track and initial position. The target position on the code wheel can more accurately calculate the exact position of the light source on multiple sets of vernier code wheels.
  • step S20 includes:
  • Step S201 Determine the phase difference between the main code track and the vernier code track according to the current main analog quantity and the current vernier analog quantity.
  • the code phase difference refers to the difference between the unit phase of the main code track and the unit phase of the vernier code track.
  • the unit phase of the main code track and the unit phase of the vernier code track can be obtained directly by calculation, and the unit phase of the main code track and the unit phase of the vernier code track can be calculated Calculate the phase difference of the code channel.
  • Step S202 Determine the initial position information of the cursor group where the light source is located according to the code phase difference, the current main analog quantity and the current cursor analog quantity.
  • step S202 it also includes:
  • Step S2021 Obtain the current segment analog value of the segment code track in the vernier group where the pointer of the photoelectric encoder is located.
  • analog value of the current segment refers to the quantized value simulated by the code channel of the current segment.
  • the initial position information of the trace of the light source in the cursor group can be obtained more accurately through the acquisition of the current segment analog quantity combined with the current main analog quantity and the current cursor analog quantity.
  • step S202 includes:
  • Step S202' Determine the initial position information of the cursor group where the light source is located according to the channel phase difference, the current segment analog value, the current main analog value and the current cursor analog value.
  • a light source position calculation method obtains the current main analog quantity of the main code track in the cursor group where the light source is located and the current cursor analog quantity of the cursor code track; according to the The current main analog quantity and the current cursor analog quantity determine the initial position information of the light source in the cursor group where the light source is located; obtain the level state information of each identification code channel; according to the level state information and the The initial position information determines the vernier group information where the light source is located; the target position information of the light source on the code wheel is determined according to the initial position information and the vernier group information.
  • the initial position of the light source on the cursor group is determined more accurately by introducing a segment code track in the cursor group, and then according to the identification code track and the initial position Determining the target position of the light source on the code wheel can more accurately calculate the exact position of the light source on multiple sets of vernier code wheels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本申请公开了一种多组游标码盘、光电编码器及光源位置解算方法,该多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组(10);所述游标圆环的环内和/或环外设置有与所述游标组(10)数量相同的辨识码道(20),各辨识码道(20)的起始端之间存在第一相位差,所述各辨识码道(20)的起始端与对应的游标组(10)的起始端之间存在第二相位差。

Description

多组游标码盘、光电编码器及光源位置解算方法
本申请要求于2021年12月15号申请的、申请号为202111538411.2的中国专利申请的优先权。
技术领域
本申请涉及编码器技术领域,尤其涉及一种多组游标码盘、光电编码器及光源位置解算方法。
背景技术
随着工控技术的飞速发展,制造业产业升级的不断推进,为伺服产业的发展提供了巨大的市场。编码器作为伺服系统中的反馈器件,有效提高了其工作精度。而绝对型旋转编码器,因其每一个位置绝对唯一、抗干扰,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。伴随着对高精度加工的需求,对编码器的有效分辨率也提出了重大的技术要求。
一般的光电编码器在码盘上只刻画一组游标码道,而相同面积的码盘上,码道越多则码道越窄,码道过窄会导致模拟信号对光信号高度敏感,加上数目转换本身误差和电路噪声的影响,转换过后的结果即使与真实值仅有微小误差,在游标中的码道过于密集的情况下,也会造成绝对位置错误。目前市场上物理分辨率高的光电编码器在计算光源在码盘上的位置时,均存在绝对位置解算错误的问题。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种多组游标码盘、光电编码器及光源位置解算方法,旨在解决现有技术中物理分辨率高的光电编码器在计算光源在码盘上的位置时,均存在绝对位置解算错误的技术问题。
技术解决方案
为实现上述目的,本申请提出一种多组游标码盘,所述多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组;
所述游标圆环的环内和/或环外设置有与所述游标组数量相同的辨识码道,各辨识码道的起始端之间存在第一相位差,所述各辨识码道的起始端与对应的游标组的起始端之间存在第二相位差。
此外,为实现上述目的,本申请还提供了一种光电编码器,所述光电编码器包括上述的多组游标码盘。
此外,为实现上述目的,本申请还提供了一种光源位置解算方法,所述光源位置解算方法包括:
获取光源所处游标组中主码道的当前主模拟量和游标码道的当前游标模拟量;
根据所述当前主模拟量和所述当前游标模拟量确定所述光源在所述光源所处游标组中的初始位置信息;
获取各辨识码道的电平状态信息;
根据所述电平状态信息和所述初始位置信息确定所述光源所处的游标组信息;
根据所述初始位置信息和所述游标组信息确定所述光源在码盘上的目标位置信息。
有益效果
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请多组游标码盘第一实施例的结构示意图;
图2为本申请多组游标码盘第二实施例的第一种结构示意图;
图3为本申请多组游标码盘第二实施例中游标组连接示意图;
图4为本申请多组游标码盘第二实施例的第二种结构示意图;
图5为本申请多组游标码盘第二实施例的第三种结构示意图;
图6为本申请光源位置解算方法第一实施例的流程示意图;
图7为本申请光源位置解算方法第二实施例的流程示意图。
附图标号说明:
标号 名称 标号 名称
10 游标组 20 辨识码道
30 零线 110 第一游标组
120 第二游标组 210 第一辨识码道
220 第二辨识码道 101 游标码道
102 主码道 103 段码道
A 第一识别区 B 第二识别区
C 第三识别区 D 第四识别区
ψ1 第一相位差 Ψ2 第二相位差
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
参照图1,图1为本申请多组游标码盘第一实施例中第二电极层结构示意图。
在本实施例中,所述多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组10;
所述游标圆环的环内和/或环外设置有与所述游标组10数量相同的辨识码道20,各辨识码道的起始端之间存在第一相位差ψ1,所述各辨识码道20的起始端与对应的游标组10的起始端之间存在第二相位差ψ2。
需要说明的是,光电编码器的码盘通常包括一个游标组10,在对编码器的精度进行调节时需要增加该游标组中的码道数目。在游标组10的面积不变的情况下,增加码道的数目往往会减少码道的宽度,使码道更加密集导致码道内的模拟信号对光源信号十分敏感。
应理解的是,游标圆环是由多个首尾连接的游标组10组成的圆环结构。该游标组10的数目可以是两个、三个、四个等。在本方案中,游标组10可以包括游标码道和主码道。游标是一种可游动的测微标尺。码盘上的游标组10利用游标码道和主码道之间的相位差实现对照射在码盘上的光源位置进行准确测量。游标组的具体使用方法与游标卡尺相同,具体原理可参照游标卡尺,此处不再赘述。
在本实施例中,各个辨识码道的起始端与对应的游标组10的起始端之间的第二相位差ψ2可以相同也可以不同,具体的可以根据实际情况确定,本说明书实施例对此不作限定。各辨识码道的起始端与对应的游标组10的起始端之间的第二相位差ψ2可以用于将游标组10与辨识码道20在码盘上对应的角度位置信息进行区分。上述第二相位差ψ2可以为大于0的数值,例如:45度、60度、90度、180度等,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在本实施例中,辨识码道20可被配置为将码盘等分为多个区域,进而确定游标组10在码盘上的位置。在光源透过码盘在马盘上留下的痕迹处于辨识码道20上时,包括该痕迹的辨识码道20与不包括该痕迹的辨识码道会输出不同的信号。例如该痕迹处于第一个辨识码道时,第一个辨识码道可以输出高电平信号,其他辨识码道则输出低电平信号。辨识码道20可以均设置在游标圆环的内侧或外侧,当然游标码道也可以分别设置,一部分设置在游标圆环的内侧,另一部分设置在游标圆环的外侧。辨识码道20无需进行模数转换,可以通过将信号接入比较器电路,识别出当前的当前辨识码道对应的状态即可。辨识码道20的状态可以是明状态和暗状态,或者高电平状态和低电平状态等。
在本实施例中,各个辨识码道20在码盘上占据的角度可以是相同的,也可以是不同的,具体的可以根据实际情况确定,本说明书实施例对此不作限定。上述各相邻辨识码道20的起始端之间存在第一相位差ψ1,各相邻辨识码道20的起始端之间的第一相位差ψ1可以相同也可以不同,上述第一相位差ψ1可以为大于0的数值,例如:45度、60度、90度、180度等,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在具体实施中,光源透过码盘照射到PCB板时,会在码盘上留下一定的光源痕迹。透过多游标组码盘的光源痕迹一定处于一个确定的游标组10上,可以利用该游标组10对光源痕迹的位置进行测量,从而确定该光源痕迹在该游标组10上的初始位置信息。获取各个辨识码道20换分的电平状态信息,根据电平状态信息确定光源对应的痕迹所处的辨识码道20,不同的辨识码道20对应在码盘上对应不同的区域,根据该区域对应的区域位置信息结合游标组上光源的痕迹的初始位置信息便可以确定光源在码盘上痕迹的精确位置。
在一个实施例中,例如:码盘上设置三个游标组10和三个辨识码道20,其中第一个游标组在码盘上以零线30为起点占据0-120度的120度扇形区域,第二个游标组占据120-240度的120度扇形区域,第三个游标组占据240-360度的120扇形区域。三个辨识码道20的起始端相对于对应位置的游标组10的起始端均间隔60度,此时第一个辨识码道占据60-180度的120度扇形区域,第二个辨识码道占据180-300度的120度扇形区域,第三个辨识码道占据300-360度以及0-60度的120度扇形区域。
在本实施例中,在对光源的痕迹位置进行确定时,可以根据光源的痕迹所处的游标组对光源在该游标组上的位置进行确定,例如光源的痕迹位于该游标组的80度的初始位置;然后获取辨识码道的状态,若此时第三个辨识码道输出高电平信号,其余两个辨识码道均输出低电平信号,则该光源的痕迹处于第三辨识码道对应的区域。第三个辨识码道对应的区域为300-360度以及0-60度的120度扇形区域,其中第三个辨识码道对应的300-360度属于第三游标组的60-120度,第三个辨识码道对应的0-60度属于第一游标组的0-60度,光源的痕迹位于该游标组的80度位置,因此可以确定该光源的痕迹位于第三游标组,并且为与第三游标组的80度位置,结合码盘上的具体位置便可得到该光源的痕迹对应的目标位置为零线30顺时针旋转的320度位置处。
其中,初始位置为光源透过码盘的痕迹在对应的游标组上的位置,目标位置则是光源的痕迹在码盘上的具体位置。
在本实施例中提供了一种多组游标码盘,该多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组;所述游标圆环的环内和/或环外设置有与所述游标组数量相同的辨识码道,各辨识码道的起始端之间存在第一相位差,所述各辨识码道的起始端与对应的游标组的起始端之间存在第二相位差。在本实施例中,通过增加游标组的数目以及设置辨识码道,通过游标组确定光源在所处游标组上的初始位置,然后根据辨识码道和初始位置确定光源在码盘上的目标位置,可以更加准确的结算出光源在多组游标码盘上的准确位置。
基于上述多组游标码盘的第一实施例,提出本申请多组游标码盘的第二实施例。
在本实施例中,所述游标组包括以所述多组游标码盘的旋转中心为圆心设置的主码道102、游标码道101以及段码道103。
需要说明的是,主码道102和游标码道101是被配置为对光源的痕迹在游标组上的具体位置进行测量的两个码道。主码道102与游标码道101之间的单位刻度存在一定的第一单位相位差。段码道103是与游标码道101之间存在一定第二单位相位差的码道。此处通过设置主码道102、游标码道101以及段码道103相当于同时使用多把游标卡尺对物体进行测量,可以更加准确的得到光源的痕迹的初始位置。在具体实施中,可以通过主码道102、游标码道101以及段码道103利用游标卡尺测距的原理对光源的痕迹在当前游标组上的初始位置。
参照图2,在本实施例中,所述多个游标组10包含第一游标组110和第二游标组120,所述第一游标组110的起始端与所述第二游标组120的终点端连接;
所述第一游标组110设置在所述多组游标码盘的零点刻线30的一侧,第二游标组120设置在所述多组游标码盘的零点刻线30的另一侧。
所述辨识码道20包含:第一辨识码道210和第二辨识码道220;
所述第一辨识码道210的起始端相对所述第一游标组110的起始端顺时针或逆时针旋转所述预设角度设置;所述第二辨识码道220的起始端相对所述第二游标组120的起始端顺时针或逆时针旋转所述预设角度设置。
需要说明的是,在图2中通过以设置两个游标组以及两个游标码道进行说明。在一些实施例中,如图2所示,第一辨识码道210可以与对应的第一游标组110的起始端顺时针旋转预设角度设置,第二辨识码道220与对应的第二游标组120的起始端同样顺时针旋转预设角度设置;当然,第一辨识码道210也可以与对应的第一游标组110的起始端逆时针旋转预设角度设置,第二辨识码道220可以与对应的第二游标组120的起始端同样逆时针旋转预设角度设置。在一些实施例中,还可以采用其它可能的方式设置第一辨识码道210和第二辨识码道220,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在一个实施例中,第一游标组110可以在码盘上以零点刻线30为起点占据0-180度的180度扇形区域,第二游标组120可以占据180-360度的180度扇形区域。两个辨识码道的起始端相对于对应位置的游标组的起始端均滞后45度,当然也可是其他角度,此处不做具体限定,此时第一个辨识码道占据45-225度的180度扇形区域,第二个辨识码道占据225-360度以及0-45度的180度扇形区域。
在本实施例中,在对光源的痕迹位置进行确定时,可以根据光源的痕迹所处的游标组对光源在该游标组上的位置进行确定,例如光源的痕迹位于该游标组的120度的初始位置;然后获取辨识码道的状态,若此时第一个辨识码道210输出高电平信号,第二辨识码道220输出低电平信号,则该光源的痕迹处于第一辨识码道210对应的区域45-225度。其中45-180度属于第一游标组110对应的区域,180-225度属于第二游标组120对应的0-45度,此时初始位置为120度,则该光源的痕迹处于第一游标组110上,并且处于第一游标组110的120度处,进而确定该光源的痕迹在多组游标码盘上的目标位置为120度处。
参照图3,在本实施例中,所述第一游标组110设置在所述零点刻线30的右侧,第二游标组120设置在所述零点刻线30的左侧,第一游标组110的起始端与第二游标组120的终点端在零点刻线30处连接。
参照图4,在本实施例中,所述第一辨识码道210的起始端相对所述第一游标组110的起始端顺时针旋转所述预设角度设置;所述第二辨识码道220的起始端相对所述第二游标组120的起始端逆时针旋转所述预设角度设置。在本实施例中,所述第一辨识码道设置在所述游标圆环的环外,所述第二辨识码道220设置在所述游标圆环的环内。当然可以理解的是,在一些实施例中,第一辨识码道也可以设置在游标圆环的环内,第二辨识码道设置在所述游标圆环的环外,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在具体实施中,可参照图5,第一辨识码道210以及第二辨识码道220将多组游标码盘等分位四个区域,第一识别区A、第二识别区B、第三识别区C以及第四识别区D。此处需要说明的是,第一辨识码道210和第二辨识码道220均不包括第一识别区A,但第一识别码道210和第二识别码道220均包括第三识别区D。
在第一辨识码道210和第二辨识码道220均输出低电平时,光源在码盘上的痕迹处于第一辨识区域A内;当第一辨识码道210输出高电平、第二辨识码道220输出低电平时,光源在码盘上的痕迹处于第二辨识区域B;在第一辨识码道210和第二辨识码道220均输出高电平时,光源在码盘上的痕迹处于第三辨识区域C内;当第一辨识码道210输出低电平、第二辨识码道220输出高电平时,光源在码盘上的痕迹处于第四辨识区域D内。
当光源在码盘上的痕迹处于第二辨识区域     B内时,可直接表明光源的痕迹处于第一辨识码道210;同理,当光源在码盘上的痕迹处于第四辨识区域D内时,可直接表明光源的痕迹处于第二辨识码道220。当光源的痕迹处于第一识别区A或第四识别区D时,需要根据光源的痕迹在对应游标组上的初始位置进行确定。例如在预设区域为45度时,在第一识别区A内,若初始位置处于0-45度之间,则光源的痕迹处于第一识别区;若初始位置处于135-180度之间,则光源的痕迹处于第二识别区B。在第三识别区C内同样如此,此处不做赘述。
本实施例提供了一种多组游标码盘,该多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组;所述游标圆环的环内和/或环外设置有与所述游标组数量相同的辨识码道,各辨识码道的起始端之间存在第一相位差所述各辨识码道的起始端与对应的游标组的起始端之间存在第二相位差。在本实施例中,通过增加游标组的数目以及设置辨识码道,通过游标组确定光源在所处游标组上的初始位置,然后根据辨识码道对应的区域和初始位置确定光源在码盘上的目标位置,可以更加准确的结算出光源在多组游标码盘上的准确位置。
此外,为实现上述目的本申请还提供了一种光电编码器,所述光电编码器包括如上述的多组游标码盘。该多组游标码盘的具体结构参照上述实施例,由于光电编码器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有功能,在此不再一一赘述。
此外,为实现上述目的本申请还提供了一种光源位置解算方法,参照图6,图6为本申请光源位置解算方法的第一实施例的流程示意图,基于图6本申请还提出一种光源位置解算方法的第一实施例。
在本实施例中所述多组游标码盘制作方法包括:
步骤S10:获取光源所处游标组中主码道的当前主模拟量和游标码道的当前游标模拟量。
需要说明的是,当前主模拟量是指当前状态下主码道上模拟出的具体量化值。当前游标模拟量是指当前状态下游标码道上模拟出的具体量化值。当前主模拟量相当于游标卡尺中主尺的量值,当前游标模拟量相当于游标尺的量值。
在具体实施中,可以直接通过光源的痕迹在多组游标码盘上对应的刻度位置直接对当前主模拟量和当前游标模拟量进行获取,当然也可以通过其他方式进行获取,具体方式不做限定。
步骤S20:根据所述当前主模拟量和所述当前游标模拟量确定所述光源在所述光源所处游标组中的初始位置信息。
需要说明的是,初始位置信息是指光源的痕迹在所处的游标组中的位置信息。在本实施例中,在获取到当前主模拟量和当前游标模拟量时,可以直接通过游标组的计算方式计算光源的痕迹在所处游标组中的初始位置信息。游标组的计算方式与游标卡尺的计算方式相同,此处不做赘述。
步骤S30:获取各辨识码道的电平状态信息。
需要说明的是,电平状态信息是用于体现各辨识码道当前状态的信息。电平状态信息可以是辨识码道对应的高电平状态或低电平状态,也可以是辨识码设置的发光设备的点亮状态或熄灭状态。
在具体实施中,可以通过万用表对电平状态信息进行采集,当然也可以通过对个辨识码道的明亮的状态进行采集确定电平状态信息。
步骤S40:根据所述电平状态信息和所述初始位置信息确定所述光源所处的游标组信息。
需要说明的是,在本实施例中可以将采集到的各辨识码道对应的电压值分别输入比较器的一个输入端,在比较器的另一个输入端设置一个参考电压,根据比较器的输出结果确定各辨识码道的电平状态信息。例如第一辨识码道210对应的电压值信息的电压值大于参考电压,此时比较器输出高电平信号,则表明光源的痕迹处于第一辨识码道210;第二辨识码道220对应的电压值信息的电压值小于参考电压,此时比较器输出低电平信号,则表明光源的痕迹不处于第二辨识码道220。当然在一个辨识码道包括两个游标组的位置时,可以根据初始位置信息确定光源的痕迹具体处于哪个游标组。
步骤S50:根据所述初始位置信息和所述游标组信息确定所述光源在码盘上的目标位置信息。
需要说明的是,目标位置信息是指光源透过多组游标码盘的痕迹在码盘上的位置信息。在具体实施中,在确定光源的痕迹所处的游标组上的初始位置信息以及确定具体的游标组的情况下,可以根据各个游标组对应的码盘上的区域确定光源的痕迹在多组游标码盘上的具体位置。
在本实施例中提供了一种光源位置解算方法,该光源位置解算方法通过获取光源所处游标组中主码道的当前主模拟量和游标码道的当前游标模拟量;根据所述当前主模拟量和所述当前游标模拟量确定所述光源在所述光源所处游标组中的初始位置信息;获取各辨识码道的电平状态信息;根据所述电平状态信息和所述初始位置信息确定所述光源所处的游标组信息;根据所述初始位置信息和所述游标组信息确定所述光源在码盘上的目标位置信息。在本实施例中,通过增加游标组的数目以及设置辨识码道,可以基于多个游标组确定光源在所处游标组上的初始位置,进一步的,可以根据辨识码道和初始位置确定光源在码盘上的目标位置,可以更加准确的解算光源在多组游标码盘上的准确位置。
基于上述光源位置解算方法的第一实施例,提出本申请光源位置解算方法的第二实施例。
在本实施例中,所述步骤S20包括:
步骤S201:根据所述当前主模拟量和所述当前游标模拟量确定所述主码道和所述游标码道之间的码道相位差。
需要说明的是,码道相位差是指主码道的单位相位与游标码道单位相位之间的差值。在确定主码道与游标码道的单位个数时,可以直接通过计算得到主码道的单位相位以及游标码道的单位相位,并根据主码道的单位相位和游标码道的单位相位进行运算得到码道相位差。
步骤S202:根据所述码道相位差、所述当前主模拟量和所述当前游标模拟量确定所述光源所处游标组中的初始位置信息。
需要说明的是,在确定码道相位差、当前主模拟量和当前游标模拟量时,相当于直接获取到游标卡尺的主尺测量、游标尺测量值以及游标卡尺的单位精度,可以直接通过运算获取到光源的痕迹在所处游标组中的初始位置信息。
其中,所述步骤S202之前还包括:
步骤S2021:获取所述光电编码器指针所处游标组中段码道的当前段模拟量。
需要说明的是,当前段模拟量是指当前段码道模拟出的量化值。通过当前段模拟量的获取结合当前主模拟量以及当前游标模拟量可以更加准确的获取到光源的痕迹在所处游标组中的初始位置信息。
相应的,步骤S202包括:
步骤S202':根据所述码道相位差、所述当前段模拟量、所述当前主模拟量和所述当前游标模拟量确定所述光源所处游标组中的初始位置信息。
在本实施例中提供了一种光源位置解算方法,该光源位置解算方法通过获取光源所处游标组中主码道的当前主模拟量和游标码道的当前游标模拟量;根据所述当前主模拟量和所述当前游标模拟量确定所述光源在所述光源所处游标组中的初始位置信息;获取各辨识码道的电平状态信息;根据所述电平状态信息和所述初始位置信息确定所述光源所处的游标组信息;根据所述初始位置信息和所述游标组信息确定所述光源在码盘上的目标位置信息。在本实施例中,通过增加游标组的数目以及设置辨识码道,通过在游标组中引入段码道更加准确的确定光源在所处游标组上的初始位置,然后根据辨识码道和初始位置确定光源在码盘上的目标位置,可以更加准确的结算出光源在多组游标码盘上的准确位置。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。

Claims (10)

  1. 一种多组游标码盘,其中,所述多组游标码盘包括:以所述多组游标码盘的旋转中心为圆心的游标圆环,所述游标圆环包括多个首尾连接的游标组;
    所述游标圆环的环内和/或环外设置有与所述游标组数量相同的辨识码道,各辨识码道的起始端之间存在第一相位差,所述各辨识码道的起始端与对应的游标组的起始端之间存在第二相位差。
  2. 如权利要求1所述的多组游标码盘,其中,所述游标组包括以所述多组游标码盘的旋转中心为圆心设置的主码道、游标码道以及段码道。
  3. 如权利要求1所述的多组游标码盘,其中,所述多个游标组包含第一游标组和第二游标组,所述第一游标组的起始端与所述第二游标组的终点端连接;
    所述第一游标组设置在所述多组游标码盘的零点刻线的一侧,第二游标组设置在所述多组游标码盘的零点刻线的另一侧。
  4. 如权利要求3所述的多组游标码盘,其中,所述辨识码道包含:第一辨识码道和第二辨识码道;
    所述第一辨识码道的起始端相对所述第一游标组的起始端顺时针或逆时针旋转预设角度设置;
    所述第二辨识码道的起始端相对所述第二游标组的起始端顺时针或逆时针旋转所述预设角度设置。
  5. 如权利要求4所述的多组游标码盘,其中,所述第一辨识码道的起始端相对所述第一游标组的起始端顺时针旋转所述预设角度设置;
    所述第二辨识码道的起始端相对所述第二游标组的起始端逆时针旋转所述预设角度设置。
  6. 如权利要求4所述的多组游标码盘,其中,所述第一辨识码道设置在所述游标圆环的环外,所述第二辨识码道设置在所述游标圆环的环内。
  7. 一种光电编码器,其中,所述光电编码器包括权利要求1-6任一项所述的多组游标码盘。
  8. 一种光源位置解算方法,其中,所述光源位置解算方法包括:
    获取光源所处游标组中主码道的当前主模拟量和游标码道的当前游标模拟量;
    根据所述当前主模拟量和所述当前游标模拟量,确定所述光源在所述光源所处游标组中的初始位置信息;
    获取各辨识码道的电平状态信息;
    基于所述电平状态信息和所述初始位置信息,确定所述光源所处的游标组信息;
    利用所述初始位置信息和所述游标组信息,确定所述光源在码盘上的目标位置信息。
  9. 如权利要求8所述的光源位置解算方法,其中,所述根据所述当前主模拟量和所述当前游标模拟量,确定所述光源在所述光源所处游标组中的初始位置信息的步骤包括;
    根据所述当前主模拟量和所述当前游标模拟量,确定所述主码道和所述游标码道之间的码道相位差;
    基于所述码道相位差、所述当前主模拟量和所述当前游标模拟量,确定所述光源所处游标组中的初始位置信息。
  10. 如权利要求9所述的光源位置解算方法,其中,在所述基于所述码道相位差、所述当前主模拟量和所述当前游标模拟量,确定所述光源所处游标组中的初始位置信息的步骤之前,还包括:
    获取所述光电编码器指针所处游标组中段码道的当前段模拟量;
    相应的,所述基于所述码道相位差、所述当前主模拟量和所述当前游标模拟量,确定所述光源所处游标组中的初始位置信息的步骤包括:
    根据所述码道相位差、所述当前段模拟量、所述当前主模拟量和所述当前游标模拟量,确定所述光源所处游标组中的初始位置信息。
PCT/CN2022/103993 2021-12-15 2022-07-05 多组游标码盘、光电编码器及光源位置解算方法 WO2023109100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22905462.2A EP4249857A1 (en) 2021-12-15 2022-07-05 Multi-group vernier code disc, photoelectric encoder and light source position resolving method
KR1020237017370A KR20230116785A (ko) 2021-12-15 2022-07-05 다중 그룹 버니어 인코딩 디스크, 광전 인코더 및 광원 위치 해산 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111538411.2A CN114353842A (zh) 2021-12-15 2021-12-15 多组游标码盘、光电编码器及光源位置解算方法
CN202111538411.2 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109100A1 true WO2023109100A1 (zh) 2023-06-22

Family

ID=81100235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103993 WO2023109100A1 (zh) 2021-12-15 2022-07-05 多组游标码盘、光电编码器及光源位置解算方法

Country Status (4)

Country Link
EP (1) EP4249857A1 (zh)
KR (1) KR20230116785A (zh)
CN (1) CN114353842A (zh)
WO (1) WO2023109100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353842A (zh) * 2021-12-15 2022-04-15 苏州汇川控制技术有限公司 多组游标码盘、光电编码器及光源位置解算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226987A (ja) * 2010-04-22 2011-11-10 Nikon Corp エンコーダ
CN107091654A (zh) * 2017-05-15 2017-08-25 长春汇通光电技术有限公司 一种高容错游标码盘
CN209102020U (zh) * 2018-12-29 2019-07-12 洛阳伟信电子科技有限公司 一种18位分辨率的绝对式游标原理码盘
CN114353842A (zh) * 2021-12-15 2022-04-15 苏州汇川控制技术有限公司 多组游标码盘、光电编码器及光源位置解算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009839A1 (de) * 2004-02-28 2005-09-15 Zf Lenksysteme Gmbh Drehwinkelsensor
JP2015200613A (ja) * 2014-04-10 2015-11-12 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
CN205691142U (zh) * 2016-06-08 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 一种光电码盘和编码器
CN107192407A (zh) * 2017-06-20 2017-09-22 上海岭先机器人科技股份有限公司 一种码盘、回转机构、码尺以及平移机构
CN111735482A (zh) * 2020-07-06 2020-10-02 长春汇通光电技术有限公司 绝对值编码器及其读位方法、以及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226987A (ja) * 2010-04-22 2011-11-10 Nikon Corp エンコーダ
CN107091654A (zh) * 2017-05-15 2017-08-25 长春汇通光电技术有限公司 一种高容错游标码盘
CN209102020U (zh) * 2018-12-29 2019-07-12 洛阳伟信电子科技有限公司 一种18位分辨率的绝对式游标原理码盘
CN114353842A (zh) * 2021-12-15 2022-04-15 苏州汇川控制技术有限公司 多组游标码盘、光电编码器及光源位置解算方法

Also Published As

Publication number Publication date
EP4249857A1 (en) 2023-09-27
KR20230116785A (ko) 2023-08-04
CN114353842A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN106524905B (zh) 一种基于激光追踪仪多站位测量的四轴机床标定方法
CN103737426B (zh) 一种数控机床旋转轴几何误差三线测量法
US20120105082A1 (en) Angle-measuring device with an absolute-type disk capacitive sensor
WO2023109100A1 (zh) 多组游标码盘、光电编码器及光源位置解算方法
CN108155910B (zh) 一种基于fpga的高速正余弦编码器解码方法
CN111366177B (zh) 一种游标绝对式光电编码器单圈绝对位置读取装置及方法
CN110345976B (zh) 一种光磁混合编码器系统
CN105021375A (zh) 一种光轴偏移误差补偿方法及测定装置
US11073409B2 (en) SINCOS encoder interface
CN103512598A (zh) 一种绝对式矩阵编码器
CN111595238A (zh) 一种基于多站法的激光跟踪仪精度现场评价系统
CN108981765B (zh) 一种绝对式光电编码器测量通道容错设计方法
CN114608633B (zh) 一种单码道绝对式位移测量编码码盘和系统
US6356219B1 (en) Calibrated encoder multiplier
CN110906959B (zh) 一种一主多副齿轮结构的磁电式绝对编码器的实现方法
CN219064541U (zh) 正余弦编码器和伺服系统
CN111368584B (zh) 一种可自校正的正余弦编码器高分辨率位置信息拼接方法
CN104655156A (zh) 一种矩阵式编码方式的绝对式码盘的误差补偿方法
CN110375776B (zh) 一种旋转编码器
EP3748284B1 (en) Digital displacement sensor, and displacement measurement method for same
CN114894238A (zh) 一种板级磁编的校准补偿装置、系统及方法
CN116007654A (zh) 一种定位系统误差测试方法
CN210625594U (zh) 一种准绝对式m码分体式光电编码器
US7268875B2 (en) Method and apparatus for optically measuring absolute displacement
CN109724639B (zh) 一种圆光栅采集修正方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022905462

Country of ref document: EP

Effective date: 20230619

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905462

Country of ref document: EP

Kind code of ref document: A1