WO2021016733A1 - 清洗方法、清洗装置及免疫分析仪 - Google Patents

清洗方法、清洗装置及免疫分析仪 Download PDF

Info

Publication number
WO2021016733A1
WO2021016733A1 PCT/CN2019/097850 CN2019097850W WO2021016733A1 WO 2021016733 A1 WO2021016733 A1 WO 2021016733A1 CN 2019097850 W CN2019097850 W CN 2019097850W WO 2021016733 A1 WO2021016733 A1 WO 2021016733A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reactor
cleaning
station
suction
Prior art date
Application number
PCT/CN2019/097850
Other languages
English (en)
French (fr)
Inventor
张震
何太云
于怀博
姚言义
刘奇林
Original Assignee
深圳迎凯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迎凯生物科技有限公司 filed Critical 深圳迎凯生物科技有限公司
Priority to PCT/CN2019/097850 priority Critical patent/WO2021016733A1/zh
Priority to EP19939286.1A priority patent/EP4005692A4/en
Publication of WO2021016733A1 publication Critical patent/WO2021016733A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/28Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
    • B08B9/30Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking and having conveyors
    • B08B9/32Rotating conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications

Definitions

  • This application relates to the field of in vitro diagnostic technology, and in particular to a cleaning method, a cleaning device, and an immune analyzer including the cleaning device.
  • Luminescence immunoassay is based on the immunological reaction in which the antigen and antibody are combined with each other, using enzymes, luminescent agents and other substances to label the antigen and antibody, after luminescence reaction, the light signal is related to the analyte concentration, etc., to analyze the analyte content in the sample.
  • cleaning In the process of cleaning and separation (herein sometimes referred to as cleaning), first use magnetic particles (usually the main component of magnetic particle reagent components) as a solid carrier to capture and bind the target analytes in the sample, and then directly or The magnetic particles indirectly bound to the target analyte are collected on the inner wall of the reaction cup. After multiple injections of the cleaning solution and extraction of the waste liquid, the free markers and other interfering impurities that are not bound to the magnetic particles are finally removed to facilitate the connection The signal measurement is performed on the antigen-antibody conjugate on the magnetic particle (ie, the magnetic particle conjugate). For traditional cleaning methods, either the cleaning efficiency is low or the cleaning effect is poor, and at the same time, the structure of the device for performing the cleaning method is complicated and bulky.
  • a device that can simplify the implementation of the cleaning method in structure and improve the cleaning efficiency.
  • a cleaning method includes the following steps:
  • the number of the liquid injection stations is less than the number of the liquid suction stations, and the cleaning liquid is sequentially injected into at least two of the reactors at the same liquid injection station, and the liquid suction stations are respectively Simultaneously withdraw waste liquid from multiple said reactors.
  • a cleaning device including:
  • the transfer assembly includes a turntable for carrying the reactor and rotatable, the turntable is provided with a plurality of bearing positions for carrying the reactor at intervals along its circumference;
  • Liquid injection components including liquid injection parts for injecting cleaning liquid into the reactor;
  • the liquid suction component including a liquid suction member used to extract waste liquid from the reactor that has been injected with cleaning liquid;
  • the capturing component includes a magnetic member for collecting the magnetic particle combination in the reactor on the inner side wall of the reactor;
  • the number of the liquid injection parts is less than the number of the liquid absorption parts, and the turntable carries the reactor to rotate between the positions of the liquid absorption parts and the liquid injection parts.
  • An immune analyzer includes the above-mentioned cleaning device.
  • FIG. 1 is a schematic diagram of the overall assembly structure of a cleaning device provided by an embodiment
  • FIG. 2 is a schematic diagram of the structure of FIG. 1 from another perspective
  • Fig. 3 is a schematic diagram of the structure after the stent in Fig. 1 drives the liquid suction member to rise;
  • Fig. 4 is a partial structural diagram of Fig. 1 after removing the liquid injection assembly and the signal component;
  • FIG. 5 is a schematic diagram of a partial structure of FIG. 4 after removing a part of the liquid absorption component
  • Fig. 6 is a partial structural diagram of the mixing component in Fig. 1;
  • Fig. 7 is a flowchart of a cleaning method provided by an embodiment.
  • the mixed substance that enters the reactor before cleaning and separation is referred to as the reactant for short.
  • the reactant is usually the mixed reactant of the sample to be tested and the reagent or the combination of the sample and the reagent after the reaction, etc.; will be in the cleaning and separation process
  • the washing buffer injected into the reactor is referred to as washing liquid, and the washing buffer injected into the reactor is referred to as liquid injection; the mixture in the reactor after the cleaning liquid is injected is referred to as waste liquid. It is composed of a mixture of reactant and cleaning solution, a mixture of reacted immune complexes and cleaning solution, and uncleaned unbound components.
  • the cleaning and separation usually involves multiple injections of cleaning liquid and extraction of the cleaning liquid in the reactor.
  • Waste liquid, the first time injection of cleaning liquid, collection of magnetic particle conjugates and extraction and injection of the waste liquid after cleaning with cleaning liquid are defined as the first-stage cleaning
  • the second injection of cleaning liquid, collection of magnetic particle conjugates and absorption of waste liquid Defined as the second-stage cleaning
  • the N-th injection of cleaning solution, collection of magnetic particle conjugates and suction of waste liquid are defined as the Nth-stage cleaning.
  • Each cleaning separation usually includes 2-6 stages of cleaning.
  • each test item can be cleaned and separated 1-3 times during the whole reaction process, such as one-step method, two-step method, and three-step method. Each cleaning includes 2-6 steps.
  • the immune analyzer provided by an embodiment of the present application includes a cleaning device 10, the cleaning device 10 is used to clean the magnetic particle conjugate inside the reactor 30, the cleaning device 10 includes a transport assembly 100, injection The liquid component 200, the liquid suction component 300, the capture component 400, the mixing component 500 and the signal member 600, in which the liquid injection component 200 and the liquid suction component 300 can form a cleaning and separation mechanism 20.
  • the transfer assembly 100 includes a turntable 110 for carrying the reactor 30 and capable of rotating.
  • the transfer assembly 100 further includes a rotating shaft 120, a sleeve 140, a bearing, and a second driver 130.
  • the second driver 130 is fixed on the bottom surface of the bottom plate 320 of the liquid suction assembly 300.
  • the second driver 130 may be a stepping motor or the like.
  • the lower end of the rotating shaft 120 is connected with the output shaft of the second driver 130, and the upper end of the rotating shaft 120 passes through the bottom plate 320 and extends upward relative to the upper surface of the bottom plate 320.
  • the turntable 110 is a disc-shaped structure and is fixed on the upper end of the rotating shaft 120.
  • the rotating shaft 120 When the second driver 130 drives the rotating shaft 120 to rotate, the rotating shaft 120 will drive the rotating disk 110 to rotate intermittently.
  • the shaft sleeve 140 is fixed between the bottom plate 320 and the turntable 110.
  • the shaft sleeve 140 remains stationary.
  • the bearing is sleeved in the shaft sleeve 140, and the rotating shaft 120 is matched with the bearing.
  • the turntable 110 is provided with a plurality of bearing positions spaced along its circumference for supporting the reactor 30.
  • the supporting position can be any structure suitable for supporting the reactor 30, such as a hole, a groove, a bracket, and the like.
  • the carrying position is a through hole 111, and the through hole 111 penetrates the upper surface and the lower surface of the turntable 110.
  • the plurality of through holes 111 are arranged at intervals along the circumferential direction of the turntable 110, and the number of through holes 111 is at least five. Specifically, it can be 8, 10, 12, and so on.
  • the through hole 111 may be a circular stepped hole.
  • the stepped hole is composed of a coaxially arranged large hole and a small hole.
  • the diameter of the large hole is larger than the diameter of the small hole, and the bottom wall of the large hole forms the step surface of the entire stepped hole.
  • the reactor 30 has a substantially cylindrical shape.
  • a convex ring 31 is provided on the side circumference of the reactor 30.
  • the convex ring 31 extends along the radially opposite side circumference of the reactor 30 for a set length.
  • the liquid suction assembly 300 includes a liquid suction member 310, a bottom plate 320, a bracket 340 and a first driver 330.
  • the liquid suction member 310 is installed on the support 340.
  • the first driver 330 is arranged on the bottom plate 320 and connected to the support 340. The first driver 330 is used to drive the support 340 to move up and down, so that the liquid suction member 310 extends or exits the reactor 30. in.
  • the liquid suction member 310 is used to extract waste liquid from the reactor 30 into which the cleaning liquid has been injected.
  • the liquid suction member 310 here specifically refers to the extraction of waste liquid from the reactor 30 into which the cleaning liquid has been injected, and does not include the preliquid suction member that sucks the reactants in the reactor 30 in advance.
  • the liquid suction member 310 may be a slender liquid suction needle, or may be a liquid suction tube or other structures suitable for liquid suction.
  • the absorbing member 310 corresponds to the bearing position 111a on the turntable 110. For example, the orthographic projection of the absorbing member 310 on the turntable 110 may fall on the bearing position 111a, and the absolute position of the absorbing member 310 is from the reactor 30.
  • the suction station for extracting waste liquid in the middle Obviously, the liquid suction member 310 corresponds to the liquid suction station one to one, and the number of the two is the same.
  • the bracket 340 includes a lap plate 341, a push plate 342, and a support plate 343.
  • the support plate 343 is arranged horizontally and located above the turntable 110. In the axial direction of the rotating shaft 120, the support plate 343 and the turntable 110 are spaced apart and maintained Reasonable spacing.
  • the liquid absorbing member 310 may be fixed on the supporting plate 343.
  • the number of the liquid absorbing member 310 is three, and the three liquid absorbing members 310 are respectively recorded as the first liquid absorbing member (or the first liquid absorbing member) and the second Two liquid absorbing parts (or second-stage liquid absorbing parts) and third liquid absorbing parts (or third-stage liquid absorbing parts); each cleaning of the reactor 30 requires 4-stage cleaning, so the number of liquid absorbing parts 310 is 4
  • the four absorbing members 310 are respectively marked as the first absorbing member (or the first-stage absorbing member), the second absorbing member (or the second-stage absorbing member), the third absorbing member (or the third Step liquid absorption member) and fourth liquid absorption member (or fourth step liquid absorption member).
  • the number of the liquid suction member 310 and its corresponding liquid suction level may be two or more than four.
  • the push plate 342 is vertically arranged, the lap plate 341 is horizontally arranged close to the bottom plate 320, the upper end of the push plate 342 is connected with the support plate 343, and the lower end of the push plate 342 is connected with the lap plate 341.
  • the first driver 330 includes a screw motor 331 and a first guide rod 332.
  • the first guide rod 332 is arranged vertically and its lower end is fixed on the bottom plate 320.
  • the upper end of the first guide rod 332 is a free end, and the first guide rod 332 penetrates It is arranged in the lap board 341 to realize the sliding connection between the lap board 341 and the first guide rod 332.
  • the push plate 342 is provided with an avoiding groove 342a, which extends along the axial direction of the rotating shaft 120. In short, the avoiding groove 342a extends in the vertical direction.
  • the screw shaft of the screw motor 331 331a is rotatably connected with the lap plate 341.
  • the screw shaft 331a is located in the avoiding groove 342a and can move relative to the avoiding groove 342a, so the avoiding groove 342a provides a good avoiding space for the movement of the screw shaft 331a .
  • the screw shaft 331a of the screw motor 331 rotates clockwise, the rotation of the screw shaft 331a is converted into the upward sliding of the lap plate 341 relative to the first guide rod 332, and at the same time, the lap plate 341 drives the push plate 342 and the supporting plate 343 move upward, so that the liquid suction member 310 moves upward following the supporting plate 343 to exit the reactor 30.
  • the liquid injection component is used to inject cleaning liquid into the reactor.
  • the liquid injection assembly 200 includes a liquid injection member 210 and a bearing plate 220.
  • the bearing plate 220 is arranged horizontally and above the turntable 110. In the axial direction of the rotating shaft 120, between the bearing plate 220 and the turntable 110 Keep reasonable spacing.
  • the position of the supporting plate 220 relative to the turntable 110 can be fixed.
  • the supporting plate 220 can also be connected to the bracket 340 of the liquid suction assembly 300, and the supporting plate 220 can be moved up and down through the vertical movement of the bracket 340.
  • the liquid injection member 210 is fixed on the carrier plate 220, and may be an elongated liquid injection needle, and may also be replaced by a liquid injection tube or a liquid injection nozzle or other components capable of injecting liquid.
  • the filling part 210 corresponds to the bearing position 111a on the turntable 110.
  • the orthographic projection of the filling part of the filling part 210 on the turntable 110 can fall on the bearing position 111a, and the absolute position of the filling part 210 is A liquid injection station for injecting cleaning liquid into the reactor 30.
  • the number of the liquid injection member 210 can be one or two. Of course, the number of the liquid injection member 210 can also be greater than two.
  • the capturing component 400 is used to collect the magnetic particle combination in the reactor on the inner side wall of the reactor before each stage of liquid absorption.
  • the capturing assembly 400 includes a magnetic member 420 and a mounting frame 410.
  • the mounting frame 410 may be substantially in the shape of a disc.
  • the mounting frame 410 is fixed on the shaft sleeve 140 of the transfer assembly 100, and the mounting frame 410 is provided with a receiving hole. 411, the accommodating hole 411 is opened on the side circumferential surface of the mounting frame 410, and a part of the outer circumferential surface of the accommodating hole 411 is recessed to a set depth along the radial direction of the mounting frame 410.
  • the number of the receiving holes 411 is multiple, and the multiple receiving holes 411 may be arranged at even intervals along the axis of the mounting frame 410.
  • the magnetic member 420 may be a natural permanent magnet or an electromagnet.
  • the magnetic member 420 matches the shape of the receiving hole 411 and is accommodated in the receiving hole 411.
  • the outer surface of the magnetic member 420 may be aligned with the lateral surface of the mounting frame 410 Flush.
  • the position of the receiving hole 411 and the magnetic member 420 is a collecting station, which is used to collect the magnetic particle combination in the reactor 30 on the inner side wall of the reactor 30 before each stage of liquid absorption.
  • the reactor 30 When the turntable 110 drives the reactor 30 to be located at the collecting station, the reactor 30 will be located within the magnetic force range of the magnetic member 420, and the magnetic particle combination in the reactor 30 will be collected under the action of the magnetic attraction generated by the magnetic member 420 To the inner side wall of the reactor 30.
  • the collection station includes a suction station.
  • the magnetic particle combination in the reactor needs to be adsorbed by magnetic force when the waste liquid is extracted by the liquid absorbing part of each stage. Therefore, the magnetic part 420 needs to be installed at each stage of the liquid suction station, so the liquid suction station is also
  • the collection station that is, the collection station includes the suction station.
  • the number of collection stations is not less than the number of suction stations. Specifically, the collection stations of each stage of cleaning may correspond to the liquid suction station one to one, or multiple collection stations may correspond to one liquid suction station.
  • the collection station of each stage of cleaning corresponds to the liquid suction station
  • the collection of the magnetic particle combination in the reactor 30 and the extraction of the waste liquid in the reactor are completed in the same station;
  • the collection station corresponds to a suction station
  • the magnetic particle combination in the reactor 30 is gradually collected at multiple collection stations, and continues to be collected at the suction station (which is also the last collection station of this stage of cleaning). Complete the waste liquid extraction.
  • the side surface of the mounting frame 410 is further recessed with a sink groove 412 extending in the vertical direction, the upper end of the sink groove 412 penetrates the upper surface of the mounting frame 410, and the lower end of the sink groove 412 penetrates the lower surface of the mounting frame 410.
  • the sink 412 corresponds to the position of the liquid injection member 210 (ie, the liquid injection station).
  • the mixing assembly 500 includes a connecting plate 510, a driving motor 520, a driving shaft 530, and a carrying cylinder 540.
  • the connecting plate 510 is arranged horizontally.
  • the bottom plate 320 of the liquid absorbing assembly 300 is also provided with a second guide rod 550.
  • the second guide rod 550 is arranged vertically and one end is fixed on the bottom plate 320 and penetrates the connecting plate 510.
  • the other section of the guide rod 550 passes through the connecting plate 510 to form a free end, so that the second guide rod 550 is slidably connected to the connecting plate 510, and the connecting plate 510 can slide up and down along the second guide rod 550.
  • the driving motor 520 is placed on the bottom plate 320 and fixedly connected to the connecting plate 510.
  • the driving motor 520 and the bottom plate 320 do not form a fixed connection relationship, so that the driving motor 520 can be carried on the bottom plate 320, or the driving motor 520 is upwards away from the bottom plate 320. movement.
  • the screw motor 331 drives the lap plate 341 to rise along the first guide rod 332, the lap plate 341 will abut the connecting plate 510.
  • the lap plate 341 will carry the connecting plate. 510 and the driving motor 520 rise along the second guide rod 550 together.
  • the screw motor 331 drives the lap plate 341 to descend along the first guide rod 332
  • the lap plate 341 will abut the connecting plate 510 to support the connecting plate 510, and the connecting plate 510 and the driving motor 520 are under gravity.
  • the screw The motor 331 can also drive the lap plate 341 to continue to descend along the first guide rod 332 until the lap plate 341 contacts the bottom plate 320.
  • a part of the surface of the lap board 341 is recessed to form a first limit surface 341a and a second limit surface 341b that are connected by bending.
  • the first limit surface 341a and the second limit surface 341b may be perpendicular to each other.
  • the lower end of the drive shaft 530 is connected to the output shaft of the drive motor 520.
  • the bearing cylinder 540 is fixed on the upper end of the drive shaft 530.
  • the drive shaft 530 can be coaxially arranged with the bearing cylinder 540.
  • the drive motor 520 is used to drive the drive shaft 530 to rotate, thereby making The bearing cylinder 540 rotates following the drive shaft 530.
  • a mixing hole 541 is opened on the carrying cylinder 540, and the reactor 30 can cooperate with the mixing hole 541.
  • the central axis of the mixing hole 541 and the central axis of the driving shaft 530 are parallel to each other, that is, the mixing hole 541 and There is a certain eccentricity between the driving shafts 530 by keeping the distance between them.
  • the reactor 30 After the reactor 30 is matched with the mixing hole 541, when the driving shaft 530 drives the bearing cylinder 540 to rotate, under the action of the eccentric force, the reactor 30 contains magnetism.
  • the suspension of the particle combination will produce eccentric oscillation, making the entire suspension in a well mixed state.
  • the lap plate 341 can be driven to push the connecting plate 510 up, and then the driving motor 520 and the carrying cylinder 540 can be raised.
  • the sink 412 opened on the mounting frame 410 can be A space is provided for the movement of the carrying cylinder 540 to prevent the mounting frame 410 from interfering with the movement of the carrying cylinder 540.
  • the screw motor 331 stops working.
  • the drive motor 520 drives the carrying cylinder 540 through the drive shaft 530 to generate eccentric oscillations, so that the cleaning liquid in the reactor 30 forms a turbulent flow.
  • the cleaning liquid will effectively clean the magnetic particle combination, thereby Remove as much as possible the free markers and other interfering impurities that are not bound to the magnetic particles; in addition, the magnetic particle conjugates can be evenly dispersed in the cleaning solution.
  • the screw motor 331 drives the lap plate 341 to move downwards, and then the entire mixing assembly 500 moves downwards, so that the bottom of the reactor 30 is completely separated from the supporting cylinder 540.
  • the mixing hole 541 that is, the reactor 30 completely withdraws from the mixing hole 541; when the turntable 110 needs to drive the reactor 30 to transfer from the liquid injection station to the liquid suction station, it has been separated from the bearing cylinder 540 of the reactor 30 It will not interfere with the rotation of the reactor 30, so that the reactor 30 can be smoothly transferred from the liquid injection station to the liquid suction station.
  • the number of liquid filling parts 210 is less than the number of liquid suction parts 310.
  • the number of liquid suction parts 310 is three, and the number of liquid injection parts 210 is one.
  • the number of liquid suction stations is three and the number of liquid injection stations is one;
  • the number of liquid suction parts 310 is Four, the number of the liquid injection parts 210 is two, of course, the number of liquid suction stations is four, and the number of liquid injection stations is two.
  • the number of liquid injection members 210 in the above embodiment is less than the number of liquid suction members 310, so that the total number of liquid injection members 210 is relatively reduced, thereby reducing
  • the number of fluid devices such as transmission pipes and solenoid valves connected to each liquid injection member 210 is beneficial to reduce the overall structure of the cleaning device 10 and the immune analyzer, and reduce the volume and manufacturing cost of the two, which is beneficial to the cleaning device 10 And the miniaturized design of the immune analyzer; and, the reduction of the liquid injection member 210 also reduces the bearing position 111a corresponding to the liquid injection member 210 on the turntable 110, thereby reducing the volume of the turntable 110, which also helps to clean the device 10 and the miniaturized design of the immune analyzer.
  • a plurality of liquid absorbing members 310 can simultaneously extract waste liquid from a plurality of reactors 30, which reduces the total cleaning time of the magnetic particle combination, thereby
  • the signal member 600 is used to inject a signal reagent into the reactor 30 that has been cleaned.
  • the signal member 600 is provided on the carrier plate 220 of the liquid injection assembly 200, and the signal member 600 may be a slender needle-like structure.
  • the signal piece 600, the liquid injection piece 210 and the liquid suction piece 310 respectively correspond to different bearing positions 111a on the turntable 110.
  • the absolute position of the signal piece 600 is the signal injection station, and the signal piece 600 is completed in the signal injection station direction.
  • a signal reagent is injected into the cleaned reactor 30 for the subsequent measurement of the optical signal of the magnetic particle conjugate.
  • the transfer assembly 100 In order to move the reactor 30 to be cleaned into and remove the cleaned reactor 30 from the transfer assembly 100, the transfer assembly 100 is also provided with a transfer position.
  • the transfer assembly 100 can place the reactor 30 at the transfer position, the liquid injection station, and the liquid suction. Transfer between stations.
  • the equal number of the liquid suction parts 310 and the liquid injection parts 210 is a common technical implementation in this field.
  • the number of the liquid injection parts 210 in the present application is less than the number of the liquid absorption parts 310, and a special process and method are needed to achieve this.
  • the following cleaning method can be formed through the above-mentioned cleaning device 10 and the immune analyzer, that is, the above-mentioned cleaning device 10 and the immune analyzer can implement the cleaning method.
  • the cleaning method mainly includes the following steps:
  • S730 Collect the suspended magnetic particle combination in the reactor 30 on the inner side wall of the reactor 30 at the collection station, and extract the waste liquid from the reactor 30 into which the cleaning solution has been injected at the suction station;
  • the number of liquid injection stations is less than the number of liquid suction stations.
  • the cleaning liquid is injected into at least two reactors 30 in the same liquid injection station one after another. Extract the waste liquid.
  • the liquid injection station and the liquid suction station are arranged at intervals along the same circumference on the turntable 110, so that the turntable 110 drives the reactor 30 to make a circle between the liquid injection station and the liquid suction station. movement.
  • the number of suction stations is equal to the number of cleaning steps for one cleaning of the reactor 30.
  • the number of filling stations can be one, the number of suction stations is three, and the three suction stations are marked as the first suction station, the second suction station, and the third suction station.
  • the first suction part 310 is located at the first suction station, the second suction part 310 is located at the second suction station, and the third suction part 310 is located at the third suction station;
  • the number of filling stations can be Two, the filling stations are respectively marked as the first filling station and the second filling station, the number of suction stations is four, and the four suction stations are respectively marked as the first filling station,
  • the second liquid suction station, the third liquid suction station and the fourth liquid suction station, the first liquid suction member 310 is located at the first liquid suction station, the second liquid suction member 310 is located at the second liquid suction station,
  • the three liquid suction member 310 is located at the third liquid suction station, and the fourth liquid suction member 310 is located at the fourth liquid suction station.
  • a complete cleaning process includes at least three-stage cleaning, that is, three injections of cleaning liquid and extraction of waste liquid.
  • the following three-stage cleaning is performed on a single reactor 30
  • the reactor 30 is moved to the turntable 110, and the reactor 30 can be pre-collected and pre-absorbed, that is, the unbound reactants in the reactor 30 are first sucked, so that only the magnet is left in the reactor 30.
  • the turntable 110 only contains the magnetic particle combination and the reactor 30 is rotated to the liquid injection station.
  • the reactor 30 may not be pre-collected and pre-absorbed, and the reactor 30 containing the reactant may be directly transferred to the liquid injection station.
  • the cleaning liquid is injected into the reactor 30 through the liquid injection member 210 to clean the magnetic particle binding substances to remove the free markers and other interfering impurities not bound to the magnetic particles .
  • the suspension containing the magnetic particle conjugates in the reactor 30 may be mixed or not mixed.
  • the mixing assembly 500 is moved upwards so that the reactor 30 is matched with the mixing hole 541 on the carrying cylinder 540.
  • the driving motor 520 drives the carrying cylinder 540 to rotate through the drive shaft 530, and the suspension in the reactor 30 is generated Eccentrically oscillate and mix, and the magnetic particle combination is uniformly suspended in the cleaning liquid. During the eccentric vibration, the cleaning liquid forms a good cleaning effect on the magnetic particle combination.
  • the mixing assembly 500 moves downward, and the reactor 30 is completely separated from the mixing hole 541 on the carrying cylinder 540, so that the turntable 110 drives the reactor 30 to leave the liquid injection station. So far, the reactor 30 has completed the first injection of the cleaning solution, that is, the first stage of injection of the cleaning solution has been completed.
  • the turntable 110 transfers the reactor 30 into which the cleaning liquid is injected from the liquid injection station to the collection station or the first liquid suction station.
  • the magnetic particle combination is covered by the magnetic member 420. Gradually collect on the inner side wall of the reactor 30.
  • the reactor 30 is located at the first liquid suction station.
  • the turntable 110 does not rotate.
  • the turntable rotates to transfer the reactor 30 to the first suction station.
  • the screw motor 331 drives the bracket 340 to drive the supporting plate 343 to move downwards, so that the liquid suction member 310 moves downward following the supporting plate 343 to extend into the reactor 30, and the liquid suction member 310 extracts the magnetic particle combination from the reactor 30 All the waste liquid formed by washing leaves only the magnetic particle combination and unwashed residues in the reactor 30.
  • the screw motor 331 drives the bracket 340 to drive the support plate 343 to move upward, and the suction member 310 follows the support plate 343 to move upward to withdraw from the reactor 30, so that the turntable 110 drives the reactor 30 to leave. Suction station. So far, the reactor 30 has completed the first waste liquid extraction, that is, the first stage waste liquid extraction has been completed.
  • the turntable 110 drives the reactor 30 to transfer from the liquid suction station to the liquid injection station.
  • the related operations in the first step are repeated. So far, the reactor 30 has completed the second injection of the cleaning solution, that is, the second stage of injection of the cleaning solution has been completed.
  • the reactor 30 is usually mixed during or after the second stage injection of the cleaning solution.
  • the turntable 110 drives the reactor 30 to transfer from the liquid injection station to the collection station or the second liquid suction station.
  • the reactor 30 reaches the liquid suction station, the related operations in the second step are repeated. So far, the reactor 30 has completed the second waste liquid extraction, that is, the second waste liquid extraction has been completed.
  • the turntable 110 drives the reactor 30 to transfer from the liquid suction station to the liquid injection station.
  • the related operations in the first step are repeated. So far, the reactor 30 has completed the third injection of the cleaning solution, that is, the third stage of injection of the cleaning solution has been completed.
  • the reactor 30 is usually mixed during or after the third stage injection of the cleaning solution.
  • the turntable 110 drives the reactor 30 to transfer from the liquid injection station to the collection station or the third liquid suction station.
  • the reactor 30 reaches the liquid suction station, repeat the related operations in the second step above . So far, the reactor 30 has completed the third waste liquid extraction, that is, the third stage waste liquid extraction has been completed.
  • the turntable 110 drives the reactor 30 to transfer from the liquid suction station to the signal injection station.
  • the signal reagent is added to the reactor 30.
  • the reactor 30 with the signal reagent added is removed from the turntable 110.
  • the same reactor 30 can still be cleaned of more than three stages according to the above-mentioned operation mode.
  • At least two injections of cleaning liquid into the same reactor 30 are completed at the same liquid injection station.
  • the two steps of cleaning liquid injection are completed in one of the liquid injection stations, and the other step is injecting cleaning liquid Finished in another injection station.
  • the liquid injection cleaning liquid of all stages of the same reactor 30 is completed at this liquid injection station.
  • the total number of cleaning liquid injections is In the case of three times, the first stage of cleaning fluid injection, the second stage of cleaning fluid injection, and the third stage of cleaning fluid injection are all completed at the liquid injection station.
  • different stages of liquid suction are completed at different liquid suction stations. For example, when the total number of waste liquid extraction is three times, the total number of liquid suction stations is also three.
  • the first suction station is used to complete the first stage of waste liquid extraction through the first suction part.
  • the liquid station completes the second order of waste liquid extraction through the second liquid suction part, and the third order of waste liquid extraction through the third liquid absorption part at the third liquid suction station.
  • multiple reactors 30 on the turntable 110 can be cleaned at the same time.
  • the following describes a situation where one liquid injection station and multiple reactors 30 perform three-stage cleaning:
  • the turntable 110 is first transferred to transfer the first reactor to the liquid injection station, and the liquid injection member 210 injects the cleaning liquid into the reactor.
  • the turntable 110 performs a second transfer to transfer the second reactor to the liquid injection station, and the liquid injection member 210 injects the cleaning liquid into the second reactor.
  • the turntable 110 is transferred for the third time, and the third reactor is transferred to the liquid injection station, and the liquid injection member 210 injects the cleaning liquid into the third reactor.
  • the fourth step is the fourth transfer of the turntable 110, which transfers the first reactor, the second reactor and the third reactor to different collection stations or suction stations, and the three suction parts 310 are in different positions at the same time.
  • the liquid suction station of 3 respectively extracts waste liquid from the three reactors 30.
  • the first absorbing member draws waste liquid from the first reactor
  • the second absorbing member draws waste liquid from the second reactor
  • the third liquid absorbing member draws waste liquid from the third reactor
  • the first The liquid suction member, the second liquid suction member and the third liquid suction member simultaneously extract waste liquid.
  • the reactor 30 is continuously transferred to the liquid injection station, and the operations from the first step to the fourth step are repeated, and the reactor 30 that has completed all stages of cleaning is successively removed from the turntable 110.
  • the multiple reactors 30 simultaneously extract the waste liquid at all the liquid suction stations in different orders. For example, when there are three liquid suction stations, they are respectively marked as the first liquid suction station, the second liquid suction station and the third liquid suction station.
  • the reactor 30 located at the first liquid suction station is just above the first liquid suction station.
  • the reactor 30 at the second suction station is just at the second order of waste liquid extraction
  • the reactor 30 at the third suction station is just at the third order of waste liquid extraction. Since the liquid suction parts 310 at multiple liquid suction stations can simultaneously extract waste liquid, the waiting time between the reactors 30 can be saved, thereby improving the cleaning efficiency.
  • At least two transfers are performed, and at least two reactors 30 are transferred to the same liquid injection station successively to perform different stages of liquid injection.
  • At least two reactors 30 in the same liquid injection station sequentially complete different stages of injecting cleaning liquid. For example, after the first reactor completes the first step of injecting the cleaning liquid at the liquid injection station, then the second reactor completes the second step of injecting the cleaning liquid at the liquid injection station, and then the third reactor The third step of injecting cleaning liquid is completed at this liquid injection station.
  • N reactors requiring N-stage cleaning complete different stages of liquid absorption in N liquid suction stations in parallel, and at least two reactors complete different stages in sequence at the same liquid injection station.
  • the injection of cleaning fluid not only improves the efficiency of cleaning fluid, but also effectively reduces the structural volume and cost of fluid injection, reduces the number of fluid injection stations and fluid injection parts, and reduces the size of the transfer tray. On the other hand, It also reduces the difference in the accuracy of the injection volume of different stages, which is conducive to the realization of a compact structure, high test efficiency, and good performance cleaning device and immune analyzer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种清洗方法,包括如下步骤:在注液工位和收集工位之间转运反应器(30);于所述注液工位向所述反应器(30)中注入清洗液;于所述收集工位将所述反应器(30)中的磁粒结合物收集至所述反应器(30)的内侧壁上,并于吸液工位从已注入清洗液的所述反应器(30)中抽取废液;其中,所述注液工位的数量小于吸液工位的数量,在同一注液工位依次先后向至少两个所述反应器(30)中注入清洗液,在全部所述吸液工位分别同时从多个所述反应器(30)中抽取废液。

Description

清洗方法、清洗装置及免疫分析仪 技术领域
本申请涉及体外诊断技术领域,特别是涉及一种清洗方法、清洗装置及包含该清洗装置的免疫分析仪。
背景技术
发光免疫分析通过以抗原抗体相互结合的免疫学反应为基础,使用酶、发光剂等物质标记抗原抗体,经过发光反应,将光信号与分析物浓度等相联系,分析样本中分析物含量。
在清洗分离(本文有时简称清洗)过程中,首先以磁粒(通常为磁粒试剂组分的主要成分)为固相载体将样本中的目标分析物捕获并结合,然后再通过磁力将直接或间接结合有目标分析物的磁粒收集在反应杯的内侧壁上,经过多次注入清洗液和抽取废液后,最终去除未结合在磁粒上的游离标记物和其它干扰杂质,以便对连接在磁粒上的抗原抗体结合物(即磁粒结合物)进行信号测量。对于传统的清洗方法,要么清洗效率低、要么清洗效果差,同时也使得执行该清洗方法的装置结构复杂且体积庞大。
发明内容
根据本申请的各种实施例,提供一种能在结构上简化实施该清洗方法的装置并提高清洗效率。
一种清洗方法,包括如下步骤:
在注液工位和收集工位之间转运反应器;
于所述注液工位向所述反应器中注入清洗液;
于所述收集工位将所述反应器中的悬浮的磁微粒结合物收集至所述反应器的内侧壁上,并于吸液工位从已注入清洗液的所述反应器中抽取废液;
其中,所述注液工位的数量小于所述吸液工位的数量,在同一注液工位依次先后向至少两个所述反应器中注入清洗液,在全部所述吸液工位分别同时从多个所述反应器中抽取废液。
一种清洗装置,包括:
转运组件,包括用于承载反应器并可转动的转盘,所述转盘沿其周向间隔设置有多个用于承载反应器的承载位;
注液组件,包括用于向反应器中注入清洗液的注液件;
吸液组件,包括用于对已注入清洗液的反应器抽取废液的吸液件;及
捕捉组件,包括磁性件,所述磁性件用于将反应器中的磁微粒结合物收集在反应器内侧壁上;
其中,所述注液件的数量少于所述吸液件的数量,所述转盘承载所述反应器在所述吸液件与所述注液件两者所处位置之间转动。
一种免疫分析仪,包括上述的清洗装置。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为一实施例提供的清洗装置的整体装配结构示意图;
图2为图1在另一视角下的结构示意图;
图3为图1中支架带动吸液件上升后的结构示意图;
图4为图1中去除注液组件和信号件后的局部结构示意图;
图5为图4中去除部分吸液组件后的局部结构示意图;
图6为图1中混匀组件的局部结构示意图;
图7为一实施例提供的清洗方法的流程框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请将进入清洗分离前的反应器内的混匀物简称为反应物,反应物通常为待测样本和试剂的混合反应物或者样本和试剂反应后的结合物等;将在清洗分离过程中向反应器中注入的清洗缓冲液(Wash buffer)简称为清洗液,向反应器中注入清洗缓冲液简称为注液;将注入清洗液后的反应器内的混合物简称为废液,废液可以由反应物和清洗液的混合物、反应后的免疫复合物和清洗液的混合物以及未清洗干净的未结合成分等物质组成。本技术领域人员可以理解,为了使清洗分离更彻底,最大限度得减少清洗分离后反应物中未结合成分的残留,清洗分离通常包含多次注清洗液和抽取注入清洗液后的反应器内的废液,将第一次注入清洗液、收集磁粒结合物和抽取注入清洗液清洗后的废液定义为第一阶清洗,将第二次注入清洗液、收集磁粒结合物和吸取废液定义为第二阶清洗…将第N次注入清洗液、收集磁粒结合物和吸取废液定义为第N阶清洗。每次清洗分离通常包括2-6阶清洗。在有些免疫分析仪中,对于即将进行清洗分离的反应器中的反应物,在进行第一次注入清洗液前,还有一个预先收集磁粒结合物和预先抽取反应器中的未结合反应物的工序,本申请为了叙述方便,将该次抽取反应器中未注入清洗液的未结合 反应物的工序定义为清洗的预吸液,预吸液不计算在清洗的N阶清洗范围内,本申请的吸液或者吸取废液,除非特别说明,特指对注入清洗液后的反应器内的废液的吸取。每个测试项目根据反应方法的不同,如一步法、两步法、三步法,在整个反应过程中可对应进行1-3次清洗分离,每次清洗包括2-6阶清洗。
同时参阅图1至图5,本申请一实施例提供的免疫分析仪包括清洗装置10,该清洗装置10用于清洗反应器30内部的磁粒结合物,该清洗装置10包括转运组件100、注液组件200、吸液组件300、捕捉组件400、混匀组件500和信号件600,其中的注液组件200和吸液组件300两者可以形成一个清洗分离机构20。
在一些实施例中,转运组件100包括用于承载反应器30并可转动的转盘110。此外,转运组件100还包括转轴120、轴套140、轴承和第二驱动器130,第二驱动器130固定在吸液组件300的底板320的下表面上,第二驱动器130可以为步进电机等。转轴120的下端与第二驱动器130的输出轴连接,转轴120的上端穿过底板320并向上相对底板320的上表面延伸。转盘110为圆盘状结构,固定在转轴120的上端,当第二驱动器130驱动转轴120旋转时,转轴120将带动转盘110做间隙性转动。轴套140固定在底板320与转盘110之间,当第二驱动器130工作时,轴套140保持静止不动状态。轴承套设在轴套140中,转轴120与轴承配合,通过设置轴承,可以减少转轴120旋转过程中的摩擦力,并提高转轴120和转盘110两者的旋转精度。
转盘110沿其周向间隔设置多个承载位,用于承载反应器30。承载位可以是任何适合承载反应器30的结构,例如孔、槽、支架等。在一个实施例中,承载位为贯穿孔111,贯穿孔111贯穿转盘110的上表面和下表面。多个贯穿孔111沿转盘110的周向间隔排列,贯穿孔111数量至少为5个。具体地,可以为8个、10个、12个等。贯穿孔111可以为圆形的台阶孔,台阶孔由同轴设置的大孔和小孔构成,大孔的直径大于小孔的直径,大孔的底壁形成整个台阶孔的台阶面。反应器30大致呈圆柱形,反应器30的侧周面上设置有 凸环31,该凸环31沿反应器30的径向相对侧周面延伸设定的长度,当反应器30穿设在该贯穿孔111中时,反应器30上的凸环31将与台阶孔上的台阶面相抵接,防止反应器30从贯穿孔111中掉落,故贯穿孔111起到对反应器30的承载作用,每一个贯穿孔111即可形成转盘110上用于承载反应器30的承载位111a。当转盘110驱动转盘110运动时,贯穿孔111中的反应器30将跟随转盘110绕转轴120转动。
在一些实施例中,吸液组件300包括吸液件310、底板320、支架340和第一驱动器330。吸液件310安装在支架340上,第一驱动器330设置在底板320上并与支架340连接,第一驱动器330用于驱动支架340上下运动,以使吸液件310伸出或退出反应器30中。
吸液件310用于对已注入清洗液的反应器30抽取废液。如前文所述,此处吸液件310特指对已注入清洗液的反应器30抽取废液,不包括对反应器30中的反应物预先抽吸的预吸液件。吸液件310可以为细长的吸液针,还可以为吸液管等其他适合抽吸液体的结构等。吸液件310与转盘110上的承载位111a对应,例如,吸液件310在转盘110上的正投影可以落在承载位111a上,吸液件310所处的绝对位置即为从反应器30中抽取废液的吸液工位。显而易见,吸液件310与吸液工位一一对应,两者数量相同。支架340包括搭接板341、顶推板342和支撑板343,支撑板343水平设置并位于转盘110的上方,在转轴120的轴向上,支撑板343与转盘110两者之间间隔而保持合理的间距。吸液件310可以固定在支撑板343上。吸液件310的数量N(N=2,3,4,5,6,7)与反应器30的清洗阶数N相等。例如,反应器30每次清洗需要进行3阶清洗,则吸液件310的数量为3个,三个吸液件310分别记为第一吸液件(或第一阶吸液件)、第二吸液件(或第二阶吸液件)和第三吸液件(或第三阶吸液件);反应器30每次清洗需要进行4阶清洗,则吸液件310的数量为4个,四个吸液件310分别记为第一吸液件(或第一阶吸液件)、第二吸液件(或第二阶吸液件)、第三吸液件(或第三阶吸液件)和第四吸液件(或第四阶吸液件)。吸液件310和其对应的吸液位的数量可以为两个或大 于四个等。顶推板342竖直设置,搭接板341靠近底板320横向设置,顶推板342的上端与支撑板343连接,顶推板342的下端与搭接板341连接。
第一驱动器330包括丝杆电机331和第一导杆332,第一导杆332竖直设置且其下端固定在底板320上,第一导杆332的上端为自由端,第一导杆332穿设在搭接板341中,从而实现搭接板341与第一导杆332两者之间的滑动连接。顶推板342上开设有避位槽342a,该避位槽342a沿转轴120的轴向延伸,简而言之,即该避位槽342a沿竖直方向延伸,丝杆电机331的丝杆轴331a与搭接板341转动连接,同时,丝杆轴331a位于避位槽342a中并能够相对避位槽342a运动,故避位槽342a为丝杆轴331a的运动提供了很好的避位空间。例如,当丝杆电机331的丝杆轴331a顺时针转动时,丝杆轴331a的旋转运动转化为搭接板341相对第一导杆332向上的滑动,同时,搭接板341带动顶推板342和支撑板343向上运动,进而使得吸液件310跟随支撑板343向上运动以退出反应器30中。当丝杆电机331的丝杆轴331a逆时针转动时,丝杆轴331a的旋转运动转化为搭接板341相对第一导杆332向下的滑动,同时,搭接板341带动顶推板342和支撑板343向下运动,进而使得吸液件310跟随支撑板343向下运动以伸入反应器30中抽取废液。
注液组件,用于向反应器中注入清洗液。在一些实施例中,注液组件200包括注液件210和承载板220,承载板220水平设置并位于转盘110的上方,在转轴120的轴向上,承载板220与转盘110两者之间间隔而保持合理的间距。承载板220相对转盘110的位置可以固定不动,当然,承载板220也可以与吸液组件300的支架340连接,通过支架340的上下运动以带动承载板220上下运动。注液件210固定在承载板220上,可以为细长的注液针,还可以采用注液管或注液喷孔等能够注入液体的部件替代。注液件210与转盘110上的承载位111a对应,例如,注液件210的注液部分在转盘110上的正投影可以落在承载位111a上,注液件210所处的绝对位置即为向反应器30中注入清洗液的注液工位。注液件210的数量可以为一个,两个,当然,注液件210的数量还可以大于两个。需要特别说明的是,对应于同一个注液工 位,不论在该注液工位对应的注液件有多少个注液出口,也不论该注液件包括几个针、管等,本申请都规定注液件数量为一个,即每个注液工位对应一个注液件。多个注液件对应多个工位,例如两个注液工位对应两个注液件。当注液件210在注液工位向反应器30中注入清洗液后,清洗液将对反应器30中的磁粒结合物进行清洗,以去除未结合在磁粒上的游离标记物和其它干扰杂质。
捕捉组件400,用于在每阶吸液前将所述反应器中的磁粒结合物收集至所述反应器的内侧壁上。在一些实施例中,捕捉组件400包括磁性件420和安装架410,安装架410可以大致呈圆盘状,安装架410固定在转运组件100的轴套140上,安装架410上设置有收容孔411,收容孔411开设在安装架410的侧周面上,收容孔411外侧周面的一部分沿安装架410的径向凹陷设定深度形成。收容孔411的数量为多个,多个收容孔411沿安装架410的轴线可以均匀间隔排列。磁性件420可以为天然永磁体或电磁铁等,磁性件420与收容孔411的形状相适配并容置在该收容孔411中,磁性件420的外表面可以与安装架410的侧周面平齐。收容孔411、磁性件420所处的位置为收集工位,用于在每阶吸液前将所述反应器30中的磁粒结合物收集至所述反应器30的内侧壁上。当转盘110带动反应器30位于收集工位时,反应器30将位于磁性件420的磁力范围之内,在磁性件420所产生的磁吸力作用下,将反应器30中的磁粒结合物收集至反应器30的内侧壁上。
收集工位包括吸液工位。为了避免磁粒损失,每阶吸液件抽取废液时反应器内的磁粒结合物需要在磁力吸附下进行,因而每阶吸液工位需要安装磁性件420,因而吸液工位同时也是收集工位,即收集工位包括吸液工位。收集工位的数量不少于吸液工位的数量。具体地,每阶清洗的收集工位可以与吸液工位一一对应,也可以多个收集工位对应一个吸液工位。当每阶清洗的收集工位与吸液工位一一对应时,在同一个工位完成反应器30内磁粒结合物的收集和反应器内废液的抽取;当每阶清洗的多个收集工位对应一个吸液工位时,反应器30内磁粒结合物在多个收集工位逐渐完成收集,在吸液工位(同 时也是该阶清洗的最后一个收集工位)继续收集并完成废液抽取。
安装架410的侧周面还凹陷形成有沉槽412,沉槽412沿竖直方向延伸,沉槽412的上端贯穿安装架410的上表面,沉槽412的下端贯穿安装架410的下表面,沉槽412与注液件210所处的位置(即注液工位)相对应。
在一些实施例中,混匀组件500包括连接板510、驱动电机520、驱动轴530、和承载筒540。连接板510横向设置,吸液组件300的底板320上还设置有第二导杆550,第二导杆550竖直设置且其一端固定在底板320上并穿设在连接板510中,第二导杆550的另一段穿过连接板510而形成自由端,使得第二导杆550与连接板510滑动连接,连接板510能沿第二导杆550上下滑动。驱动电机520放置在底板320上并与连接板510固定连接,驱动电机520与底板320两者并未形成固定连接关系,使得驱动电机520能承载在底板320上、或者驱动电机520远离底板320向上运动。在丝杆电机331带动搭接板341沿第一导杆332上升的过程中,搭接板341将与连接板510相抵接,当搭接板341继续上升时,搭接板341将承载连接板510和驱动电机520一起沿第二导杆550上升。在丝杆电机331带动搭接板341沿第一导杆332下降的过程中,搭接板341将与连接板510相抵接以对连接板510形成支撑作用,连接板510和驱动电机520在重力的作用下沿第二导杆550向下运动,当驱动电机520与底板320相接触时,在底板320的限位作用下,连接板510和驱动电机520停止向下运动,此时,丝杆电机331还可以带动搭接板341沿第一导杆332继续下降直至搭接板341与底板320相接触。搭接板341表面的一部分凹陷形成弯折连接的第一限位面341a和第二限位面341b,例如第一限位面341a和第二限位面341b可以相互垂直,当搭接板341承载连接板510时,连接板510跟第一限位面341a和第二限位面341b相抵接,第一限位面341a和第二限位面341b对连接板510起到限位作用,防止整个混匀组件500在上下运动过程中产生振动,提高混匀组件500运行的平稳性。
驱动轴530的下端与驱动电机520的输出轴连接,承载筒540固定在驱 动轴530的上端,驱动轴530可以与承载筒540同轴设置,驱动电机520用于带动驱动轴530转动,进而使得承载筒540跟随驱动轴530转动。参阅图6,承载筒540上开设有混匀孔541,反应器30能与该混匀孔541配合,混匀孔541的中心轴线与驱动轴530的中心轴线相互平行,即混匀孔541与驱动轴530之间保持间距而存在一定的偏心度,在反应器30与混匀孔541配合后,当驱动轴530带动承载筒540转动时,在偏心力的作用下,反应器30中包含磁粒结合物的悬浮液将产生偏心震荡,使得整个悬浮液处于很好的混匀状态。
需要混匀时,在丝杆电机331的作用下,可以带动搭接板341顶推连接板510上升,进而使驱动电机520和承载筒540上升,同时,安装架410上开设的沉槽412能够为承载筒540的运动提供避位空间,防止安装架410对承载筒540的运动构成干涉,当承载筒540上升到一定高度并与反应器30配合时,丝杆电机331停止工作。此时,驱动电机520通过驱动轴530带动承载筒540产生偏心振荡,使得反应器30中的清洗液形成紊流,在紊流的作用下,清洗液将对磁粒结合物产生有效清洗,从而尽可能的去除未结合在磁粒上的游离标记物和其它干扰杂质;再者,能够使得磁粒结合物均匀地分散在清洗液中。当反应器30中的悬浮液混匀完毕后,丝杆电机331带动搭接板341向下运动,继而使整个混匀组件500向下运动,最终使得反应器30的底部完全脱离承载筒540上的混匀孔541,即反应器30从混匀孔541中完全退出;当转盘110需要带动反应器30从该注液工位转移至吸液工位时,已脱离反应器30的承载筒540将不会对反应器30的转动产生干涉,从而实现反应器30从注液工位至吸液工位的顺利转移。
注液件210的数量少于吸液件310的数量。例如,吸液件310的数量为三个,注液件210的数量为一个,对应的,吸液工位的数量为三个,注液工位的数量为一个;吸液件310的数量为四个,注液件210的数量为两个,当然,吸液工位的数量为四个,注液工位的数量为两个。与传统吸液件310与注液件210数量相等的设计相比较,上述实施例中注液件210的数量少于吸 液件310的数量,使得注液件210的总数量相对减少,从而减少与每个注液件210连接的传输管和电磁阀等流体器件的数量,从而有利于缩减清洗装置10和免疫分析仪的整体结构,并降低两者的体积和制造成本,有利于清洗装置10和免疫分析仪的小型化设计;并且,注液件210的减少,也使得转盘110上与注液件210所对应的承载位111a相应减少,进而减少转盘110的体积,同样有助于清洗装置10和免疫分析仪的小型化设计。同时,多个吸液件310能同时从多个反应器30中抽取废液,这样减少了磁粒结合物的总清洗时间,从而提高清洗装置10和免疫分析仪的清洗效率。
信号件600,用于向完成清洗的反应器30中注入信号试剂。在一些实施例中,信号件600设在注液组件200的承载板220上,信号件600可以为细长的针状结构。信号件600、注液件210和吸液件310三者均分别对应转盘110上不同的承载位111a,信号件600所在的绝对位置为信号注入工位,信号件600在信号注入工位向完成清洗的反应器30中注入信号试剂,以便后续对磁粒结合物进行光信号的测量。
为了将需要清洗的反应器30移入和清洗完成后的反应器30移出转运组件100,转运组件100上还设置转移位,转运组件100可将反应器30在转移位、注液工位和吸液位工位之间转运。
由于清洗分离过程中注清洗液和抽取注入清洗液后的反应器内的废液的一一对应关系,吸液件310与注液件210数量相等是本领域的通用技术实现方式。本申请注液件210的数量少于吸液件310的数量,需要特别的流程和方法配合来实现。
同时参阅图1和图7,通过上述清洗装置10和免疫分析仪,可以形成如下清洗方法,即上述清洗装置10和免疫分析仪可以实施该清洗方法。以反应器完成其中一阶清洗为例,该清洗方法主要包括如下步骤:
S710,在注液工位和收集工位之间转运反应器30;
S720,于注液工位向反应器30中注入清洗液;
S730,于收集工位将反应器30中的悬浮的磁粒结合物收集至反应器30 的内侧壁上,并于吸液工位从已注入清洗液的反应器30中抽取废液;
其中,注液工位的数量小于吸液工位的数量,在同一注液工位依次先后向至少两个反应器30中注入清洗液,在全部吸液工位分别同时从多个反应器30中抽取废液。
在一些实施例中,将注液工位和吸液工位沿转盘110上的同一圆周的周向间隔排列,使转盘110带动反应器30在注液工位和吸液工位之间做圆周运动。吸液工位的数量等于反应器30清洗一次清洗的清洗阶数。注液工位的数量可以为一个,吸液工位的数量为三个,三个吸液工位分别记为第一吸液工位、第二吸液工位和第三吸液工位,第一吸液件310位于第一吸液工位,第二吸液件310位于第二吸液工位,第三吸液件310位于第三吸液工位;注液工位的数量可以为两个,注液工位分别记为第一注液工位、第二注液工位,吸液工位的数量为四个,四个吸液工位分别记为第一吸液工位、第二吸液工位、第三吸液工位和第四吸液工位,第一吸液件310位于第一吸液工位,第二吸液件310位于第二吸液工位,第三吸液件310位于第三吸液工位,第四吸液件310位于第四吸液工位。
对于单个的同一反应器30,为确保具有良好的清洗效果,一个完整的清洗过程包括至少三阶清洗,即三次注入清洗液和抽取废液,下面以进行三阶清洗的情形对单个反应器30的清洗进行说明:
第一步,将反应器30移入至转盘110,可以对反应器30进行预收集和预吸液,即先将反应器30中的未结合反应物抽吸,使得反应器30中只剩下磁粒结合物和未清洗干净的残留物,然后转盘110仅盛放有磁粒结合物的反应器30转动至注液工位。当然,也可以不对反应器30进行预收集和预吸液,而将含有反应物的反应器30直接转运至注液工位。当反应器30抵达至注液工位时,通过注液件210向反应器30中注入清洗液以便对磁粒结合物进行清洗,以去除未结合在磁粒上的游离标记物和其它干扰杂质。向反应器30中进行第一阶注液时或注液后,可以对反应器30中含有磁粒结合物的悬浮液混匀,也可以不混匀。混匀时,使混匀组件500向上运动,以使反应器30与承 载筒540上的混匀孔541配合,驱动电机520通过驱动轴530带动承载筒540转动,反应器30中的悬浮液产生偏心振荡而混匀,磁粒结合物均匀悬浮在清洗液中,在偏心振动的过程中,清洗液对磁粒结合物形成很好的清洗效果。混匀完毕后,混匀组件500向下运动,反应器30完全脱离承载筒540上的混匀孔541,以便转盘110带动反应器30离开该注液工位。至此,反应器30已完成第一次注入清洗液,即完成第一阶注入清洗液。
第二步,转盘110将注入清洗液的反应器30从注液工位转移至收集工位或第一吸液工位,当反应器30位于收集工位时,磁粒结合物被磁性件420逐渐收集至反应器30的内侧壁上。当反应器30内的磁粒结合物收集完成时,反应器30位于第一吸液工位。收集工位与第一吸液工位相等即重合时,转盘110不转动,收集工位多于吸液工位时,转盘转动将反应器30转运至第一吸液工位。丝杆电机331驱动支架340带动支撑板343向下运动,使得吸液件310跟随支撑板343向下运动以伸入至反应器30中,吸液件310抽取反应器30中因磁粒结合物清洗而形成的全部废液,使得反应器30中仅剩下磁粒结合物和未清洗干净的残留物。反应器30抽取废液完毕后,丝杆电机331驱动支架340带动支撑板343向上运动,吸液件310跟随支撑板343向上运动以从反应器30中退出,以便转盘110带动反应器30离开该吸液工位。至此,反应器30已完成第一次抽取废液,即完成第一阶抽取废液。
第三步,转盘110带动反应器30从吸液工位转运至注液工位,当反应器30抵达至注液工位时,重复上述第一步中的相关操作。至此,反应器30已完成第二次注入清洗液,即完成第二阶注入清洗液。反应器30进行第二阶注入清洗液时或后通常进行混匀。
第四步,转盘110带动反应器30从注液工位转移至收集工位或第二吸液工位,当反应器30抵达至吸液工位时,重复上述第二步中的相关操作。至此,反应器30已完成第二次抽取废液,即完成第二阶次抽取废液。
第五步,转盘110带动反应器30从吸液工位转移至注液工位,当反应器30抵达至注液工位时,再重复上述第一步中的相关操作。至此,反应器30 已完成第三次注入清洗液,即完成第三阶注入清洗液。反应器30进行第三阶注入清洗液时或后通常进行混匀。
第六步,转盘110带动反应器30从注液工位转移至收集工位或第三吸液工位,当反应器30抵达至吸液工位时,再重复上述第二步中的相关操作。至此,反应器30已完成第三次抽取废液,即完成第三阶抽取废液。
对于单个的同一反应器30,当完成一次完整的清洗过程后,即同一反应器30完成全部阶次的注入清洗液、收集磁粒结合物和抽取废液后,向所述反应器30中加入信号试剂,以便后续对磁粒结合物进行光信号的测量。在一个实施例中,转盘110带动反应器30从吸液工位转移至信号注入工位,当反应器30抵达至信号注入工位时,向所述反应器30中加入信号试剂。最后将加入信号试剂的反应器30移出转盘110。当然,也可将完成清洗仅盛放有磁粒结合物的反应器30直接移出转盘110,在转盘110外完成信号试剂的加注。
当需要进行三阶以上的清洗时,仍可以按照上述操作方式对单个的同一反应器30进行三阶以上的清洗。
对于单个的同一反应器30,该同一反应器30的至少两次注入清洗液在相同的注液工位完成。当注液工位为两个时,例如,在注入清洗液的总次数为三次的情况下,其中两个阶次的注入清洗液在其中一个注液工位完成,另外一个阶次注入清洗液在另外一个注液工位完成。当注液工位仅为一个,即注液件210仅为一个时,同一反应器30所有阶次的注液清洗液均于该注液工位完成,例如,在注入清洗液的总次数为三次的情况下,第一阶次注入清洗液、第二阶次注入清洗液和第三阶次注入清洗液均于该注液工位完成。
对于单个的同一反应器30,分别于不同的吸液工位完成不同阶次的吸液。例如,抽取废液的总次数为三次时,吸液工位的总数量同样为三个,在第一吸液工位通过第一吸液件完成第一阶次抽取废液,在第二吸液工位通过第二吸液件完成第二阶次抽取废液,在第三吸液工位通过第三吸液件完成第三阶次抽取废液。
在一些实施例中,可以对转盘110上的多个反应器30同时进行清洗,下 面以一个注液工位、多个反应器30进行三阶清洗的情形进行说明:
第一步,转盘110第一转运,将第一个反应器转运至注液工位,注液件210向该反应器中注入清洗液。
第二步,转盘110第二转运,将第二个反应器转运至注液工位,注液件210向该第二个反应器中注入清洗液。
第三步,转盘110第三转运,将第三个反应器转运至注液工位,注液件210向该第三个反应器中注入清洗液。
第四步,转盘110第四转运,将第一个反应器、第二个反应器和第三个反应器转运至不同的收集工位或吸液工位,三个吸液件310同时于不同的吸液工位分别对三个反应器30进行抽取废液。例如,第一吸液件对第一个反应器抽取废液,第二吸液件对第二个反应器抽取废液,第三吸液件对第三个反应器抽取废液,并且第一吸液件、第二吸液件和第三吸液件同时抽取废液。
第五步,不断将反应器30转移至注液工位,重复上述第一步到第四步的操作,将已完成全部阶次清洗的反应器30陆续移出转盘110。
在一些实施例中,多个反应器30同时在全部吸液工位进行抽取废液的阶次不同。例如吸液工位为三个时,分别记为第一吸液工位、第二吸液工位和第三吸液工位,位于第一吸液工位处的反应器30刚好处于第一阶次抽取废液,位于第二吸液工位处的反应器30刚好处于第二阶次抽取废液,位于第三吸液工位处的反应器30刚好处于第三阶次抽取废液。由于多个吸液工位处的吸液件310能同时进行抽取废液,能节省各反应器30之间的等待时间,从而提高清洗效率。
在一些实施例中,每阶清洗时,至少两次转运,将至少两个反应器30先后转运至相同的注液工位进行不同阶次的注液。至少两个反应器30在相同的注液工位依次先后完成不同阶次的注入清洗液。例如,第一个反应器在注液工位完成第一阶次注入清洗液后,接着第二个反应器在该注液工位完成第二阶次注入清洗液,再接着第三个反应器在该注液工位完成第三阶次注入清洗液。
本申请的清洗方法,需要N阶清洗的N个反应器在N个吸液工位并行完成不同阶次的吸液,其中至少两个反应器在相同的注液工位依次先后完成不同阶次的注入清洗液,不仅提升了清洗的吸液效率,也有效降低了注液实现的结构体积和成本,减少了注液工位和注液件的数量以及缩减了转运盘的尺寸,另一方面也减少了不同阶注液量准确度的差异,从而有利于结构紧凑、测试效率高、性能好的清洗装置和免疫分析仪的实现。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种清洗方法,其特征在于,包括如下步骤:
    在注液工位和收集工位之间转运反应器;
    于所述注液工位向所述反应器中注入清洗液;
    于所述收集工位将所述反应器中的磁粒结合物收集至所述反应器的内侧壁上,并于吸液工位从已注入清洗液的所述反应器中抽取废液;
    其中,所述注液工位的数量小于所述吸液工位的数量,在同一注液工位依次先后向至少两个所述反应器中注入清洗液,在全部所述吸液工位分别同时从多个所述反应器中抽取废液。
  2. 根据权利要求1所述的清洗方法,其特征在于,对于所述反应器,每次清洗包括至少进行三阶清洗。
  3. 根据权利要求1或2所述的清洗方法,其特征在于,同一所述反应器的至少两次注入清洗液于相同的所述注液工位完成。
  4. 根据权利要求2所述的清洗方法,其特征在于,同一所述反应器于不同的吸液工位完成不同阶次的吸液、且吸液阶数等于所述吸液工位的总数量。
  5. 根据权利要求2所述的清洗方法,其特征在于,多个所述反应器同时在全部所述吸液工位进行吸液的阶次不同。
  6. 根据权利要求2所述的清洗方法,其特征在于,至少两个所述反应器在相同的所述注液工位依次先后完成不同阶次的注入清洗液。
  7. 根据权利要求2所述的清洗方法,其特征在于,每阶清洗时,存在至少两次转运,将至少两个反应器先后转运至相同的注液工位进行不同阶次的注入清洗液。
  8. 根据权利要求1至2、4至7中任一项所述的清洗方法,其特征在于,所述注液工位的数量为一个,所述吸液工位的数量为三个;或者所述注液工位的数量为两个,所述吸液工位的数量为四个。
  9. 一种清洗装置,其特征在于,包括:
    转运组件,包括用于承载反应器并可转动的转盘,所述转盘沿其周向间 隔设置有多个用于承载反应器的承载位;
    注液组件,包括用于向反应器中注入清洗液的注液件;
    吸液组件,包括用于对已注入清洗液的反应器抽取废液的吸液件;及
    捕捉组件,包括磁性件,所述磁性件用于将反应器中的磁粒结合物收集在反应器内侧壁上;
    其中,所述注液件的数量少于所述吸液件的数量,所述转盘承载所述反应器在所述吸液件与所述注液件两者所处位置之间转动。
  10. 根据权利要求9所述的清洗装置,其特征在于,所述吸液件的数量为三个,所述注液件的数量为一个;或者所述吸液件的数量为四个,所述注液件的数量为两个。
  11. 根据权利要求9所述的清洗装置,其特征在于,所述捕捉组件还包括与所述转盘间隔设置的安装架,所述安装架与所述吸液件对应的位置处开设有收容孔,所述磁性件容置在所述收容孔中。
  12. 根据权利要求9所述的清洗装置,其特征在于,还包括混匀组件,所述混匀组件包括驱动轴和与驱动轴连接的承载筒,所述承载筒上开设有能够与所述反应器配合的混匀孔,所述混匀孔的中心轴线与所述驱动轴的中心轴线相互平行。
  13. 根据权利要求9所述的清洗装置,其特征在于,所述吸液组件还包括底板、支架和第一驱动器,所述吸液件安装在所述支架上,所述第一驱动器设置在所述底板上并与所述所述支架连接,所述第一驱动器用于驱动所述支架运动、以使所述吸液件伸入或退出所述反应器。
  14. 根据权利要求13所述的清洗装置,其特征在于,还包括具有连接板的混匀组件,所述底板上设置有导杆,所述混匀组件与所述导杆滑动连接,所述支架能够推动所述连接板带动整个所述混匀组件相对导杆滑动以使所述混匀组件与所述反应器配合。
  15. 根据权利要求9所述的清洗装置,其特征在于,所述转运组件还包括转轴、轴套、轴承和第二驱动器,所述轴承设置在所述轴套中,所述转轴 与所述轴套配合并与所述转盘连接,所述轴套固定在所述吸液组件与所述转盘之间,所述第二驱动器固定在所述吸液组件上并用于驱动所述转轴转动。
  16. 一种免疫分析仪,其特征在于,包括权利要求9至15中任一项所述的清洗装置。
PCT/CN2019/097850 2019-07-26 2019-07-26 清洗方法、清洗装置及免疫分析仪 WO2021016733A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/097850 WO2021016733A1 (zh) 2019-07-26 2019-07-26 清洗方法、清洗装置及免疫分析仪
EP19939286.1A EP4005692A4 (en) 2019-07-26 2019-07-26 CLEANING METHOD, CLEANING APPARATUS AND IMMUNITY ANALYZER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097850 WO2021016733A1 (zh) 2019-07-26 2019-07-26 清洗方法、清洗装置及免疫分析仪

Publications (1)

Publication Number Publication Date
WO2021016733A1 true WO2021016733A1 (zh) 2021-02-04

Family

ID=74228225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097850 WO2021016733A1 (zh) 2019-07-26 2019-07-26 清洗方法、清洗装置及免疫分析仪

Country Status (2)

Country Link
EP (1) EP4005692A4 (zh)
WO (1) WO2021016733A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070173A1 (en) * 2000-12-08 2002-06-13 Promega Corporation, Madison, Wisconsin Apparatus and method for use in magnetic separation of magnetically attractable particles in a liquid
CN101190439A (zh) * 2006-11-28 2008-06-04 深圳迈瑞生物医疗电子股份有限公司 自动清洗装置与方法
CN105940305A (zh) * 2014-06-17 2016-09-14 深圳迈瑞生物医疗电子股份有限公司 提取物分离装置及其工作方法
CN107262444A (zh) * 2017-06-27 2017-10-20 苏州长光华医生物医学工程有限公司 一种分析仪磁珠清洗方法
CN107398448A (zh) * 2017-06-28 2017-11-28 苏州长光华医生物医学工程有限公司 一种分析仪反应杯磁颗粒清洗方法
CN108856112A (zh) * 2018-03-19 2018-11-23 迈克医疗电子有限公司 磁珠清洗方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409528B2 (en) * 2003-06-19 2013-04-02 Abbott Laboratories Apparatus and method for handling fluids for analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070173A1 (en) * 2000-12-08 2002-06-13 Promega Corporation, Madison, Wisconsin Apparatus and method for use in magnetic separation of magnetically attractable particles in a liquid
CN101190439A (zh) * 2006-11-28 2008-06-04 深圳迈瑞生物医疗电子股份有限公司 自动清洗装置与方法
CN105940305A (zh) * 2014-06-17 2016-09-14 深圳迈瑞生物医疗电子股份有限公司 提取物分离装置及其工作方法
CN107262444A (zh) * 2017-06-27 2017-10-20 苏州长光华医生物医学工程有限公司 一种分析仪磁珠清洗方法
CN107398448A (zh) * 2017-06-28 2017-11-28 苏州长光华医生物医学工程有限公司 一种分析仪反应杯磁颗粒清洗方法
CN108856112A (zh) * 2018-03-19 2018-11-23 迈克医疗电子有限公司 磁珠清洗方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4005692A4 *

Also Published As

Publication number Publication date
EP4005692A4 (en) 2023-05-10
EP4005692A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
CN112296049B (zh) 清洗方法
US11513116B2 (en) Cleaning device and chemiluminescence detector
CN106706942B (zh) 自动分析装置及样本分析方法
WO2018126773A1 (zh) 自动分析装置及样本分析方法
CN103599898B (zh) 全自动化学发光免疫分析仪磁珠清洗装置
WO2018126774A1 (zh) 自动分析装置及样本分析方法
CN207181272U (zh) 磁珠自动清洗分离装置及免疫分析仪
CN107942085A (zh) 自动分析装置及其样本分析方法
CN105445481B (zh) 一种反应物摇匀装置
CN110045136A (zh) 一种自动加样机及自动加样的方法
CN110146712B (zh) 一种旋转抽样微型转盘式全自动发光免疫分析系统
CN103760373A (zh) 一种全自动化学发光免疫分析仪中的清洗装置
CN108982195A (zh) 一种全自动免疫磁珠法纯化仪
CN101349703A (zh) 自动分析装置
WO2019127016A1 (zh) 自动清洗分离装置
CN103920675B (zh) 一种用于全自动化学发光免疫分析仪的磁性微球清洗装置
CN110823669A (zh) 磁分离清洗方法
JP2010032215A (ja) 自動分析装置
CN204544866U (zh) 一种磁分离装置
WO2021016733A1 (zh) 清洗方法、清洗装置及免疫分析仪
CN212681947U (zh) 清洗装置
CN110586557B (zh) 清洗分离装置
CN211027415U (zh) 清洗分离装置
CN205374472U (zh) 一种反应物摇匀装置
CN217180948U (zh) 具有高紧凑度的全自动化学发光免疫分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019939286

Country of ref document: EP

Effective date: 20220228