WO2021015242A1 - 遺伝子組換え微生物及びジアミン化合物の製造方法 - Google Patents

遺伝子組換え微生物及びジアミン化合物の製造方法 Download PDF

Info

Publication number
WO2021015242A1
WO2021015242A1 PCT/JP2020/028456 JP2020028456W WO2021015242A1 WO 2021015242 A1 WO2021015242 A1 WO 2021015242A1 JP 2020028456 W JP2020028456 W JP 2020028456W WO 2021015242 A1 WO2021015242 A1 WO 2021015242A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
alcohol dehydrogenase
group
activity
yqhd
Prior art date
Application number
PCT/JP2020/028456
Other languages
English (en)
French (fr)
Inventor
祐太朗 山田
久成 米田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2021534076A priority Critical patent/JP7440519B2/ja
Priority to KR1020227004223A priority patent/KR20220032084A/ko
Priority to EP20843995.0A priority patent/EP4006162A4/en
Priority to CN202080048331.6A priority patent/CN114555779A/zh
Priority to US17/623,542 priority patent/US20220396800A1/en
Publication of WO2021015242A1 publication Critical patent/WO2021015242A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08007Holo-[acyl-carrier-protein] synthase (2.7.8.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/99Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
    • C12Y102/99006Carboxylate reductase (1.2.99.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/010251,6-Dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (1.3.1.25)

Definitions

  • the present invention relates to a recombinant microorganism that produces a diamine compound and a method for producing the diamine compound.
  • Diamine compounds are widely used as raw materials for polymers such as polyamide resins.
  • Typical industrially used diamine compounds are hexamethylenediamine (1,6-diaminohexane), heptamethylenediamine (1,7-diaminoheptane), and octamethylenediamine (1,8-diamino).
  • Octane decamethylenediamine (1,10-diaminodecane), dodecamethylenediamine (1,12-diaminododecane) and the like.
  • Non-Patent Document 1 Hexamethylenediamine is industrially produced by this method, but once adiponitrile is synthesized, a hydrogen addition reaction is carried out. Further, as for decanediamine, octanediamine, dodecanediamine and the like, a method of obtaining a corresponding dinitrile and synthesizing it by hydrogen addition is known as in the case of the above-mentioned adipic acid raw material. (Patent Documents 1 and 2)
  • Non-Patent Document 2 1,3-diaminopropane (Non-Patent Document 2), 1,4-diaminobutane, 1,5-diaminopentano (Non-Patent Document 3), 4-aminophenylethylamine (Non-Patent Document 4)
  • a method for producing such a diamine compound using a microorganism that has been metabolically modified by gene recombination has been published.
  • a method of producing a diamine from intracellular dicarboxylic acid, aminocarboxylic acid, dialdehyde, etc. by combining a foreign enzyme such as carboxylic acid decarboxylase or aminotransferase using a recombinant microorganism is a method of producing a diamine of a compound as a substrate.
  • Hexamethylenediamine (Patent Documents 3 and 4) and heptamethylenediamine (Patent Document 5) have been widely applied, for example.
  • Patent Document 3 predicts and exemplifies an enzyme gene whose yield is expected to be improved by deletion or destruction in a microbial host modified to have a hexamethylenediamine production pathway based on a metabolic simulation in in silico. ing. However, no mention is made of by-products derived from intermediates in the hexamethylenediamine production pathway and methods for suppressing them.
  • Patent Document 4 describes a method for producing hexamethylenediamine by an enzymatic reaction pathway via 6-hydroxyhexanoic acid. However, there is no mention of the production of by-products derived from intermediates in the hexamethylenediamine production pathway newly constructed by genetic recombination, and the method for suppressing them.
  • Patent Document 5 describes a method for producing heptamethylenediamine using an enzymatic reaction pathway via pimelic acid or the like. However, there is no mention of the production of by-products derived from intermediates in the reaction pathway and methods of suppressing them.
  • An object of the present invention is to provide a microorganism that produces a diamine compound and a method for producing the diamine compound.
  • the present invention provides the following.
  • the diamine compound is of the formula: H 2 N-R-NH 2 (In the formula, R is a chain or cyclic organic group composed of one or more atoms selected from the group consisting of C, H, O, N, S.) Represented by Genetically modified microorganisms modified to reduce the activity of alcohol dehydrogenase compared to non-reduced strains;
  • Modifications that reduce the activity of alcohol dehydrogenase compared to non-reduced strains A modification that suppresses the expression of the gene encoding alcohol dehydrogenase, or The recombinant microorganism according to [1], which is a modification in which the expression of a gene encoding alcohol dehydrogenase is suppressed and the activity of alcohol dehydrogenase is suppressed;
  • 100 is a base sequence encoding a protein consisting of an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted and / or added to the amino acid sequence of the protein encoded by the base sequence selected from 100.
  • DNA encoding a protein having alcohol dehydrogenase enzyme activity or: SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, DNA consisting of degenerate isomers of the base sequence selected from 84, 86, 88, 90, 92, 94, 96, 98 and 100
  • the recombinant microorganism according to [1] or [2], which is a protein encoded by.
  • the alcohol dehydrogenase is represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, [1] to [3], which are proteins having an amino acid sequence having 80% or more sequence identity with an amino acid sequence selected from 91, 93, 95, 97 and 99 and having alcohol dehydrogenase activity.
  • the recombinant microorganism according to any one item; [5] The alcohol dehydrogenase, yqhD, fucO, adhP, ybbO , eutG, ahr, yahK, adhE, ybdR, dkgA, yiaY, frmA, dkgB, yghA, ydjG, gldA, yohF, yeaE, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, SFA1, AAD3, AAD4, AAD10, AAD14, AAD15, YPR1, NCgl0324, NCgl0313, NCgl0219, NCgl2709, NCgl1112, NCgl2382, NCgl0186, NCgl0099, NCgl2952, NCgl1459, yogA, bdhK, bdhJ, akrN, The recombin
  • the recombinant microorganism according to any one of [1] to [12], which is carried out; [14]
  • the recombinant microorganisms include Esselicia, Corinebacterium, Bacillus, Acinetobacta, Burkholderia, Pseudomonas, Crostridium, Saccharomyces, Sizosaccalomyces, Yarrowia, Candita, Pikia.
  • Recombinant microorganisms described in Section; [26] Either contains a base sequence encoding a protein having 85% or more sequence identity with the base sequence shown in SEQ ID NO: 105 and having carboxylic acid reductase activity, or any of SEQ ID NOs: 101 to 104.
  • Recombinant microorganisms described in Section [27] Containing a base sequence encoding a protein having 85% or more sequence identity with the base sequence shown in SEQ ID NO: 109 and having phosphopantetinyl group transfer enzyme activity, or SEQ ID NOs: 106 to 108 [21] to [21] to [21], which comprises a base sequence encoding a protein having 80% or more sequence identity with the base sequence encoding the amino acid sequence shown in any of the above and having phosphopantetinyl group transfer enzyme activity.
  • the precursor is selected from the group consisting of dicarboxylic acid, carboxylic acid semialdehyde, aminocarboxylic acid, aminoaldehyde, dialdehyde, acyl-ACP, acyl-CoA and acyl phosphate, [31] or [32]. ] The method for producing a diamine compound according to the above.
  • a diamine compound can be produced.
  • lacI is the lacI gene
  • T7 Promoter is the T7 promoter
  • T7 Terminator is the T7 terminator
  • ygjG is the ygjG gene derived from Escherichia coli
  • MaCar is derived from Mycobacterium acid.
  • the reductase gene, "Npt” indicates the phosphopantetinyl group transfer enzyme gene derived from Nocardia iownsis
  • CAT indicates the chloramphenicol acetyltransferase gene
  • P15Aori indicates the replication origin.
  • the genetically modified microorganism according to the present invention is a genetically modified microorganism having a diamine compound production pathway and further modified so as to reduce alcohol dehydrogenase activity.
  • modifications include base substitutions, deletions, insertions and / or additions.
  • the "genetically modified microorganism" is also simply referred to as a "recombinant microorganism”.
  • the recombinant microorganism expresses an enzyme involved in diamine compound synthesis or a group of enzymes involved in diamine compound synthesis.
  • enzymes involved in the synthesis of diamine compounds include carboxylic acid reductase and transaminase.
  • the carboxylic acid reductase has an activity of converting the carboxyl group of, for example, a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde.
  • Transaminase has the activity of converting aldehydes to amines, as shown in FIG.
  • expressing an enzyme involved in diamine compound synthesis or an enzyme group involved in diamine compound synthesis means that the host microorganism itself has the ability to express such an enzyme or enzyme group. Alternatively, it means that the host microorganism may have been modified to express such an enzyme or group of enzymes.
  • the "diamine compound” (hereinafter, also simply referred to as “diamine”) in the present invention is represented by the formula: H 2 N-R-NH 2 .
  • R is a chain or cyclic divalent organic group composed of one or more atoms selected from the group consisting of C, H, O, N, S.
  • Chain-like organic groups include linear organic groups and branched organic groups.
  • Cyclic organic groups include alicyclic organic groups, heterocyclic organic groups, other ring organic groups, and aromatic organic groups.
  • Examples of the organic group constituting R include fats such as methylene group, ethylene group, vinylene group, trimethylene group, propylene group, propenylene group, tetramethylene group, isobutylene group, pentamethylene group, hexamethylene group and octamethylene group.
  • Alicyclic hydrocarbon groups such as group hydrocarbon groups, cyclobutylene groups, cyclopentylene groups, cyclohexylene groups, cycloheptylene groups, cyclooctylene groups, cyclohexenylene groups, cyclohexadienylene groups, o-phenylene groups, m-phenylene group, p-phenylene group, diphenylene group, naphthylene group, 1,2-phenylenedimethylene group, 1,3-phenylenedimethylene group, 1,4-phenylenedimethylene group, 1,4-phenylenediethylene group , Aromatic hydrocarbon groups such as methylenediphenylene group and ethylenediphenylene group, oxygen-containing characteristic groups such as oxy group and carbonyl group, ether groups such as methylenedioxy group and ethylenedioxy group, oxalyl group and malonyl group.
  • R may contain one or more substituents.
  • substituents examples include, but are not limited to, an amino group, a carboxy group, a cyano group, a nitro group, a hydroxy group, and a thiol group.
  • R is a chain and cyclic hydrocarbon, the chain hydrocarbons including linear and branched saturated and unsaturated hydrocarbons.
  • R is a hydrocarbon group having 3 to 20 carbon atoms. More preferably, R is a linear saturated hydrocarbon group represented by the formula: CH 2 (CH 2 ) n CH 2 , where n is 1, 2, 3, 4, 5, 6, 7 in the formula. , 8, 9 or 10. More preferably, n is 2, 3, 4, 5, 6, 7 or 8, and particularly preferably n is 4, 5, 6, 7 or 8.
  • Typical diamine compounds include 1,3-diaminopropane (trimethylenediamine), 1,4-diaminobutane (tetramethylenediamine, putresin), 1,5-diaminopentane (pentamethylenediamine, cadaberin), 1, 6-Diaminohexane (hexamethylenediamine), 1,7-diaminoheptane (heptamethylenediamine), 1,8-diaminooctane (octamethylenediamine), 1,9-diaminononan (nonamethylenediamine), 1,10-diamino Decane (decamethylenediamine), 1,11-diaminoundecane (undecamethylenediamine), 1,12-diaminododecane (dodecamethylenediamine), 3-aminobenzylamine, 4-aminobenzylamine, 2-methylpentamethylenediamine , 2-Methylpentam
  • the "dicarboxylic acid” in the present specification refers to a compound having a structure represented by the chemical formula HOOC-R-COOH (in the formula, R is as described above).
  • Dicarboxylic acids include aliphatic dicarboxylic acids and aromatic carboxylic acids. Typical dicarboxylic acids include oxalic acid, malonic acid, succinic acid, fumaric acid, itaconic acid, glutaric acid, adipic acid, muconic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, dodecanedic acid, and malic acid.
  • 2,5-Frangicarboxylic acid phthalic acid, isophthalic acid, terephthalic acid, maleic acid, glutaric acid, muconic acid and the like, but are not limited thereto.
  • the dicarboxylic acid takes a neutral or ionized form, including any salt form, and this form is pH dependent.
  • carboxylic acid semialdehyde refers to a compound having a structure represented by the chemical formula HOOC-R-CHO (in the formula, R is as described above).
  • Typical examples of carboxylic acid semialdehyde include succinic semialdehyde, glutarate semialdehyde, adipate semialdehyde, pimelic acid semialdehyde, suberic acid semialdehyde, azelaic acid semialdehyde, and sebacic acid semialdehyde. Not limited to these. It will be appreciated by those skilled in the art that the carboxylic acid semialdehyde takes a neutral or ionized form, including any salt form, and this form is pH dependent.
  • amino acids herein, (wherein, R is as previously described.) Chemical formula H 2 N-R-COOH refers to compounds having a structure shown in FIG.
  • Typical aminocarboxylic acids include glycine, ⁇ -alanine, 4-aminobutanoic acid, 5-aminopentanoic acid, 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10 -Aminodecanoic acid, 12-aminododecanoic acid, and the like, but are not limited thereto. It will be appreciated by those skilled in the art that the aminocarboxylic acid takes a neutral or ionized form, including any salt form, and this form is pH dependent.
  • endogenous refers to a gene or protein (typically an enzyme) encoded by a host microorganism that has not been modified by gene recombination. , It is used to mean that the host microorganism has it, regardless of whether it is functionally expressed to the extent that it can promote a dominant biochemical reaction in the host cell.
  • the terms “foreign” or “foreign” substantially express an enzyme from a pre-genetically modified host microorganism if it does not have the gene to be introduced by the present invention. Introducing a gene or nucleic acid sequence based on the present invention into a host when the gene or nucleic acid sequence based on the present invention is not expressed, or when the amino acid sequence of the enzyme is encoded by a different gene but does not express comparable endogenous enzyme activity after gene recombination. Is used to mean.
  • the terms “extrinsic” and “extrinsic” are used interchangeably herein.
  • FIG. 1 shows an example of functional group conversion of the synthetic pathway of the diamine compound in the present invention.
  • Diamines are synthesized using compounds that can be induced to aldehydes and / or aldehydes as precursors.
  • Aldehydes are converted to amines by transaminase.
  • the recombinant microorganism of the present invention suppresses the conversion of aldehyde, which is an intermediate in the pathway, to alcohol by modifying the activity of alcohol dehydrogenase to decrease.
  • the alcohol dehydrogenase includes one or more proteins having alcohol dehydrogenase activity.
  • the host microorganism used in the present invention is not particularly limited, and may be either a prokaryote or a eukaryote. Any of those already isolated and preserved, those newly isolated from nature, those that have been genetically modified, those that have been modified so that the above compounds can be metabolized, and the like can be arbitrarily selected. For example, E.
  • Esserishia coli, Escherichia coli Esserishia genus, such as Pseudomonas, such as Pseudomonas putida
  • Bacillus such as Bacillus subtilis Bacillus subtilis
  • Corynebacterium such as coryneform bacteria (Corynebacterium glutamicum)
  • Clostridium such as Clostridium acetobutylicum sp., Acinetobacter spp.
  • Burkholderia bacteria of the genus the genus Saccharomyces such as Saccharomyces cerevisiae, Schizosaccharomyces genus, such as Schizosaccharomyces pomb e
  • the genus Pichia such as Pichia pastoris
  • Yarrowia such as Yarrowia lipolytica yeast
  • Aspergillus oryzae Examples include, but are not
  • the recombinant microorganism in the present invention has been further modified so that the endogenous alcohol dehydrogenase (ADH) activity is reduced as compared with the non-reduced strain.
  • ADH endogenous alcohol dehydrogenase
  • the present inventors have found that in a host microorganism having a diamine compound production pathway, an alcohol compound derived from an intermediate of the diamine biosynthesis pathway is by-produced by endogenous alcohol dehydrogenase activity.
  • the production of alcohol compounds, which are by-products is suppressed and / or the amount of diamine compound produced is improved. It was found that the diamine compound can be produced efficiently.
  • Alcohol dehydrogenase is an enzyme that has the activity of reducing aldehydes and ketones and converting them into alcohol in the presence of electron donors.
  • alcohol dehydrogenase is a protein containing an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added in the amino acid sequence of the enzyme, and is functionally equivalent to the enzyme. Protein is also included.
  • the "functionally equivalent protein” is a protein having an activity similar to that of the enzyme.
  • a “functionally equivalent protein” includes a protein having 80%, 85%, 90%, 95%, 97%, 98% or 99% or more sequence identity with the amino acid sequence of the enzyme.
  • alcohol dehydrogenase refers to 80%, 85%, 90%, 95%, 97%, 98% or 99% or more sequence identity with the amino acid sequence set forth in the SEQ ID NOs: specified below. It includes a protein having an amino acid sequence having an alcohol dehydrogenase enzyme activity.
  • the gene encoding alcohol dehydrogenase is -DNA consisting of the base sequence indicated by the SEQ ID NO: specified below, A DNA that hybridizes under austerity conditions and encodes a protein having alcohol dehydrogenase enzyme activity with a DNA having a base sequence complementary to the base sequence indicated by the sequence number specified below.
  • -It consists of a base sequence having 85%, 90%, 95%, 97%, 98% or 99% or more sequence identity with the base sequence shown in the SEQ ID NO: specified below, and has alcohol dehydrogenase enzyme activity.
  • DNA encoding the protein One or more (for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5) with respect to the amino acid sequence of the protein encoded by the base sequence shown in the SEQ ID NO: specified below.
  • the "austerity condition” is, for example, a condition of about “1xSSC, 0.1% SDS, 60 ° C.”, and a stricter condition is a condition of about "0.1xSSC, 0.1% SDS, 60 ° C.”. There are more severe conditions such as "0.1xSSC, 0.1% SDS, 68 ° C.”.
  • alcohol dehydrogenase is described in EC1.1.1.
  • Enzymes represented by m are included. Examples of alcohol dehydrogenase include, but are not limited to, enzymes classified into EC1.1.1.1, EC1.1.1.12, and EC1.11.71.
  • the alcohol dehydrogenase if for example E. coli, code yqhD, fucO, adhP, ybbO, eutG, ahr, yahK, adhE, ybdR, dkgA, yiaY, frmA, dkgB, yghA, ydjG, gldA, yohF, and yeaE gene Examples of proteins that are produced.
  • budding yeast Sacharomyces cerevisiae
  • ADH1, ADH2 , ADH3, ADH4, ADH5, ADH6, ADH7, SFA1, AAD3, AAD4, AAD10, AAD14, AAD15, and YPR1 gene protein can be mentioned, which is encoded by, coryneform bacteria if (Corynebacterium glutamicum), NCgl0324, NCgl0313 , NCgl0219, NCgl2709, NCgl1112, NCgl2382, NCgl0186, NCgl0099, NCgl2952, and NCgl1459 gene protein can be mentioned, which is encoded by, if Bacillus subtilis (Bacillus subtilis), Yoga, Examples include , but are not limited to, proteins encoded by the bdhK , bdhJ , akrN , yqkF , yccK , ioluS , and yrpG genes, as long as
  • Alcohol dehydrogenase is, for example, a protein encoded by at least one gene selected from the group consisting of yqhD , fucO , adhP , eutG , ybbO , ahr , and yahK . At least one gene selected from the group consisting of the above genes is modified so that the activity of alcohol dehydrogenase is reduced as compared with the non-reduced strain, thereby suppressing the production of alcohol compounds, which are by-products. And / or, the amount of the diamine compound produced can be improved to efficiently produce the diamine compound.
  • Alcohol dehydrogenase is preferably encoded by at least one gene selected from the group consisting of yqhD , fucO , adhP , ybbO , euG , ahr , and yahK genes, more preferably from the group consisting of yqhD , ahr , and yahK genes. It is encoded by at least one gene selected, more preferably by at least one gene selected from the group consisting of the ahr and yahK genes.
  • Alcohol dehydrogenase is preferably encoded by at least one gene selected from the group consisting of yqhD and adhP , and more preferably by the adhP gene.
  • the genetically modified microorganism can increase the amount of the diamine compound produced in the production of the diamine compound.
  • Alcohol dehydrogenase preferably selected, yqhD, fucO, eutG, ybbO , ahr, and is encoded by at least one gene selected from the group consisting of YahK, more preferably eutG, ybbO, ahr, and from the group consisting of YahK It is encoded by at least one gene.
  • the genetically modified microorganism can suppress the production of an alcohol form as a by-product in the production of the diamine compound.
  • the alcohol dehydrogenase is preferably encoded by two or more genes selected from the group consisting of yqhD , fucO , adhP , eutG , ybbO , ahr and yahK , and more preferably the yqhD gene and fucO , adhP , eutG , eutG. , Ahr and yahK , encoded by one or more genes selected from the group.
  • the recombinant microorganism can significantly improve the amount of the diamine compound produced in the production of the diamine compound, and the alcohol which is a by-product. It can suppress the formation of the body.
  • Alcohol dehydrogenase is preferably -YqhD and fucO , ⁇ YqhD and adhP , ⁇ YqhD and euG , YqhD and ybbO , -YqhD and ahr , ⁇ YqhD and yahK , YqhD , fucO and adhP , -YqhD , fucO , adhP and euG , YqhD , fucO , adhP , euG and ybbO , -YqhD , fucO , adhP , euG , ybbO and ahr , and, -YqhD , fucO , adhP , euG , ybbO and ahr , and, -YqhD , fucO , adhP , euG , ybbO
  • the recombinant microorganism can more remarkably increase the amount of the diamine compound produced in the production of the diamine compound and by-produce it.
  • the production of alcoholic compounds can be remarkably suppressed.
  • the amino acid sequence of a typical protein encoded by the alcohol dehydrogenase gene and the base sequence of the coding region are shown in Tables 1-1 to 1-50 below.
  • the first row of each table shows gene and protein names, Accession numbers, and origins.
  • the activity of one type of ADH may be reduced, or the activity of two or more types of ADH may be reduced. From the viewpoint of further reducing the by-product of the alcohol form, it is preferable to reduce the ADH activity of two or more kinds.
  • the "ADH non-reduced strain” refers to a strain that has not been modified to reduce ADH activity.
  • the ADH non-lowering strain include, but are not limited to, wild-type strains and reference strains of each microbial strain, and derivative strains including strains obtained by breeding.
  • Escherichia coli strains for example, K-12 strain, B strain, C strain, W strain, and derivative strains of those strains, for example, BL21 (DE3) strain, W3110 strain, MG1655 strain, JM109 strain, DH5 ⁇ strain, HB101 strain. Etc., but are not limited to these.
  • modified microorganism “modification was made so as to reduce the activity of alcohol dehydrogenase” means that at least the modification was made to suppress the expression of the gene encoding alcohol dehydrogenase.
  • the "modification that reduces the activity of alcohol dehydrogenase” includes a modification that suppresses the expression of a gene encoding alcohol dehydrogenase, as well as a modification that suppresses the activity of the enzyme. That is, the recombinant microorganism of the present invention is modified so that the expression of the gene encoding alcohol dehydrogenase is suppressed or the activity of the enzyme is suppressed in a non-reduced strain (for example, a host microorganism). It is done.
  • modified so as to reduce the activity of alcohol dehydrogenase means that at least the modification is performed in which the expression of the gene encoding alcohol dehydrogenase is suppressed, preferably. , It means that the expression of the gene encoding alcohol dehydrogenase is suppressed and the activity of alcohol dehydrogenase is suppressed.
  • the host microorganism has multiple genes encoding alcohol dehydrogenase, and there may be multiple alcohol dehydrogenases that are active against the same substrate. Therefore, in the case of "modifications have been made to reduce the activity of alcohol dehydrogenase".
  • the genetically modified microorganism of the present invention is preferably modified so that the expression of two or more genes encoding alcohol dehydrogenase is suppressed.
  • the recombinant microorganism can significantly improve the production amount of the diamine compound in the production of the diamine compound and suppress the production of the alcohol compound which is a by-product. be able to.
  • Modifications that reduce the activity of ADH can be achieved, for example, by reducing the expression of the gene encoding ADH.
  • a decrease in gene expression may mean, more specifically, a decrease in the transcription amount (mRNA amount) of the gene and / or a decrease in the translation amount (protein amount) of the gene. Decreased gene expression also includes cases where the gene is not expressed at all.
  • the decrease in gene expression may be, for example, a decrease in transcription amount, a decrease in translation amount, or a combination thereof.
  • the decrease in transcription amount can be achieved by, for example, a method of modifying an expression regulation region such as a promoter region or a ribosome binding site (RBS) of the ADH gene.
  • the decrease in the transcription amount of a gene can be evaluated by a method well known to those skilled in the art, and examples thereof include a quantitative RT-PCR method and a Northern blotting method.
  • the transcription amount of the gene may be reduced to 50% or less, 20% or less, 10% or less, 5% or less, or 0% as compared with, for example, a non-ADH-reduced strain.
  • the decrease in the amount of translation includes, for example, a method of suppressing translation by inserting a riboswitch region upstream of the gene.
  • a riboswitch is an RNA that selectively binds to a specific small molecule compound, and the small molecule compound is called a ligand. In the absence of ligand, it forms a secondary structure with RNA base pairs and affects the nucleic acids around the riboswitch. In particular, when a ribosome binding site is contained downstream of the riboswitch, it prevents the ribosome from approaching the ribosome binding site, thereby hindering the translation of mRNA of a gene located further downstream.
  • the ribosome in the presence of a ligand, the ribosome can approach the ribosome binding site through the elimination of the secondary structure associated with the ligand binding. Therefore, when the ligand is not added, the mRNA of the gene is not translated and the expression of the target gene is suppressed.
  • the decrease in the amount of translation of a gene can be evaluated by a method well known to those skilled in the art, and examples thereof include the Western blotting method.
  • the amount of translation of the gene may be reduced to 50% or less, 20% or less, 10% or less, 5% or less, or 0% as compared with, for example, a non-ADH-reduced strain.
  • Modifications that reduce the activity of ADH can also be achieved by disrupting the gene encoding ADH.
  • Disruption of the ADH gene means that the gene is modified so that a protein having ADH activity is not expressed, and includes a case where no protein is produced or a case where a protein with reduced or eliminated ADH activity is produced. ..
  • it can be achieved by deleting part or all of the coding region of the gene on the chromosome.
  • the entire gene may be deleted, including the sequences before and after the gene on the chromosome.
  • the region to be deleted may be any of the N-terminal region, the internal region, and the C-terminal region.
  • ADH gene disruption is a method of introducing an amino acid substitution (missense mutation) into the coding region of the ADH gene on the chromosome, a method of introducing a stop codon (nonsense mutation), or the addition or deletion of 1 or 2 bases. It can also be achieved by introducing a frameshift mutation.
  • disruption of the ADH gene can also be achieved by inserting another sequence into the coding region of the gene on the chromosome.
  • sequences include antibiotic resistance genes and transposons, but are not particularly limited as long as they reduce ADH activity.
  • a method using homologous recombination can be used, for example, a method using Red recombination of ⁇ -phage (Dasenko, Kirill A., and Barry L. Wanna. "One-step activation of”. Chromosomal genes in Escherichia coli K-12 using PCR products. ”Proceedings of the National Academia of Sciences 97.12 (2000): Method including temperature 97.12 (2000): 6640-6645. , Molecular microbiology 5.6 (1991): 1447-1457.), Method using CRISPR-Cas9 system (Jiang, Yu, et al. "Multigene editing in the Escherichia coli E. coli” Examples include, but are not limited to, Environ. Microbiol. 81.7 (2015): 2506-2514.).
  • the destruction of the ADH gene may be performed by mutation treatment.
  • mutation treatment include physical treatment such as X-ray treatment, ultraviolet treatment, and ⁇ -ray treatment, N-methyl-N'-nitro-N-nitrosoguanidine, ethylmethane sulfonate, methyl methane sulfonate, and the like.
  • Chemical treatment with a mutant agent of the above can be mentioned, but is not particularly limited as long as it reduces the ADH activity.
  • ADH activity can be evaluated by methods well known to those skilled in the art. For example, a method of monitoring the oxidation of NAD (P) H by incubating with a substrate (aldehyde or ketone) and NAD (P) H and measuring the absorbance at 340 nm can be mentioned (Pick, et al., Applied microbiology and biotechnology and biotechnology). 97.13 (2013): 5815-5824.). The ADH activity may be reduced to 50% or less, 20% or less, 10% or less, 5% or less, or 0% as compared with, for example, ADH of a non-ADH lowering strain.
  • the enzyme involved in the synthesis of the diamine compound may be endogenous, exogenous, or a combination thereof.
  • the recombinant microorganism according to the present invention preferably expresses a carboxylic acid reductase as an enzyme gene involved in the synthesis of a diamine compound.
  • Carboxylic Acid Reductase generally means any protein that has the activity of reducing carboxylic acids and converting them to aldehydes.
  • the carboxylic acid reducing enzyme has, for example, an activity of converting a carboxyl group of a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde.
  • Examples of the carboxylic acid reductase include enzymes classified into EC1.2.1.130, EC1.2.1.131, EC1.2.1.195, EC1.2.999.6 and the like. , Not limited to these.
  • Examples of sources of the gene encoding this enzyme is not particularly limited as long as having a carboxylic acid reducing activity, as a typical example, Nocardia iowensis, Nocardia asteroides, Nocardia brasiliensis, Nocardia farcinica, Segniliparus rugosus, Segniliparus rotundus, Tsukamurella paurometabola, Mycobacterium marinum, Mycobacterium neoaurum, Mycobacterium abscessus, Mycobacterium avium, Mycobacterium chelonae, Mycobacterium immunogenum, Mycobacterium smegmatis, Serpula lacrymans, Heterobasidion annosum, Coprinopsis cinerea, Aspergillus flavus, Aspergillus terreus, Neurospora crassa, although Saccharomyces cerevisiae and the like , Not limited to these.
  • a gene encoding a protein consisting of the amino acid sequence set forth in any of SEQ ID NOs: 101 to 104 is used.
  • a gene encoding the carboxylic acid reductase MaCar from Mycobacterium abscess is used.
  • the nucleotide sequence of the coding region of the MaCar gene is shown in SEQ ID NO: 105, and the amino acid sequence of MaCar is shown in SEQ ID NO: 103.
  • the activity of the carboxylic acid reductase can be assessed by methods well known to those skilled in the art, eg, oxidation of NADPH by incubating the substrate (carboxylic acid) with the enzyme in the presence of ATP and NADPH and measuring the absorbance at 340 nm. And a method of quantifying the amount of substrate consumed and / or the amount of product (aldehyde) produced (Venkitas Bramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1,478-485). (2007)).
  • the carboxylic acid reductase can be converted into an active holoenzyme by being phosphopantetinylated (Venkitas bramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1,478-485 (2007). )). Phosphopantetinylation is catalyzed by a phosphopantetheninyl transferase (PT) (eg, enzymes classified as EC2.7.8.7). Therefore, the microorganism of the present invention may be further modified to increase the activity of the phosphopantetinyltransferase.
  • PT phosphopantetheninyl transferase
  • Methods for increasing the activity of phosphopantetinyltransferase include a method of introducing a foreign phosphopantetinyltransferase gene and a method of enhancing the expression of an endogenous phosphopantetinyltransferase gene. These include, but are not limited to. Examples of donors of phosphopantetinyl groups include coenzyme A (CoA).
  • CoA coenzyme A
  • the source of the PT gene is not particularly limited as long as it has phosphopantetinyl group transfer activity, but examples of the gene encoding a typical phosphopantetinyl group transfer enzyme include Sfp of Bacillus subtilis and Nocardia iownis. Npt (Venkitas bramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1,478-485 (2007)), Saccharomyces cerevisiae Lys5 (Ehmann) Lys5 (Ehmann) .) Can be mentioned.
  • a gene encoding a protein consisting of the amino acid sequence set forth in any of SEQ ID NOs: 106 to 108 is used.
  • the Npt gene of Nocardia iowensis derived from Nocardia iowensis is used.
  • the nucleotide sequence of the coding region of the Npt gene is shown in SEQ ID NO: 109, and the amino acid sequence of Npt is shown in SEQ ID NO: 107.
  • the recombinant microorganism of the present invention may express an acyl- (acyl transport protein (ACP)) reductase (AAR).
  • AAR is an enzyme responsible for the conversion of acyl ACPs to aldehydes.
  • Gene encoding AAR is not particularly limited, typical AAR gene, for example, Synechococcus elongatus the AAR (Schirmer, Andreas, et al , Science 329.5991 (2010):.. 559-562) , and the like Be done.
  • an enzyme that produces an aldehyde from acyl-CoA may be expressed.
  • Examples of the gene encoding the enzyme that catalyzes this reaction include acr1 (ZHENG, Yan-Ning, et al., Microbial cell factories, 2012, 11.1: 65) of Acinetobacter baylyi , which encodes a fatty acid acyl-CoA dehydrogenase. ), And the sucD gene encoding the succinate semialdehyde dehydrogenase of Clostridium kluyveri (Sohling, B., and Gerhard Gottschalk., Journal of catalyst alcoholy 178.3 (1996), limited to 178.3 (1996): 87. Not done.
  • an enzyme that produces aldehyde from acyl phosphate may be expressed, for example, aspartate semialdehyde dehydrogenase (ASD; EC1.) That catalyzes the reaction of aspartate semialdehyde from 4-aspartyl phosphate in a NADPH dependence. 2.1.11) catalyzes the same reaction, and the acid gene of Escherichia coli and the like can be used.
  • ASSD aspartate semialdehyde dehydrogenase
  • the recombinant microorganism according to the present invention expresses a transaminase as an enzyme gene involved in the synthesis of a diamine compound.
  • Transaminase means any enzyme that catalyzes transamination reactions in the presence of amino group donors and receptors.
  • Examples of the transaminase include EC 2.6.1.
  • Examples include enzymes classified as p (where p is an integer greater than or equal to 1).
  • Amino group donors include, but are not limited to, L-glutamic acid, L-alanine, and glycine.
  • transaminase is not particularly limited as long as it has transaminase activity, but putrescine aminotransferase or other diamine transferase can be preferably used.
  • putrescine aminotransferase or other diamine transferase can be preferably used.
  • the ygjG gene encoding putrescine aminotransferase in Escherichia coli which has been reported to transaminate cadaverine and spermidine (Samsonova., Et al., BMC microbiology 3.1 (2003): 2.), and Pseudomonas.
  • SperC gene encoding putrescine aminotransferase of the genus (Lu et al., Journal of bacteriologic 184.14 (2002): 3765-3773., Galman et al., Green Chemistry 19.2 (2017): 361-366. , GabT gene encoding GABA aminotransferase of Escherichia coli, puuE gene and the like.
  • Ruegeria pomeroyi Chromobacterium violaceum, Arthrobacter citreus, Sphaerobacter thermophilus, Aspergillus fischeri, Vibrio fluvialis, Agrobacterium tumefaciens, also ⁇ - transaminase derived from Mesorhizobium loti, etc., 1,8-diaminodiphenylmethane, such as octane and 1,10-diaminodecane It has been reported to have transaminase activity to a compound and can be preferably used (Sung et al., Green Chemistry 20.20 (2016): 4591-4595., Sortler et al., Angewandte Chemie). 124.36 (2012): 9290-9293.).
  • a gene encoding a transaminase for example, a gene encoding a protein consisting of the amino acid sequence set forth in any of SEQ ID NOs: 110 to 114 is used.
  • the putrescine aminotransferase ygjG gene derived from Escherichia coli is used.
  • the nucleotide sequence of the coding region of the ygjG gene is shown in SEQ ID NO: 115, and the amino acid sequence of ygjG is shown in SEQ ID NO: 110.
  • the gene encoding the above enzyme that can be used in the present invention may be derived from a non-exemplified organism or may be artificially synthesized, and is a substantial enzyme in a host microbial cell. Anything that can express activity will do.
  • the enzyme gene that can be used for the purpose of the present invention includes all mutations that can occur in nature and artificially introduced mutations as long as they can express substantial enzyme activity in the host microbial cell. And may have modifications. For example, it is known that there are extra codons in the various codons that encode a particular amino acid. Therefore, in the present invention as well, an alternative codon that will be finally translated into the same amino acid may be used. That is, because the genetic code is degenerate, multiple codons can be used to encode a particular amino acid, so that the amino acid sequence can be encoded by any set of similar DNA oligonucleotides.
  • the recombinant microorganism according to the present invention has, for example, 80%, 85%, 90%, 95%, 97%, 98% with the base sequence of the above enzyme gene, provided that it can express substantial enzyme activity. Alternatively, it may contain a base sequence having 99% or more sequence identity. Alternatively, the recombinant microorganism according to the present invention has, for example, 80%, 85%, 90%, 95%, 97%, 98% or 99% or more sequence identity with the base sequence encoding the amino acid sequence of the enzyme. Can include a base sequence having.
  • the term "expression cassette” means a nucleotide containing a nucleic acid to be expressed or a nucleic acid sequence that regulates transcription and translation operably linked to a gene to be expressed.
  • the expression cassette of the invention contains a promoter sequence 5'upstream from the coding sequence, a terminator sequence 3'downstream, and optionally additional conventional regulatory elements in a functionally linked manner, such.
  • the nucleic acid to be expressed or the gene to be expressed is introduced into the host microorganism.
  • a promoter is defined as a DNA sequence that binds RNA polymerase to DNA and initiates RNA synthesis, regardless of whether it is a constitutive phenotype promoter or an inducible phenotype promoter.
  • a strong promoter is a promoter that initiates mRNA synthesis at a high frequency, and is also preferably used in the present invention.
  • coli coli, lac, trp, tac or trc, major operator and promoter regions of ⁇ phage, regulatory regions of fd-coated proteins, glycolytic enzymes (eg, 3-phosphoglycerate kinase, glyceraldehyde-3-phosphate) Acid dehydrogenase), glutamate decarboxylase A, promoter for serine hydroxymethyltransferase, promoter region of T7 phage-derived RNA polymerase, and the like are available.
  • HCE high-level constitutive expression
  • cspB promoter sodA promoter
  • EF-Tu elongation factor
  • a T7 terminator As the terminator, a T7 terminator, an rrnBT1T2 terminator, a lac terminator and the like can be used.
  • examples of other regulatory elements may include selectable markers, amplification signals, origins of replication, and the like. Suitable regulatory sequences are described, for example, in “Gene Expression Technology: Methods in Enzymology 185", Academic Press (1990).
  • the expression cassette described above is incorporated into a host microorganism by incorporating it into a vector consisting of, for example, a plasmid, a phage, a transposon, an IS element, a fosmid, a cosmid, or a linear or circular DNA. Plasmids and phages are preferred. These vectors may be autonomously replicated in the host microorganism or may be replicated by chromosomes. Suitable plasmids are, for example, E.
  • plasmids and the like that can be used are described in "Cloning Vectors", Elsevier, 1985.
  • the introduction of the expression cassette into the vector is possible by conventional methods including excision, cloning, and ligation with appropriate restriction enzymes.
  • Each expression cassette may be located on one vector or on two or more vectors.
  • a conventional method can be used as a method that can be applied when introducing the vector into a host microorganism.
  • a calcium chloride method, an electroporation method, a conjugation transfer method, a protoplast fusion method and the like can be mentioned, but the method is not limited to these, and a method suitable for the host microorganism can be selected.
  • the recombinant microorganism obtained as described above is cultured and maintained under conditions suitable for the growth and / or maintenance of the recombinant microorganism for the production of the diamine compound of the present invention.
  • Suitable medium composition, culture conditions, and culture time for recombinant microorganisms derived from various host microorganisms can be easily set by those skilled in the art.
  • Another embodiment of the present invention relates to a method for producing a diamine compound using the above-mentioned recombinant microorganism.
  • the method for producing a diamine includes, for example, the following steps.
  • the method for producing a diamine compound includes a culturing step of culturing the recombinant microorganism according to the above-described embodiment. For example, by culturing a recombinant microorganism in a medium containing a carbon source and a nitrogen source, a culture solution containing bacterial cells can be obtained.
  • the production method may include contacting the recombinant microorganism with a precursor of a diamine compound.
  • a method of supplying the diamine compound precursor to the recombinant microorganism a method of producing the diamine compound precursor in the recombinant microorganism or a method of supplying the diamine compound precursor from outside the cell regardless of the recombinant microorganism is used. Can be mentioned.
  • the medium may further contain the precursor, or the precursor may be added to the medium during the culturing step.
  • the medium may be a natural, semi-synthetic, synthetic medium containing one or more carbon sources, nitrogen sources, inorganic salts, vitamins and, in some cases, trace elements such as trace elements or vitamins.
  • the medium used must adequately meet the nutritional requirements of the microorganism to be cultured.
  • Carbon sources are D-glucose, sucrose, lactose, fructose, maltose, oligosaccharides, polysaccharides, starch, cellulose, rice bran, waste sugar dense, fats and oils (eg soybean oil, sunflower oil, peanut oil, palm oil, etc.), fatty acids ( Examples include palmitic acid, linoleic acid, oleic acid, linolenic acid, etc.), alcohols (eg, glycerol, ethanol, etc.), and organic acids (eg, acetic acid, lactic acid, succinic acid, etc.). Further, it may be a biomass containing D-glucose. Examples of suitable biomass include corn decomposition liquid and cellulose decomposition liquid. These carbon sources can be used individually or as a mixture.
  • Diamine compounds produced using biomass-derived raw materials can be prepared, for example, by measuring the biobase carbon content based on Carbon-14 (radiocarbon) analysis specified in ISO 16620-2 or ASTM D6866, for example, oil, natural gas, coal. It can be clearly distinguished from synthetic raw materials derived from such as.
  • Carbon-14 radiocarbon
  • the nitrogen source can be a nitrogen-containing organic compound (eg, peptone, malariaaminoic acid, trypton, yeast extract, meat extract, malt extract, corn steep liquor, soybean flour, amino acids and urea, etc.), or an inorganic compound (eg, ammonia).
  • a nitrogen-containing organic compound eg, peptone, malariaaminoic acid, trypton, yeast extract, meat extract, malt extract, corn steep liquor, soybean flour, amino acids and urea, etc.
  • an inorganic compound eg, ammonia
  • examples include aqueous solution, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, sodium nitrate, ammonium nitrate, etc.). These nitrogen sources can be used individually or as a mixture.
  • the medium may also contain the corresponding antibiotic if the recombinant microorganism expresses useful additional traits, eg, has a marker of resistance to the antibiotic. As a result, the risk of contamination by germs during culturing is reduced.
  • antibiotics include ⁇ -lactam antibiotics such as ampicillin, aminoglycoside antibiotics such as canamycin, macrolide antibiotics such as erythromycin, tetracycline antibiotics, and chloramphenicol, but are limited thereto. Not done.
  • the "precursor" of a diamine compound refers to a compound that can be induced into a diamine compound by an enzyme involved in the synthesis of the diamine compound of the present invention.
  • the precursor include, but are not limited to, dicarboxylic acid, carboxylic acid semialdehyde, dialdehyde, aminocarboxylic acid, aminoaldehyde, acyl-ACP, acyl-CoA, and acyl phosphate.
  • adipic acid As an example, as specific precursors that can be derived to hexamethylenediamine, adipic acid, adipic acid semialdehyde, adipaldehyde, 6-aminohexanic acid, 6-aminohexanal, adipyl-CoA, adipyl phosphate and the like are used. it can.
  • adipic acid is produced by the carboxylic acid reductase and transaminase produced by the recombinant microorganism by contacting the recombinant microorganism with the precursor adipic acid. Converted to hexamethylenediamine.
  • the diamine compound is 1,10-decanediamine
  • the carboxylic acid reductase and the transaminase produced by the recombinant microorganism can be used. Sebacic acid is converted to 1,10-decanediamine.
  • the precursor one type of precursor may be used, or two or more types of precursors may be combined. Further, in the case of a compound that can take the form of a salt, the precursor may be used as a salt, may be used as a free form, or a mixture thereof may be used.
  • the method for producing the precursor is not particularly limited, and for example, it can be produced by a chemical synthesis method, an enzymatic method, a biological conversion method, a fermentation method, or a combination thereof.
  • the diamine compound in the culturing step, can be produced by contacting the recombinant microorganism of the present invention with the precursor of the diamine compound to generate and accumulate the diamine compound in the medium. Further, as described below, in the reaction step, the diamine compound may be generated and accumulated in the reaction solution by allowing the recombinant microorganism of the present invention to act in the aqueous solution containing the diamine compound precursor. Good.
  • This step is a step of bringing the precursor of the diamine compound into contact with the recombinant microorganism, and produces a target diamine compound from the precursor of the diamine compound.
  • Contact with the precursor of the diamine may be carried out, for example, in the above-mentioned culture step as described above, or may be carried out after the culture step.
  • this reaction step is performed after the culture step, the culture solution and / or cells obtained in the culture step are brought into contact with an aqueous solution containing a precursor of a diamine compound to obtain a reaction solution containing a diamine compound.
  • the diamine compound is generated and accumulated in the reaction solution.
  • a culture solution containing the cells obtained in the culture step and / or cells from which the supernatant is removed by centrifugation or the like from the culture solution obtained in the culture step are used as precursors.
  • a reaction solution is obtained by contacting with an aqueous solution containing.
  • the bacterium that produces a precursor by fermentation and the recombinant microorganism according to the present invention may be co-cultured. By co-culturing these, the precursor produced by the bacterium can be efficiently converted into the target diamine compound by the enzyme produced by the recombinant composition according to the present invention.
  • the genetically modified microorganism according to the present invention may be provided with a diamine compound precursor-producing ability to generate and accumulate a diamine compound from a component in the medium.
  • a recombinant microorganism has the ability to produce a dicarboxylic acid, a carboxylic acid semialdehyde, or an aminocarboxylic acid, and further expresses an aminotransferase and a carboxylic acid reductase to produce a diamine compound.
  • a recombinant microorganism has an ability to produce adipic acid, adipic acid semialdehyde, or 6-aminohexanoic acid, and further expresses an aminotransferase and a carboxylic acid reductase to obtain hexamethylenediamine. Can be produced.
  • the production of by-products can be suppressed and the diamine compound can be efficiently produced.
  • the activity of alcohol dehydrogenase is modified so as to be lower than that of a non-reduced strain, thereby producing an alcohol form as a by-product. Can be suppressed and the diamine compound can be efficiently produced.
  • pHAK1 accession number NITE P-02919, National Institute of Technology and Evaluation Biotechnology Center Patent Microorganisms Depositary Center (NPMD) (Address: 2-5-8 122 Kazusakamatari, Kisarazu City, Chiba Prefecture) It was deposited in Room No.) on March 18, 2019.
  • pHAK1 contains a temperature-sensitive mutant repA gene, a kanamycin resistance gene, and a Levansucrase gene SacB derived from Bacillus subtilis .
  • the levansucrase gene acts lethal to host microorganisms in the presence of sucrose.
  • PrimeSTAR Max DNA Polymerase product name, manufactured by Takara Bio Inc.
  • Escherichia coli HST08 strain was used for plasmid preparation.
  • genomic DNA of the Escherichia coli BL21 (DE3) strain was obtained as a template.
  • a PCR product containing the upstream region, coding region, and downstream region of the disruption target gene was obtained. The combination of target gene and primer sequence is shown in the table below.
  • this PCR product was inserted into a pHAK1 plasmid fragment amplified using the primers of SEQ ID NOs: 130 and 131 using an In-Fusion HD cloning kit (product name, manufactured by Clontech) and cyclized.
  • pHAK1 plasmid into which the DNA fragments of the upstream, coding, and downstream regions of the obtained disruption target gene were inserted as a template
  • PCR was performed using the primers shown in the table below, and one of the coding regions of the disruption target gene.
  • a plasmid fragment obtained by removing a partial region or the entire region was obtained.
  • the obtained plasmid fragment was cyclized by terminal phosphorylation and self-ligation to obtain a plasmid for gene disruption.
  • This transformant is inoculated into 1 mL of LB liquid medium (tryptone 10 g / L, yeast extract 5 g / L, sodium chloride 5 g / L) containing 100 mg / L of kanamycin sulfate, and cultured with shaking at 30 ° C. went.
  • the obtained culture solution was applied to LB agar medium containing 100 mg / L of kanamycin sulfate, and cultured at 42 ° C. overnight.
  • the resulting colony has a plasmid inserted into the genome by a single crossover.
  • the colonies were inoculated in 1 mL of LB liquid medium with a loopful of platinum and cultured at 30 ° C. with shaking.
  • the obtained culture solution was applied to LB agar medium containing 10% sucrose and cultured overnight. It was confirmed by colony direct PCR that the desired gene was disrupted in the obtained colonies using the primer set shown in Table 8.
  • the constructed ADH gene-disrupted Escherichia coli strain is shown in Table 9. In the table, ⁇ indicates that the enzyme gene is deficient.
  • 1,6-Hexanediol is one of the alcohols that can be produced as a by-product in the production reaction of hexamethylenediamine.
  • 1,6-hexanediol 1,6-hexanediol
  • aldehyde 1,6-Hexanediol consumption was used as an index of the decomposition activity of 1,6-hexanediol by ADH.
  • 1,6-Hexanediol consumption was used as an index of the decomposition activity of 1,6-hexanediol by ADH.
  • cells of each strain of ADH gene-disrupted Escherichia coli were inoculated in 2 mL of LB liquid medium with a loopful of ears, and cultured with shaking at 37 ° C. overnight.
  • the obtained preculture solution was inoculated into 2 mL of an LB liquid medium containing 10 mM of 1,6-hexanediol in an amount equivalent to 1%, and the main culture was shake-cultured at 37 ° C. for 48 hours.
  • the culture broth was separated into bacterial cells and a supernatant by centrifugation, and the concentration of 1,6-hexanediol in the supernatant was analyzed.
  • GC system GC-2010 (manufactured by Shimadzu Corporation)
  • Detector Hydrogen flame ionization detector
  • Carrier gas He Gas pressure: 100 kPa
  • Detector temperature 250 ° C
  • Injection port temperature 250 ° C
  • Injection volume 1 ⁇ L
  • Injection method Split injection method (split ratio 36.3)
  • the concentration of 1,6-hexanediol in the culture supernatant 48 hours after the main culture is shown in FIG.
  • wild-type strains that do not disrupt the ADH gene BL21 (DE3) strain, WT is an abbreviation for Wild Type and indicates wild-type
  • 1,6-hexanediol is consumed by the action of ADH.
  • ADH gene disruption strains especially two types of genes, ahr gene and yahK gene, suppressed the consumption of 1,6-hexanediol by single gene disruption. From this result, it was confirmed that the ADH gene-disrupted strain had a decrease in the degrading activity of 1,6-hexanediol.
  • the PCR product is inserted between the restriction enzymes NcoI and HindIII cleavage site of the plasmid pACYCDuet TM -1 (product name, manufactured by Merck) using an In-Fusion HD cloning kit (product name, manufactured by Clontech). It was named "pDA50".
  • PCR was performed to obtain a PCR product containing the coding region of the MaCar gene.
  • the PCR product was inserted between the restriction enzymes NdeI and AvrII cleavage sites of pDA50 using an In-Fusion HD cloning kit (product name, manufactured by Clontech) and named "pDA52".
  • PCR was performed using the oligonucleotides of SEQ ID NOs: 164 and 165 as primers, and the coding region of the Npt gene was determined. PCR products containing were obtained. Next, PCR was performed using pDA52 as a template and the oligonucleotides of SEQ ID NOs: 166 and 167 as primers to obtain a pDA52 fragment. The PCR products were connected to each other using an In-Fusion HD cloning kit (product name, manufactured by Clontech). A plasmid was extracted from the obtained transformant, and the one into which the Npt gene was inserted was named "pDA56". The plasmid map of pDA56 is shown in FIG.
  • Potassium chloride 2.5 mM, magnesium sulfate 10 mM, magnesium chloride 10 mM was inoculated in 1 mL in an amount equivalent to 1%, and cultured with shaking at 37 ° C. After culturing for 2 hours, isopropyl- ⁇ -thiogalactosylpyranoside (IPTG) was added to a final concentration of 0.2 mM, and culturing was carried out at 30 ° C. for 48 hours with shaking. The culture broth was separated into bacterial cells and a supernatant by centrifugation, and the hexamethylenediamine concentration and the 1,6-hexanediol concentration in the supernatant were analyzed.
  • IPTG isopropyl- ⁇ -thiogalactosylpyranoside
  • Hexamethylenediamine concentration was analyzed using an ion chromatograph.
  • the conditions are as follows.
  • Detector Electrical conductivity detector
  • Flow velocity 0.35 mL / min
  • Injection volume 20 ⁇ L
  • Table 14 shows the hexamethylenediamine concentration and the 1,6-hexanediol concentration in each culture solution.
  • hexamethylenediamine concentration an increase in the amount of hexamethylenediamine produced was observed in the ADH gene-disrupted strains of Examples 1, 3 and 8 to 18 as compared with the ADH gene non-destructive strain (Comparative Example 1). It was.
  • the amount of 1,6-hexanediol produced was reduced in the ADH gene disrupted strains of Examples 1, 2 and 4-18.
  • the amount of hexamethylenediamine produced was further increased by multiple disruption of the ADH gene (Examples 8 to 18), and the concentration of 1,6-hexanediol was compared with that of the non-destructive ADH gene strain (Comparative Example 1). , Suppression of production was observed.
  • IPTG was added to a final concentration of 0.2 mM, and shaking culture was carried out at 30 ° C. for 48 hours.
  • the culture broth was separated into bacterial cells and a supernatant by centrifugation, and the 1,10-decanediamine concentration and the 1,10-decanediol concentration in the supernatant were analyzed.
  • NPMD National Institute of Technology and Evaluation Patent Biological Deposit Center
  • the genetically modified microorganism of the present invention can be suitably used in the production of diamine compounds.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】 ジアミン化合物を生産する微生物、及び、ジアミン化合物の製造方法を提供すること。 【解決手段】 ジアミン化合物合成に関与する酵素を発現する微生物であって、該ジアミン化合物が、式:H2N-R-NH2(式中、RはC、H、O、Nから成る群より選択される1以上の原子から構成される鎖状または環状の有機基である。)で表され、アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するように改変が行われた、遺伝子組換え微生物。

Description

遺伝子組換え微生物及びジアミン化合物の製造方法
 本発明は、ジアミン化合物を生産する遺伝子組換え微生物及びジアミン化合物の製造方法に関する。
 ジアミン化合物は、ポリアミド樹脂を始めとする高分子の原料などとして広く利用されている。工業的に利用されているジアミン化合物として、代表的な化合物は、ヘキサメチレンジアミン(1,6-ジアミノヘキサン)、ヘプタメチレンジアミン(1,7-ジアミノヘプタン)、オクタメチレンジアミン(1,8-ジアミノオクタン)、デカメチレンジアミン(1,10-ジアミノデカン)、ドデカメチレンジアミン(1,12-ジアミノドデカン)などがあげられる。
 例えば、ヘキサメチレンジアミンは、ブタジエンのヒドロシアン化、アクリロニトリルの電解二量化もしくは、アジピン酸のニトリル化によってアジポニトリルを得、さらにニッケルなどを触媒とした水素付加により合成される。(非特許文献1)本方法により、ヘキサメチレンジアミンは工業的に生産されているが、一旦、アジポニトリルの合成を行った後、水素付加反応を行う。また、デカンジアミン、オクタンジアミン、ドデカンジアミンなどは、上記、アジピン酸原料と同様に、対応するジニトリルを得、水素付加により合成する方法が知られている。(特許文献1、2)
 近年、化成品製造プロセスにおいては、枯渇が危惧され、かつ地球温暖化の一因とされている化石燃料由来の原料から、バイオマス由来などの再生可能な原料への転換が望まれている。本課題に対して、1,3-ジアミノプロパン(非特許文献2)、1,4-ジアミノブタン、1,5-ジアミノペンタン(非特許文献3)、4-アミノフェニルエチルアミン(非特許文献4)などのジアミン化合物について、遺伝子組換えにより代謝改変された微生物を用いた製造方法が公開されている。
 なかでも遺伝子組換え微生物を用い、細胞内のジカルボン酸やアミノカルボン酸、ジアルデヒドなどから、外来酵素、例えばカルボン酸脱炭酸酵素、アミノトランスフェラーゼを組み合わせてジアミンを生産する方法は基質となる化合物の適用性が広く、例えばヘキサメチレンジアミン(特許文献3、4)、ヘプタメチレンジアミン(特許文献5)が報告されている。
 特許文献3は、ヘキサメチレンジアミン生産経路を有するように改変された微生物宿主で、欠失や破壊によって収率向上が予想される酵素遺伝子を、インシリコでの代謝シミュレーションを基に予想し、例示している。しかしながら、ヘキサメチレンジアミン生産経路中の中間体に由来する副生物やその抑制方法についてはなんら言及されていない。
 特許文献4は、6-ヒドロキシヘキサン酸を経由した酵素反応経路によるヘキサメチレンジアミンの生産方法を記載している。しかしながら、遺伝子組換えにより新規に構築されたヘキサメチレンジアミン生産経路中の中間体に由来する副生物の生成、およびその抑制方法については言及されていない。
 特許文献5は、ピメリン酸等を経由する酵素反応経路を利用したヘプタメチレンジアミンの生産方法を記載している。しかしながら、反応経路中の中間体に由来する副生物の生成、およびその抑制方法については言及されていない。
 従って先行技術では、ジアミン化合物への変換経路に起因する、副生物の生成、およびその抑制方法についてついては何ら開示されていない。遺伝子組換え微生物によるジアミン化合物生産において、副生物をより効果的に抑制し、ジアミン化合物を効率的に生産可能な技術が求められていた。
特開昭57-70842号公報 特公昭49-24446号公報 特開2015-146810号公報 特開2017-544854号公報 特表2014-525741号公報
Process Economics Program Report 31B (IHS market) Chae, T. et al., Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine., Sci Rep. 2015 Aug 11;5:13040 Tsuge,Y. et al.,Engineering cell factories for producing building block chemicals for bio-polymer synthesis.,Microb. Cell Fact.,Vol.,15,19(2016) Masuo, S., et al, Bacterial fermentation platform for producing artificial aromatic amines., Scientific Reports volume 6, Articlenumber:25764 (2016)
 本発明の課題は、ジアミン化合物を生産する微生物、及び、ジアミン化合物の製造方法を提供することにある。
 本発明者らは検討を進める中で、ジアミン化合物生産経路を有する微生物において、内因性のアルコールデヒドロゲナーゼ活性により、ジアミン生合成経路中間体に由来するアルコール体が副生することを見出した。本発明者らは鋭意検討を行った結果、宿主微生物のアルコールデヒドロゲナーゼ活性を低下するよう改変を行うことにより、副生成物であるアルコール体の生成を抑制しうること、および/または、ジアミン化合物の生成量を向上させうることを見出し、本発明をなすに至った。
 すなわち、本発明は、以下を提供する。
[1]ジアミン化合物合成に関与する酵素を発現する微生物であって、
 該ジアミン化合物が、式:HN-R-NH
(式中、RはC、H、O、N、Sから成る群より選択される1以上の原子から構成される鎖状または環状の有機基である。)
で表され、
 アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するように改変が行われた、遺伝子組換え微生物;
[2]アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するような改変が、
 アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制される改変であるか、または、
 アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制され、かつ、アルコールデヒドロゲナーゼの活性が抑制される改変である、[1]に記載の遺伝子組換え微生物;
[3]前記アルコールデヒドロゲナーゼが、
・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列からなるDNA、
・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列と85%以上の配列同一性を有する塩基配列からなり、かつ、アルコールデヒドロゲナーゼ活性を有するタンパク質をコードするDNA、
・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列によりコードされるタンパク質のアミノ酸配列に対して1~10個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードする塩基配列であって、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質をコードするDNA、または
・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列の縮重異性体からなるDNA
によってコードされるタンパク質である、[1]または[2]に記載の組換え微生物;
[4]前記アルコールデヒドロゲナーゼが、配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97および99から選択されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、かつ、アルコールデヒドロゲナーゼ活性を有するタンパク質である、[1]~[3]のいずれか1項に記載の組換え微生物;
[5]前記アルコールデヒドロゲナーゼが、yqhDfucOadhPybbOeutGahryahK、adhEybdRdkgAyiaYfrmAdkgByghAydjGgldAyohFyeaE、ADH1ADH2ADH3ADH4ADH5ADH6ADH7SFA1AAD3AAD4AAD10AAD14AAD15YPR1NCgl0324NCgl0313NCgl0219NCgl2709NCgl1112NCgl2382NCgl0186NCgl0099NCgl2952NCgl1459yogAbdhKbdhJakrNyqkFyccKiolSおよびyrpGからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、[1]~[4]のいずれか1項に記載の遺伝子組換え微生物;
[6]前記アルコールデヒドロゲナーゼが、yqhDfucOadhPeutGybbOahryahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、[1]~[5]のいずれか1項に記載の遺伝子組換え微生物;
[7]前記アルコールデヒドロゲナーゼが、yqhDおよびadhPからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、[1]~[6]のいずれか1項に記載の遺伝子組換え微生物;
[8]前記アルコールデヒドロゲナーゼが、adhP遺伝子によってコードされるタンパク質である、[7]に記載の遺伝子組換え微生物;
[9]前記アルコールデヒドロゲナーゼが、yqhDfucOeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、[1]~[6]のいずれか1項に記載の遺伝子組換え微生物;
[10]前記アルコールデヒドロゲナーゼが、eutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、[9]に記載の遺伝子組換え微生物;
[11]前記アルコールデヒドロゲナーゼが、yqhDfucOadhPeutGybbOahrおよびyahKからなる群より選択される2以上の遺伝子によってコードされるタンパク質である、[1]~[6]のいずれか1項に記載の遺伝子組換え微生物;
[12]前記アルコールデヒドロゲナーゼが、
 yqhDおよびfucO
 yqhDおよびadhP
 yqhDおよびeutG
 yqhDおよびybbO
 yqhDおよびahr
 yqhDおよびyahK
 yqhDfucOおよびadhP
 yqhDfucOadhPおよびeutG
 yqhDfucOadhPeutGおよびybbO
 yqhDfucOadhPeutGybbOおよびahr、並びに、
 yqhDfucOadhPeutGybbOahrおよびyahK
からなる群より選択される1種の組み合わせに係る遺伝子によってコードされるタンパク質である、[1]~[6]のいずれか1項に記載の遺伝子組換え微生物;
[13]前記アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するような改変が、
 前記微生物内の前記アルコールデヒドロゲナーゼをコードする遺伝子の転写量および/または翻訳量を低下させること、ならびに
 前記微生物内の前記アルコールデヒドロゲナーゼをコードする遺伝子を破壊すること
からなる群より選択される1以上によって行われる、[1]~[12]のいずれか1項に記載の組換え微生物;
[14]上記遺伝子組換え微生物が、エッセリシア属、コリネバクテリウム属、バチルス属、アシネトバクター属、バークホルデリア属、シュードモナス属、クロストリジウム属、サッカロマイセス属、シゾサッカロマイセス属、ヤロウィア属、カンジタ属、ピキア属およびアスペルギルス属からなる群より選択される属に属する[1]~[13]のいずれか1項に記載の遺伝子組換え微生物;
[15]上記遺伝子組換え微生物が、エッセリシア・コリ(Escherichia coli)である、[1]~[14]のいずれか1項に記載の遺伝子組換え微生物;
[16]前記ジアミン化合物合成に関与する酵素として、アミノ基転移酵素を発現する[1]~[15]のいずれか1項に記載の遺伝子組換え微生物;
[17]前記ジアミン化合物合成に関与する酵素として、カルボン酸還元酵素を発現する[1]~[16]のいずれか1項に記載の遺伝子組換え微生物;
[18]前記カルボン酸還元酵素が、カルボン酸セミアルデヒド、ジカルボン酸、もしくはアミノカルボン酸のカルボキシル基をアルデヒドに変換する活性を持つ[17]に記載の遺伝子組換え微生物;
[19]ジカルボン酸、カルボン酸セミアルデヒド、もしくはアミノカルボン酸を産生する能力を持ち、
 さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することを特徴とする[1]~[18]のいずれか1項に記載の遺伝子組換え微生物;
[20]アジピン酸、アジピン酸セミアルデヒド、もしくは6-アミノヘキサン酸を産生する能力を持ち、
 さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することを特徴とする[1]~[19]のいずれか1項に記載の遺伝子組換え微生物;
[21]ホスホパンテテイニル基転移酵素の活性を増大させる改変が更に行われている、[11]~[20]のいずれか1項に記載の遺伝子組換え微生物;
[22]前記アミノ基転移酵素をコードする遺伝子がygjGである、[16]~[21]のいずれか1項に記載の遺伝子組換え微生物;
[23]前記カルボン酸還元酵素をコードする遺伝子がMaCarである、[17]~[22]のいずれか1項に記載の遺伝子組換え微生物;
[24]前記ホスホパンテテイニル基転移酵素をコードする遺伝子がNptである、[21]~[23]のいずれか1項に記載の遺伝子組換え微生物;
[25]配列番号115に示す塩基配列と85%以上の配列同一性を有し、かつ、アミノ基転移酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
 配列番号110~114のいずれかに示すアミノ酸配列をコードする塩基配列と85%以上の配列同一性を有し、かつ、アミノ基転移酵素活性を有するタンパク質をコードする塩基配列を含む、[1]~[24]のいずれか1項に記載の組換え微生物;
[26]配列番号105に示す塩基配列と85%以上の配列同一性を有し、かつ、カルボン酸還元酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
 配列番号101~104のいずれかに示すアミノ酸配列をコードする塩基配列と85%以上の配列同一性を有し、かつ、カルボン酸還元酵素活性を有するタンパク質をコードする塩基配列を含む、[1]~[25]のいずれか1項に記載の組換え微生物;
[27]配列番号109に示す塩基配列と85%以上の配列同一性を有し、かつ、ホスホパンテテイニル基転移酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
 配列番号106~108のいずれかに示すアミノ酸配列をコードする塩基配列と80%以上の配列同一性を有し、かつ、ホスホパンテテイニル基転移酵素活性を有するタンパク質をコードする塩基配列を含む、[21]~[26]のいずれか1項に記載の組換え微生物;
[28]アシル-(アシル輸送タンパク質(ACP))還元酵素(AAR)、
 アシルCoAからアルデヒドを生産する酵素、
 アシルリン酸からアルデヒドを生成する酵素
から成る群より選択される1以上の酵素を発現する、[1]~[27]のいずれか1項に記載の遺伝子組換え微生物;
[29][1]~[28]のいずれか1項に記載の遺伝子組換え微生物を用いたジアミン化合物の製造方法;
[30][1]~[28]に記載する遺伝子組換え微生物を、炭素源および窒素源を含有する培地で培養し、菌体を含む培養液を得る培養工程を含む、ジアミン化合物の製造方法;
[31]前記培地が更にジアミン化合物の前駆体を含むか、または
 前記培養工程において、前記培地に前記前駆体を添加することを含む、[30]に記載のジアミン化合物の製造方法;
[32]前記培養液および/または前記菌体を、ジアミン化合物の前駆体を含有する水溶液と接触させてジアミン化合物を含む反応液を得る反応工程を含む、[30]または[31]に記載のジアミン化合物の製造方法;
[33]前記前駆体が、ジカルボン酸、カルボン酸セミアルデヒド、アミノカルボン酸、アミノアルデヒド、ジアルデヒド、アシル-ACP、アシル-CoAおよびアシルリン酸から成る群から選択される、[31]または[32]に記載のジアミン化合物の製造方法。
 本発明により、ジアミン化合物を生産することができる。
本発明の遺伝子組換え微生物におけるジアミン化合物の生産経路例として、各種の前駆体からアミンへの官能基変換を模式的に示す。 ADH遺伝子を破壊した大腸菌株を、1,6-ヘキサンジオール含有培地にて48時間培養した後の、培養上清中の1,6-ヘキサンジオール濃度を示す。 pDA56のプラスミドマップである。図中、「lacI」はlacI遺伝子を、「T7 Promoter」はT7プロモーターを、「T7 Terminator」はT7ターミネーターを、「ygjG」はEscherichia coli由来ygjG遺伝子を、「MaCar」はMycobacterium abcessus由来のカルボン酸還元酵素遺伝子を、「Npt」はNocardia iowensis由来のホスホパンテテイニル基転移酵素遺伝子を、「CAT」はクロラムフェニコールアセチルトランスフェラーゼ遺伝子を、「P15Aori」は複製起点を、それぞれ示している。
 以下に本発明の実施形態について詳細に説明する。
 本発明にかかる遺伝子組換え微生物は、ジアミン化合物生産経路を有し、更にアルコールデヒドロゲナーゼ活性が低下するように改変が行われた遺伝子組換え微生物である。ここで、改変には、塩基の置換、欠失、挿入および/または付加が含まれる。以下、「遺伝子組換え微生物」を、単に「組換え微生物」とも称する。
 上記組換え微生物は、ジアミン化合物合成に関与する酵素またはジアミン化合物合成に関与する酵素群を発現する。ジアミン化合物合成に関与する酵素としては、例えば、カルボン酸還元酵素およびアミノ基転移酵素が挙げられる。カルボン酸還元酵素は、図1に示すように、例えば、カルボン酸セミアルデヒド、ジカルボン酸、もしくはアミノカルボン酸のカルボキシル基をアルデヒドに変換する活性を有する。アミノ基転移酵素は、図1に示すように、アルデヒドをアミンに変換する活性を有する。本発明において、微生物に関して、「ジアミン化合物合成に関与する酵素またはジアミン化合物合成に関与する酵素群を発現する」とは、宿主微生物自体が、かかる酵素または酵素群を発現する能力を有していてもよいし、あるいは、宿主微生物に対して、かかる酵素または酵素群を発現するような改変が行われていてもよいことを意味する。
 本発明における「ジアミン化合物」(以下、単に「ジアミン」とも称する。)は式:HN-R-NHで表される。式中、Rは、C、H、O、N、Sから成る群より選択される1以上の原子から構成される、鎖状または環状の2価の有機基である。鎖状の有機基には、直鎖の有機基および分岐の有機基が含まれる。環状の有機基には、脂環式の有機基、複素環式の有機基、他環式の有機基、および芳香族の有機基が含まれる。
 Rを構成する有機基としては、例えば、メチレン基、エチレン基、ビニレン基、トリメチレン基、プロピレン基、プロペニレン基、テトラメチレン基、イソブチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基などの脂肪族炭化水素基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロヘキセニレン基、シクロヘキサジエニレン基などの脂環式炭化水素基、o-フェニレン基、m-フェニレン基、p-フェニレン基、ジフェニレン基、ナフチレン基、1,2-フェニレンジメチレン基、1,3-フェニレンジメチレン基、1,4-フェニレンジメチレン基、1,4-フェニレンジエチレン基、メチレンジフェニレン基、エチレンジフェニレン基などの芳香族炭化水素基、オキシ基、カルボニル基などの酸素を含む特性基、メチレンジオキシ基、エチレンジオキシ基などのエーテル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、スペロイル基、o-フタロイル基、m-フタロイル基、p-フタロイル基などのアシル基、チオ基、チオカルボニル基などの硫黄を含む特性基、イミノ基、アゾ基などの窒素を含む特性基、さらにはそれらの組み合わせによるものが挙げられるが、これらに限定されない。
 また、Rには、1以上の置換基が含まれてもよい。Rに含まれ得る置換基としては、例えば、アミノ基、カルボキシ基、シアノ基、ニトロ基、ヒドロキシ基、チオール基などが挙げられるが、これらに限定されない。
 一態様において、Rは、鎖状および環状の炭化水素であり、鎖状の炭化水素には、直鎖ならびに分岐の飽和および不飽和の炭化水素が含まれる。好ましい一態様においては、Rは、炭素数3~20の炭化水素基である。より好ましくは、Rは、式:CH(CHCHで表される直鎖飽和炭化水素基であり、式中、nは、1、2、3、4、5、6、7、8、9または10である。さらに好ましくは、nは2、3、4、5、6、7または8であり、特に好ましくは、nは4、5、6、7または8である。
 典型的なジアミン化合物としては、1,3-ジアミノプロパン(トリメチレンジアミン)、1,4-ジアミノブタン(テトラメチレンジアミン、プトレシン)、1,5-ジアミノペンタン(ペンタメチレンジアミン、カダベリン)、1,6-ジアミノヘキサン(ヘキサメチレンジアミン)、1,7-ジアミノヘプタン(ヘプタメチレンジアミン)、1,8-ジアミノオクタン(オクタメチレンジアミン)、1,9-ジアミノノナン(ノナメチレンジアミン)、1,10-ジアミノデカン(デカメチレンジアミン)、1,11-ジアミノウンデカン(ウンデカメチレンジアミン)、1,12-ジアミノドデカン(ドデカメチレンジアミン)、3-アミノベンジルアミン、4-アミノベンジルアミン、2-メチルペンタメチレンジアミン、2-メチルペンタメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、m-キシレンジアミン、p-キシレンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,4-ビス(アミノプロピル)ピペラジン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、N-(3-アミノプロピル)1,4-ブタンジアミン(スペルミジン)、3,3’-ジアミノジプロピルアミン、N,N-ビス(3-アミノプロピル)メチルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブタンジアミン(スペルミン)、2,2’-ジチオビス(エチルアミン)、ジプロピレントリアミンなどが挙げられるが、これらに限定されない。ジアミンは、任意の塩形態を含めた中性もしくは電離型の形態をとり、本形態がpHに依存することは当業者によって理解される。
 本明細書における「ジカルボン酸」とは、化学式HOOC-R-COOH(式中、Rは先に説明した通りである。)に示す構造を有する化合物を指す。ジカルボン酸には、脂肪族ジカルボン酸および芳香族カルボン酸が含まれる。典型的なジカルボン酸としては、シュウ酸、マロン酸、コハク酸、フマル酸、イタコン酸、グルタル酸、アジピン酸、ムコン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、リンゴ酸、2,5-フランジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、酒石酸、ムコン酸などが挙げられるが、これらに限定されない。ジカルボン酸は、任意の塩形態を含めた中性もしくは電離型の形態をとり、本形態がpHに依存することは当業者によって理解される。
 本明細書における「カルボン酸セミアルデヒド」とは、化学式HOOC-R-CHO(式中、Rは先に説明した通りである。)に示す構造を有する化合物を指す。典型的なカルボン酸セミアルデヒドとしては、コハク酸セミアルデヒド、グルタル酸セミアルデヒド、アジピン酸セミアルデヒド、ピメリン酸セミアルデヒド、スベリン酸セミアルデヒド、アゼライン酸セミアルデヒド、セバシン酸セミアルデヒドなどが挙げられるが、これらに限定されない。カルボン酸セミアルデヒドは、任意の塩形態を含めた中性もしくは電離型の形態をとり、本形態がpHに依存することは当業者によって理解される。
 本明細書における「アミノカルボン酸」とは、化学式HN-R-COOH(式中、Rは先に説明した通りである。)に示す構造を有する化合物を指す。典型的なアミノカルボン酸としては、グリシン、β-アラニン、4-アミノブタン酸、5-アミノペンタン酸、6-アミノヘキサン酸、7-アミノヘプタン酸、8-アミノオクタン酸、9-アミノノナン酸、10-アミノデカン酸、12-アミノドデカン酸、などが挙げられるが、これらに限定されない。アミノカルボン酸は、任意の塩形態を含めた中性もしくは電離型の形態をとり、本形態がpHに依存することは当業者によって理解される。
 本明細書において、「内因」ないし「内因性」という用語は、遺伝子組換えによる改変がなされていない宿主微生物が、言及している遺伝子ないしはそれによりコードされるタンパク質(典型的には酵素)を、当該宿主細胞内で優位な生化学的反応を進行させ得る程度に機能的に発現しているかどうかに関わらず、宿主微生物が有していることを意味するために用いられる。
 本明細書において、「外来」ないし「外来性」という用語は、遺伝子組換え前の宿主微生物が本発明により導入されるべき遺伝子を有していない場合、その遺伝子による酵素を実質的に発現していない場合、及び異なる遺伝子により当該酵素のアミノ酸配列をコードしているが、遺伝子組換え後に匹敵する内因性酵素活性を発現しない場合において、本発明に基づく遺伝子ないし核酸配列を宿主に導入することを意味するために用いられる。「外来性」および「外因性」の用語は、本明細書において互換可能に用いられる。
 図1に本発明におけるジアミン化合物の合成経路の官能基変換の例を示す。アルデヒドへ誘導可能な化合物および/またはアルデヒドを前駆体としてジアミンは合成される。アルデヒドはアミノ基転移酵素によってアミンへと変換される。本発明の遺伝子組換え微生物は、アルコールデヒドロゲナーゼの活性が低下するように改変することにより、経路中の中間体であるアルデヒドがアルコールへと変換されることを抑制する。ここで、アルコールデヒドロゲナーゼには、アルコールデヒドロゲナーゼ活性を有する1つまたは複数のタンパク質が含まれるものとする。
 本発明に用いる宿主微生物は特に限定されず、原核生物、真核生物のいずれでもよい。既に単離保存されているものでも、新たに天然から分離したもの、遺伝子改変されたもの、上記化合物を代謝できるよう改変された微生物などいずれをも任意に選択できる。例えば、大腸菌(エッセリシア・コリ、Escherichia coli)などのエッセリシア属、Pseudomonas putidaなどのシュードモナス属、枯草菌Bacillus subtilisなどのバチルス属、コリネ菌(Corynebacterium glutamicum)などのコリネバクテリウム属、Clostridium acetobutylicumなどのクロストリジウム属、アシネトバクター属、バークホルデリア属の細菌や、Saccharomyces cerevisiaeなどのサッカロマイセス属、Schizosaccharomyces pombeなどのシゾサッカロマイセス属、Pichia pastorisなどのピキア属、Yarrowia lipolyticaなどのヤロウィア属の酵母、Aspergillus oryzaeなどのアスペルギルス属の糸状菌などが挙げられるが、これらに限定されない。本発明では、宿主微生物として大腸菌を用いることが好ましい。
 本発明における遺伝子組換え微生物は、非低下株と比較して、内因性のアルコールデヒドロゲナーゼ(Alcohol Dehydrogenase;ADH)活性が低下するように更に改変が行われている。本発明者らは、ジアミン化合物生産経路を有する宿主微生物において、内因性のアルコールデヒドロゲナーゼ活性により、ジアミン生合成経路中間体に由来するアルコール体が副生することを見出したが、更なる鋭意検討の結果、アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するよう宿主微生物に改変を行うことによって副生成物であるアルコール体の生成を抑制し、および/または、ジアミン化合物の生成量を向上させることによってジアミン化合物を効率的に生産できることを見出した。
 アルコールデヒドロゲナーゼは、電子供与体の存在下でアルデヒド、ケトンを還元しアルコールに変換する活性を有する酵素である。ここで、アルコールデヒドロゲナーゼには、当該酵素のアミノ酸配列において、1つまたは複数のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列を含むタンパク質であって、当該酵素と機能的に同等なタンパク質も含まれる。ここで「機能的に同等なタンパク質」とは、その酵素の活性と同様の活性を備えたタンパク質である。例えば、「機能的に同等なタンパク質」には、その酵素のアミノ酸配列と80%、85%、90%、95%、97%、98%または99%以上の配列同一性を有するタンパク質を含む。具体的に、「アルコールデヒドロゲナーゼ」の語には、下記で特定する配列番号に示されるアミノ酸配列と80%、85%、90%、95%、97%、98%または99%以上の配列同一性を有するアミノ酸配列を有し、かつ、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質を包含する。
 アルコールデヒドロゲナーゼをコードする遺伝子は、
・下記で特定する配列番号で示される塩基配列からなるDNA、
・下記で特定する配列番号で示される塩基配列に相補的な塩基配列を有するDNAと緊縮条件下でハイブリダイズし、かつ、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質をコードするDNA、 
・下記で特定する配列番号に示される塩基配列と85%、90%、95%、97%、98%または99%以上の配列同一性を有する塩基配列からなり、かつ、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質をコードするDNA、
・下記で特定する配列番号に示される塩基配列によりコードされるタンパク質のアミノ酸配列に対して1つまたは複数個(例えば1~10個、好ましくは1~7個、さらに好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1個もしくは2個)のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードする塩基配列であって、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質をコードするDNA、および
・下記で特定する配列番号に示される塩基配列の縮重異性体からなるDNA
を包含する。
 「緊縮条件」とは、例えば、「1xSSC、0.1%SDS、60℃」程度の条件であり、より厳しい条件としては「0.1xSSC、0.1%SDS、60℃」程度の条件であり、さらに厳しい条件としては「0.1xSSC、0.1%SDS、68℃」程度の条件である。
 本発明の好ましい一態様において、アルコールデヒドロゲナーゼには、EC1.1.1.m(ここで、mは1以上の整数である。)で表記される酵素が含まれる。アルコールデヒドロゲナーゼとしては、例えば、EC1.1.1.1、EC1.1.1.2、EC1.1.1.71に分類される酵素が挙げられるが、これらに限定されない。
 アルコールデヒドロゲナーゼとしては、例えば大腸菌であれば、yqhDfucOadhPybbOeutGahryahK、adhEybdRdkgAyiaYfrmAdkgByghAydjGgldAyohF、およびyeaE遺伝子にコードされるタンパク質が挙げられる。
 出芽酵母(Saccharomyces cerevisiae)であれば、ADH1ADH2ADH3ADH4ADH5ADH6ADH7SFA1AAD3AAD4AAD10AAD14AAD15、およびYPR1遺伝子にコードされるタンパク質が挙げられ、コリネ菌(Corynebacterium glutamicum)であれば、NCgl0324NCgl0313NCgl0219NCgl2709NCgl1112NCgl2382NCgl0186NCgl0099NCgl2952、およびNCgl1459遺伝子にコードされるタンパク質が挙げられ、枯草菌(Bachillus subtilis)であれば、yogAbdhKbdhJakrNyqkFyccKiolS、およびyrpG遺伝子にコードされるタンパク質が挙げられるが、アルコールデヒドロゲナーゼ活性を有する限り、これらには限定されない。
 アルコールデヒドロゲナーゼは、例えば、yqhDfucOadhPeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である。上記遺伝子からなる群より選択される少なくとも一つの遺伝子に関して、アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するように改変が行われることによって副生成物であるアルコール体の生成を抑制し、および/または、ジアミン化合物の生成量を向上させてジアミン化合物を効率的に生産することができる。
 アルコールデヒドロゲナーゼは好ましくは、yqhDfucOadhPybbOeutGahr、およびyahK遺伝子からなる群より選択される少なくとも一つの遺伝子によってコードされ、より好ましくはyqhDahr、およびyahK遺伝子からなる群より選択される少なくとも一つの遺伝子によってコードされ、更に好ましくはahr、およびyahK遺伝子からなる群より選択される少なくとも一つの遺伝子によってコードされる。
 アルコールデヒドロゲナーゼは、好ましくはyqhDおよびadhPからなる群より選択される少なくとも一つの遺伝子によってコードされ、より好ましくはadhP遺伝子によってコードされる。これらの遺伝子の少なくとも一つについて活性を低下させるように改変することで、遺伝子組み換え微生物は、ジアミン化合物の製造において、ジアミン化合物の生成量を増加させることができる。
 アルコールデヒドロゲナーゼは、好ましくは、yqhDfucOeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされ、より好ましくはeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされる。これらの遺伝子の少なくとも一つについて活性を低下させるように改変することで、遺伝子組み換え微生物は、ジアミン化合物の製造において、副生成物であるアルコール体の生成を抑制することができる。
 前記アルコールデヒドロゲナーゼは好ましくは、yqhDfucOadhPeutGybbOahrおよびyahKからなる群より選択される2以上の遺伝子によってコードされ、より好ましくは、yqhD遺伝子と、fucOadhPeutGybbOahrおよびyahKからなる群より選択される1以上の遺伝子と、によってコードされる。これらの遺伝子の2以上の活性を低下させるように改変することで、遺伝子組み換え微生物は、ジアミン化合物の製造において、ジアミン化合物の生成量を顕著に向上させることができると共に、副生成物であるアルコール体の生成を抑制することができる。
 アルコールデヒドロゲナーゼは好ましくは、
yqhDおよびfucO
yqhDおよびadhP
yqhDおよびeutG
yqhDおよびybbO
yqhDおよびahr
yqhDおよびyahK
yqhDfucOおよびadhP
yqhDfucOadhPおよびeutG
yqhDfucOadhPeutGおよびybbO
yqhDfucOadhPeutGybbOおよびahr、並びに、
yqhDfucOadhPeutGybbOahrおよびyahK
からなる群より選択される1つの組み合わせに係る遺伝子によってコードされる。このように、2以上の遺伝子の活性を低下させるように改変を行うことで、遺伝子組み換え微生物は、ジアミン化合物の製造において、ジアミン化合物の生成量をより顕著に向上させることができると共に、副生成物であるアルコール体の生成を顕著に抑制することができる。
上記のアルコールデヒドロゲナーゼ遺伝子にコードされる典型的なタンパク質のアミノ酸配列、およびコード領域の塩基配列を下記表1-1~1-50に示す。なお、各表の第1行目には、遺伝子およびタンパク質名、Accession番号、由来を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 本発明においては、1種のADHの活性を低下させても良く、2種以上のADH活性を低下させても良い。アルコール体の副生をより低減させる観点から、2種以上のADH活性を低下させることが好ましい。
 本発明において「ADH非低下株」(または単に「非低下株」とも称する。)とは、ADH活性が低下するような改変が加えられていない菌株を指す。ADH非低下株としては、例えば、各微生物株の野生型株や基準株、育種により得られる株を含む派生株などが挙げられるが、これらに限定されない。大腸菌株では、例えば、K-12株やB株、C株、W株や、それらの株の派生株、例えば、BL21(DE3)株、W3110株、MG1655株、JM109株、DH5α株、HB101株などが挙げられるが、これらに限定されない。
 遺伝子組み換え微生物に関し、「アルコールデヒドロゲナーゼの活性が低下するように改変は行われた」とは、少なくとも、アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制される改変が行われていることをいう。「アルコールデヒドロゲナーゼの活性が低下するような改変」には、アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制される改変の他、当該酵素の活性が抑制されるような改変も含まれる。すなわち、本発明の組換え微生物は、非低下株(例えば宿主微生物)に対して、アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制されるか、あるいは、当該酵素の活性が抑制されるように改変が行われている。より詳細には、「アルコールデヒドロゲナーゼの活性が低下するように改変が行われた」とは、少なくとも、アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制される改変が行われていることをいい、好ましくは、アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制され、かつ、アルコールデヒドロゲナーゼの活性が抑制される改変が行われていることをいう。宿主微生物はアルコールデヒドロゲナーゼをコードする遺伝子を複数持ち、同じ基質に対して活性を示すアルコールデヒドロゲナーゼが複数存在することがあるため、「アルコールデヒドロゲナーゼの活性が低下するように改変が行われた」場合であっても、非低下株と比較してアルコール種の分解活性においてアルコールデヒドロゲナーゼの活性が維持されていることがあり、「アルコールデヒドロゲナーゼの活性が低下するような改変が行われた」とは、このように、活性の低下を目的とした改変が行われているにもかかわらず、非低下株と比較して、アルコールデヒドロゲナーゼの活性が維持される場合も含むものとする。本発明において、酵素をコードする遺伝子に関して、「発現の抑制」には、「発現の低下」を含むものとする。また、酵素に関して、「活性の抑制」とは、「機能の抑制」、「機能の低下」および「活性の低下」と同義であり、互換可能に使用される。
 本発明の遺伝子組み換え微生物は、アルコールデヒドロゲナーゼをコードする遺伝子の2つ以上の発現が抑制される改変が行われていることが好ましい。複数種の遺伝子の発現を抑制することで、遺伝子組み換え微生物は、ジアミン化合物の製造において、ジアミン化合物の生成量を顕著に向上させことができると共に、副生成物であるアルコール体の生成を抑制することができる。
 ADHの活性が低下するような改変は、例えば、ADHをコードする遺伝子の発現を低下させることにより達成できる。遺伝子の発現が低下するとは、より具体的には、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質量)が低下することを意味して良い。遺伝子の発現が低下することには、遺伝子が全く発現していない場合も包含される。
 遺伝子の発現の低下は、例えば、転写量の低下であってもよく、翻訳量の低下であってあってもよく、それらの組み合わせであってもよい。転写量の低下は、例えば、ADH遺伝子のプロモーター領域やリボソーム結合部位(RBS)などの発現調節領域を改変する方法により達成できる。遺伝子の転写量の低下は、当業者に周知の方法によって評価することができ、例えば、定量RT-PCR法や、ノーザンブロッティング法が挙げられる。遺伝子の転写量は、例えばADH非低下株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 翻訳量の低下は、例えば、リボスイッチ領域を遺伝子上流に挿入することより翻訳を抑制する方法が挙げられる。リボスイッチとは特定の低分子化合物と選択的に結合するRNAのことをいい、当該低分子化合物をリガンドと呼ぶ。リガンド非存在下ではRNA塩基対による二次構造を形成し、リボスイッチ周辺の核酸へ影響を与える。特に、リボスイッチの下流にリボソーム結合部位を含む場合には、リボソームのリボソーム結合部位への接近を妨げることで、さらに下流に位置する遺伝子のmRNAの翻訳を妨げる。一方、リガンド存在下では、リガンド結合に伴う二次構造解消を通じて、リボソームがリボソーム結合部位へ接近できる。そのため、リガンド非添加時では遺伝子のmRNAが翻訳されず、目的遺伝子の発現が抑制される。遺伝子の翻訳量の低下は、当業者に周知の方法によって評価することができ、例えば、ウェスタンブロッティング法が挙げられる。遺伝子の翻訳量は、例えばADH非低下株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 また、ADHの活性が低下するような改変は、ADHをコードする遺伝子を破壊することによっても達成される。ADH遺伝子の破壊とは、ADH活性を持つタンパク質が発現しないよう遺伝子が改変されることを意味し、タンパク質が全く産生されない場合や、ADH活性が低下または消失したタンパク質が産生される場合を包含する。例えば、染色体上の遺伝子のコード領域の一部または全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させても良い。ADH活性の低下が達成できる限り、欠失させる領域はN末端領域、内部領域、C末端領域のいずれの領域であってもよい。
 また、ADH遺伝子の破壊は、染色体上のADH遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入する方法や、終止コドン(ナンセンス変異)を導入する方法、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入することによっても達成できる。
 さらには、ADH遺伝子の破壊は、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。他の配列としては、抗生物質耐性遺伝子や、トランスポゾンが挙げられるが、ADH活性を低下させるものであれば特に限定されない。
 ADH遺伝子の破壊は、相同組換えを利用した方法を利用することができ、例えばλ-ファージのRed reconbinaseを用いた方法(Datsenko, Kirill A., and Barry L. Wanner. ”One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.” Proceedings of the National Academy of Sciences 97.12 (2000): 6640-6645.)や、温度感受性複製起点を含むスーサイドベクターを用いた方法(Blomfield et al., Molecular microbiology 5.6 (1991): 1447-1457.)、CRISPR-Cas9システムを用いた方法(Jiang, Yu, et al. ”Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.” Appl. Environ. Microbiol. 81.7 (2015): 2506-2514.)などが挙げられるが、これらの手法に限定されない。
 また、ADH遺伝子の破壊は突然変異処理により行ってもよい。突然変異処理としては、例えばX線処理、紫外線処理、γ線処理などの物理的処理や、N-メチル-N’-ニトロ-N-ニトロソグアニジン、エチルメタンスルフォネート、メチルメタンスルフォネート等の変異剤による化学的処理が挙げられるが、ADH活性を低下させるものであれば特に限定されない。
 ADH活性は当業者にとって周知の方法によって評価することができる。例えば、基質(アルデヒドまたはケトン)とNAD(P)Hとともにインキュベートし340nmの吸光度を測定することでNAD(P)Hの酸化をモニタする方法が挙げられる(Pick, et al., Applied microbiology and biotechnology 97.13 (2013): 5815-5824.)。ADH活性は、例えばADH非低下株のADHと比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 本発明にかかる遺伝子組換え微生物において、ジアミン化合物合成に関与する酵素は、内因性であってもよく、外因性であってもよく、これらの組み合わせであってもよい。
 本発明にかかる遺伝子組換え微生物は、ジアミン化合物合成に関与する酵素遺伝子として、カルボン酸還元酵素を発現していることが好ましい。カルボン酸還元酵素(Carboxylic Acid Reductase;CAR)は、一般的には、カルボン酸を還元しアルデヒドに変換する活性を有する任意のタンパク質を意味する。本発明において、カルボン酸還元酵素は、例えば、カルボン酸セミアルデヒド、ジカルボン酸、もしくはアミノカルボン酸のカルボキシル基をアルデヒドに変換する活性を持つ。カルボン酸還元酵素としては、例えば、EC1.2.1.30、EC1.2.1.31、EC1.2.1.95、EC1.2.99.6等に分類される酵素が挙げられるが、これらに限定されない。
 この酵素をコードしている遺伝子のソースの例としては、カルボン酸還元活性を持つ限り特に限定されないが、典型的な例としては、Nocardia iowensisNocardia asteroidesNocardia brasiliensisNocardia farcinicaSegniliparus rugosusSegniliparus rotundusTsukamurella paurometabolaMycobacterium marinumMycobacterium neoaurumMycobacterium abscessusMycobacterium aviumMycobacterium chelonaeMycobacterium immunogenumMycobacterium smegmatisSerpula lacrymansHeterobasidion annosumCoprinopsis cinereaAspergillus flavusAspergillus terreusNeurospora crassaSaccharomyces cerevisiaeが挙げられるが、これらには限定されない。本発明において例えば、配列番号101~104のいずれかに記載されるアミノ酸配列からなるタンパク質をコードする遺伝子が使用される。好ましくは、Mycobacterium abscessus由来のカルボン酸還元酵素MaCarをコードする遺伝子が使用される。MaCar遺伝子のコード領域の塩基配列を配列番号105に、MaCarのアミノ酸配列を配列番号103に示す。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-I000057
 カルボン酸還元酵素の活性は、当業者によって周知の方法によって評価することができ、例えばATP及びNADPHの存在下で基質(カルボン酸)と酵素をインキュベートし340nmの吸光度を測定することでNADPHの酸化をモニタする方法や、基質の消費量および/または生成物(アルデヒド)の生成量を定量する方法が挙げられる(Venkitasubramanian et al., Journal of Biological Chemistry,Vol.282,No.1,478-485(2007))。
 また、カルボン酸還元酵素は、ホスホパンテテイニル化されることにより活性型のホロ酵素に変換され得る(Venkitasubramanian et al., Journal of Biological Chemistry,Vol.282,No.1,478-485(2007))。ホスホパンテテイニル化はホスホパンテテイニル基転移酵素(Phosphopantetheinyl Transferase;PT)により触媒される(例えば、EC2.7.8.7に分類される酵素等が挙げられる)。したがって、本発明の微生物は更に、ホスホパンテテイニル基転移酵素の活性が増大するように改変されていて良い。ホスホパンテテイニル基転移酵素の活性を増大する方法としては、外来のホスホパンテテイニル基転移酵素遺伝子を導入する方法や、内因性のホスホパンテテイニル基転移酵素遺伝子の発現を強化する方法が挙げられるが、これらに限定されない。ホスホパンテテイニル基の供与体としては補酵素A(CoA)が挙げられる。
 PT遺伝子のソースとしては、ホスホパンテテイニル基転移活性を持つ限り、特に限定されないが、典型的なホスホパンテテイニル基転移酵素をコードする遺伝子としては、例えば、Bacillus subtilisSfpや、Nocardia iowensisNpt(Venkitasubramanian et al., Journal of Biological Chemistry,Vol.282,No.1,478-485(2007))、Saccharomyces cerevisiaeLys5(Ehmann et al., Biochemistry 38.19 (1999): 6171-6177.)が挙げられる。本発明において例えば、配列番号106~108のいずれかに記載されるアミノ酸配列からなるタンパク質をコードする遺伝子が使用される。好ましくは、Nocardia iowensis由来のNocardia iowensisNpt遺伝子が使用される。Npt遺伝子のコード領域の塩基配列を配列番号109に、Nptのアミノ酸配列を配列番号107に示す。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 アルデヒドを生成する別の態様として、本発明の遺伝子組換え微生物は、アシル-(アシル輸送タンパク質(ACP))還元酵素(AAR)を発現していてもよい。AARは、アシルACPからアルデヒドへの変換を担う酵素である。AARをコードする遺伝子は特に限定されないが、典型的なAAR遺伝子としては、例えば、Synechococcus elongatusAAR(Schirmer, Andreas, et al.,Science 329.5991 (2010): 559-562.)などが挙げられる。
 また、別の態様としてアシルCoAからアルデヒドを生産する酵素を発現していてもよい。本反応を触媒する酵素をコードする遺伝子としては、例えば脂肪酸アシル-CoAデヒドロゲナーゼをコードする、Acinetobacter baylyiacr1(ZHENG, Yan-Ning, et al., Microbial cell factories, 2012, 11.1: 65.)や、Clostridium kluyveriのコハク酸セミアルデヒドデヒドロゲナーゼをコードするsucD遺伝子(Sohling, B., and Gerhard Gottschalk., Journal of bacteriology 178.3 (1996): 871-880.)が挙げられるが、これらに限定されない。
 さらには、アシルリン酸からアルデヒドを生成する酵素を発現していてもよく、例えばNADPH依存的な4-アスパルチルリン酸からアスパラギン酸セミアルデヒドの反応を触媒するアスパラギン酸セミアルデヒドデヒドロゲナーゼ(ASD;EC1.2.1.11)は同様の反応を触媒し、大腸菌のasd遺伝子などが利用可能である。
 本発明にかかる遺伝子組換え微生物は、ジアミン化合物合成に関与する酵素遺伝子として、アミノ基転移酵素を発現する。
 アミノ基転移酵素は、アミノ基供与体と受容体の存在下でアミノ基転移反応を触媒する任意の酵素を意味する。アミノ基転移酵素としては、例えば、EC2.6.1.p(ここで、pは1以上の整数である)に分類される酵素が挙げられる。アミノ基供与体としては、L-グルタミン酸、L-アラニン、グリシンが挙げられるが、これらに限定されない。
 アミノ基転移酵素をコードする遺伝子としては、アミノ基転移活性を持つ限り、特に限定されないが、プトレシンアミノトランスフェラーゼ又は他のジアミントランスフェラーゼは好適に利用することができる。例えば、カダベリンやスペルミジンをアミノ基転移することが報告されている大腸菌のプトレシンアミノトランスフェラーゼをコードするygjG遺伝子や(Samsonova., et al., BMC microbiology 3.1 (2003): 2.)や、シュードモナス属のプトレシンアミノトランスフェラーゼをコードするSpuC遺伝子(Lu et al.,Journal of bacteriology 184.14 (2002): 3765-3773.、Galman et al.,Green Chemistry 19.2 (2017): 361-366.)、大腸菌のGABAアミノトランスフェラーゼをコードするgabT遺伝子、puuE遺伝子等が挙げられる。さらには、Ruegeria pomeroyiChromobacterium violaceumArthrobacter citreusSphaerobacter thermophilusAspergillus fischeriVibrio fluvialisAgrobacterium tumefaciensMesorhizobium loti等由来のω-トランスアミナーゼも、1,8-ジアミノオクタンや1,10-ジアミノデカンなどのジアミン化合物へのアミノ基転移活性を有することが報告されており、好適に利用することができる(Sung et al., Green Chemistry 20.20 (2018): 4591-4595.、Sattler et al., Angewandte Chemie 124.36 (2012): 9290-9293.)。
 アミノ基転移酵素をコードする遺伝子として本発明において例えば、配列番号110~114のいずれかに記載されるアミノ酸配列からなるタンパク質をコードする遺伝子が使用される。好ましくは、大腸菌由来のプトレシンアミノトランスフェラーゼygjG遺伝子が使用される。ygjG遺伝子のコード領域の塩基配列を配列番号115に、ygjGのアミノ酸配列を配列番号110に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-T000062
 本発明に利用できる上記の酵素をコードする遺伝子は、例示された生物以外に由来するものであっても、または人工的に合成したものであってもよく、宿主微生物細胞内で実質的な酵素活性を発現できるものであればよい。
 また、本発明の目的に利用できる上記酵素遺伝子は、前記宿主微生物細胞内で実質的な酵素活性を発現できるものであれば、自然界で発生し得るすべての変異や、人工的に導入された変異及び修飾を有していてもよい。例えば、特定のアミノ酸をコードする種々のコドンには余分のコドンが存在することが知られている。そのため本発明においても同一のアミノ酸に最終的に翻訳されることになる代替コドンを利用してよい。つまり、遺伝子コードは縮重しているので、ある特定のアミノ酸をコードするのに複数のコドンを使用でき、そのためアミノ酸配列は任意の1セットの類似のDNAオリゴヌクレオチドでコードされ得る。そのセットの唯一のメンバーだけが天然型酵素の遺伝子配列に同一であるが、ミスマッチのあるDNAオリゴヌクレオチドでさえ適切な緊縮条件下(例えば、3xSSC、68℃でハイブリダイズし、2xSSC、0.1%SDS及び68℃で洗浄)で天然型配列にハイブリダイズでき、天然型配列をコードするDNAを同定、単離でき、更にそのような遺伝子も本発明において利用できる。特に、ほとんどの生物は特定のコドン(最適コドン)のサブセットを優先的に用いることが知られているので(Gene、Vol.105、pp.61-72、1991等)、宿主微生物に応じて「コドン最適化」を行うことは本発明においても有用であり得る。
 したがって、本発明にかかる遺伝子組換え微生物は、実質的な酵素活性を発現できることを条件に、上記酵素遺伝子の塩基配列と、例えば80%、85%、90%、95%、97%、98%または99%以上の配列同一性を有する塩基配列を含み得る。あるいは、本発明にかかる遺伝子組換え微生物は、上記酵素のアミノ酸配列をコードする塩基配列と、例えば80%、85%、90%、95%、97%、98%または99%以上の配列同一性を有する塩基配列を含み得る。
 本発明において、上記のジアミン化合物合成酵素遺伝子群が「発現カセット」として宿主微生物細胞内に導入されることで、より安定的で高レベルの酵素活性を得ることができる。本明細書において、「発現カセット」とは、発現対象の核酸または発現対象の遺伝子に機能的に結合された転写および翻訳をレギュレートする核酸配列を含むヌクレオチドを意味する。典型的に、本発明の発現カセットは、コード配列から5’上流にプロモーター配列、3’下流にターミネーター配列、場合により更なる通常の調節エレメントを機能的に結合された状態で含み、そのような場合に、発現対象の核酸または発現対象の遺伝子が宿主微生物に導入される。
 プロモーターとは、構成発現型プロモーターであるか誘導発現型プロモーターであるかに拘わらず、RNAポリメラーゼをDNAに結合させ、RNA合成を開始させるDNA配列と定義される。強いプロモーターとはmRNA合成を高頻度で開始させるプロモーターであり、本発明においても好適に使用される。大腸菌ではlac系、trp系、tacまたはtrc系、λファージの主要オペレーター及びプロモーター領域、fdコートタンパク質の制御領域、解糖系酵素(例えば、3-ホスホグリセレートキナーゼ、グリセルアルデヒド‐3‐リン酸脱水素酵素)、グルタミン酸デカルボキシラーゼA、セリンヒドロキシメチルトランスフェラーゼに対するプロモーター、T7ファージ由来RNAポリメラーゼのプロモーター領域等が利用可能である。コリネ菌(Corynebacterium glutamicum)ではHCE(high-level constitutive expression)プロモーター、cspBプロモーター、sodAプロモーター、伸長因子(EF-Tu)プロモーターなどが利用可能である。ターミネーターとしては、T7ターミネーター、rrnBT1T2ターミネーター、lacターミネーターなどが利用可能である。プロモーターおよびターミネーター配列のほかに、他の調節エレメントの例として挙げられ得るのは、選択マーカー、増幅シグナル、複製起点などである。好適な調節配列については、例えば、”Gene Expression Technology:Methods in Enzymology 185”、Academic Press (1990)に記載されている。
 上記で説明した発現カセットは、例えば、プラスミド、ファージ、トランスポゾン、ISエレメント、フォスミド、コスミド、又は線状もしくは環状のDNA等から成るベクターに組み入れて、宿主微生物中に挿入される。プラスミドおよびファージが好ましい。これらのベクターは、宿主微生物中で自律複製されるものでもよいし、また染色体により複製されてもよい。好適なプラスミドは、例えば、大腸菌のpLG338、pACYC184、pBR322、pUC18、pUC19、pKC30、pRep4、pHS1、pKK223-3、pDHE19.2、pHS2、pPLc236、pMBL24、pLG200、pUR290、pIN-III113-B1、λgt11又はpBdCI;桿菌のpUB110、pC194又はpBD214;コリネバクテリウム属のpSA77又はpAJ667などである。これらの他にも使用可能なプラスミド等は、”Cloning Vectors”、Elsevier、1985に記載されている。ベクターへの発現カセットの導入は、適当な制限酵素による切り出し、クローニング、及びライゲーションを含む慣用の方法によって可能である。各々の発現カセットは、1つのベクター上に配置されてもよく、2つまたはそれ以上のベクターに配置されてもよい。
 上記のようにして本発明の発現カセットを有するベクターが構築された後、該ベクターを宿主微生物に導入する際に適用できる手法は慣用の方法を用いることができる。例えば、塩化カルシウム法、エレクトロポレーション法、接合伝達法、プロトプラスト融合法などが挙げられるが、これらに限定されず、宿主微生物に好適な方法が選択可能である。
 上記のようにして得られる組換え微生物は、本発明のジアミン化合物生産のために、前記組換え微生物の生育および/または維持に適した条件下で培養及び維持される。各種の宿主微生物に由来する組換え微生物のための好適な培地組成、培養条件、培養時間は当業者により容易に設定できる。
 本発明の別の実施形態は、先述の組換え微生物を用いてジアミン化合物を製造する方法に関する。ジアミンを製造する方法には、例えば、以下の工程が含まれる。
(a)培養工程
 ジアミン化合物の製造方法には、先述の実施形態にかかる組換え微生物を培養する培養工程が含まれる。例えば、組換え微生物を、炭素源および窒素源を含有する培地で培養することによって、菌体を含む培養液が得られる。
 本製造方法は、遺伝子組換え微生物を、ジアミン化合物の前駆体と接触させることを含んでもよい。組換え微生物にジアミン化合物前駆体を供給する方法としては、組換え微生物体内でジアミン化合物前駆体を生産させる方法や、組換え微生物体によらず、ジアミン化合物前駆体を細胞外から供給する方法が挙げられる。
 培養工程において、組換え微生物をジアミン化合物の前駆体と接触させる場合、前記培地が前駆体をさらに含んでいてもよく、あるいは、培養工程の途中で、培地に前駆体が添加されてもよい。
 培地は、1つ以上の炭素源、窒素源、無機塩、ビタミン、及び場合により微量元素ないしビタミン等の微量成分を含む天然、半合成、合成培地であってよい。しかし、使用する培地は、培養すべき微生物の栄養要求を適切に満たさなければならないことは言うまでもない。
 炭素源は、D-グルコース、スクロース、ラクトース、フルクトース、マルトース、オリゴ糖、多糖、でんぷん、セルロース、米ぬか、廃糖密、油脂(例えば大豆油、ヒマワリ油、ピーナッツ油、ヤシ油など)、脂肪酸(例えばパルミチン酸、リノール酸、オレイン酸、リノレン酸など)、アルコール(例えばグリセロール、エタノールなど)、有機酸(例えば酢酸、乳酸、コハク酸など)が挙げられる。更にD-グルコースを含有するバイオマスであり得る。好適なバイオマスとしては、トウモロコシ分解液やセルロース分解液を例示できる。これらの炭素源は、個別にあるいは混合物として使用することが出来る。
 バイオマス由来の原料を用いて製造されたジアミン化合物は、ISO16620-2またはASTM D6866に規定されるCarbon-14(放射性炭素)分析に基づくバイオベース炭素含有率の測定により、例えば石油、天然ガス、石炭などを由来とする合成原料と明確に区別することができる。
 窒素源は、含窒素有機化合物(例えば、ペプトン、カザミノ酸、トリプトン、酵母抽出物、肉抽出物、麦芽抽出物、コーンスティープリカー、大豆粉、アミノ酸および尿素など)、または無機化合物(例えば、アンモニア水溶液、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、炭酸アンモニウム、硝酸ナトリウム、硝酸アンモニウムなど)が挙げられる。これらの窒素源は、個別にあるいは混合物として使用することが出来る。
 また、培地は、組換え微生物が有用な付加的形質を発現する場合、例えば抗生物質への耐性マーカーを有する場合、対応する抗生物質を含んでいてよい。それにより、培養時の雑菌による汚染リスクが低減される。抗生物質としては、アンピシリンなどのβ-ラクタム系抗生物質、カナマイシンなどのアミノグリコシド系抗生物質、エリスロマイシンなどのマクロライド系抗生物質、テトラサイクリン系抗生物質、クロラムフェニコールなどが挙げられるが、これらに限定されない。
 ジアミン化合物の「前駆体」とは、本発明のジアミン化合物合成に関与する酵素によりジアミン化合物に誘導可能な化合物を指す。前駆体としては、ジカルボン酸、カルボン酸セミアルデヒド、ジアルデヒド、アミノカルボン酸、アミノアルデヒド、アシル-ACP、アシル-CoA、アシルリン酸、が挙げられるが、これらに限定されない。
 例として、ヘキサメチレンジアミンへ誘導可能な具体的な前駆体としては、アジピン酸、アジピン酸セミアルデヒド、アジポアルデヒド、6-アミノヘキサン酸、6-アミノヘキサナール、アジピル-CoA、アジピルリン酸などを使用できる。
 例えば、ジアミン化合物がヘキサメチレンジアミンである場合、組換え微生物を、前駆体であるアジピン酸と接触させることにより、組換え微生物によって生産されたカルボン酸還元酵素およびアミノ基転移酵素により、アジピン酸がヘキサメチレンジアミンに変換される。
 また例えば、ジアミン化合物が1,10-デカンジアミンである場合、組換え微生物を前駆体であるセバシン酸と接触させることにより、組換え微生物によって生産されたカルボン酸還元酵素およびアミノ基転移酵素により、セバシン酸が1,10-デカンジアミンに変換される。
 前駆体は、1種の前駆体を使用しても良く、2種またはそれ以上の前駆体を組み合わせても良い。また、塩の形態を取り得る化合物である場合、前駆体は塩として用いても良く、フリー体として用いてもよく、それらの混合物を用いても良い。
 前駆体の製造方法は特に限定されず、例えば、化学合成法、酵素法、生物変換法、発酵法またはそれらの組み合わせにより製造することができる。
 培養工程において、本発明の遺伝子組換え微生物をジアミン化合物の前駆体と接触させ、ジアミン化合物を培地中に生成蓄積させることで、ジアミン化合物を製造することができる。また、以下で説明するように、反応工程において、ジアミン化合物前駆体を含有する水溶液中で、本発明の遺伝子組換え微生物を作用させることで、該反応液中にジアミン化合物を生成蓄積させてもよい。
(b)反応工程
 本工程は、ジアミン化合物の前駆体を組換え微生物に接触させる工程であり、ジアミン化合物前駆体から目的のジアミン化合物を生成する。ジアミンの前駆体との接触は、例えば、先述のように前記培養工程において行ってもよいし、あるいは、培養工程の後に行ってもよい。本反応工程を、培養工程の後に行う場合、培養工程で得られた培養液および/または菌体を、ジアミン化合物の前駆体を含有する水溶液と接触させてジアミン化合物を含む反応液を得る。このように前駆体と接触させることで、ジアミン化合物を反応液中に生成蓄積させる。
 一態様において、本工程では、培養工程で得られた菌体を含む培養液を、および/または、培養工程で得られた培養液から遠心分離等によって上清を除去した菌体を、前駆体を含有する水溶液と接触させ反応液を得る。
 また、別の一態様において、発酵によって前駆体を生産する菌と、上記本発明にかかる組換え微生物とを共培養してもよい。これらを共培養することによって、前記菌によって生産された前駆体を、本発明にかかる組換え組成物の生産した酵素によって、前駆体を、効率的に目的のジアミン化合物に変換することができる。
 更に別の態様において、本発明にかかる遺伝子組換え微生物に、ジアミン化合物前駆体生産能を持たせることにより、培地中の成分からジアミン化合物を生成蓄積させてもよい。
 遺伝子組換え微生物による前駆体生産経路の例として、グルコースを出発原料とした6-アミノヘキサン酸の製造法(Turk et al.,ACS synthetic biology 5.1 (2015): 65-73.)や、グルコースまたはグリセロールを出発原料としたアジピン酸の製造法(Zhao et al.,Metabolic engineering 47 (2018): 254-262.)が開示されているが、前駆体を生産可能である限り、これらの手法に限定されない。
 例えば、組換え微生物が、ジカルボン酸、カルボン酸セミアルデヒド、もしくはアミノカルボン酸を産生する能力を持ち、さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することで、ジアミン化合物を生産しうる。
 また例えば、組換え微生物が、アジピン酸、アジピン酸セミアルデヒド、もしくは6-アミノヘキサン酸を産生する能力を持ち、さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することで、ヘキサメチレンジアミンを生産しうる。
 本発明にかかる遺伝子組換え微生物および当該微生物を用いたジアミン化合物の製造方法によれば、副生成物の生成を抑制し、ジアミン化合物を効率よく製造することができる。具体的に、例えば、ジアミン化合物の生産に必要な酵素を発現する微生物において、アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するように改変することで、副生成物であるアルコール体の生成を抑制し、ジアミン化合物を効率よく製造することができる。
 以下、更なる説明の目的として実施例を与え、従って、本発明は当該実施例に限定されるものではない。なお、本明細書において特に断りのない限りヌクレオチド配列は5’から3’方向に向けて記載される。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
1:ADH遺伝子破壊株の構築
<1-a 遺伝子破壊用プラスミドの構築>
 ADH遺伝子の破壊は、pHAK1(受託番号NITE P-02919として、独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許微生物寄託センター(NPMD)(住所:千葉県木更津市かずさ鎌足2-5-8 122号室)に2019年3月18日に寄託した。)を用いた相同組換え法により行った。pHAK1は温度感受性変異型repA遺伝子、カナマイシン耐性遺伝子、Bacillus subtilis由来レバンスクラーゼ遺伝子SacBを含む。レバンスクラーゼ遺伝子は、スクロース存在下において宿主微生物に対して致死的に作用する。PCR断片の増幅にはPrimeSTAR Max DNA Polymerase(製品名、タカラバイオ製)、プラスミド調製は大腸菌HST08株を用いて行った。大腸菌BL21(DE3)株のゲノムDNAを鋳型とし、破壊標的遺伝子の上流領域、コード領域、および下流領域を含むPCR産物を得た。標的遺伝子とプライマー配列の組み合わせを下記表に示した。
Figure JPOXMLDOC01-appb-T000063
 次に本PCR産物をIn-Fusion HD cloning kit(製品名、Clontech社製)を用いて、配列番号130及び131のプライマーを用いて増幅したpHAK1プラスミド断片に挿入し、環状化した。
Figure JPOXMLDOC01-appb-T000064
 得られた破壊標的遺伝子の上流領域、コード領域、および下流領域のDNA断片が挿入されたpHAK1プラスミドを鋳型として、下記表に記載するプライマーを用いてPCRを行い、破壊標的遺伝子のコード領域の一部領域または全領域が除かれたプラスミド断片を得た。
Figure JPOXMLDOC01-appb-T000065
 得られたプラスミド断片を末端リン酸化、セルフライゲーションにより環状化し、遺伝子破壊用プラスミドを得た。
<1-b ADH遺伝子破壊大腸菌株の構築>
 塩化カルシウム法(羊土社 遺伝子工学実験ノート 田村隆明著、参照)により、大腸菌BL21(DE3)株に所望の遺伝子の破壊のためのプラスミドを形質転換した後、カナマイシン硫酸塩100mg/Lを含有するLB寒天培地(トリプトン10g/L、酵母エキス5g/L、塩化ナトリウム5g/L、寒天末15g/L)に塗布し、30℃で一晩培養してシングルコロニーを取得し、形質転換体を得た。本形質転換体をカナマイシン硫酸塩100mg/Lを含有するLB液体培地(トリプトン10g/L、酵母エキス5g/L、塩化ナトリウム5g/L)1mLに一白金耳植菌し、30℃で振盪培養を行った。得られた培養液を、カナマイシン硫酸塩100mg/Lを含有するLB寒天培地に塗布し、42℃で一晩培養した。得られるコロニーはシングルクロスオーバーにより、プラスミドがゲノム中に挿入されている。コロニーをLB液体培地1mLに一白金耳植菌し、30℃で振盪培養を行った。得られた培養液を、スクロース10%を含有するLB寒天培地に塗布し、一晩培養した。得られたコロニーについて、所望の遺伝子が破壊されていることを、表8に示すプライマーセットを用い、コロニーダイレクトPCRにより確認した。構築したADH遺伝子破壊大腸菌株を表9に示す。表中、Δは該酵素遺伝子が欠損していることを示す。
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
<1-c 1,6-ヘキサンジオールの分解活性低下試験>
 構築したADH遺伝子破壊大腸菌株の1,6-ヘキサンジオールの分解活性低下を1,6-ヘキサンジオールの酸化反応の進行により確認した。1,6-ヘキサンジオールはヘキサメチレンジアミンの生産反応に伴い副生しうるアルコール体の一つである。本試験では、図1に示すADHの触媒するアルデヒドとアルコールとの間の反応が可逆反応であることに基づき、アルコール(ここでは、1,6-ヘキサンジオール)からアルデヒドへの変換反応に着目し、1,6-ヘキサンジオールの消費をADHによる1,6-ヘキサンジオールの分解活性の指標とした。本試験では、前培養として、ADH遺伝子破壊大腸菌各株の菌体をLB液体培地2mLに一白金耳植菌し、37℃で一晩振盪培養を行った。得られた前培養液を、1,6-ヘキサンジオール10mMを含むLB液体培地2mLに1%相当量植菌し、本培養として、37℃で48時間振盪培養を行った。培養液を遠心分離により菌体と上清に分離し、上清中1,6-ヘキサンジオール濃度を分析した。
 1,6-ヘキサンジオール濃度の分析はガスクロマトグラフを用いて行った。
条件は以下の通りである。
GCシステム:GC-2010(島津製作所製)
検出器:水素炎イオン化型検出器
カラム:DB-WAX(Agilent社製、カラム長30m、内径0.25mm、膜厚0.25mm)
キャリアガス:He
ガス圧力:100kPa
カラム温度:50℃-(25℃/min)-230℃-(20min保持)
検出器温度:250℃
注入口温度:250℃
注入量:1μL
注入方法:スプリット注入法(スプリット比36.3)
 本培養48時間後の培養上清中の1,6-ヘキサンジオール濃度を図2に示した。ADH遺伝子を破壊していない野生型株(BL21(DE3)株、WTはWild Typeの略語表記であり野生型を示す)では、ADHの作用により1,6-ヘキサンジオールが消費されるのに対し、ADH遺伝子破壊株、特にahr遺伝子、yahK遺伝子の二種類の遺伝子では単独の遺伝子破壊により1,6-ヘキサンジオールの消費が抑制された。本結果から、ADH遺伝子破壊株において、1,6-ヘキサンジオールの分解活性の低下が確認された。
2:ADH遺伝子破壊株でのジアミン化合物生産
<2-a MaCar遺伝子、Npt遺伝子、ygjG遺伝子発現プラスミドの構築>
 PCR断片の増幅にはPrimeSTAR Max DNA Polymerase(製品名、タカラバイオ製)、プラスミドの調製には大腸菌JM109株を用いた。Eshcherichia coli W3110株(NBRC12713)のゲノムDNAを鋳型とし、配列番号160および161のオリゴヌクレオチドをプライマーとしてPCRを行い、ygjG遺伝子のコード領域を含むPCR産物を得た。次に本PCR産物をIn-Fusion HD cloning kit(製品名、Clontech社製)を用いて、プラスミドpACYCDuet(商標)-1(製品名、Merck社製)の制限酵素NcoIおよびHindIII切断部位間に挿入し、「pDA50」と命名した。
Figure JPOXMLDOC01-appb-T000068
 Mycobacterium abscessus JCM13569株(文部科学省/国立研究開発法人日本医療研究開発機構ナショナルバイオリソースプロジェクトを介して理研BRCから提供された。)のゲノムDNAを鋳型とし、配列番号162および163のオリゴヌクレオチドをプライマーとしてPCRを行い、MaCar遺伝子のコード領域を含むPCR産物を得た。次に本PCR産物をIn-Fusion HD cloning kit(製品名、Clontech社製)を用いて、pDA50の制限酵素NdeIおよびAvrII切断部位間に挿入し、「pDA52」と命名した。
Figure JPOXMLDOC01-appb-T000069
 Nocardia iowensis JCM18299株(文部科学省ナショナルバイオリソースプロジェクトを介して理研BRCから提供された。)のゲノムDNAを鋳型とし、配列番号164および165のオリゴヌクレオチドをプライマーとしてPCRを行い、Npt遺伝子のコード領域を含むPCR産物を得た。次に、pDA52を鋳型とし、配列番号166および167のオリゴヌクレオチドをプライマーとしてPCRを行い、pDA52断片を得た。PCR産物同士をIn-Fusion HD cloning kit(製品名、Clontech社製)を用いて接続した。得られた形質転換体より、プラスミドを抽出し、Npt遺伝子が挿入されたものを、「pDA56」と命名した。pDA56のプラスミドマップを図3に示す。
Figure JPOXMLDOC01-appb-T000070
<2-b 形質転換体の作製>
塩化カルシウム法(羊土社 遺伝子工学実験ノート 田村隆明著、参照)により、pDA56をADH遺伝子非破壊大腸菌株またはADH遺伝子破壊株に導入し、クロラムフェニコール34mg/Lを含有するLB寒天培地で一晩培養し、形質転換体を得た。取得した形質転換体を下記表に示す通り、それぞれ形質転換体A~Sと命名した。表に示すとおり、形質転換体Aは、ADH遺伝子非破壊株であり、形質転換体B~Hは、ADHをコードする遺伝子のいずれかひとつが破壊された株であり、形質転換体I~Sは、ADHをコードする遺伝子のうちの少なくとも2つが破壊された(多重破壊された)株である。
Figure JPOXMLDOC01-appb-T000071
<2-c アジピン酸からのヘキサメチレンジアミン生産(比較例1、実施例1~18)>
前培養として、クロラムフェニコール34mg/Lを含むLB液体培地2mLに形質転換体A~Sの菌体を一白金耳植菌し、37℃で一晩振盪培養を行った。得られた前培養液を、アジピン酸二アンモニウム50mM、クロラムフェニコール34mg/L、グルコース2%を含有するSOB液体培地(トリプトン20g/L、酵母エキス5g/L、塩化ナトリウム0.5g/L、塩化カリウム2.5mM、硫酸マグネシウム10mM、塩化マグネシウム10mM)1mLに1%相当量植菌し、37℃で振盪培養した。2時間培養後、イソプロピル-β-チオガラクトシルピラノシド(IPTG)を終濃度0.2mMとなるように添加し、30℃で48時間振盪培養を行った。培養液を遠心分離により菌体と上清に分離し、上清中のヘキサメチレンジアミン濃度及び1,6-ヘキサンジオール濃度を分析した。
 ヘキサメチレンジアミン濃度の分析はイオンクロマトグラフを用いて行った。条件は以下の通りである。
装置:ICS-3000(Dionex社製)
検出器:電気伝導度検出器
カラム:IonPac CG19(2×50mm)/CS19(2×250mm)(Thermo Scientific社製)
オーブン温度:30℃
移動相:8mMメタンスルホン酸水溶液(A)、70mMメタンスルホン酸水溶液(B)
グラジエント条件:(A:100%、B:0%)-(10min)-(A:0%、B:100%)-(1min保持)
流速:0.35mL/min
注入量:20μL
 1,6-ヘキサンジオールの濃度の分析は(1-c)と同様の条件で、ガスクロマトグラフを用いて行った。
 表14に、各培養液中のヘキサメチレンジアミン濃度、1,6-ヘキサンジオール濃度を示す。まず、ヘキサメチレンジアミン濃度については、ADH遺伝子非破壊株(比較例1)と比較して、実施例1、3および8~18のADH遺伝子破壊株において、ヘキサメチレンジアミン生成量の増加が認められた。また、実施例1、2および4~18のADH遺伝子破壊株において、1,6-ヘキサンジオール生成量が低減した。また、ADH遺伝子の多重破壊(実施例8~18)により、ヘキサメチレンジアミン生成量はさらに増加し、1,6-ヘキサンジオール濃度については、ADH遺伝子非破壊株(比較例1)と比較して、生成の抑制が認められた。
Figure JPOXMLDOC01-appb-T000072
<2-d セバシン酸からの1,10-デカンジアミン生産(比較例2、実施例19、20)>
前培養として、クロラムフェニコール34mg/Lを含むLB液体培地2mLに形質転換体A~Sの菌体を一白金耳植菌し、37℃で一晩振盪培養を行った。得られた前培養液を、セバシン酸ナトリウム50mM、クロラムフェニコール34mg/L、グルコース2%を含有するSOB液体培地1mLに1%相当量植菌し、37℃で振盪培養した。2時間培養後、IPTGを終濃度0.2mMとなるように添加し、30℃で48時間振盪培養を行った。培養液を遠心分離により菌体と上清に分離し、上清中の1,10-デカンジアミン濃度及び1,10-デカンジオール濃度を分析した。
 1,10-デカンジアミン濃度の分析は、(2-c)と同様の条件でイオンクロマトグラフにて行った。表15に各培養液中の1,10-デカンジアミン濃度を示す。ADH遺伝子非破壊株(比較例2)と比較して、実施例19および20のADH遺伝子破壊株において1,10-ジアミノデカン生成量の増加が認められた。
 1,10-デカンジオールの濃度の分析は(1-c)と同様の条件で、ガスクロマトグラフを用いて行った。表15に各培養液中の1,10-デカンジアミン濃度を示す。ADH遺伝子非破壊株(比較例2)と比較して、実施例19および20のADH遺伝子破壊株では1,10-デカンジオール生成量の抑制が認められた。
Figure JPOXMLDOC01-appb-T000073
 生物学的材料の寄託
 プラスミドpHAK1は、2020年7月21日に、独立行政法人製品評価技術基盤機構特許生物寄託センター(NPMD)(住所:日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に「NITE ABP-02919(受領番号)」として寄託している(NITE P-02919からのブダペスト条約に基づく寄託への移管)。
 本発明の遺伝子組換え微生物は、ジアミン化合物製造において好適に利用できる。

Claims (33)

  1.  ジアミン化合物合成に関与する酵素を発現する微生物であって、
     該ジアミン化合物が、式:HN-R-NH
    (式中、RはC、H、O、N、Sから成る群より選択される1以上の原子から構成される鎖状または環状の有機基である。)
    で表され、
     アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するように改変が行われた、遺伝子組換え微生物。
  2.  アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するような改変が、
     アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制される改変であるか、または、
     アルコールデヒドロゲナーゼをコードする遺伝子の発現が抑制され、かつ、アルコールデヒドロゲナーゼの活性が抑制される改変である、請求項1に記載の遺伝子組換え微生物。
  3.  前記アルコールデヒドロゲナーゼが、
    ・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列からなるDNA、
    ・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列と85%以上の配列同一性を有する塩基配列からなり、かつ、アルコールデヒドロゲナーゼ活性を有するタンパク質をコードするDNA、
    ・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列によりコードされるタンパク質のアミノ酸配列に対して1~10個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードする塩基配列であって、アルコールデヒドロゲナーゼ酵素活性を有するタンパク質をコードするDNA、または
    ・配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98および100から選択される塩基配列の縮重異性体からなるDNA
    によってコードされるタンパク質である、請求項1または2に記載の組換え微生物。
  4.  前記アルコールデヒドロゲナーゼが、配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97および99から選択されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、かつ、アルコールデヒドロゲナーゼ活性を有するタンパク質である、請求項1~3のいずれか1項に記載の組換え微生物。
  5.  前記アルコールデヒドロゲナーゼが、yqhDfucOadhPybbOeutGahryahK、adhEybdRdkgAyiaYfrmAdkgByghAydjGgldAyohFyeaE、ADH1ADH2ADH3ADH4ADH5ADH6ADH7SFA1AAD3AAD4AAD10AAD14AAD15YPR1NCgl0324NCgl0313NCgl0219NCgl2709NCgl1112NCgl2382NCgl0186NCgl0099NCgl2952NCgl1459yogAbdhKbdhJakrNyqkFyccKiolSおよびyrpGからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、請求項1~4のいずれか1項に記載の遺伝子組換え微生物。
  6.  前記アルコールデヒドロゲナーゼが、yqhDfucOadhPeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、請求項1~5のいずれか1項に記載の遺伝子組換え微生物。
  7.  前記アルコールデヒドロゲナーゼが、yqhDおよびadhPからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、請求項1~6のいずれか1項に記載の遺伝子組換え微生物。
  8.  前記アルコールデヒドロゲナーゼが、adhP遺伝子によってコードされるタンパク質である、請求項7に記載の遺伝子組換え微生物。
  9.  前記アルコールデヒドロゲナーゼが、yqhDfucOeutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、請求項1~6のいずれか1項に記載の遺伝子組換え微生物。
  10.  前記アルコールデヒドロゲナーゼが、eutGybbOahr、およびyahKからなる群より選択される少なくとも一つの遺伝子によってコードされるタンパク質である、請求項9に記載の遺伝子組換え微生物。
  11.  前記アルコールデヒドロゲナーゼが、yqhDfucOadhPeutGybbOahrおよびyahKからなる群より選択される2以上の遺伝子によってコードされるタンパク質である、請求項1~6のいずれか1項に記載の遺伝子組換え微生物。
  12.  前記アルコールデヒドロゲナーゼが、
     yqhDおよびfucO
     yqhDおよびadhP
     yqhDおよびeutG
     yqhDおよびybbO
     yqhDおよびahr
     yqhDおよびyahK
     yqhDfucOおよびadhP
     yqhDfucOadhPおよびeutG
     yqhDfucOadhPeutGおよびybbO
     yqhDfucOadhPeutGybbOおよびahr、並びに、
     yqhDfucOadhPeutGybbOahrおよびyahK
    からなる群より選択される1種の組み合わせに係る遺伝子によってコードされるタンパク質である、請求項1~6のいずれか1項に記載の遺伝子組換え微生物。
  13.  前記アルコールデヒドロゲナーゼの活性が非低下株と比較して低下するような改変が、
     前記微生物内の前記アルコールデヒドロゲナーゼをコードする遺伝子の転写量および/または翻訳量を低下させること、ならびに
     前記微生物内の前記アルコールデヒドロゲナーゼをコードする遺伝子を破壊すること
    からなる群より選択される1以上によって行われる、請求項1~12のいずれか1項に記載の組換え微生物。
  14.  上記遺伝子組換え微生物が、エッセリシア属、コリネバクテリウム属、バチルス属、アシネトバクター属、バークホルデリア属、シュードモナス属、クロストリジウム属、サッカロマイセス属、シゾサッカロマイセス属、ヤロウィア属、カンジタ属、ピキア属およびアスペルギルス属からなる群より選択される属に属する請求項1~13のいずれか1項に記載の遺伝子組換え微生物。
  15.  上記遺伝子組換え微生物が、エッセリシア・コリ(Escherichia coli)である、請求項1~14のいずれか1項に記載の遺伝子組換え微生物。
  16.  前記ジアミン化合物合成に関与する酵素として、アミノ基転移酵素を発現する請求項1~15のいずれか1項に記載の遺伝子組換え微生物。
  17.  前記ジアミン化合物合成に関与する酵素として、カルボン酸還元酵素を発現する請求項1~16のいずれか1項に記載の遺伝子組換え微生物。
  18.  前記カルボン酸還元酵素が、カルボン酸セミアルデヒド、ジカルボン酸、もしくはアミノカルボン酸のカルボキシル基をアルデヒドに変換する活性を持つ請求項17に記載の遺伝子組換え微生物。
  19.  ジカルボン酸、カルボン酸セミアルデヒド、もしくはアミノカルボン酸を産生する能力を持ち、
     さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することを特徴とする請求項1~18のいずれか1項に記載の遺伝子組換え微生物。
  20.  アジピン酸、アジピン酸セミアルデヒド、もしくは6-アミノヘキサン酸を産生する能力を持ち、
     さらにアミノ基転移酵素、およびカルボン酸還元酵素を発現することを特徴とする請求項1~19のいずれか1項に記載の遺伝子組換え微生物。
  21.  ホスホパンテテイニル基転移酵素の活性を増大させる改変が更に行われている、請求項17~20のいずれか1項に記載の遺伝子組換え微生物。
  22.  前記アミノ基転移酵素をコードする遺伝子がygjGである、請求項16~21のいずれか1項に記載の遺伝子組換え微生物。
  23.  前記カルボン酸還元酵素をコードする遺伝子がMaCarである、請求項17~22のいずれか1項に記載の遺伝子組換え微生物。
  24.  前記ホスホパンテテイニル基転移酵素をコードする遺伝子がNptである、請求項21~23のいずれか1項に記載の遺伝子組換え微生物。
  25.  配列番号115に示す塩基配列と85%以上の配列同一性を有し、かつ、アミノ基転移酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
     配列番号110~114のいずれかに示すアミノ酸配列をコードする塩基配列と85%以上の配列同一性を有し、かつ、アミノ基転移酵素活性を有するタンパク質をコードする塩基配列を含む、請求項1~24のいずれか1項に記載の組換え微生物。
  26.  配列番号105に示す塩基配列と85%以上の配列同一性を有し、かつ、カルボン酸還元酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
     配列番号101~104のいずれかに示すアミノ酸配列をコードする塩基配列と85%以上の配列同一性を有し、かつ、カルボン酸還元酵素活性を有するタンパク質をコードする塩基配列を含む、請求項1~25のいずれか1項に記載の組換え微生物。
  27.  配列番号109に示す塩基配列と85%以上の配列同一性を有し、かつ、ホスホパンテテイニル基転移酵素活性を有するタンパク質をコードする塩基配列を含むか、あるいは
     配列番号106~108のいずれかに示すアミノ酸配列をコードする塩基配列と80%以上の配列同一性を有し、かつ、ホスホパンテテイニル基転移酵素活性を有するタンパク質をコードする塩基配列を含む、請求項21~26のいずれか1項に記載の組換え微生物。
  28.  アシル-(アシル輸送タンパク質(ACP))還元酵素(AAR)、
     アシルCoAからアルデヒドを生産する酵素、
     アシルリン酸からアルデヒドを生成する酵素
    から成る群より選択される1以上の酵素を発現する、請求項1~27のいずれか1項に記載の遺伝子組換え微生物。
  29.  請求項1~28のいずれか1項に記載の遺伝子組換え微生物を用いたジアミン化合物の製造方法。
  30.  請求項1~28のいずれか1項に記載の遺伝子組換え微生物を、炭素源および窒素源を含有する培地で培養し、菌体を含む培養液を得る培養工程を含む、ジアミン化合物の製造方法。
  31.  前記培地が更にジアミン化合物の前駆体を含むか、または
     前記培養工程において、前記培地に前記前駆体を添加することを含む、請求項30に記載のジアミン化合物の製造方法。
  32.  前記培養液および/または前記菌体を、ジアミン化合物の前駆体を含有する水溶液と接触させてジアミン化合物を含む反応液を得る反応工程を含む、請求項30または31に記載のジアミン化合物の製造方法。
  33.  前記前駆体が、ジカルボン酸、カルボン酸セミアルデヒド、アミノカルボン酸、アミノアルデヒド、ジアルデヒド、アシル-ACP、アシル-CoAおよびアシルリン酸から成る群から選択される、請求項31または32に記載のジアミン化合物の製造方法。
PCT/JP2020/028456 2019-07-22 2020-07-22 遺伝子組換え微生物及びジアミン化合物の製造方法 WO2021015242A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021534076A JP7440519B2 (ja) 2019-07-22 2020-07-22 遺伝子組換え微生物及びジアミン化合物の製造方法
KR1020227004223A KR20220032084A (ko) 2019-07-22 2020-07-22 유전자 재조합 미생물 및 디아민 화합물의 제조 방법
EP20843995.0A EP4006162A4 (en) 2019-07-22 2020-07-22 Genetically modified microorganism and method for producing diamine compound
CN202080048331.6A CN114555779A (zh) 2019-07-22 2020-07-22 基因重组微生物和二胺化合物的制造方法
US17/623,542 US20220396800A1 (en) 2019-07-22 2020-07-22 Genetically modified microorganism and method for producing diamine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-134306 2019-07-22
JP2019134306 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021015242A1 true WO2021015242A1 (ja) 2021-01-28

Family

ID=74192570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028456 WO2021015242A1 (ja) 2019-07-22 2020-07-22 遺伝子組換え微生物及びジアミン化合物の製造方法

Country Status (7)

Country Link
US (1) US20220396800A1 (ja)
EP (1) EP4006162A4 (ja)
JP (1) JP7440519B2 (ja)
KR (1) KR20220032084A (ja)
CN (1) CN114555779A (ja)
TW (1) TWI775115B (ja)
WO (1) WO2021015242A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270597A1 (ja) * 2021-06-25 2022-12-29 旭化成株式会社 アミノ基転移酵素活性を有する組換えポリペプチド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924446B1 (ja) 1970-03-05 1974-06-22
JPS5770842A (en) 1980-10-21 1982-05-01 Ube Ind Ltd Preparation of 1,12-dodecanediamine
JP2014525741A (ja) 2011-06-30 2014-10-02 インビスタ テクノロジーズ エス.アー.エール.エル. ナイロン−7、ナイロン−7,7、およびポリエステルを生産するための生物変換方法
JP2015146810A (ja) 2009-05-07 2015-08-20 ゲノマチカ, インク. アジペート、ヘキサメチレンジアミン、及び6−アミノカプロン酸の生合成のための微生物及び方法
WO2016175901A2 (en) * 2014-12-22 2016-11-03 Invista North America S.á.r.l. Materials and methods for producing 6-carbon monomers synthase
JP2017533734A (ja) * 2014-11-14 2017-11-16 インビスタ テクノロジーズ エス.アー.エール.エル. 6−炭素モノマーを産生するための方法および材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630521B2 (ja) 1972-06-19 1981-07-15
WO2016209883A1 (en) * 2015-06-23 2016-12-29 Genomatica, Inc. Microorganisms and methods for the production of biosynthesized target products having reduced levels of byproducts
WO2018022633A1 (en) * 2016-07-25 2018-02-01 Invista Textiles (U.K.) Limited Methods and materials for biosynthesizing multifunctional, multivariate molecules via carbon chain modification
WO2018022440A2 (en) * 2016-07-25 2018-02-01 Invista North America S.A.R.L. Materials and methods for directing carbon flux and increased production of carbon based chemicals
KR102510355B1 (ko) * 2018-01-09 2023-03-15 건국대학교 산학협력단 아미노 지방산 또는 다이아민, 아미노알코올을 포함하는 그의 유도체를 생산하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924446B1 (ja) 1970-03-05 1974-06-22
JPS5770842A (en) 1980-10-21 1982-05-01 Ube Ind Ltd Preparation of 1,12-dodecanediamine
JP2015146810A (ja) 2009-05-07 2015-08-20 ゲノマチカ, インク. アジペート、ヘキサメチレンジアミン、及び6−アミノカプロン酸の生合成のための微生物及び方法
JP2014525741A (ja) 2011-06-30 2014-10-02 インビスタ テクノロジーズ エス.アー.エール.エル. ナイロン−7、ナイロン−7,7、およびポリエステルを生産するための生物変換方法
JP2017533734A (ja) * 2014-11-14 2017-11-16 インビスタ テクノロジーズ エス.アー.エール.エル. 6−炭素モノマーを産生するための方法および材料
WO2016175901A2 (en) * 2014-12-22 2016-11-03 Invista North America S.á.r.l. Materials and methods for producing 6-carbon monomers synthase

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
"Cloning Vectors", 1985, ELSEVIER
"Gene Expression Technology: Methods in Enzymology", 1990, ACADEMIC PRESS
BLOMFIELD ET AL., MOLECULAR MICROBIOLOGY, vol. 5, no. 6, 1991, pages 1447 - 1457
CHAE, T. ET AL.: "Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine", SCI REP., vol. 5, 11 August 2015 (2015-08-11), pages 13040
DATSENKO, KIRILL ABARRY L. WANNER: "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 97, no. 12, 2000, pages 6640 - 6645, XP002210218, DOI: 10.1073/pnas.120163297
EHMANN ET AL., BIOCHEMISTRY, vol. 38, no. 19, 1999, pages 6171 - 6177
GALMAN ET AL., GREEN CHEMISTRY, vol. 19, no. 2, 2017, pages 361 - 366
GENE, vol. 105, 1991, pages 61 - 72
JIANG, YU ET AL.: "Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system", APPL. ENVIRON. MICROBIOL., vol. 81, no. 7, 2015, pages 2506 - 2514, XP055444637, DOI: 10.1128/AEM.04023-14
LU ET AL., JOURNAL OF BACTERIOLOGY, vol. 184, no. 14, 2002, pages 3765 - 3773
MASUO, S. ET AL.: "Bacterial fermentation platform for producing artificial aromatic amines", SCIENTIFIC REPORTS, vol. 6, 2016, XP055412998, DOI: 10.1038/srep25764
PICK ET AL., APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 97, no. 13, 2013, pages 5815 - 5824
SAMSONOVA ET AL., BMC MICROBIOLOGY, vol. 3, no. 1, 2003, pages 2
SATTLER ET AL., ANGEWANDTE CHEMIE, vol. 124, no. 36, 2012, pages 9290 - 9293
SCHIRMER, ANDREAS ET AL., SCIENCE, vol. 329, no. 5991, 2010, pages 559 - 562
See also references of EP4006162A4
SOHLING, B.GERHARD GOTTSCHALK., JOURNAL OF BACTERIOLOGY, vol. 178, no. 3, 1996, pages 871 - 880
SUNG ET AL., GREEN CHEMISTRY, vol. 20, no. 20, 2018, pages 4591 - 4595
TSUGE,Y. ET AL.: "Engineering cell factories for producing building block chemicals for biopolymer synthesis", MICROB. CELL FACT., vol. 15, no. 19, 2016
TURK ET AL., ACS SYNTHETIC BIOLOGY, vol. 5, no. 1, 2015, pages 65 - 73
VENKITASUBRAMANIAN ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 1, 2007, pages 478 - 485
ZHAO ET AL., METABOLIC ENGINEERING, vol. 47, 2018, pages 254 - 262
ZHENG, YAN-NING ET AL., MICROBIAL CELL FACTORIES, vol. 11, no. 1, 2012, pages 65

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270597A1 (ja) * 2021-06-25 2022-12-29 旭化成株式会社 アミノ基転移酵素活性を有する組換えポリペプチド

Also Published As

Publication number Publication date
CN114555779A (zh) 2022-05-27
JPWO2021015242A1 (ja) 2021-01-28
EP4006162A4 (en) 2023-06-28
KR20220032084A (ko) 2022-03-15
TWI775115B (zh) 2022-08-21
TW202115242A (zh) 2021-04-16
JP7440519B2 (ja) 2024-02-28
EP4006162A1 (en) 2022-06-01
US20220396800A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
AU2005261861B2 (en) Biochemical synthesis of 1,4-butanediamine
KR101188432B1 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
CN101006183B (zh) 1,4-丁二胺的生物化学合成
JP6144804B2 (ja) グルカル酸の製造方法
JP6982452B2 (ja) 遺伝的に操作された微生物による1,5−ペンタンジオールの製造方法
Shin et al. Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial grade l-lysine
WO2022210708A1 (ja) 組換え微生物及びc6化合物の製造方法
WO2021015242A1 (ja) 遺伝子組換え微生物及びジアミン化合物の製造方法
KR101694572B1 (ko) N-아실 또는 n-구아니딜 보호된 1,4-뷰테인다이아민 전구체를 통한 1,4-뷰테인다이아민의 제조 방법
CN117441008A (zh) 重组微生物和c6化合物的制造方法
US20230139445A1 (en) Bacterial cells with improved tolerance to diacids
WO2022244809A1 (ja) ジアミン生産能を有する組換え微生物およびジアミンの製造方法
JP2022171292A (ja) 組換え微生物及び化合物の製造方法
JP7038241B1 (ja) 組換え微生物及びアジピン酸又はその誘導体の製造方法
JP2023105728A (ja) 改変微生物及び化合物の製造方法
CN117500912A (zh) 具有二胺生产能力的重组微生物和二胺的制造方法
JP2023012570A (ja) リジンアンモニアリアーゼ活性を有する組換えポリペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004223

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020843995

Country of ref document: EP

Effective date: 20220222