WO2021014703A1 - Mounting board manufacturing system, mounting board manufacturing method, and consistency assessment device - Google Patents

Mounting board manufacturing system, mounting board manufacturing method, and consistency assessment device Download PDF

Info

Publication number
WO2021014703A1
WO2021014703A1 PCT/JP2020/017619 JP2020017619W WO2021014703A1 WO 2021014703 A1 WO2021014703 A1 WO 2021014703A1 JP 2020017619 W JP2020017619 W JP 2020017619W WO 2021014703 A1 WO2021014703 A1 WO 2021014703A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
consistency
advance
mounting
board
Prior art date
Application number
PCT/JP2020/017619
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 昌弘
正宏 木原
利彦 永冶
聖 古市
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080048729.XA priority Critical patent/CN114072744B/en
Priority to JP2021534544A priority patent/JP7170183B2/en
Priority to DE112020003452.6T priority patent/DE112020003452T5/en
Publication of WO2021014703A1 publication Critical patent/WO2021014703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45026Circuit board, pcb
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45029Mount and solder parts on board
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Definitions

  • the present disclosure relates to a mounting board manufacturing system and a mounting board manufacturing method for manufacturing a mounting board by mounting components on a board, and a device (consistency judgment device) for judging the consistency of data used in the mounting board manufacturing system.
  • a mounting board manufacturing system that mounts electronic components on a board to manufacture a mounting board is configured by connecting a plurality of component mounting devices such as a solder printing device, a component mounting device, and a reflow device.
  • component mounting devices such as a solder printing device, a component mounting device, and a reflow device.
  • a position correction technique is used in which component mounting misalignment information indicating component misalignment on a component mounting board is fed back to the previous process.
  • the inspection device actually measures and obtains the component mounting position after the component is mounted, and sends the component mounting deviation to the component mounting device in the previous process.
  • Patent Document 1 discloses a configuration in which an X-ray inspection device capable of measuring the positions of electrodes and bumps of parts on a substrate after mounting parts is arranged.
  • the recognition mark or component position coordinate indicated by the production data used by the component mounting device in the component mounting operation may not always exactly match the recognition mark or component position coordinate indicated by the inspection data used by the inspection device. In such a case, correct position correction is not performed even if the mounting position deviation measurement result by the inspection device is fed back to the component mounting device.
  • the feedback position correction may not function effectively due to the consistency between the production data and the inspection data.
  • the present disclosure discloses a mounting board manufacturing system and mounting board manufacturing capable of ensuring consistency between production data and inspection data and allowing hoodback position correction to function correctly even when a feedback function is retrofitted in the mounting board manufacturing system.
  • a method and a consistency determination device are provided.
  • the mounting board manufacturing system includes a consistency determination unit, a component mounting device, and a mounted component inspection device.
  • the consistency determination unit confirms the quality of the consistency between the production data given in advance and the inspection data given in advance. This production data is used when mounting the component on the board, and this inspection data is used when inspecting the mounting state of the component on the board.
  • the component mounting device manufactures a mounting board by mounting components on a board based on production data confirmed by the consistency determination unit to have good consistency.
  • the mounted component inspection device inspects the mounted state of the components mounted on the board by the component mounting device based on the inspection data confirmed to have good consistency.
  • a mounting board in which components are mounted on the board is manufactured.
  • this mounting board manufacturing method it is confirmed whether or not the production data given in advance and the inspection data given in advance are consistent.
  • This production data is used in a component mounting device that mounts components on a board.
  • This inspection data is used in the mounted parts inspection device that inspects the mounted state of the parts mounted on the board by the component mounting device. Then, using the production data confirmed to have good consistency, the components are mounted on the board by the component mounting device. Further, using the inspection data confirmed to have good consistency, the mounted parts inspection device inspects the mounted state of the parts mounted on the board.
  • the consistency determination device confirms the quality of the consistency between the production data given in advance and the inspection data given in advance.
  • This production data is used in a component mounting device that mounts components on a board.
  • This inspection data is used in the mounted parts inspection device that inspects the mounted state of the parts mounted on the board by the component mounting device.
  • the hoodback position correction can function correctly by ensuring the consistency between the production data and the inspection data.
  • Configuration explanatory view of the mounting board manufacturing line included in the mounting board manufacturing system according to the embodiment of the present disclosure Configuration explanatory view of the mounting board manufacturing system according to the embodiment of the present disclosure.
  • Configuration explanatory view of the mounting board manufacturing system according to the embodiment of the present disclosure Configuration explanatory view of the component mounting device included in the mounting board manufacturing line shown in FIG.
  • FIG. 6A A diagram showing an inspection data table showing the correspondence between the recognition mark and the mounting point and the coordinates shown in FIG. 6A in a table format.
  • Explanatory drawing of quality determination of consistency between coordinate values of production data and inspection data in mounting board manufacturing system which concerns on embodiment of this disclosure, and repetition pattern In the mounting substrate manufacturing system according to the embodiment of the present disclosure, a diagram showing an example of good / bad determination of consistency when the substrate to be produced is an aggregate of a plurality of small substrates formed in the same pattern.
  • the mounting board manufacturing line L has a function of manufacturing a mounting board in which components are mounted on the board.
  • the mounting board manufacturing line L has a configuration in which a plurality of component mounting devices MM located upstream (left side in FIG. 1) and one mounted component inspection device MI located downstream of the component mounting device MM are arranged in series.
  • three component mounting devices MM are exemplified.
  • the plurality of component mounting devices MM and the component mounting device MM are arranged along the X axis.
  • the Y-axis orthogonal to the X-axis indicates the depth of each device.
  • the Z axis is along the vertical direction.
  • the component mounting device MM is numbered in order from the upstream as (# 1), (# 2), (# 3), so that each of the component mounting device MM can be identified.
  • the numbers are omitted and they are collectively referred to as component mounting device MMs.
  • FIG. 2 shows the configuration of the mounting board manufacturing system 1 according to the embodiment of the present disclosure.
  • the component mounting devices MM (# 1), MM (# 2), MM (# 3) and the mounted component inspection device MI are connected to each other by the communication network 4.
  • the component mounting devices MM (# 1), MM (# 2), MM (# 3) and the mounted component inspection device MI are connected to the information management device 5, which is a higher-level system, via the communication network 4.
  • the information management device 5 which is a higher-level system, via the communication network 4.
  • data can be exchanged between the component mounting devices MM (# 1), MM (# 2), MM (# 3), the mounted component inspection device MI, and the information management device 5.
  • the inspection result obtained by the mounted component inspection device MI is fed back to a plurality of upstream component mounting devices MM, and the component mounting operation in each of the component mounting device MM is corrected. That is, the inspection results acquired by the mounted component inspection device MI are the component mounting device MM (# 1), the component mounting device MM (# 2), and the component mounting device MM (# 3), as indicated by arrows e, f, and g. ) Are transmitted to each. Then, in the component mounting device MM (# 1), the component mounting device MM (# 2), and the component mounting device MM (# 3), each of them is based on the position of the component obtained by the inspection result by the mounted component inspection device MI. The component mounting device MM corrects the operation of mounting the component on the substrate 3.
  • the mounting board manufacturing line L includes a conveyor 2 configured by arranging in-device conveyors of each mounting device in series.
  • the substrate 3 carried in from the upstream (arrow a) is sequentially transferred to each mounting device by the conveyor 2, and the substrate 3 on which the predetermined work has been performed is carried out downstream (arrow b) along the conveyor 2.
  • the conveyor 2 is provided along the X-axis, and the substrate 3 is conveyed along the X-axis.
  • the conveyor 2 sequentially carries the board 3 into a plurality of mounting devices including the component mounting device MM and the mounted component inspection device MI, and each mounting device is used for mounting a predetermined component on the board 3. Do the work.
  • the component mounting device MM has a mounting head 11 arranged above the substrate 3 conveyed by the conveyor 2.
  • the mounting head 11 has a suction nozzle (not shown) for holding the component.
  • the mounting head 11 is movable by the head moving mechanism 10, and the mounting head 11 is provided with a substrate recognition camera 12 that moves integrally with the mounting head 11.
  • the mounting head 11 is mounted on the head elevating mechanism 102 mounted on the XY table 101.
  • the XY table 101 and the head elevating mechanism 102 constitute the head moving mechanism 10.
  • the mounting head 11 moves horizontally in a plane defined by the X-axis and the Y-axis.
  • the mounting head 11 moves up and down with respect to the substrate 3.
  • the substrate 3 is positioned and held in advance by the conveyor 2.
  • Parts supply units 13 such as tape feeders having a function of supplying parts are arranged on both sides of the conveyor 2 on the Y-axis.
  • the mounting head 11 executes the component mounting operation
  • the head moving mechanism 10 is driven, and the mounting head 11 takes out the components from each of the component supply units 13 and positions them on the conveyor 2 as shown by arrows c and d.
  • the components are transferred and mounted on the held substrate 3. That is, the component mounting device MM executes the component mounting operation of mounting the component on the board.
  • the board recognition camera 12 moves together with the mounting head 11. Then, the substrate recognition camera 12 photographs at least a part of the substrate 3 for position recognition of the substrate recognition mark provided on the substrate 3.
  • the substrate recognition marks are, for example, the recognition marks Ma and Mb shown in FIG. 5A, which will be described later, and are designated in advance in the production data 21 shown in FIG. 5A.
  • the mounting head 11 mounts the component at the corrected mounting position of the substrate 3. That is, the component mounting device MM recognizes the board recognition mark specified in the production data 21 and mounts the component on the board 3.
  • the on-board component inspection device MI has an inspection head 15 arranged above the substrate 3 conveyed by the conveyor 2.
  • the inspection head 15 has a function of inspecting the substrate 3 after mounting the components.
  • the inspection head 15 includes a camera, a lighting device, a three-dimensional measuring device, and the like, and inspects the mounted state of the components on the post-mounting board sent from the component mounting device MM.
  • the inspection head 15 recognizes the board recognition mark provided on the board 3 and measures the position of the component.
  • the substrate recognition marks are, for example, the recognition marks Ma and Mb shown in FIG. 6A, which will be described later, and are designated in advance in the inspection data 22 shown in FIG. 6A. That is, the mounted component inspection device MI has a function of inspecting the mounted state of the components mounted on the substrate 3 by the component mounting device MM.
  • the inspection head 15 is movable in the directions along the X-axis and the Y-axis by the inspection head moving mechanism 14, and the mounted state of the component can be inspected at an arbitrary position on the substrate 3.
  • the mounting board manufacturing system 1 has an information management device 5 included in a higher-level system of the mounting board manufacturing line L.
  • the information management device 5 includes a storage unit 20.
  • the storage unit 20 stores data and information used for various operations and processes executed on the mounting board manufacturing line L.
  • the storage unit 20 stores the production data 21a, the production data 21b, and the production data 21c used for each of the board types A, B, and C in the component mounting device MM in the production of the mounting board, respectively. Further, the storage unit 20 stores the inspection data 22a, the inspection data 22b, and the inspection data 22c used for each of the substrate types A, B, and C in the mounted component inspection device MI, respectively. As described above, the mounted component inspection device MI inspects the mounted state of the components mounted on the substrate 3 by the component mounting device MM. Further, the storage unit 20 stores the inspection information 23 that summarizes the inspection results by the mounted component inspection device MI for each individual substrate.
  • the production data 21a to 21c may be collectively referred to as the production data 21 as described above. Further, the inspection data 22a to 22c may also be collectively referred to as inspection data 22.
  • the production data 21a, production data 21b, and production data 21c are created mainly based on CAD (Computer Aided Design) data, which is design data of the mounting board, for use in the component mounting device MM, and are stored in the information management device 5.
  • CAD Computer Aided Design
  • the inspection data 22a, the inspection data 22b, and the inspection data 22c are created by using an image obtained by imaging the actual mounting board determined to be a non-defective product among the actually produced storage units 20.
  • these two types of data are created individually and provided to the information management device 5 in advance. Therefore, even when the same substrate type is targeted, the production data 21a, production data 21b, and production data 21c do not always exactly match the inspection data 22a, inspection data 22b, and inspection data 22c in detail. In some cases, the data is not consistent with each other.
  • the information management device 5 has a consistency determination unit 24 and a data correction unit 25.
  • the consistency determination unit 24 determines the consistency between the production data 21a and the inspection data 22a provided to the information management device 5, the consistency between the production data 21b and the inspection data 22b, and the consistency between the production data 21c and the inspection data 22c. Check the quality of.
  • the consistency determination unit 24 has a function of confirming the quality of the consistency between the board recognition mark specified in the production data 21 and the board recognition mark specified in the inspection data 22.
  • the consistency determination unit 24 has a function of confirming the quality of consistency between the mounting position (mounting point) of the component included in the production data 21 and the mounting position (mounting point) of the component included in the inspection data 22. ..
  • the consistency determination unit 24 may have both of these functions.
  • the consistency determination unit 24 confirms whether the production data 21 and the inspection data 22 are consistent.
  • the production data 21 is used in the component mounting device MM that mounts the component on the substrate 3.
  • the inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the board 3 by the component mounting device MM. Therefore, the consistency determination unit 24 functions as a consistency determination device for determining the consistency of these data.
  • the consistency determination device an example incorporated in the information management device 5 of the mounting board manufacturing system 1 as in the consistency determination unit 24 in FIG. 4 is shown, but the consistency in the present disclosure is shown. The determination device is not limited to this configuration.
  • the consistency determination device may be configured by an external device having a data processing function such as a personal computer. That is, the consistency determination device may have a function of confirming the quality of the consistency between the production data 21 and the inspection data 22. Even the consistency determination device having such a simplified configuration has the same functions and effects as the consistency determination unit 24 shown in FIG. 4 in the present embodiment.
  • the storage unit 20 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk.
  • the display unit 26 is composed of a display panel and a display device.
  • the input unit 27 is composed of a touch panel, buttons, a keyboard, and the like.
  • the consistency determination unit 24 and the data correction unit 25 are composed of a CPU (Central Processing Unit) and the like. These may be configured by another circuit or LSI (large-scale integrated circuit), or may be integrally configured.
  • CPU Central Processing Unit
  • the data correction unit 25 has a function of correcting either the production data 21 or the inspection data 22 so that the two are consistent when it is determined that the above-mentioned consistency is poor.
  • the consistency determination and data correction processing are executed by using the display unit 26 which is a display panel provided in the information management device 5, the display function of the input unit 27 which is an input unit, and the input function.
  • a method of correcting the production data 21 determined to be inconsistent so as to be consistent with the inspection data 22 is adopted. This is because the production data 21 is a digital value given by CAD data and can be easily modified.
  • the mounting board manufacturing line L the mounting board is manufactured using the production data 21 (production data 21a, production data 21b, production data 21c, etc.) whose consistency is confirmed by the above-mentioned consistency determination unit 24.
  • Inspection data 22 is used to inspect the mounting board.
  • the control system of the component mounting device MM and the mounted component inspection device MI will be described.
  • the component mounting device MM and the mounted component inspection device MI are connected to the information management device 5 via the communication network 4 as described above. Therefore, various data stored in the storage unit 20 shown in FIG. 4 are downloaded to the component mounting device MM and the mounted component inspection device MI via the communication network 4 as needed.
  • the component mounting device MM has a control unit 30 and a display / input unit 33.
  • the control unit 30 has a function of controlling the operation of the component mounting device MM and various processes.
  • the control unit 30 includes a storage unit 31 and a mounting processing unit 32.
  • the storage unit 31 stores various programs and production data 21 for producing a mounting board. In the example shown here, the production data 21a for the substrate type A is stored.
  • the mounting processing unit 32 controls the head moving mechanism 10 and the mounting head 11 shown in FIG. 3A based on the program and the production data 21 stored in the storage unit 31. As a result, the mounting processing unit 32 causes the component mounting device MM to execute the component mounting process.
  • the display / input unit 33 has a function of performing various displays such as notifications and command input necessary for the operation of the component mounting device MM.
  • the control unit 30 and the mounting processing unit 32 are composed of a CPU and the like. These may be configured by another circuit or LSI, or may be configured integrally.
  • the storage unit 31 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk.
  • the display / input unit 33 includes a display panel, a display device, a touch panel, buttons, a keyboard, and the like.
  • the mounted parts inspection device MI has a control unit 40 and a display / input unit 43.
  • the control unit 40 has a function of controlling the operation of the mounted component inspection device MI and various processes.
  • the control unit 40 includes a storage unit 41 and an inspection processing unit 42.
  • Various programs and inspection data 22 for inspecting mounted parts are stored in the storage unit 41. In the example shown here, the inspection data 22a for the substrate type A and the inspection information 41a indicating the inspection result of inspecting the substrate are stored.
  • the inspection processing unit 42 controls the inspection head moving mechanism 14 and the inspection head 15 shown in FIG. 3B based on the program and the inspection data 22 stored in the inspection information 41a. As a result, the inspection processing unit 42 causes the mounted component inspection device MI to execute the mounted component inspection.
  • the display / input unit 43 has a function of performing various displays such as notifications and command input necessary for the operation of the mounted component inspection device MI.
  • the control unit 40 and the inspection processing unit 42 are composed of a CPU and the like. These may be configured by another circuit or LSI, or may be configured integrally.
  • the storage unit 41 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk.
  • the display / input unit 43 includes a display panel, a display device, a touch panel, buttons, a keyboard, and the like.
  • FIG. 5A shows the production data 21a as an example of the production data 21 of the substrate 3.
  • mounting points M1, M2, M3, and M4 on which the components P1, P2, P3, and P4 are mounted are set on the substrate 3.
  • the predetermined positions are the corner positions at the four corners, and the substrate recognition marks are shown as recognition marks Ma and Mb.
  • a pair of circular patterns located at the upper left corner and the lower right corner are used as substrate recognition marks.
  • a pair of patterns here, triangular patterns 3a and 3b
  • these patterns can also be used as the substrate recognition mark.
  • the production data 21a shown in FIG. 5A includes the recognition marks Ma and Mb on the substrate 3 and the coordinate values of the components P1 to P4 mounted on the substrate 3. That is, as shown in FIG. 5A, the recognition marks Ma and Mb correspond to the coordinates (MaXm, MaYm) and (MbXm, MbYm) on the X-axis and Y-axis along the lower side and the left side of the substrate 3, respectively. There is. Similarly, the mounting points M1, M2, M3, and M4 of the parts P1, P2, P3, and P4 correspond to (A1Xm, A1Ym), (A2Xm, A2Ym), (A3Xm, A3Ym), and (A4Xm, A4Ym), respectively. ing.
  • FIG. 5B is a production data table showing the correspondence between the recognition marks Ma, Mb and the mounting points M1, M2, M3, M4 and the coordinates of these recognition marks and the mounting points on the design data.
  • the component mounting device MM executes the component mounting operation based on this production data table.
  • the X coordinate 28b and the Y coordinate 28c are shown in association with each name 28a indicating the classification of the recognition marks Ma and Mb and the parts P1, P2, P3 and P4.
  • FIG. 6A and 6B show inspection data used in the mounted part inspection by the mounted part inspection device MI.
  • FIG. 6A shows the inspection data 22a as an example of the inspection data 22 of the substrate 3.
  • FIG. 6A shows a state in which the components P1, P2, P3, and P4 are mounted on the mounting points M1, M2, M3, and M4, respectively, on the substrate 3.
  • a pair of patterns formed at predetermined positions on the substrate 3 are located diagonally opposite to each other. Is used as a pair of board recognition marks for position identification.
  • the predetermined positions are the corner positions at the four corners, and the substrate recognition marks are shown as recognition marks Ma and Mb.
  • a pair of circular patterns located at the upper left corner and the lower right corner are used as the substrate recognition marks.
  • a pair of patterns here, triangular patterns 3a and 3b are formed on the upper right corner and the lower left corner on the substrate 3, and these patterns can also be used as the substrate recognition mark.
  • the inspection data 22a shown in FIG. 6A includes the recognition marks Ma and Mb on the substrate 3 and the coordinate values of the components P1 to P4 mounted on the substrate 3. That is, as shown in FIG. 6A, the recognition marks Ma and Mb correspond to the coordinates (MaXc, MaYc) and (MbXc, MbYc) on the X-axis and Y-axis along the lower side and the left side of the substrate 3, respectively. .. Similarly, the mounting points M1, M2, M3, and M4 of the parts P1, P2, P3, and P4 correspond to (A1Xc, A1Yc), (A2Xc, A2Yc), (A3Xc, A3Yc), and (A4Xc, A4Yc), respectively. ing.
  • FIG. 6B is an inspection data table showing the correspondence between the recognition marks Ma and Mb and the mounting points M1, M2, M3 and M4 and the measured coordinates.
  • the mounted component inspection device MI executes the mounted component inspection based on this inspection data table.
  • the X coordinate 29b and the Y coordinate 29c are shown in association with each name 29a indicating the classification of the recognition marks Ma and Mb and the parts P1, P2, P3 and P4.
  • the mounting board manufacturing line L manufactures a mounting board by mounting components on the board 3.
  • the mounting board manufacturing line L includes a component mounting device MM for mounting components on the board 3 based on the above-mentioned production data 21, and a component mounting device MM for mounting the components mounted on the board 3 based on the above-mentioned inspection data 22. It includes an on-board component inspection device MI that inspects the condition.
  • Coordinates of recognition marks Ma, Mb (MaXc, MaYc), (MbXc, MbYc), coordinates of mounting points M1, M2, M3, M4 (A1Xc, A1Yc), (A2Xc, A2Yc), (A3Xc, A3Yc) in the inspection data 22a. ) And (A4Xc, A4Yc) are coordinate data acquired from the result of imaging the actual product selected from the non-defective mounting substrate. Therefore, these coordinate values do not always match the corresponding coordinate values in the production data 21 created based on the design data.
  • the mounting position accuracy is improved by detecting the mounting position deviation in the mounted component inspection device after mounting the component and feeding back the detected position deviation error to the component mounting device. Therefore, in the feedback position correction method, it is essential that the consistency between the inspection data used in the mounted component inspection device and the production data used in the component mounting device is ensured.
  • the determination condition (A) of FIG. 7A shows the quality determination of the consistency of the recognition mark Ma as an example of the substrate recognition mark. In this case, it is determined that the consistency of the recognition mark Ma is good if both the following conditions (1) and (2) are satisfied. Such a determination is also made for the recognition mark Mb.
  • Condition (1) The absolute value of the difference between the X coordinate (MaXm) of the recognition mark Ma in the production data 21 and the X coordinate (MaXc) of the recognition mark Ma in the inspection data 22 is the threshold value TH (MaXc) on the preset X axis. 1X) or less.
  • the absolute value of the difference between the Y coordinate (MaYm) of the recognition mark Ma in the inspection data 22 and the Y coordinate (MaYc) of the recognition mark Ma in the inspection data 22 is the threshold value TH (MaYc) on the preset Y axis. 1Y) or less.
  • the determination condition (B) of FIG. 7A shows the quality determination of the consistency of the mounting point M1 as an example of the mounting point of the component. In this case, it is determined that the consistency of the mounting point M1 is good if both the following conditions (3) and (4) are satisfied. Such a determination is made in the same manner for other mounting points.
  • Condition (3) The absolute value of the difference between the X coordinate (A1Xm) of the mounting point M1 in the production data 21 and the X coordinate (A1Xc) of the mounting point M1 in the inspection data 22 is the threshold value TH (A1Xc) on the preset X axis. 2X) or less.
  • the absolute value of the difference between the Y coordinate (A1Ym) of the mounting point M1 in the inspection data 22 and the Y coordinate (A1Yc) of the mounting point M1 in the inspection data 22 is the threshold value TH (A1Yc) on the preset Y axis. 2Y) or less.
  • FIG. 7B shows an example of determining whether the consistency is good or bad when the substrate 3 to be produced is an aggregate of a plurality of small substrates 3s formed in the same pattern.
  • the substrate 3 has four rows of small substrates 3s along the X-axis and three rows along the Y-axis.
  • the quality determination of consistency will be described with such a substrate 3.
  • the arrangement position of each of the small substrates 3s is specified by the matrix coordinates [I, J]. I represents the column number in the direction along the X axis, and J represents the row number in the direction along the Y axis.
  • the consistency determination unit 24 determines whether or not the designated order of work processing on the substrate 3 is consistent between the production data 21 and the inspection data 22.
  • the consistency determination unit 24 determines whether or not the designated order (repetition pattern) in which the plurality of small substrates 3s are repeatedly processed on the same substrate 3 is consistent between the production data 21 and the inspection data 22. To do. Specifically, the consistency determination unit 24 determines whether or not the consistency between the designated order of the small substrates 3s included in the production data 21 and the designated order of the small substrates 3s included in the inspection data 22 is good or bad.
  • the numbers attached to the upper matrix indicate the designated order according to the production data 21, and the numbers attached to the lower matrix indicate the designated order according to the inspection data 22.
  • the matrix coordinates of the small substrate 3s of the designated order 4 and in the lower matrix, the matrix coordinates of the small substrate 3s of the designated order 10 are [4,3].
  • the designated order of the small substrate specified by the matrix coordinates [I, J] in the production data 21 and the same matrix coordinates [I, J] in the inspection data 22 Compare with the specified order of the small substrates specified in.
  • the designated order of all the small substrates 3s is the same for the production data 21 and the inspection data 22, it is determined that the designated order is consistent (good), and if the designated order is not the same, the designated order is matched. Judged as having no sex (defective). In the example shown in FIG. 7B, the designated order is different except for the small substrate 3s having the matrix coordinates [1,3] and the small substrate 3s having the matrix coordinates [4,1]. Therefore, in this example, it is determined that the specified order is inconsistent.
  • the mounting board manufacturing system 1 is configured as described above. Hereinafter, a mounting board manufacturing method for manufacturing a mounting board on which components are mounted on the board 3 by the mounting board manufacturing system 1 will be described.
  • the quality of the consistency between the production data 21 and the inspection data 22 is confirmed.
  • the production data 21 is used in the component mounting device MM to mount the component on the substrate 3.
  • the inspection data 22 is used in the mounted component inspection device MI in order to inspect the mounted state of the component mounted on the substrate 3 by the component mounting device MM.
  • the confirmation of the quality of the consistency is executed by the function of the consistency determination unit 24 of the information management device 5.
  • the parts are mounted on the board 3 by the component mounting device MM, and the components mounted on the board 3 are mounted by the mounted component inspection device MI. Inspect the condition.
  • the position of the component mounted on the substrate 3 is detected.
  • the position of the detected component on the board 3 is fed back to the component mounting device MM, and the component mounting device MM performs an operation of mounting the component on the board 3 based on the position of the component measured by the mounted component inspection device MI. to correct.
  • the component mounting device MM recognizes the board recognition mark specified in the production data 21 and mounts the component on the board 3, and the mounted component inspection device MI is designated by the inspection data 22.
  • the position of the component on the board 3 is measured by recognizing the board recognition mark.
  • the consistency between the production data 21 and the inspection data 22 is confirmed by confirming the consistency between the board recognition mark designated by the production data 21 and the board recognition mark designated by the inspection data 22. Further, the consistency between the production data 21 and the inspection data 22 is confirmed by confirming the consistency between the mounting position of the component included in the production data 21 and the mounting position of the component included in the inspection data 22.
  • the consistency between the production data 21 and the inspection data 22 is determined by the production data 21 and the inspection. It is confirmed by confirming the consistency of the designated order in the work process of the small substrate 3s included in the data 22.
  • the consistency of the designated order in the work processing of the small substrate 3s is the consistency of the repetition pattern when a plurality of small substrates 3s are repeatedly targeted for work.
  • FIG. 8 shows an example in which the substrate 3 is a multi-layered substrate having a repeating pattern in which a plurality of small substrates 3s are combined.
  • ST1 a pre-production check process is executed (ST1). Specifically, it is checked whether or not there is a factor that hinders the normal execution of production in the state of each device constituting the mounting board manufacturing line L.
  • This check item includes the quality of consistency of the above-mentioned production data 21 and inspection data 22 in addition to the normal inspection items such as confirmation of model switching work accompanying switching to a production type and inspection of safety confirmation items. ing.
  • the failed substrate 3 determined to have an abnormality in ST2 it is determined whether or not it corresponds to the mismatch of the repeating patterns (ST4). That is, by the determination method shown in FIG. 7B, it is determined whether or not the production data 21 and the inspection data 22 have the same designated order in the repetition pattern. If it is determined that the repeating patterns do not match, the warning process 1 is executed (ST5). Specifically, the display unit 26 (see FIG. 4) indicates that the designated order of the repetition pattern does not match between the production data 21 and the inspection data 22.
  • the determination condition (1) of FIG. 7A it is determined whether or not the absolute value of the position error between the recognition marks in the corresponding relationship is equal to or less than the preset determination threshold value.
  • the warning process 2 is executed (ST7). Specifically, the display unit 26 displays that the recognition mark does not match between the production data 21 and the inspection data 22.
  • the determination condition (2) of FIG. 7A it is determined whether or not the absolute value of the position error between the corresponding mounting points is equal to or less than the preset determination threshold value.
  • the warning process 3 is executed (ST9). Specifically, the display unit 26 displays that the coordinate data of the mounting points does not match between the production data 21 and the inspection data 22. If the coordinate data does not match in ST6, the warning process 4 is executed, and the display unit 26 displays that an error exists other than the above-mentioned consistency. As a result, the production start process is completed.
  • the production on the mounting board production line L becomes possible only when the production start command is issued in ST3, and the production targeting the board 3 becomes possible.
  • the warning process 1 (ST5), the warning process 2 (ST7), the warning process 3 (ST9), and the warning process 4 (ST10) are executed, the data correction process by the above-mentioned data correction unit 25, etc. Measures are implemented.
  • the consistency determination action executed in ST1 in FIG. 8 will be described with reference to FIG.
  • the following processing is executed by the consistency determination unit 24.
  • the production data 21 and the inspection data 22 corresponding to the substrate 3 of the type to be produced are acquired from the storage unit 20 (see FIG. 4) of the information management device 5 (ST11).
  • coordinate data is acquired from the acquired production data 21 and inspection data 22 (see FIGS. 5A to 6B), and a matching determination of the coordinate data is executed (see FIG. 7A) (ST12).
  • it is determined whether or not all the coordinate data match based on the determination result in ST12 (ST13).
  • the matching determination of the repeating pattern shown in FIG. 7B is executed (ST14). That is, it is determined whether or not the repetition pattern of the work process when the substrate 3 is an aggregate of a plurality of small substrates 3s formed in the same pattern matches the production data 21 and the inspection data 22 (ST16). ..
  • the determination result indicating that the consistency of the repeating pattern for the substrate type is acceptable is stored in the storage unit 20 (ST17).
  • the determination result indicating that the repeating patterns do not match for the substrate type is stored in the storage unit 20 (ST18).
  • the mounting board manufacturing system shown in the present embodiment includes a consistency determination unit 24, a component mounting device MM, and a mounted component inspection device MI.
  • the consistency determination unit 24 confirms the quality of the consistency between the production data 21 given in advance and the inspection data 22 given in advance.
  • the production data 21 is used when mounting the component on the substrate 3, and the inspection data 22 is used when inspecting the mounting state of the component on the substrate 3.
  • the component mounting device MM manufactures a mounting board by mounting components on the board 3 based on the production data 21 confirmed by the consistency determination unit 24 to have good consistency.
  • the mounted component inspection device MI inspects the mounted state of the components mounted on the board 3 by the component mounting device MM based on the inspection data 22 confirmed to have good consistency.
  • the consistency determination unit 24 confirms the quality of the consistency between the production data 21 given in advance and the inspection data 22 given in advance.
  • the production data 21 is used in the component mounting device MM that mounts the component on the substrate 3.
  • the inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the substrate 3 by the component mounting device MM. Then, using the production data 21 confirmed to have good consistency, the components are mounted on the substrate 3 by the component mounting device MM. Further, using the inspection data 22 confirmed to have good consistency, the mounted component inspection device MI inspects the mounted state of the components mounted on the substrate 3.
  • the consistency determination device confirms whether the consistency between the production data 21 given in advance and the inspection data 22 given in advance is good or bad.
  • the production data 21 is used in the component mounting device MM that mounts the component on the substrate 3.
  • the inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the substrate 3 by the component mounting device MM.
  • the hoodback position correction is ensured to ensure the consistency between the mounted data included in the actually applied production data 21 and the inspection data 22. Can work properly. In particular, even when the data creation history and data accuracy of the provided production data 21 and the inspection data 22 are different, the hoodback position correction can function correctly.
  • the mounting board manufacturing system, the mounting board manufacturing method, and the consistency determination device of the present disclosure ensure the consistency between the production data and the inspection data and correct the hoodback position even when the feedback function is retrofitted in the mounting board manufacturing system. Can work properly. Therefore, the present disclosure is useful in the field of manufacturing a mounting board by mounting components on a board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This mounting board manufacturing system has a consistency assessment unit, a component mounting device, and a mounted component inspection device. The consistency assessment unit confirms whether production data given in advance and inspection data are consistent with each other. The production data is used when mounting a component on a board, and the inspection data is used when inspecting the mounted state of the component. The component mounting device mounts the component on the board on the basis of production data for which consistency has been confirmed by the consistency assessment unit to be satisfactory. The mounted component inspection device inspects the mounted state of the component mounted on the board by the component mounting device, the inspection being performed on the basis of inspection data for which consistency has been confirmed to be satisfactory.

Description

実装基板製造システムおよび実装基板製造方法ならびに整合性判定装置Mounting board manufacturing system, mounting board manufacturing method, and consistency judgment device
 本開示は基板に部品を搭載して実装基板を製造する実装基板製造システムおよび実装基板製造方法ならびに実装基板製造システムで使用されるデータの整合性を判定する装置(整合性判定装置)に関する。 The present disclosure relates to a mounting board manufacturing system and a mounting board manufacturing method for manufacturing a mounting board by mounting components on a board, and a device (consistency judgment device) for judging the consistency of data used in the mounting board manufacturing system.
 基板に電子部品を搭載して実装基板を製造する実装基板製造システムは、はんだ印刷装置、部品搭載装置、リフロー装置などの複数の部品実装用装置を連結して構成されている。このような構成の実装基板製造システムにおいて、部品搭載装置における部品の搭載位置ずれに起因する実装不良を防止することが重要である。このような実装不良防止を目的として、部品搭載基板における部品の位置ずれを示す部品搭載ずれ情報を前工程に対してフィードバックする位置補正技術が用いられている。このようなフィードバックに基づく位置補正では、部品搭載後に検査装置が部品搭載位置を実際に計測して求め、部品搭載ずれを前工程の部品搭載装置に対して送る。そして、部品搭載装置は、部品搭載ずれ情報に基づいて搭載位置を補正する(例えば、特許文献1参照)。特許文献1は、部品搭載後の基板における電極の位置および部品のバンプの位置を測定可能なX線検査装置を配置した構成を開示している。 A mounting board manufacturing system that mounts electronic components on a board to manufacture a mounting board is configured by connecting a plurality of component mounting devices such as a solder printing device, a component mounting device, and a reflow device. In a mounting board manufacturing system having such a configuration, it is important to prevent mounting defects due to component mounting position deviation in the component mounting device. For the purpose of preventing such mounting defects, a position correction technique is used in which component mounting misalignment information indicating component misalignment on a component mounting board is fed back to the previous process. In the position correction based on such feedback, the inspection device actually measures and obtains the component mounting position after the component is mounted, and sends the component mounting deviation to the component mounting device in the previous process. Then, the component mounting device corrects the mounting position based on the component mounting deviation information (see, for example, Patent Document 1). Patent Document 1 discloses a configuration in which an X-ray inspection device capable of measuring the positions of electrodes and bumps of parts on a substrate after mounting parts is arranged.
特開2018-82096号公報Japanese Unexamined Patent Publication No. 2018-82096
 種々の実装基板製造システムは、設備計画当初からこのような部品搭載ずれ情報を前工程に対してフィードバックする構成を備える。一方、フィードバック機能を持たない既存設備にフィードバック機能を後から追加するいわゆる後付け形式の実装基板製造システムも多数存在する。このようにフィードバック機能を後付けする場合には、部品搭載装置が部品搭載動作において使用する生産データとしての搭載データと、検査装置が搭載位置ずれ計測に使用する検査データとの整合性が重要である。 Various mounting board manufacturing systems have a configuration in which such component mounting misalignment information is fed back to the previous process from the beginning of equipment planning. On the other hand, there are many so-called retrofit-type mounting board manufacturing systems in which a feedback function is added later to existing equipment that does not have a feedback function. When the feedback function is retrofitted in this way, it is important that the mounting data as the production data used by the component mounting device in the component mounting operation and the inspection data used by the inspection device for mounting position deviation measurement are consistent. ..
 すなわち生産データと検査データとは装置毎に個別に作成される。そのため、部品搭載装置が部品搭載動作において使用する生産データが示す認識マークや部品位置座標と、検査装置が用いる検査データが示す認識マークや部品位置座標が必ずしも正確に一致しない場合が生じる。このような場合には、検査装置による搭載位置ずれ計測結果を部品搭載装置にフィードバックしても正しい位置補正が行われない。このように、従来技術における実装基板製造システムにおいてフィードバック機能を後付けする場合には、生産データと検査データとの整合性に起因して、フィードバック位置補正が有効に機能しないことがある。 That is, production data and inspection data are created individually for each device. Therefore, the recognition mark or component position coordinate indicated by the production data used by the component mounting device in the component mounting operation may not always exactly match the recognition mark or component position coordinate indicated by the inspection data used by the inspection device. In such a case, correct position correction is not performed even if the mounting position deviation measurement result by the inspection device is fed back to the component mounting device. As described above, when the feedback function is retrofitted in the mounting board manufacturing system in the prior art, the feedback position correction may not function effectively due to the consistency between the production data and the inspection data.
 本開示は、実装基板製造システムにおいてフィードバック機能を後付けする場合においても、生産データと検査データとの整合性を確保してフードバック位置補正を正しく機能させることができる実装基板製造システムおよび実装基板製造方法ならびに整合性判定装置を提供する。 The present disclosure discloses a mounting board manufacturing system and mounting board manufacturing capable of ensuring consistency between production data and inspection data and allowing hoodback position correction to function correctly even when a feedback function is retrofitted in the mounting board manufacturing system. A method and a consistency determination device are provided.
 本開示の一態様に係る実装基板製造システムは、整合性判定部と、部品搭載装置と、搭載部品検査装置とを有する。整合性判定部は、予め与えられた生産データと予め与えられた検査データとの整合性の良否を確認する。この生産データは、部品を基板に搭載する際に用いられ、この検査データは、部品の基板における搭載状態を検査する際に用いられる。部品搭載装置は、整合性判定部によって整合性が良と確認された生産データに基づいて部品を基板に搭載して実装基板を製造する。搭載部品検査装置は、部品搭載装置で基板に搭載された部品の、基板における搭載状態を、整合性が良と確認された検査データに基づいて検査する。 The mounting board manufacturing system according to one aspect of the present disclosure includes a consistency determination unit, a component mounting device, and a mounted component inspection device. The consistency determination unit confirms the quality of the consistency between the production data given in advance and the inspection data given in advance. This production data is used when mounting the component on the board, and this inspection data is used when inspecting the mounting state of the component on the board. The component mounting device manufactures a mounting board by mounting components on a board based on production data confirmed by the consistency determination unit to have good consistency. The mounted component inspection device inspects the mounted state of the components mounted on the board by the component mounting device based on the inspection data confirmed to have good consistency.
 本開示の一態様に係る実装基板製造方法では、基板に部品が搭載された実装基板を製造する。この実装基板製造方法では、予め与えられた生産データと、予め与えられた検査データとの整合性の良否を確認する。この生産データは、部品を基板に搭載する部品搭載装置で使用される。この検査データは、部品搭載装置で基板に搭載された部品の搭載状態を検査する搭載部品検査装置で使用される。そして、整合性が良と確認された生産データを使用して、部品搭載装置により、部品を基板に搭載する。さらに、整合性が良と確認された検査データを使用して、搭載部品検査装置により、基板に搭載された部品の搭載状態を検査する。 In the mounting board manufacturing method according to one aspect of the present disclosure, a mounting board in which components are mounted on the board is manufactured. In this mounting board manufacturing method, it is confirmed whether or not the production data given in advance and the inspection data given in advance are consistent. This production data is used in a component mounting device that mounts components on a board. This inspection data is used in the mounted parts inspection device that inspects the mounted state of the parts mounted on the board by the component mounting device. Then, using the production data confirmed to have good consistency, the components are mounted on the board by the component mounting device. Further, using the inspection data confirmed to have good consistency, the mounted parts inspection device inspects the mounted state of the parts mounted on the board.
 本開示の一態様に係る整合性判定装置は、予め与えられた生産データと予め与えられた検査データとの整合性の良否を確認する。この生産データは、部品を基板に搭載する部品搭載装置で使用される。この検査データは、部品搭載装置で基板に搭載された部品の搭載状態を検査する搭載部品検査装置で使用される。 The consistency determination device according to one aspect of the present disclosure confirms the quality of the consistency between the production data given in advance and the inspection data given in advance. This production data is used in a component mounting device that mounts components on a board. This inspection data is used in the mounted parts inspection device that inspects the mounted state of the parts mounted on the board by the component mounting device.
 本開示によれば、実装基板製造システムにおいてフィードバック機能を後付けする場合においても、生産データと検査データとの整合性を確保してフードバック位置補正を正しく機能させることができる。 According to the present disclosure, even when the feedback function is retrofitted in the mounting board manufacturing system, the hoodback position correction can function correctly by ensuring the consistency between the production data and the inspection data.
本開示の実施の形態に係る実装基板製造システムに含まれる実装基板製造ラインの構成説明図Configuration explanatory view of the mounting board manufacturing line included in the mounting board manufacturing system according to the embodiment of the present disclosure. 本開示の実施の形態に係る実装基板製造システムの構成説明図Configuration explanatory view of the mounting board manufacturing system according to the embodiment of the present disclosure. 図1に示す実装基板製造ラインに含まれる部品搭載装置の構成説明図Configuration explanatory view of the component mounting device included in the mounting board manufacturing line shown in FIG. 図1に示す実装基板製造ラインに含まれる搭載部品検査装置の構成説明図Configuration explanatory view of the mounted component inspection device included in the mounting board manufacturing line shown in FIG. 図2に示す実装基板製造システムの制御系の構成を示すブロック図A block diagram showing the configuration of the control system of the mounting board manufacturing system shown in FIG. 本開示の実施の形態に係る実装基板製造システムにおける生産データの一例を示す図The figure which shows an example of the production data in the mounting board manufacturing system which concerns on embodiment of this disclosure. 図5Aに示す認識マークおよび実装点と、これらの認識マークおよび実装点の設計データ上の座標との対応関係をテーブル形式で表した生産データテーブルを示す図The figure which shows the production data table which represented the correspondence relationship between the recognition mark and the mounting point shown in FIG. 5A, and the coordinates of these recognition mark and the mounting point on the design data in a table format. 本開示の実施の形態に係る実装基板製造システムにおける検査データの一例を示す図The figure which shows an example of the inspection data in the mounting board manufacturing system which concerns on embodiment of this disclosure. 図6Aに示す認識マークおよび実装点と座標との対応関係をテーブル形式で表した検査データテーブルを示す図A diagram showing an inspection data table showing the correspondence between the recognition mark and the mounting point and the coordinates shown in FIG. 6A in a table format. 本開示の実施の形態に係る実装基板製造システムにおける生産データおよび検査データの座標値と繰り返しパターンの整合性の良否判定の説明図Explanatory drawing of quality determination of consistency between coordinate values of production data and inspection data in mounting board manufacturing system which concerns on embodiment of this disclosure, and repetition pattern 本開示の実施の形態に係る実装基板製造システムにおいて、生産対象となる基板が同一パターンで形成された複数の小基板の集合体である場合の整合性の良否判定の例を示す図In the mounting substrate manufacturing system according to the embodiment of the present disclosure, a diagram showing an example of good / bad determination of consistency when the substrate to be produced is an aggregate of a plurality of small substrates formed in the same pattern. 本開示の実施の形態に係る実装基板製造方法における生産開始処理を示すフローチャートA flowchart showing a production start process in the mounting board manufacturing method according to the embodiment of the present disclosure. 本開示の実施の形態に係る実装基板製造方法におけるデータの整合性判定処理を示すフローチャートA flowchart showing a data consistency determination process in the mounting board manufacturing method according to the embodiment of the present disclosure.
 次に図面を参照しながら、本開示の実施の形態を説明する。まず図1を参照して本実施の形態に係る実装基板製造システムにおける実装基板製造ラインLの構成を説明する。実装基板製造ラインLは、基板に部品が搭載された実装基板を製造する機能を有する。実装基板製造ラインLは、上流(図1において左側)に位置する複数基の部品搭載装置MMと、部品搭載装置MMの下流に位置する1基の搭載部品検査装置MIとを直列に配置した構成を有する。ここでは3基の部品搭載装置MMが例示されている。なお、複数基の部品搭載装置MMと部品搭載装置MMとは、X軸に沿って並んでいる。X軸に直交するY軸は、各装置の奥行を示す。Z軸は鉛直方向に沿っている。 Next, an embodiment of the present disclosure will be described with reference to the drawings. First, the configuration of the mounting board manufacturing line L in the mounting board manufacturing system according to the present embodiment will be described with reference to FIG. The mounting board manufacturing line L has a function of manufacturing a mounting board in which components are mounted on the board. The mounting board manufacturing line L has a configuration in which a plurality of component mounting devices MM located upstream (left side in FIG. 1) and one mounted component inspection device MI located downstream of the component mounting device MM are arranged in series. Has. Here, three component mounting devices MM are exemplified. The plurality of component mounting devices MM and the component mounting device MM are arranged along the X axis. The Y-axis orthogonal to the X-axis indicates the depth of each device. The Z axis is along the vertical direction.
 部品搭載装置MMには、上流から順に(#1)、(#2)、(#3)のように付番されており、これにより部品搭載装置MMのそれぞれを識別できるようになっている。なお以下の説明では、複数の部品搭載装置MMを相互に区別する必要が無い場合には、付番を省略して部品搭載装置MMと総称している。 The component mounting device MM is numbered in order from the upstream as (# 1), (# 2), (# 3), so that each of the component mounting device MM can be identified. In the following description, when it is not necessary to distinguish a plurality of component mounting device MMs from each other, the numbers are omitted and they are collectively referred to as component mounting device MMs.
 図2は、本開示の実施の形態に係る実装基板製造システム1の構成を示す。部品搭載装置MM(#1)、MM(#2)、MM(#3)および搭載部品検査装置MIは、通信ネットワーク4によって相互に接続されている。これにより、部品搭載装置MM(#1)、MM(#2)、MM(#3)および搭載部品検査装置MI相互間でデータの授受が可能となっている。さらに部品搭載装置MM(#1)、MM(#2)、MM(#3)および搭載部品検査装置MIは、通信ネットワーク4を介して上位システムである情報管理装置5と接続されている。これにより、部品搭載装置MM(#1)、MM(#2)、MM(#3)および搭載部品検査装置MIのそれぞれと情報管理装置5との間でデータの授受が可能となっている。 FIG. 2 shows the configuration of the mounting board manufacturing system 1 according to the embodiment of the present disclosure. The component mounting devices MM (# 1), MM (# 2), MM (# 3) and the mounted component inspection device MI are connected to each other by the communication network 4. As a result, data can be exchanged between the component mounting devices MM (# 1), MM (# 2), MM (# 3) and the mounted component inspection device MI. Further, the component mounting devices MM (# 1), MM (# 2), MM (# 3) and the mounted component inspection device MI are connected to the information management device 5, which is a higher-level system, via the communication network 4. As a result, data can be exchanged between the component mounting devices MM (# 1), MM (# 2), MM (# 3), the mounted component inspection device MI, and the information management device 5.
 この構成により、搭載部品検査装置MIによって得られた検査結果は、上流の複数の部品搭載装置MMにフィードバックされ、部品搭載装置MMのそれぞれにおける部品搭載動作が補正される。すなわち搭載部品検査装置MIによって取得された検査結果は、矢印e、f、gで示すように、部品搭載装置MM(#1)、部品搭載装置MM(#2)、部品搭載装置MM(#3)へそれぞれ伝送される。そして部品搭載装置MM(#1)、部品搭載装置MM(#2)、部品搭載装置MM(#3)では、搭載部品検査装置MIによる検査結果で得られた部品の位置に基づいて、それぞれの部品搭載装置MMによって部品を基板3に搭載する動作を補正する。 With this configuration, the inspection result obtained by the mounted component inspection device MI is fed back to a plurality of upstream component mounting devices MM, and the component mounting operation in each of the component mounting device MM is corrected. That is, the inspection results acquired by the mounted component inspection device MI are the component mounting device MM (# 1), the component mounting device MM (# 2), and the component mounting device MM (# 3), as indicated by arrows e, f, and g. ) Are transmitted to each. Then, in the component mounting device MM (# 1), the component mounting device MM (# 2), and the component mounting device MM (# 3), each of them is based on the position of the component obtained by the inspection result by the mounted component inspection device MI. The component mounting device MM corrects the operation of mounting the component on the substrate 3.
 図1に示すように、これらの実装用装置には、これらの装置を直列に連結し、基板3を搬送する装置内コンベアが設けられている。実装基板製造ラインLは、各実装用装置の装置内コンベアを直列に並べて構成したコンベア2を備えている。上流(矢印a)から搬入された基板3はコンベア2によって各実装用装置に順次移送され、所定の作業が実行された基板3はコンベア2に沿って下流(矢印b)に搬出される。このように、コンベア2はX軸に沿って設けられ、基板3はX軸に沿って搬送される。コンベア2は、基板3を、部品搭載装置MM、搭載部品検査装置MIを含む複数基の実装用装置に順次搬入し、各実装用装置は、基板3に対してそれぞれの所定の部品実装用の作業を実行する。 As shown in FIG. 1, these mounting devices are provided with an in-device conveyor that connects these devices in series and conveys the substrate 3. The mounting board manufacturing line L includes a conveyor 2 configured by arranging in-device conveyors of each mounting device in series. The substrate 3 carried in from the upstream (arrow a) is sequentially transferred to each mounting device by the conveyor 2, and the substrate 3 on which the predetermined work has been performed is carried out downstream (arrow b) along the conveyor 2. In this way, the conveyor 2 is provided along the X-axis, and the substrate 3 is conveyed along the X-axis. The conveyor 2 sequentially carries the board 3 into a plurality of mounting devices including the component mounting device MM and the mounted component inspection device MI, and each mounting device is used for mounting a predetermined component on the board 3. Do the work.
 次に図3A、図3Bを参照して、部品搭載装置MM、搭載部品検査装置MIの概略構成および機能を説明する。まず図3Aを参照しながら、部品搭載装置MMについて説明する。部品搭載装置MMは、コンベア2によって搬送された基板3の上方に配置された装着ヘッド11を有する。装着ヘッド11は、部品を保持する吸着ノズル(図示せず)を有する。装着ヘッド11はヘッド移動機構10によって移動自在であり、装着ヘッド11には装着ヘッド11と一体的に移動する基板認識カメラ12が設けられている。 Next, the schematic configuration and functions of the component mounting device MM and the mounted component inspection device MI will be described with reference to FIGS. 3A and 3B. First, the component mounting device MM will be described with reference to FIG. 3A. The component mounting device MM has a mounting head 11 arranged above the substrate 3 conveyed by the conveyor 2. The mounting head 11 has a suction nozzle (not shown) for holding the component. The mounting head 11 is movable by the head moving mechanism 10, and the mounting head 11 is provided with a substrate recognition camera 12 that moves integrally with the mounting head 11.
 装着ヘッド11は、XYテーブル101に取り付けられたヘッド昇降機構102に装着されている。XYテーブル101およびヘッド昇降機構102はヘッド移動機構10を構成している。XYテーブル101が駆動されることにより、装着ヘッド11はX軸とY軸とで定義される平面において水平移動する。さらにヘッド昇降機構102が駆動されることにより、装着ヘッド11は基板3に対して昇降する。基板3は、予め、コンベア2によって位置決め保持されている。 The mounting head 11 is mounted on the head elevating mechanism 102 mounted on the XY table 101. The XY table 101 and the head elevating mechanism 102 constitute the head moving mechanism 10. By driving the XY table 101, the mounting head 11 moves horizontally in a plane defined by the X-axis and the Y-axis. Further, by driving the head elevating mechanism 102, the mounting head 11 moves up and down with respect to the substrate 3. The substrate 3 is positioned and held in advance by the conveyor 2.
 Y軸におけるコンベア2の両側には、それぞれ部品を供給する機能を有するテープフィーダなどの部品供給ユニット13が配置されている。装着ヘッド11が部品搭載動作を実行する際には、ヘッド移動機構10が駆動され、装着ヘッド11が部品供給ユニット13のそれぞれから部品を取り出し、矢印c、dで示すように、コンベア2に位置決め保持された基板3に部品を移送して搭載する。すなわち部品搭載装置MMは、部品を基板に搭載する部品搭載動作を実行する。 Parts supply units 13 such as tape feeders having a function of supplying parts are arranged on both sides of the conveyor 2 on the Y-axis. When the mounting head 11 executes the component mounting operation, the head moving mechanism 10 is driven, and the mounting head 11 takes out the components from each of the component supply units 13 and positions them on the conveyor 2 as shown by arrows c and d. The components are transferred and mounted on the held substrate 3. That is, the component mounting device MM executes the component mounting operation of mounting the component on the board.
 この部品搭載動作において、基板認識カメラ12は、装着ヘッド11とともに移動する。そして基板認識カメラ12は、基板3に設けられた基板認識マークの位置認識のために基板3の少なくとも一部を撮影する。基板認識マークは例えば、後述する図5Aに示す認識マークMa、Mbであり、図5Aに示す生産データ21で予め指定されている。そしてこの位置認識結果を参照して、装着ヘッド11は、基板3の補正された搭載位置に、当該部品を搭載する。すなわち部品搭載装置MMは、生産データ21で指定された基板認識マークを認識して部品を基板3に搭載する。 In this component mounting operation, the board recognition camera 12 moves together with the mounting head 11. Then, the substrate recognition camera 12 photographs at least a part of the substrate 3 for position recognition of the substrate recognition mark provided on the substrate 3. The substrate recognition marks are, for example, the recognition marks Ma and Mb shown in FIG. 5A, which will be described later, and are designated in advance in the production data 21 shown in FIG. 5A. Then, referring to this position recognition result, the mounting head 11 mounts the component at the corrected mounting position of the substrate 3. That is, the component mounting device MM recognizes the board recognition mark specified in the production data 21 and mounts the component on the board 3.
 次に図3Bを参照しながら、搭載部品検査装置MIについて説明する。搭載部品検査装置MIは、コンベア2によって搬送された基板3の上方に配置された検査ヘッド15を有する。検査ヘッド15は、部品搭載後の基板3を検査する機能を有する。検査ヘッド15はカメラおよび照明装置、さらには3次元計測装置などを含み、部品搭載装置MMから送られた実装後基板における部品の搭載状態を検査する。 Next, the mounted parts inspection device MI will be described with reference to FIG. 3B. The on-board component inspection device MI has an inspection head 15 arranged above the substrate 3 conveyed by the conveyor 2. The inspection head 15 has a function of inspecting the substrate 3 after mounting the components. The inspection head 15 includes a camera, a lighting device, a three-dimensional measuring device, and the like, and inspects the mounted state of the components on the post-mounting board sent from the component mounting device MM.
 この搭載状態の検査において検査ヘッド15は、基板3に設けられた基板認識マークを認識して部品の位置を計測する。基板認識マークは例えば、後述する図6Aに示す認識マークMa、Mbであり、図6Aに示す検査データ22で予め指定されている。すなわち搭載部品検査装置MIは、部品搭載装置MMで基板3に搭載された部品の搭載状態を検査する機能を有している。検査ヘッド15は、検査ヘッド移動機構14によってX軸、Y軸に沿った方向に移動自在であり、基板3における任意の位置で部品の搭載状態を検査できる。 In the inspection of the mounted state, the inspection head 15 recognizes the board recognition mark provided on the board 3 and measures the position of the component. The substrate recognition marks are, for example, the recognition marks Ma and Mb shown in FIG. 6A, which will be described later, and are designated in advance in the inspection data 22 shown in FIG. 6A. That is, the mounted component inspection device MI has a function of inspecting the mounted state of the components mounted on the substrate 3 by the component mounting device MM. The inspection head 15 is movable in the directions along the X-axis and the Y-axis by the inspection head moving mechanism 14, and the mounted state of the component can be inspected at an arbitrary position on the substrate 3.
 次に図4を参照して、実装基板製造システム1の制御系の構成を説明する。実装基板製造システム1は、実装基板製造ラインLの上位システムに含まれる情報管理装置5を有している。情報管理装置5は記憶部20を含む。記憶部20は、実装基板製造ラインLにおいて実行される諸作業や処理のために使用されるデータや情報を格納している。 Next, the configuration of the control system of the mounting board manufacturing system 1 will be described with reference to FIG. The mounting board manufacturing system 1 has an information management device 5 included in a higher-level system of the mounting board manufacturing line L. The information management device 5 includes a storage unit 20. The storage unit 20 stores data and information used for various operations and processes executed on the mounting board manufacturing line L.
 すなわち、記憶部20は、実装基板の生産において部品搭載装置MMでそれぞれ基板品種A,B,C毎に使用される生産データ21a、生産データ21b、生産データ21cを記憶している。また、記憶部20は、搭載部品検査装置MIでそれぞれ基板品種A,B,C毎に使用する検査データ22a、検査データ22b、検査データ22cを記憶している。前述のように、搭載部品検査装置MIは、部品搭載装置MMにより基板3に搭載された部品の搭載状態を検査する。さらに記憶部20は、搭載部品検査装置MIによる検査結果を個別の基板毎にまとめた検査情報23を記憶する。なお、生産データ21a~21cを、前述のように、総括して生産データ21と呼ぶ場合がある。また検査データ22a~22cも総括して検査データ22と呼ぶ場合がある。 That is, the storage unit 20 stores the production data 21a, the production data 21b, and the production data 21c used for each of the board types A, B, and C in the component mounting device MM in the production of the mounting board, respectively. Further, the storage unit 20 stores the inspection data 22a, the inspection data 22b, and the inspection data 22c used for each of the substrate types A, B, and C in the mounted component inspection device MI, respectively. As described above, the mounted component inspection device MI inspects the mounted state of the components mounted on the substrate 3 by the component mounting device MM. Further, the storage unit 20 stores the inspection information 23 that summarizes the inspection results by the mounted component inspection device MI for each individual substrate. The production data 21a to 21c may be collectively referred to as the production data 21 as described above. Further, the inspection data 22a to 22c may also be collectively referred to as inspection data 22.
 生産データ21a、生産データ21b、生産データ21cは、部品搭載装置MMで使用するために主に実装基板の設計データであるCAD(Computer Aided Design)データに基づいて作成され、情報管理装置5に記憶されている。これに対し、検査データ22a、検査データ22b、検査データ22cは、実際に生産された記憶部20のうち、良品と判定された実装基板の現物を撮像して得られた画像を用いて作成される。 The production data 21a, production data 21b, and production data 21c are created mainly based on CAD (Computer Aided Design) data, which is design data of the mounting board, for use in the component mounting device MM, and are stored in the information management device 5. Has been done. On the other hand, the inspection data 22a, the inspection data 22b, and the inspection data 22c are created by using an image obtained by imaging the actual mounting board determined to be a non-defective product among the actually produced storage units 20. To.
 すなわちこれらの2種類のデータは個別に作成されて情報管理装置5に予め提供される。このため、同一基板品種を対象とする場合にあっても、生産データ21a、生産データ21b、生産データ21cと、検査データ22a、検査データ22b、検査データ22cとは細部にわたっては必ずしも正確には一致せず、データ相互の整合性が良好でない場合がある。 That is, these two types of data are created individually and provided to the information management device 5 in advance. Therefore, even when the same substrate type is targeted, the production data 21a, production data 21b, and production data 21c do not always exactly match the inspection data 22a, inspection data 22b, and inspection data 22c in detail. In some cases, the data is not consistent with each other.
 したがってこのような整合性が確保されていない生産データ21a、生産データ21b、生産データ21cおよび検査データ22a、検査データ22b、検査データ22cをそのまま使用してフィードバック補正を伴う部品搭載動作を実行すると、良好なフィードバック効果が得られず、却って実装精度が低下する場合がある。 Therefore, when the component mounting operation with feedback correction is executed by using the production data 21a, the production data 21b, the production data 21c and the inspection data 22a, the inspection data 22b, and the inspection data 22c for which such consistency is not ensured as they are, A good feedback effect may not be obtained, and the mounting accuracy may decrease.
 このような不都合を抑制するために、実装基板製造システム1においては、情報管理装置5が整合性判定部24と、データ修正部25とを有する。整合性判定部24は、情報管理装置5に提供された生産データ21aと検査データ22aとの整合性、生産データ21bと検査データ22bとの整合性、生産データ21cと検査データ22cとの整合性の良否を確認する。 In order to suppress such inconvenience, in the mounting board manufacturing system 1, the information management device 5 has a consistency determination unit 24 and a data correction unit 25. The consistency determination unit 24 determines the consistency between the production data 21a and the inspection data 22a provided to the information management device 5, the consistency between the production data 21b and the inspection data 22b, and the consistency between the production data 21c and the inspection data 22c. Check the quality of.
 具体的には、整合性判定部24は、生産データ21で指定された基板認識マークと検査データ22で指定された基板認識マークとの整合性の良否を確認する機能を有する。あるいは、整合性判定部24は、生産データ21に含まれる部品の搭載位置(実装点)と検査データ22に含まれる部品の搭載位置(実装点)との整合性の良否を確認する機能を有する。整合性判定部24はこの両方の機能を有していてもよい。 Specifically, the consistency determination unit 24 has a function of confirming the quality of the consistency between the board recognition mark specified in the production data 21 and the board recognition mark specified in the inspection data 22. Alternatively, the consistency determination unit 24 has a function of confirming the quality of consistency between the mounting position (mounting point) of the component included in the production data 21 and the mounting position (mounting point) of the component included in the inspection data 22. .. The consistency determination unit 24 may have both of these functions.
 上記構成において、整合性判定部24は、生産データ21と検査データ22との整合性の良否を確認する。生産データ21は、部品を基板3に搭載する部品搭載装置MMで使用される。検査データ22は、部品搭載装置MMにより基板3に搭載された部品の、基板3における搭載状態を検査する搭載部品検査装置MIで使用される。したがって、整合性判定部24は、これらのデータの整合性を判定する整合性判定装置として機能する。なお本実施の形態では、整合性判定装置として、図4における整合性判定部24のように、実装基板製造システム1の情報管理装置5に組み込まれた例を示したが、本開示における整合性判定装置はこの構成には限定されない。 In the above configuration, the consistency determination unit 24 confirms whether the production data 21 and the inspection data 22 are consistent. The production data 21 is used in the component mounting device MM that mounts the component on the substrate 3. The inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the board 3 by the component mounting device MM. Therefore, the consistency determination unit 24 functions as a consistency determination device for determining the consistency of these data. In the present embodiment, as the consistency determination device, an example incorporated in the information management device 5 of the mounting board manufacturing system 1 as in the consistency determination unit 24 in FIG. 4 is shown, but the consistency in the present disclosure is shown. The determination device is not limited to this configuration.
 すなわち整合性判定装置としては、例えばパーソナルコンピュータなどデータ処理機能を有する外付け装置により構成してもよい。すなわち整合性判定装置は、生産データ21と検査データ22との整合性の良否を確認する機能を有していればよい。このような簡略化された構成の整合性判定装置であっても、本実施の形態において図4に示す整合性判定部24と同様の機能および作用効果を有する。なお、記憶部20は、1つ以上のRAM(ランダムアクセスメモリ)やハードディスクなどの記憶装置により構成される。表示部26は表示パネルやディスプレイ装置により構成される。入力部27は、タッチパネル、ボタン、キーボード等により構成される。整合性判定部24、データ修正部25は、CPU(中央演算処理装置)等により構成される。これらは別の回路やLSI(大規模集積回路)で構成されても、一体に構成されてもよい。 That is, the consistency determination device may be configured by an external device having a data processing function such as a personal computer. That is, the consistency determination device may have a function of confirming the quality of the consistency between the production data 21 and the inspection data 22. Even the consistency determination device having such a simplified configuration has the same functions and effects as the consistency determination unit 24 shown in FIG. 4 in the present embodiment. The storage unit 20 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk. The display unit 26 is composed of a display panel and a display device. The input unit 27 is composed of a touch panel, buttons, a keyboard, and the like. The consistency determination unit 24 and the data correction unit 25 are composed of a CPU (Central Processing Unit) and the like. These may be configured by another circuit or LSI (large-scale integrated circuit), or may be integrally configured.
 データ修正部25は、上述の整合性が不良と判定されると、生産データ21と検査データ22のいずれか一方を修正して両者が整合するように修正する機能を有している。この整合性の判定とデータ修正処理は、情報管理装置5に設けられた表示パネルである表示部26、入力ユニットである入力部27の表示機能、入力機能を用いて実行される。このデータ修正においては、整合性が不良と判定された生産データ21を検査データ22と整合するように修正する方法が採用される。これは、生産データ21はCADデータで与えられるデジタル値であって修正が容易であるからである。 The data correction unit 25 has a function of correcting either the production data 21 or the inspection data 22 so that the two are consistent when it is determined that the above-mentioned consistency is poor. The consistency determination and data correction processing are executed by using the display unit 26 which is a display panel provided in the information management device 5, the display function of the input unit 27 which is an input unit, and the input function. In this data correction, a method of correcting the production data 21 determined to be inconsistent so as to be consistent with the inspection data 22 is adopted. This is because the production data 21 is a digital value given by CAD data and can be easily modified.
 そして実装基板製造ラインLでは、上述の整合性判定部24によって整合性の良否が確認された生産データ21(生産データ21a、生産データ21b、生産データ21cなど)を使用して実装基板を製造し、検査データ22(検査データ22a、検査データ22b、検査データ22cなど)を使用して実装基板を検査する。 Then, in the mounting board manufacturing line L, the mounting board is manufactured using the production data 21 (production data 21a, production data 21b, production data 21c, etc.) whose consistency is confirmed by the above-mentioned consistency determination unit 24. , Inspection data 22 (inspection data 22a, inspection data 22b, inspection data 22c, etc.) is used to inspect the mounting board.
 次に部品搭載装置MM、搭載部品検査装置MIの制御系について説明する。図2に示すように、部品搭載装置MM、搭載部品検査装置MIは、前述のように通信ネットワーク4を介して情報管理装置5と接続されている。したがって、図4に示す記憶部20に格納された各種データは、必要に応じて通信ネットワーク4を介して部品搭載装置MM、搭載部品検査装置MIにダウンロードされる。 Next, the control system of the component mounting device MM and the mounted component inspection device MI will be described. As shown in FIG. 2, the component mounting device MM and the mounted component inspection device MI are connected to the information management device 5 via the communication network 4 as described above. Therefore, various data stored in the storage unit 20 shown in FIG. 4 are downloaded to the component mounting device MM and the mounted component inspection device MI via the communication network 4 as needed.
 図4に示すように、部品搭載装置MMは、制御部30および表示・入力部33を有している。制御部30は、部品搭載装置MMの動作および各種処理を制御する機能を有している。制御部30は、記憶部31および搭載処理部32を含む。記憶部31には各種のプログラムや実装基板生産用の生産データ21が記憶される。ここに示す例では、基板品種Aについての生産データ21aが記憶されている。 As shown in FIG. 4, the component mounting device MM has a control unit 30 and a display / input unit 33. The control unit 30 has a function of controlling the operation of the component mounting device MM and various processes. The control unit 30 includes a storage unit 31 and a mounting processing unit 32. The storage unit 31 stores various programs and production data 21 for producing a mounting board. In the example shown here, the production data 21a for the substrate type A is stored.
 搭載処理部32は、記憶部31に記憶されたプログラムや生産データ21に基づき、図3Aに示すヘッド移動機構10や装着ヘッド11を制御する。これにより搭載処理部32は、部品搭載装置MMに部品搭載処理を実行させる。表示・入力部33は、部品搭載装置MMの動作において必要な報知などの各種の表示や指令入力を行う機能を有する。なお、制御部30、搭載処理部32は、CPU等により構成される。これらは別の回路やLSIで構成されても、一体に構成されてもよい。記憶部31は1つ以上のRAM(ランダムアクセスメモリ)やハードディスクなどの記憶装置により構成される。表示・入力部33は表示パネルやディスプレイ装置と、タッチパネル、ボタン、キーボード等により構成される。 The mounting processing unit 32 controls the head moving mechanism 10 and the mounting head 11 shown in FIG. 3A based on the program and the production data 21 stored in the storage unit 31. As a result, the mounting processing unit 32 causes the component mounting device MM to execute the component mounting process. The display / input unit 33 has a function of performing various displays such as notifications and command input necessary for the operation of the component mounting device MM. The control unit 30 and the mounting processing unit 32 are composed of a CPU and the like. These may be configured by another circuit or LSI, or may be configured integrally. The storage unit 31 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk. The display / input unit 33 includes a display panel, a display device, a touch panel, buttons, a keyboard, and the like.
 搭載部品検査装置MIは、制御部40および表示・入力部43を有している。制御部40は搭載部品検査装置MIの動作および各種処理を制御する機能を有している。制御部40は、記憶部41および検査処理部42を含む。記憶部41には各種のプログラムや搭載部品検査用の検査データ22が記憶される。ここに示す例では、基板品種Aについての検査データ22aおよび当該基板を検査した検査結果を示す検査情報41aが記憶されている。 The mounted parts inspection device MI has a control unit 40 and a display / input unit 43. The control unit 40 has a function of controlling the operation of the mounted component inspection device MI and various processes. The control unit 40 includes a storage unit 41 and an inspection processing unit 42. Various programs and inspection data 22 for inspecting mounted parts are stored in the storage unit 41. In the example shown here, the inspection data 22a for the substrate type A and the inspection information 41a indicating the inspection result of inspecting the substrate are stored.
 検査処理部42は、検査情報41aに記憶されたプログラムや検査データ22に基づき、図3Bに示す検査ヘッド移動機構14や検査ヘッド15を制御する。これにより検査処理部42は、搭載部品検査装置MIに搭載部品検査を実行させる。表示・入力部43は、搭載部品検査装置MIの動作において必要な報知などの各種の表示や指令入力を行う機能を有する。なお、制御部40、検査処理部42は、CPU等により構成される。これらは別の回路やLSIで構成されても、一体に構成されてもよい。記憶部41は1つ以上のRAM(ランダムアクセスメモリ)やハードディスクなどの記憶装置により構成される。表示・入力部43は表示パネルやディスプレイ装置と、タッチパネル、ボタン、キーボード等により構成される。 The inspection processing unit 42 controls the inspection head moving mechanism 14 and the inspection head 15 shown in FIG. 3B based on the program and the inspection data 22 stored in the inspection information 41a. As a result, the inspection processing unit 42 causes the mounted component inspection device MI to execute the mounted component inspection. The display / input unit 43 has a function of performing various displays such as notifications and command input necessary for the operation of the mounted component inspection device MI. The control unit 40 and the inspection processing unit 42 are composed of a CPU and the like. These may be configured by another circuit or LSI, or may be configured integrally. The storage unit 41 is composed of a storage device such as one or more RAMs (random access memory) or a hard disk. The display / input unit 43 includes a display panel, a display device, a touch panel, buttons, a keyboard, and the like.
 次に、部品搭載装置MMによる部品搭載動作において使用される生産データ21(21a)について、図5A、図5Bを参照して説明する。図5Aは、基板3の生産データ21の一例として生産データ21aを示している。図5Aにおいて、基板3には部品P1、P2、P3、P4が、それぞれ搭載される実装点M1、M2、M3、M4が設定されている。 Next, the production data 21 (21a) used in the component mounting operation by the component mounting device MM will be described with reference to FIGS. 5A and 5B. FIG. 5A shows the production data 21a as an example of the production data 21 of the substrate 3. In FIG. 5A, mounting points M1, M2, M3, and M4 on which the components P1, P2, P3, and P4 are mounted are set on the substrate 3.
 部品搭載装置MMにおいては、実装点M1、M2、M3、M4の位置を特定するために、基板3の所定位置に形成されたパターンのうち、相対向する対角に位置する1対のパターンが、位置特定のための1対の基板認識マークとして用いられる。図5Aの例では、所定位置は、4隅のコーナ位置であり、基板認識マークは認識マークMa、Mbとして示されている。 In the component mounting device MM, in order to specify the positions of the mounting points M1, M2, M3, and M4, among the patterns formed at the predetermined positions of the substrate 3, a pair of patterns located diagonally opposite to each other is used. , Used as a pair of board recognition marks for position identification. In the example of FIG. 5A, the predetermined positions are the corner positions at the four corners, and the substrate recognition marks are shown as recognition marks Ma and Mb.
 図5Aでは、一例として、左上コーナ、右下コーナにそれぞれ位置する一対の円形パターンを基板認識マークとして用いる。なお、ここに示す例では、基板3には右上コーナ、左下コーナにも一対のパターン(ここでは三角形パターン3a、3b)が形成されており、これらのパターンを基板認識マークとして用いることもできる。 In FIG. 5A, as an example, a pair of circular patterns located at the upper left corner and the lower right corner are used as substrate recognition marks. In the example shown here, a pair of patterns (here, triangular patterns 3a and 3b) are formed on the upper right corner and the lower left corner on the substrate 3, and these patterns can also be used as the substrate recognition mark.
 図5Aに示す生産データ21aは、基板3における認識マークMa、Mbとともに、基板3に搭載される部品P1~P4の座標値を伴っている。すなわち、図5Aに示すように、認識マークMa、Mbは、基板3の下辺、左辺にそれぞれ沿ったX軸、Y軸上の座標(MaXm、MaYm)、(MbXm、MbYm)にそれぞれ対応している。同様に、部品P1、P2、P3、P4の実装点M1、M2、M3、M4は、それぞれ(A1Xm、A1Ym)、(A2Xm、A2Ym)、(A3Xm、A3Ym)、(A4Xm、A4Ym)に対応している。 The production data 21a shown in FIG. 5A includes the recognition marks Ma and Mb on the substrate 3 and the coordinate values of the components P1 to P4 mounted on the substrate 3. That is, as shown in FIG. 5A, the recognition marks Ma and Mb correspond to the coordinates (MaXm, MaYm) and (MbXm, MbYm) on the X-axis and Y-axis along the lower side and the left side of the substrate 3, respectively. There is. Similarly, the mounting points M1, M2, M3, and M4 of the parts P1, P2, P3, and P4 correspond to (A1Xm, A1Ym), (A2Xm, A2Ym), (A3Xm, A3Ym), and (A4Xm, A4Ym), respectively. ing.
 図5Bは、認識マークMa、Mbおよび実装点M1、M2、M3、M4と、これらの認識マークおよび実装点の設計データ上の座標との対応関係を示す生産データテーブルである。部品搭載装置MMは、この生産データテーブルに基づいて部品搭載動作を実行する。この生産データテーブルは、認識マークMa、Mb、部品P1、P2、P3、P4の区分を示す名称28a毎に、それぞれのX座標28b、Y座標28cを対応させて示している。 FIG. 5B is a production data table showing the correspondence between the recognition marks Ma, Mb and the mounting points M1, M2, M3, M4 and the coordinates of these recognition marks and the mounting points on the design data. The component mounting device MM executes the component mounting operation based on this production data table. In this production data table, the X coordinate 28b and the Y coordinate 28c are shown in association with each name 28a indicating the classification of the recognition marks Ma and Mb and the parts P1, P2, P3 and P4.
 図6A、図6Bは、搭載部品検査装置MIによる搭載部品検査において使用される検査データを示している。図6Aは、基板3の検査データ22の一例として検査データ22aを示している。図6Aは、基板3上で、部品P1、P2、P3、P4が、それぞれ実装点M1、M2、M3、M4に搭載された状態を示している。 6A and 6B show inspection data used in the mounted part inspection by the mounted part inspection device MI. FIG. 6A shows the inspection data 22a as an example of the inspection data 22 of the substrate 3. FIG. 6A shows a state in which the components P1, P2, P3, and P4 are mounted on the mounting points M1, M2, M3, and M4, respectively, on the substrate 3.
 搭載部品検査装置MIにおいては、実装点M1、M2、M3、M4の位置を特定するために、基板3の所定位置に形成されたパターンのうち、相対向する対角に位置する1対のパターンが位置特定のための1対の基板認識マークとして用いられる。図6Aの例では、所定位置は、4隅のコーナ位置であり、基板認識マークは認識マークMa、Mbとして示されている。 In the mounted component inspection device MI, in order to specify the positions of the mounting points M1, M2, M3, and M4, a pair of patterns formed at predetermined positions on the substrate 3 are located diagonally opposite to each other. Is used as a pair of board recognition marks for position identification. In the example of FIG. 6A, the predetermined positions are the corner positions at the four corners, and the substrate recognition marks are shown as recognition marks Ma and Mb.
 図6Aでは、一例として、左上コーナ、右下コーナにそれぞれ位置する一対の円形パターンを基板認識マークとして用いる。なお、ここに示す例では、基板3には右上コーナ、左下コーナにも一対のパターン(ここでは三角形パターン3a,3b)が形成されており、これらのパターンを基板認識マークとして用いることもできる。 In FIG. 6A, as an example, a pair of circular patterns located at the upper left corner and the lower right corner are used as the substrate recognition marks. In the example shown here, a pair of patterns (here, triangular patterns 3a and 3b) are formed on the upper right corner and the lower left corner on the substrate 3, and these patterns can also be used as the substrate recognition mark.
 図6Aに示す検査データ22aは、基板3における認識マークMa、Mbとともに、基板3に搭載された部品P1~P4の座標値を伴っている。すなわち、図6Aに示すように、認識マークMa、Mbは基板3の下辺、左辺にそれぞれ沿ったX軸、Y軸上の座標(MaXc、MaYc)、(MbXc、MbYc)にそれぞれ対応している。同様に、部品P1、P2、P3、P4の実装点M1、M2、M3、M4は、それぞれ(A1Xc、A1Yc)、(A2Xc、A2Yc)、(A3Xc、A3Yc)、(A4Xc、A4Yc)に対応している。 The inspection data 22a shown in FIG. 6A includes the recognition marks Ma and Mb on the substrate 3 and the coordinate values of the components P1 to P4 mounted on the substrate 3. That is, as shown in FIG. 6A, the recognition marks Ma and Mb correspond to the coordinates (MaXc, MaYc) and (MbXc, MbYc) on the X-axis and Y-axis along the lower side and the left side of the substrate 3, respectively. .. Similarly, the mounting points M1, M2, M3, and M4 of the parts P1, P2, P3, and P4 correspond to (A1Xc, A1Yc), (A2Xc, A2Yc), (A3Xc, A3Yc), and (A4Xc, A4Yc), respectively. ing.
 図6Bは、認識マークMa、Mbおよび実装点M1、M2、M3、M4と、計測された座標との対応関係を示す検査データテーブルである。搭載部品検査装置MIは、この検査データテーブルに基づいて搭載部品検査を実行する。この検査データテーブルは、認識マークMa、Mb、部品P1、P2、P3、P4の区分を示す名称29a毎に、それぞれのX座標29b、Y座標29cを対応させて示している。 FIG. 6B is an inspection data table showing the correspondence between the recognition marks Ma and Mb and the mounting points M1, M2, M3 and M4 and the measured coordinates. The mounted component inspection device MI executes the mounted component inspection based on this inspection data table. In this inspection data table, the X coordinate 29b and the Y coordinate 29c are shown in association with each name 29a indicating the classification of the recognition marks Ma and Mb and the parts P1, P2, P3 and P4.
 すなわち実装基板製造システム1において、実装基板製造ラインLは、基板3に部品を搭載して実装基板を製造する。実装基板製造ラインLは、上述の生産データ21に基づいて部品を基板3に搭載する部品搭載装置MMと、上述の検査データ22に基づいて部品搭載装置MMで基板3に搭載された部品の搭載状態を検査する搭載部品検査装置MIとを含んでいる。 That is, in the mounting board manufacturing system 1, the mounting board manufacturing line L manufactures a mounting board by mounting components on the board 3. The mounting board manufacturing line L includes a component mounting device MM for mounting components on the board 3 based on the above-mentioned production data 21, and a component mounting device MM for mounting the components mounted on the board 3 based on the above-mentioned inspection data 22. It includes an on-board component inspection device MI that inspects the condition.
 検査データ22aにおける認識マークMa、Mbの座標(MaXc、MaYc)、(MbXc、MbYc)、実装点M1、M2、M3、M4の座標(A1Xc、A1Yc)、(A2Xc、A2Yc)、(A3Xc、A3Yc)、(A4Xc、A4Yc)は、いずれも良品の実装基板から選別された現物を撮像した結果から取得された座標データである。そのため、これらの座標値が設計データに基づいて作成された生産データ21においてそれぞれ対応する座標値と一致しているとは限らない。 Coordinates of recognition marks Ma, Mb (MaXc, MaYc), (MbXc, MbYc), coordinates of mounting points M1, M2, M3, M4 (A1Xc, A1Yc), (A2Xc, A2Yc), (A3Xc, A3Yc) in the inspection data 22a. ) And (A4Xc, A4Yc) are coordinate data acquired from the result of imaging the actual product selected from the non-defective mounting substrate. Therefore, these coordinate values do not always match the corresponding coordinate values in the production data 21 created based on the design data.
 フィードバック位置補正方式では、部品搭載後に搭載部品検査装置において搭載位置ずれを検出し、検出された位置ずれ誤差を部品搭載装置にフィードバックすることにより搭載位置精度を改善する。そのため、フィードバック位置補正方式では、搭載部品検査装置において使用される検査データと、部品搭載装置において使用される生産データとの整合性が確保されていることが必須である。 In the feedback position correction method, the mounting position accuracy is improved by detecting the mounting position deviation in the mounted component inspection device after mounting the component and feeding back the detected position deviation error to the component mounting device. Therefore, in the feedback position correction method, it is essential that the consistency between the inspection data used in the mounted component inspection device and the production data used in the component mounting device is ensured.
 このような課題を踏まえ、整合性判定部24によって実行される整合性の良否判定方法について、図7A、図7Bを参照して説明する。図7Aの判定条件(A)では、基板認識マークの一例としての認識マークMaの整合性の良否判定を示している。この場合には、以下の条件(1)、(2)の双方を満たしていることを以て、認識マークMaの整合性が良好であると判定される。このような判定は、認識マークMbについても同様に行われる。
条件(1):生産データ21における認識マークMaのX座標(MaXm)と検査データ22における認識マークMaのX座標(MaXc)との差の絶対値が、予め設定されたX軸における閾値TH(1X)以下である。
条件(2):検査データ22における認識マークMaのY座標(MaYm)と検査データ22における認識マークMaのY座標(MaYc)との差の絶対値が、予め設定されたY軸における閾値TH(1Y)以下である。
Based on such a problem, the integrity determination method executed by the consistency determination unit 24 will be described with reference to FIGS. 7A and 7B. The determination condition (A) of FIG. 7A shows the quality determination of the consistency of the recognition mark Ma as an example of the substrate recognition mark. In this case, it is determined that the consistency of the recognition mark Ma is good if both the following conditions (1) and (2) are satisfied. Such a determination is also made for the recognition mark Mb.
Condition (1): The absolute value of the difference between the X coordinate (MaXm) of the recognition mark Ma in the production data 21 and the X coordinate (MaXc) of the recognition mark Ma in the inspection data 22 is the threshold value TH (MaXc) on the preset X axis. 1X) or less.
Condition (2): The absolute value of the difference between the Y coordinate (MaYm) of the recognition mark Ma in the inspection data 22 and the Y coordinate (MaYc) of the recognition mark Ma in the inspection data 22 is the threshold value TH (MaYc) on the preset Y axis. 1Y) or less.
 図7Aの判定条件(B)は、部品の実装点の一例としての実装点M1の整合性の良否判定を示している。この場合には、以下の条件(3)、(4)の双方を満たしていることを以て、実装点M1の整合性が良好であると判定される。このような判定は、そのほかの実装点についても同様に行われる。
条件(3):生産データ21における実装点M1のX座標(A1Xm)と検査データ22における実装点M1のX座標(A1Xc)との差の絶対値が、予め設定されたX軸における閾値TH(2X)以下である。
条件(4):検査データ22における実装点M1のY座標(A1Ym)と検査データ22における実装点M1のY座標(A1Yc)との差の絶対値が、予め設定されたY軸における閾値TH(2Y)以下である。
The determination condition (B) of FIG. 7A shows the quality determination of the consistency of the mounting point M1 as an example of the mounting point of the component. In this case, it is determined that the consistency of the mounting point M1 is good if both the following conditions (3) and (4) are satisfied. Such a determination is made in the same manner for other mounting points.
Condition (3): The absolute value of the difference between the X coordinate (A1Xm) of the mounting point M1 in the production data 21 and the X coordinate (A1Xc) of the mounting point M1 in the inspection data 22 is the threshold value TH (A1Xc) on the preset X axis. 2X) or less.
Condition (4): The absolute value of the difference between the Y coordinate (A1Ym) of the mounting point M1 in the inspection data 22 and the Y coordinate (A1Yc) of the mounting point M1 in the inspection data 22 is the threshold value TH (A1Yc) on the preset Y axis. 2Y) or less.
 図7Bは、生産対象となる基板3が同一パターンで形成された複数の小基板3sの集合体である場合の整合性の良否判定の一例を示している。この例では、基板3は、X軸に沿う方向に4列、Y軸に沿う方向に3行の小基板3sを有する。このような基板3で整合性の良否判定を説明する。なお、各々の小基板3sは、マトリクス座標[I,J]で配列位置が特定される。IはX軸に沿う方向の列番号、JはY軸に沿う方向の行番号を表す。整合性判定部24は、基板3における作業処理の指定順序が、生産データ21と検査データ22とで整合しているか否かを判定する。すなわち整合性判定部24は、同一の基板3において複数の小基板3sを繰り返して処理対象とする指定順序(繰り返しパターン)が、生産データ21と検査データ22とで整合しているか否かを判定する。具体的には、整合性判定部24は、生産データ21に含まれる小基板3sの指定順序と検査データ22に含まれる小基板3sの指定順序との整合性の良否を判定する。 FIG. 7B shows an example of determining whether the consistency is good or bad when the substrate 3 to be produced is an aggregate of a plurality of small substrates 3s formed in the same pattern. In this example, the substrate 3 has four rows of small substrates 3s along the X-axis and three rows along the Y-axis. The quality determination of consistency will be described with such a substrate 3. The arrangement position of each of the small substrates 3s is specified by the matrix coordinates [I, J]. I represents the column number in the direction along the X axis, and J represents the row number in the direction along the Y axis. The consistency determination unit 24 determines whether or not the designated order of work processing on the substrate 3 is consistent between the production data 21 and the inspection data 22. That is, the consistency determination unit 24 determines whether or not the designated order (repetition pattern) in which the plurality of small substrates 3s are repeatedly processed on the same substrate 3 is consistent between the production data 21 and the inspection data 22. To do. Specifically, the consistency determination unit 24 determines whether or not the consistency between the designated order of the small substrates 3s included in the production data 21 and the designated order of the small substrates 3s included in the inspection data 22 is good or bad.
 図7Bに示す例では、上側のマトリックスに付された数字が生産データ21による指定順序、下側のマトリックスに付された数字が検査データ22による指定順序を示している。例えば、上側のマトリックスで、指定順序4の小基板3s、および下側のマトリックスで、指定順序10の小基板3sのマトリックス座標は、[4,3]である。このような場合の指定順序の整合性の良否判定では、まず生産データ21においてマトリックス座標[I,J]で特定される小基板の指定順序と、検査データ22において同じマトリックス座標[I,J]で特定される小基板の指定順序とを比較する。そしてすべての小基板3sの指定順序が生産データ21と検査データ22とで同一であれば、指定順序には整合性有り(良)と判定し、指定順序が同一でなければ指定順序には整合性無し(不良)と判定する。図7Bに示す例では、マトリックス座標[1,3]の小基板3sおよびマトリックス座標[4,1]の小基板3s以外は、指定順序が異なっている。そのため、この例では指定順序には整合性無しと判定される。 In the example shown in FIG. 7B, the numbers attached to the upper matrix indicate the designated order according to the production data 21, and the numbers attached to the lower matrix indicate the designated order according to the inspection data 22. For example, in the upper matrix, the matrix coordinates of the small substrate 3s of the designated order 4 and in the lower matrix, the matrix coordinates of the small substrate 3s of the designated order 10 are [4,3]. In the quality judgment of the consistency of the designated order in such a case, first, the designated order of the small substrate specified by the matrix coordinates [I, J] in the production data 21 and the same matrix coordinates [I, J] in the inspection data 22. Compare with the specified order of the small substrates specified in. If the designated order of all the small substrates 3s is the same for the production data 21 and the inspection data 22, it is determined that the designated order is consistent (good), and if the designated order is not the same, the designated order is matched. Judged as having no sex (defective). In the example shown in FIG. 7B, the designated order is different except for the small substrate 3s having the matrix coordinates [1,3] and the small substrate 3s having the matrix coordinates [4,1]. Therefore, in this example, it is determined that the specified order is inconsistent.
 本実施の形態に係る実装基板製造システム1は上記のように構成されている。以下、基板3に部品が搭載された実装基板を実装基板製造システム1によって製造する実装基板製造方法について説明する。 The mounting board manufacturing system 1 according to the present embodiment is configured as described above. Hereinafter, a mounting board manufacturing method for manufacturing a mounting board on which components are mounted on the board 3 by the mounting board manufacturing system 1 will be described.
 この実装基板製造方法では、まず生産データ21と検査データ22との整合性の良否を確認する。前述のように、生産データ21は、部品を基板3に搭載するために、部品搭載装置MMで使用される。検査データ22は、部品搭載装置MMで基板3に搭載された部品の搭載状態を検査するために、搭載部品検査装置MIで使用される。この整合性の良否の確認は、情報管理装置5が有する整合性判定部24の機能によって実行される。 In this mounting board manufacturing method, first, the quality of the consistency between the production data 21 and the inspection data 22 is confirmed. As described above, the production data 21 is used in the component mounting device MM to mount the component on the substrate 3. The inspection data 22 is used in the mounted component inspection device MI in order to inspect the mounted state of the component mounted on the substrate 3 by the component mounting device MM. The confirmation of the quality of the consistency is executed by the function of the consistency determination unit 24 of the information management device 5.
 次いで整合性が良と確認された生産データ21と検査データ22とを使用して、部品搭載装置MMで部品を基板3に搭載し、搭載部品検査装置MIで基板3に搭載された部品の搭載状態を検査する。この検査により、基板3に搭載された状態の部品の位置が検出される。検出された部品の、基板3における位置は、部品搭載装置MMにフィードバックされ、部品搭載装置MMは搭載部品検査装置MIで計測された部品の位置に基づいて、部品を基板3に搭載する動作を補正する。 Next, using the production data 21 and the inspection data 22 confirmed to have good consistency, the parts are mounted on the board 3 by the component mounting device MM, and the components mounted on the board 3 are mounted by the mounted component inspection device MI. Inspect the condition. By this inspection, the position of the component mounted on the substrate 3 is detected. The position of the detected component on the board 3 is fed back to the component mounting device MM, and the component mounting device MM performs an operation of mounting the component on the board 3 based on the position of the component measured by the mounted component inspection device MI. to correct.
 上述のフィードバック補正における部品認識では、部品搭載装置MMは、生産データ21において指定された基板認識マークを認識して部品を基板3に搭載し、搭載部品検査装置MIは、検査データ22で指定された基板認識マークを認識して基板3における部品の位置を計測する。そして生産データ21と検査データ22との整合性は、生産データ21で指定された基板認識マークと検査データ22で指定された基板認識マークとの整合性を確認することにより確認される。また生産データ21と検査データ22との整合性は、生産データ21に含まれる部品の搭載位置と検査データ22に含まれる部品の搭載位置との整合性を確認することにより確認される。 In the component recognition in the feedback correction described above, the component mounting device MM recognizes the board recognition mark specified in the production data 21 and mounts the component on the board 3, and the mounted component inspection device MI is designated by the inspection data 22. The position of the component on the board 3 is measured by recognizing the board recognition mark. The consistency between the production data 21 and the inspection data 22 is confirmed by confirming the consistency between the board recognition mark designated by the production data 21 and the board recognition mark designated by the inspection data 22. Further, the consistency between the production data 21 and the inspection data 22 is confirmed by confirming the consistency between the mounting position of the component included in the production data 21 and the mounting position of the component included in the inspection data 22.
 さらに、図7Bに示すように、基板3が同一パターンで形成された複数の小基板3sの集合体である場合には、生産データ21と検査データ22との整合性は、生産データ21および検査データ22に含まれる小基板3sの作業処理における指定順序の整合性を確認することにより確認される。小基板3sの作業処理における指定順序の整合性とは、複数の小基板3sを反復して作業対象とする場合における繰り返しパターンの整合性である。 Further, as shown in FIG. 7B, when the substrate 3 is an aggregate of a plurality of small substrates 3s formed in the same pattern, the consistency between the production data 21 and the inspection data 22 is determined by the production data 21 and the inspection. It is confirmed by confirming the consistency of the designated order in the work process of the small substrate 3s included in the data 22. The consistency of the designated order in the work processing of the small substrate 3s is the consistency of the repetition pattern when a plurality of small substrates 3s are repeatedly targeted for work.
 次に、実装基板製造システム1において実行される実装基板製造方法における生産開始処理について、図8を参照しながら説明する。図8で示される処理は、情報管理装置5によって実行される。なお、図8では基板3が複数の小基板3sを組み合わせた繰り返しパターンを有する多数個取り基板である例を示している。まず生産開始に先立って、生産開始前チェック処理が実行される(ST1)。具体的には、実装基板製造ラインLを構成する各装置の状態に、生産の正常な実行を妨げる要因が存在するか否かをチェックする。このチェック項目には、生産品種に切り替えに伴う機種切替作業の確認や、安全確認項目の点検などの通常点検項目に加えて、前述の生産データ21および検査データ22の整合性の良否が含まれている。 Next, the production start process in the mounting board manufacturing method executed in the mounting board manufacturing system 1 will be described with reference to FIG. The process shown in FIG. 8 is executed by the information management device 5. Note that FIG. 8 shows an example in which the substrate 3 is a multi-layered substrate having a repeating pattern in which a plurality of small substrates 3s are combined. First, prior to the start of production, a pre-production check process is executed (ST1). Specifically, it is checked whether or not there is a factor that hinders the normal execution of production in the state of each device constituting the mounting board manufacturing line L. This check item includes the quality of consistency of the above-mentioned production data 21 and inspection data 22 in addition to the normal inspection items such as confirmation of model switching work accompanying switching to a production type and inspection of safety confirmation items. ing.
 上述の生産開始前チェック処理において全項目について異常なしと判断された場合、これから生産する品種の基板3については合否判定において、合格の判定がなされる(ST2)。そして異常無しで合格の判定がなされた基板3については、生産開始指令が発せれる(ST3)。 If it is determined that there is no abnormality in all the items in the above-mentioned pre-production check process, a pass judgment is made in the pass / fail judgment for the substrate 3 of the product type to be produced (ST2). Then, a production start command is issued for the substrate 3 for which the acceptance is determined without any abnormality (ST3).
 これに対し、ST2において異常有りと判定された不合格の基板3については、繰り返しパターンの不一致に該当するか否かが判断される(ST4)。すなわち図7Bに示す判定方法により、繰り返しパターンにおける指定順序が生産データ21と検査データ22とが同一か否かを判定する。ここで繰り返しパターンが不一致であると判定された場合、警告処理1を実行する(ST5)。具体的には、繰り返しパターンの指定順序が生産データ21と検査データ22との間で不一致である旨が表示部26(図4参照)に表示される。 On the other hand, with respect to the failed substrate 3 determined to have an abnormality in ST2, it is determined whether or not it corresponds to the mismatch of the repeating patterns (ST4). That is, by the determination method shown in FIG. 7B, it is determined whether or not the production data 21 and the inspection data 22 have the same designated order in the repetition pattern. If it is determined that the repeating patterns do not match, the warning process 1 is executed (ST5). Specifically, the display unit 26 (see FIG. 4) indicates that the designated order of the repetition pattern does not match between the production data 21 and the inspection data 22.
 またST4において繰り返しパターンの不一致に該当しない場合には、認識マークの不一致に該当するか否かを判断する(ST6)。すなわち図7Aの判定条件(1)により、対応関係にある認識マーク間の位置誤差の絶対値が予め設定された判定閾値以下であるか否かを判定する。位置誤差の絶対値が判定閾値を超えると判定された場合、警告処理2を実行する(ST7)。具体的には、認識マークが生産データ21と検査データ22とで不一致である旨が表示部26に表示される。 If it does not correspond to the mismatch of the repetition pattern in ST4, it is judged whether or not it corresponds to the mismatch of the recognition mark (ST6). That is, according to the determination condition (1) of FIG. 7A, it is determined whether or not the absolute value of the position error between the recognition marks in the corresponding relationship is equal to or less than the preset determination threshold value. When it is determined that the absolute value of the position error exceeds the determination threshold value, the warning process 2 is executed (ST7). Specifically, the display unit 26 displays that the recognition mark does not match between the production data 21 and the inspection data 22.
 またST6において認識マークの不一致に該当しない場合には、座標データの不一致に該当するか否かを判断する(ST8)。すなわち図7Aの判定条件(2)により、対応関係にある実装点間の位置誤差の絶対値が予め設定された判定閾値以下であるか否かを判定する。位置誤差の絶対値が判定閾値を超えると判定された場合、警告処理3を実行する(ST9)。具体的には、実装点の座標データが生産データ21と検査データ22とで不一致である旨が表示部26に表示される。ここでST6において座標データの不一致に該当しない場合には、警告処理4を実行し、上述の整合性以外にエラーが存在する旨が表示部26に表示される。これにより、生産開始処理を終了する。 If it does not correspond to the mismatch of the recognition marks in ST6, it is determined whether or not it corresponds to the mismatch of the coordinate data (ST8). That is, according to the determination condition (2) of FIG. 7A, it is determined whether or not the absolute value of the position error between the corresponding mounting points is equal to or less than the preset determination threshold value. When it is determined that the absolute value of the position error exceeds the determination threshold value, the warning process 3 is executed (ST9). Specifically, the display unit 26 displays that the coordinate data of the mounting points does not match between the production data 21 and the inspection data 22. If the coordinate data does not match in ST6, the warning process 4 is executed, and the display unit 26 displays that an error exists other than the above-mentioned consistency. As a result, the production start process is completed.
 上述の生産開始処理において、ST3にて生産開始指令が発せされた場合のみに実装基板製造ラインLにおける生産が可能となり、基板3を対象とする生産が可能となる。これに対し、警告処理1(ST5)、警告処理2(ST7)、警告処理3(ST9)、警告処理4(ST10)が実行された場合には、前述のデータ修正部25によるデータ修正処理などの対策が実行される。 In the above-mentioned production start processing, the production on the mounting board production line L becomes possible only when the production start command is issued in ST3, and the production targeting the board 3 becomes possible. On the other hand, when the warning process 1 (ST5), the warning process 2 (ST7), the warning process 3 (ST9), and the warning process 4 (ST10) are executed, the data correction process by the above-mentioned data correction unit 25, etc. Measures are implemented.
 次に図8におけるST1にて実行される整合性判定処置について、図9を参照しながら説明する。以下の処理は、整合性判定部24により実行される。まず処理が開始されると、情報管理装置5の記憶部20(図4参照)から、これから生産する品種の基板3に対応する生産データ21および検査データ22を取得する(ST11)。次いで取得された生産データ21と検査データ22から座標データを取得し(図5A~図6B参照)、座標データの整合判定を実行する(図7A参照)(ST12)。次いでST12での判定結果より、座標データが全て一致か否かを判断する(ST13)。 Next, the consistency determination action executed in ST1 in FIG. 8 will be described with reference to FIG. The following processing is executed by the consistency determination unit 24. First, when the processing is started, the production data 21 and the inspection data 22 corresponding to the substrate 3 of the type to be produced are acquired from the storage unit 20 (see FIG. 4) of the information management device 5 (ST11). Next, coordinate data is acquired from the acquired production data 21 and inspection data 22 (see FIGS. 5A to 6B), and a matching determination of the coordinate data is executed (see FIG. 7A) (ST12). Next, it is determined whether or not all the coordinate data match based on the determination result in ST12 (ST13).
 座標データが全て一致すると判断された場合には、図7Bに示す繰り返しパターンの整合判定を実行する(ST14)。すなわち基板3が同一パターンで形成された複数の小基板3sの集合体である場合の作業処理の繰り返しパターンが、生産データ21と検査データ22とで一致しているか否かを判定する(ST16)。 When it is determined that all the coordinate data match, the matching determination of the repeating pattern shown in FIG. 7B is executed (ST14). That is, it is determined whether or not the repetition pattern of the work process when the substrate 3 is an aggregate of a plurality of small substrates 3s formed in the same pattern matches the production data 21 and the inspection data 22 (ST16). ..
 繰り返しパターンが一致している場合には、当該基板品種についての繰り返しパターンの整合性は合格である旨の判定結果を記憶部20に保存する(ST17)。これに対し、ST16において繰り返しパターンが一致していない場合には、当該基板品種については繰り返しパターンが不一致である旨の判定結果を記憶部20に保存する(ST18)。 If the repeating patterns match, the determination result indicating that the consistency of the repeating pattern for the substrate type is acceptable is stored in the storage unit 20 (ST17). On the other hand, when the repeating patterns do not match in ST16, the determination result indicating that the repeating patterns do not match for the substrate type is stored in the storage unit 20 (ST18).
 次に前述のST13において、座標データは全て一致ではなく不一致の座標データが存在すると判定された場合の処理について説明する。この場合には、認識マーク座標のみ不一致か否かが判断される(ST15)。ここで認識マーク座標のみ不一致であって他の実装点などの座標は一致している場合には、認識マークが不一致である旨の判定結果を記憶部20に保存する(ST19)。 Next, in the above-mentioned ST13, the processing when it is determined that the coordinate data is not all the same and the coordinate data that does not match exists will be described. In this case, it is determined whether or not only the recognition mark coordinates do not match (ST15). Here, when only the recognition mark coordinates do not match and the coordinates of other mounting points and the like do match, the determination result indicating that the recognition marks do not match is stored in the storage unit 20 (ST19).
 これに対し、ST15において認識マークのみならず実装点の座標データについて不一致が認められた場合には、実装点の座標データが不一致である旨の判定結果を記憶部20に保存する(ST20)。そして(ST17)~(ST20)のいずれについても判定結果を保存した後に、図8に示すメインフローの(ST2)に戻り、それぞれの場合の整合性判定結果にしたがって図8の処理が実行される。 On the other hand, when a mismatch is found not only in the recognition mark but also in the coordinate data of the mounting point in ST15, the determination result indicating that the coordinate data of the mounting point does not match is stored in the storage unit 20 (ST20). Then, after saving the determination results for all of (ST17) to (ST20), the process returns to (ST2) of the main flow shown in FIG. 8 and the processing of FIG. 8 is executed according to the consistency determination results in each case. ..
 上記説明したように、本実施の形態に示す実装基板製造システムは、整合性判定部24と、部品搭載装置MMと、搭載部品検査装置MIとを有する。整合性判定部24は、予め与えられた生産データ21と予め与えられた検査データ22との整合性の良否を確認する。生産データ21は、部品を基板3に搭載する際に用いられ、検査データ22は、部品の基板3における搭載状態を検査する際に用いられる。部品搭載装置MMは、整合性判定部24によって整合性が良と確認された生産データ21に基づいて部品を基板3に搭載して実装基板を製造する。搭載部品検査装置MIは、部品搭載装置MMで基板3に搭載された部品の、基板3における搭載状態を、整合性が良と確認された検査データ22に基づいて検査する。 As described above, the mounting board manufacturing system shown in the present embodiment includes a consistency determination unit 24, a component mounting device MM, and a mounted component inspection device MI. The consistency determination unit 24 confirms the quality of the consistency between the production data 21 given in advance and the inspection data 22 given in advance. The production data 21 is used when mounting the component on the substrate 3, and the inspection data 22 is used when inspecting the mounting state of the component on the substrate 3. The component mounting device MM manufactures a mounting board by mounting components on the board 3 based on the production data 21 confirmed by the consistency determination unit 24 to have good consistency. The mounted component inspection device MI inspects the mounted state of the components mounted on the board 3 by the component mounting device MM based on the inspection data 22 confirmed to have good consistency.
 また本実施の形態に係る実装基板製造方法では、基板3に部品が搭載された実装基板を製造する。この実装基板製造方法では、整合性判定部24によって、予め与えられた生産データ21と、予め与えられた検査データ22との整合性の良否を確認する。生産データ21は、部品を基板3に搭載する部品搭載装置MMで使用される。検査データ22は、部品搭載装置MMで基板3に搭載された部品の搭載状態を検査する搭載部品検査装置MIで使用される。そして、整合性が良と確認された生産データ21を使用して、部品搭載装置MMにより、部品を基板3に搭載する。さらに、整合性が良と確認された検査データ22を使用して、搭載部品検査装置MIにより、基板3に搭載された部品の搭載状態を検査する。 Further, in the mounting board manufacturing method according to the present embodiment, a mounting board in which components are mounted on the board 3 is manufactured. In this mounting board manufacturing method, the consistency determination unit 24 confirms the quality of the consistency between the production data 21 given in advance and the inspection data 22 given in advance. The production data 21 is used in the component mounting device MM that mounts the component on the substrate 3. The inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the substrate 3 by the component mounting device MM. Then, using the production data 21 confirmed to have good consistency, the components are mounted on the substrate 3 by the component mounting device MM. Further, using the inspection data 22 confirmed to have good consistency, the mounted component inspection device MI inspects the mounted state of the components mounted on the substrate 3.
 また本実施の形態に係る整合性判定装置(整合性判定部24)は、予め与えられた生産データ21と予め与えられた検査データ22との整合性の良否を確認する。生産データ21は、部品を基板3に搭載する部品搭載装置MMで使用される。検査データ22は、部品搭載装置MMで基板3に搭載された部品の搭載状態を検査する搭載部品検査装置MIで使用される。 Further, the consistency determination device (consistency determination unit 24) according to the present embodiment confirms whether the consistency between the production data 21 given in advance and the inspection data 22 given in advance is good or bad. The production data 21 is used in the component mounting device MM that mounts the component on the substrate 3. The inspection data 22 is used in the mounted component inspection device MI that inspects the mounted state of the component mounted on the substrate 3 by the component mounting device MM.
 以上のような構成により、実装基板製造システムにおいてフィードバック機能を後付けする場合においても、実際に適用される生産データ21に含まれる搭載データと検査データ22との整合性を確保してフードバック位置補正を正しく機能させることができる。特に、提供される生産データ21と検査データ22のデータ作成履歴やデータ精度が異なる場合であっても、フードバック位置補正を正しく機能させることができる。 With the above configuration, even when the feedback function is retrofitted in the mounting board manufacturing system, the hoodback position correction is ensured to ensure the consistency between the mounted data included in the actually applied production data 21 and the inspection data 22. Can work properly. In particular, even when the data creation history and data accuracy of the provided production data 21 and the inspection data 22 are different, the hoodback position correction can function correctly.
 本開示の実装基板製造システムおよび実装基板製造方法ならびに整合性判定装置は、実装基板製造システムにおいてフィードバック機能を後付けする場合においても、生産データと検査データとの整合性を確保してフードバック位置補正を正しく機能させることができる。そのため本開示は、部品を基板に搭載して実装基板を製造する分野において有用である。 The mounting board manufacturing system, the mounting board manufacturing method, and the consistency determination device of the present disclosure ensure the consistency between the production data and the inspection data and correct the hoodback position even when the feedback function is retrofitted in the mounting board manufacturing system. Can work properly. Therefore, the present disclosure is useful in the field of manufacturing a mounting board by mounting components on a board.
1  実装基板製造システム
2  コンベア
3  基板
3a,3b  三角形パターン
3s  小基板
4  通信ネットワーク
5  情報管理装置
10  ヘッド移動機構
11  装着ヘッド
12  基板認識カメラ
13  部品供給ユニット
14  検査ヘッド移動機構
15  検査ヘッド
21,21a,21b,21c  生産データ
22,22a,22b,22c  検査データ
23,41a  検査情報
24  整合性判定部
25  データ修正部
26  表示部
27  入力部
28a,29a  名称
28b,29b  X座標
28c,29c  Y座標
30,40  制御部
20,31,41  記憶部
32  搭載処理部
33,43  表示・入力部
42  検査処理部
101  XYテーブル
102  ヘッド昇降機構
L  実装基板製造ライン
MM  部品搭載装置
MI  搭載部品検査装置
Ma,Mb  認識マーク
1 Mounting board manufacturing system 2 Conveyor 3 Board 3a, 3b Triangular pattern 3s Small board 4 Communication network 5 Information management device 10 Head movement mechanism 11 Mounting head 12 Board recognition camera 13 Parts supply unit 14 Inspection head movement mechanism 15 Inspection heads 21 and 21a , 21b, 21c Production data 22, 22a, 22b, 22c Inspection data 23, 41a Inspection information 24 Consistency judgment unit 25 Data correction unit 26 Display unit 27 Input unit 28a, 29a Name 28b, 29b X coordinate 28c, 29c Y coordinate 30 , 40 Control unit 20, 31, 41 Storage unit 32 Mounting processing unit 33, 43 Display / input unit 42 Inspection processing unit 101 XY table 102 Head lifting mechanism L Mounting board manufacturing line MM Parts mounting device MI Mounting parts inspection device Ma, Mb Recognition mark

Claims (18)

  1. 部品を基板に搭載する際に用いられる、予め与えられた生産データと部品の基板における搭載状態を検査する際に用いられる、予め与えられた検査データとの整合性の良否を確認するように構成された整合性判定部と、
    前記整合性判定部によって前記整合性が良と確認された生産データに基づいて部品を基板に搭載して実装基板を製造するように構成された部品搭載装置と、
    前記部品搭載装置で前記基板に搭載された前記部品の前記基板における搭載状態を、前記整合性が良と確認された検査データに基づいて検査するように構成された搭載部品検査装置と、を備えた、
    実装基板製造システム。
    It is configured to confirm the consistency between the pre-given production data used when mounting the component on the board and the pre-given inspection data used when inspecting the mounting state of the component on the board. Consistency judgment unit and
    A component mounting device configured to mount a component on a board based on production data confirmed to have good consistency by the consistency determining unit to manufacture a mounting board.
    The component mounting device includes a mounted component inspection device configured to inspect the mounted state of the component mounted on the board on the board based on inspection data confirmed to have good consistency. ,
    Mounting board manufacturing system.
  2. 前記整合性判定部は、前記予め与えられた生産データで指定された基板認識マークと前記予め与えられた検査データで指定された基板認識マークとの整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認し、
    前記部品搭載装置は、前記整合性が良と確認された前記生産データで指定された基板認識マークを認識して前記部品を前記基板に搭載し、
    前記搭載部品検査装置は前記整合性が良と確認された前記検査データで指定された基板認識マークを認識して前記基板における前記部品の位置を計測する、
    請求項1に記載の実装基板製造システム。
    The consistency determination unit is given in advance by confirming the consistency between the substrate recognition mark designated by the production data given in advance and the substrate recognition mark designated by the inspection data given in advance. After confirming the consistency between the production data and the inspection data given in advance,
    The component mounting device recognizes the board recognition mark specified in the production data whose consistency has been confirmed to be good, and mounts the component on the board.
    The mounted component inspection device recognizes the substrate recognition mark specified by the inspection data confirmed to have good consistency and measures the position of the component on the substrate.
    The mounting board manufacturing system according to claim 1.
  3. 前記搭載部品検査装置は、前記基板における前記部品の位置を計測し、
    前記部品搭載装置は、前記搭載部品検査装置によって計測された前記部品の前記位置に基づいて、前記部品を前記基板に搭載する動作を補正するように構成された、
    請求項1に記載の実装基板製造システム。
    The mounted component inspection device measures the position of the component on the substrate and measures the position of the component.
    The component mounting device is configured to correct the operation of mounting the component on the substrate based on the position of the component measured by the mounted component inspection device.
    The mounting board manufacturing system according to claim 1.
  4. 前記整合性判定部は、前記予め与えられた生産データで指定された基板認識マークと前記予め与えられた検査データで指定された基板認識マークとの整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認し、
    前記部品搭載装置は、前記整合性が良と確認された前記生産データで指定された基板認識マークを認識して前記部品を前記基板に搭載し、
    前記搭載部品検査装置は前記整合性が良と確認された前記検査データで指定された基板認識マークを認識して前記基板における前記部品の前記位置を計測する、
    請求項3に記載の実装基板製造システム。
    The consistency determination unit is given in advance by confirming the consistency between the substrate recognition mark designated by the production data given in advance and the substrate recognition mark designated by the inspection data given in advance. After confirming the consistency between the production data and the inspection data given in advance,
    The component mounting device recognizes the board recognition mark specified in the production data whose consistency has been confirmed to be good, and mounts the component on the board.
    The mounted component inspection device recognizes the substrate recognition mark specified by the inspection data confirmed to have good consistency and measures the position of the component on the substrate.
    The mounting board manufacturing system according to claim 3.
  5. 前記整合性判定部は、前記予め与えられた生産データに含まれる前記部品の搭載位置と、前記予め与えられた検査データに含まれる前記部品の搭載位置との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項1から4のいずれか一項に記載の実装基板製造システム。
    The consistency determination unit confirms the consistency between the mounting position of the component included in the production data given in advance and the mounting position of the component included in the inspection data given in advance. Confirming the quality of the consistency between the production data given in advance and the inspection data given in advance.
    The mounting board manufacturing system according to any one of claims 1 to 4.
  6. 前記予め与えられた生産データで対象とされる前記基板、前記予め与えられた検査データで対象とされる前記基板、前記整合性が良と確認された前記生産データおよび前記整合性が良と確認された前記検査データで対象とされる前記基板がいずれも同一パターンで形成された複数の小基板の集合体であり、
    前記整合性判定部は、前記予め与えられた生産データに含まれる前記小基板の指定順序と、前記予め与えられた検査データに含まれる前記小基板の指定順序との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項1から5のいずれか一項に記載の実装基板製造システム。
    The substrate targeted by the production data given in advance, the substrate targeted by the inspection data given in advance, the production data confirmed to be consistent, and the consistency confirmed to be good. The substrate targeted by the inspection data is an aggregate of a plurality of small substrates formed in the same pattern.
    The consistency determination unit confirms the consistency between the designated order of the small substrates included in the production data given in advance and the designated order of the small substrates included in the inspection data given in advance. , Confirming the quality of the consistency between the production data given in advance and the inspection data given in advance.
    The mounting board manufacturing system according to any one of claims 1 to 5.
  7. 前記整合性判定部によって前記整合性が不良と判定された生産データと検査データのいずれか一方を、前記整合性が良となるように修正するデータ修正部をさらに備えた、
    請求項1から6のいずれか一項に記載の実装基板製造システム。
    A data correction unit is further provided for correcting either one of the production data and the inspection data whose consistency is determined to be poor by the consistency determination unit so that the consistency becomes good.
    The mounting board manufacturing system according to any one of claims 1 to 6.
  8. 前記予め与えられた生産データは、前記実装基板の設計データに基づいて作成され、
    前記予め与えられた検査データは、前記実装基板の現物を用いて作成され、
    前記データ修正部は、前記整合性判定部によって前記整合性が不良と判定された前記生産データと前記検査データのうちの前記生産データを前記検査データと整合するように修正する、
    請求項7記載の実装基板製造システム。
    The production data given in advance is created based on the design data of the mounting board.
    The inspection data given in advance is created by using the actual mounting board.
    The data correction unit corrects the production data among the production data and the inspection data whose consistency is determined to be poor by the consistency determination unit so as to be consistent with the inspection data.
    The mounting board manufacturing system according to claim 7.
  9. 基板に部品が搭載された実装基板を製造する実装基板製造方法であって、
    部品を基板に搭載する部品搭載装置で使用される、予め与えられた生産データと、前記部品搭載装置で前記基板に搭載された前記部品の搭載状態を検査する搭載部品検査装置で使用される、予め与えられた検査データとの整合性の良否を確認し、
    前記整合性が良と確認された生産データを使用して、前記部品搭載装置により、前記部品を前記基板に搭載し、
    前記整合性が良と確認された検査データを使用して、前記搭載部品検査装置により、前記基板に搭載された前記部品の搭載状態を検査する、
    実装基板製造方法。
    It is a mounting board manufacturing method for manufacturing a mounting board in which components are mounted on the board.
    Used in a pre-given production data used in a component mounting device for mounting a component on a board, and in a mounted component inspection device for inspecting the mounted state of the component mounted on the board by the component mounting device. Check the consistency with the inspection data given in advance,
    Using the production data confirmed to have good consistency, the component is mounted on the board by the component mounting device.
    Using the inspection data confirmed to have good consistency, the mounted component inspection device inspects the mounted state of the component mounted on the board.
    Mounting board manufacturing method.
  10. 前記予め与えられた生産データで指定された基板認識マークと前記予め与えられた検査データで指定された基板認識マークとの整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認し、
    前記部品搭載装置により、前記整合性が良と確認された前記生産データで指定された基板認識マークを認識させて前記部品を前記基板に搭載し、
    前記搭載部品検査装置により、前記整合性が良と確認された前記検査データで指定された基板認識マークを認識させて前記基板における前記部品の位置を計測する、
    請求項9に記載の実装基板製造方法。
    By confirming the consistency between the board recognition mark specified by the production data given in advance and the board recognition mark specified by the inspection data given in advance, the production data given in advance and the production data given in advance are given. After confirming the consistency with the inspection data,
    The component mounting device recognizes the board recognition mark specified in the production data whose consistency has been confirmed to be good, and mounts the component on the board.
    The mounted component inspection device recognizes the board recognition mark specified by the inspection data confirmed to have good consistency, and measures the position of the component on the substrate.
    The mounting substrate manufacturing method according to claim 9.
  11. 前記搭載部品検査装置で計測された前記基板における前記部品の位置に基づいて、前記部品搭載装置で、前記部品を前記基板に搭載する動作を補正する、
    請求項9に記載の実装基板製造方法。
    Based on the position of the component on the board measured by the mounted component inspection device, the component mounting device corrects the operation of mounting the component on the board.
    The mounting substrate manufacturing method according to claim 9.
  12. 前記予め与えられた生産データで指定された基板認識マークと前記予め与えられた検査データで指定された基板認識マークとの整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認し、
    前記部品搭載装置により、前記整合性が良と確認された前記生産データで指定された基板認識マークを認識させて前記部品を前記基板に搭載し、
    前記搭載部品検査装置により、前記整合性が良と確認された前記検査データで指定された基板認識マークを認識させて前記基板における前記部品の前記位置を計測する、
    請求項11に記載の実装基板製造方法。
    By confirming the consistency between the board recognition mark specified by the production data given in advance and the board recognition mark specified by the inspection data given in advance, the production data given in advance and the production data given in advance are given. After confirming the consistency with the inspection data,
    The component mounting device recognizes the board recognition mark specified in the production data whose consistency has been confirmed to be good, and mounts the component on the board.
    The mounted component inspection device recognizes the board recognition mark specified by the inspection data confirmed to have good consistency, and measures the position of the component on the board.
    The mounting substrate manufacturing method according to claim 11.
  13. 前記予め与えられた生産データに含まれる前記部品の搭載位置と、前記予め与えられた検査データに含まれる前記部品の搭載位置との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項9から12のいずれか一項に記載の実装基板製造方法。
    By confirming the consistency between the mounting position of the component included in the production data given in advance and the mounting position of the component included in the inspection data given in advance, the production data given in advance can be obtained. Confirming the quality of the consistency with the inspection data given in advance,
    The mounting substrate manufacturing method according to any one of claims 9 to 12.
  14. 前記予め与えられた生産データで対象とされる前記基板、前記予め与えられた検査データで対象とされる前記基板、前記整合性が良と確認された前記生産データおよび前記整合性が良と確認された前記検査データで対象とされる前記基板がいずれも同一パターンで形成された複数の小基板の集合体であり、
    前記予め与えられた生産データに含まれる前記小基板の指定順序と、前記予め与えられた検査データに含まれる前記小基板の指定順序との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項9から13のいずれか一項に記載の実装基板製造方法。
    The substrate targeted by the production data given in advance, the substrate targeted by the inspection data given in advance, the production data confirmed to be consistent, and the consistency confirmed to be good. The substrate targeted by the inspection data is an aggregate of a plurality of small substrates formed in the same pattern.
    By confirming the consistency between the designated order of the small substrates included in the production data given in advance and the designated order of the small substrates included in the inspection data given in advance, the production given in advance. Confirming the quality of the consistency between the data and the inspection data given in advance,
    The mounting substrate manufacturing method according to any one of claims 9 to 13.
  15. 部品を基板に搭載する部品搭載装置で使用される、予め与えられた生産データと、前記部品搭載装置により前記基板に搭載された前記部品の搭載状態を検査する搭載部品検査装置で使用される、予め与えられた検査データとの整合性の良否を確認する、
    整合性判定装置。
    Used in a component mounting device that mounts a component on a board, and is used in a mounted component inspection device that inspects a pre-given production data and a mounted state of the component mounted on the board by the component mounting device. Confirm the consistency with the inspection data given in advance,
    Consistency judgment device.
  16. 前記予め与えられた生産データで指定された基板認識マークと前記予め与えられた検査データで指定された基板認識マークとの整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項15に記載の整合性判定装置。
    By confirming the consistency between the board recognition mark specified by the production data given in advance and the board recognition mark specified by the inspection data given in advance, the production data given in advance and the production data given in advance are given. Confirm the quality of the consistency with the inspection data obtained,
    The consistency determination device according to claim 15.
  17. 前記予め与えられた生産データに含まれる前記部品の搭載位置と、前記予め与えられた検査データに含まれる前記部品の搭載位置との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項15または16のいずれかに記載の整合性判定装置。
    By confirming the consistency between the mounting position of the component included in the production data given in advance and the mounting position of the component included in the inspection data given in advance, the production data given in advance can be obtained. Confirming the quality of the consistency with the inspection data given in advance,
    The consistency determination device according to claim 15 or 16.
  18. 前記基板が同一パターンで形成された複数の小基板の集合体であり、
    前記整合性判定部は、前記予め与えられた生産データに含まれる前記小基板の指定順序と前記予め与えられた検査データに含まれる前記小基板の指定順序との整合性を確認することで、前記予め与えられた生産データと前記予め与えられた検査データとの前記整合性の良否を確認する、
    請求項15から17のいずれか一項に記載の整合性判定装置。
    The substrate is an aggregate of a plurality of small substrates formed in the same pattern.
    The consistency determination unit confirms the consistency between the designated order of the small substrates included in the production data given in advance and the designated order of the small substrates included in the inspection data given in advance. Confirming the quality of the consistency between the production data given in advance and the inspection data given in advance.
    The consistency determination device according to any one of claims 15 to 17.
PCT/JP2020/017619 2019-07-19 2020-04-24 Mounting board manufacturing system, mounting board manufacturing method, and consistency assessment device WO2021014703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080048729.XA CN114072744B (en) 2019-07-19 2020-04-24 Mounting substrate manufacturing system, mounting substrate manufacturing method, and matching determination device
JP2021534544A JP7170183B2 (en) 2019-07-19 2020-04-24 MOUNTING BOARD MANUFACTURING SYSTEM, MOUNTING BOARD MANUFACTURING METHOD, AND CONSISTENCE JUDGMENT DEVICE
DE112020003452.6T DE112020003452T5 (en) 2019-07-19 2020-04-24 Mounting plate manufacturing system, mounting plate manufacturing method and consistency checker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133459 2019-07-19
JP2019-133459 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021014703A1 true WO2021014703A1 (en) 2021-01-28

Family

ID=74194094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017619 WO2021014703A1 (en) 2019-07-19 2020-04-24 Mounting board manufacturing system, mounting board manufacturing method, and consistency assessment device

Country Status (4)

Country Link
JP (1) JP7170183B2 (en)
CN (1) CN114072744B (en)
DE (1) DE112020003452T5 (en)
WO (1) WO2021014703A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280800A (en) * 2001-03-15 2002-09-27 Omron Corp Creation method of conversion table
JP2006339260A (en) * 2005-05-31 2006-12-14 Yamaha Motor Co Ltd Mounting line and inspection data forming method in the same
JP2014154649A (en) * 2013-02-07 2014-08-25 Panasonic Corp Production data creation device and production data creation method
JP2017050410A (en) * 2015-09-02 2017-03-09 Juki株式会社 Processing apparatus, production system and program for use in processing apparatus
JP2018148004A (en) * 2017-03-03 2018-09-20 株式会社Fuji Mounting use data management device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440511B2 (en) * 2002-02-20 2010-03-24 東芝三菱電機産業システム株式会社 Production line work instruction system
JP4333143B2 (en) * 2002-03-26 2009-09-16 セイコーエプソン株式会社 Computer and recording medium
JP2010283012A (en) * 2009-06-02 2010-12-16 Sharp Corp Production line control system and production line control method
CN105867323B (en) * 2016-03-31 2018-10-23 东华大学 Industrial cloud data safety automatic production line based on Dynamic Clonal Selection Algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280800A (en) * 2001-03-15 2002-09-27 Omron Corp Creation method of conversion table
JP2006339260A (en) * 2005-05-31 2006-12-14 Yamaha Motor Co Ltd Mounting line and inspection data forming method in the same
JP2014154649A (en) * 2013-02-07 2014-08-25 Panasonic Corp Production data creation device and production data creation method
JP2017050410A (en) * 2015-09-02 2017-03-09 Juki株式会社 Processing apparatus, production system and program for use in processing apparatus
JP2018148004A (en) * 2017-03-03 2018-09-20 株式会社Fuji Mounting use data management device

Also Published As

Publication number Publication date
DE112020003452T5 (en) 2022-03-31
JP7170183B2 (en) 2022-11-14
CN114072744A (en) 2022-02-18
CN114072744B (en) 2024-08-23
JPWO2021014703A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6411028B2 (en) Management device
JP6144841B2 (en) Substrate inspection method and substrate inspection system using the same
US5564183A (en) Producing system of printed circuit board and method therefor
JP2007173552A (en) Electronic component packaging system and method therefor
JP2006203020A (en) Electronic component packaging system and method
JP2003124699A (en) Equipment and method for inspection work result of substrate, system and method for manufacturing electric circuit
WO2019021361A1 (en) Substrate processing management system
JP2019096232A (en) Management system, management apparatus, management method and program
JP2013222740A (en) Visual inspection device and visual inspection method
JP2007149817A (en) Mounting line, its managing method and inspection machine
WO2021014703A1 (en) Mounting board manufacturing system, mounting board manufacturing method, and consistency assessment device
JP4896855B2 (en) Component mounting system
CN113508652B (en) Component mounting device, component mounting method, mounting board manufacturing system, mounting board manufacturing method, and mounted component inspection device
JP2020043159A (en) Mounting system, and production management apparatus
JP7194881B2 (en) COMPONENT MOUNTING SYSTEM AND MOUNTING BOARD MANUFACTURING METHOD
JP2005353750A (en) Maintenance and management apparatus for electronic component mounting apparatus
JP2014154649A (en) Production data creation device and production data creation method
JP5384764B2 (en) Electronic component mounting method
JP7149452B2 (en) Component mounting system and management method
JP7425693B2 (en) component mounting machine
WO2021059606A1 (en) Mounting board production system, component mounting system, mounting board production method, and component mounting method
WO2021234848A1 (en) Component mounting system
JP2006147844A (en) Processing equipment, inspecting device, manufacturing system and inspecting system for printed circuit board
JP7245971B2 (en) COMPONENT MOUNTING SYSTEM AND MOUNTING BOARD MANUFACTURING METHOD
JP2020113585A (en) Component mounting apparatus and manufacturing method of component mounting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534544

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20844091

Country of ref document: EP

Kind code of ref document: A1