WO2021014604A1 - キャパシタ診断装置及びキャパシタ診断方法 - Google Patents

キャパシタ診断装置及びキャパシタ診断方法 Download PDF

Info

Publication number
WO2021014604A1
WO2021014604A1 PCT/JP2019/028983 JP2019028983W WO2021014604A1 WO 2021014604 A1 WO2021014604 A1 WO 2021014604A1 JP 2019028983 W JP2019028983 W JP 2019028983W WO 2021014604 A1 WO2021014604 A1 WO 2021014604A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
unit
component
frequency
current
Prior art date
Application number
PCT/JP2019/028983
Other languages
English (en)
French (fr)
Inventor
治之 山口
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2019569496A priority Critical patent/JP6800352B1/ja
Priority to US17/265,979 priority patent/US11632035B2/en
Priority to CN201980004161.9A priority patent/CN112639492A/zh
Priority to PCT/JP2019/028983 priority patent/WO2021014604A1/ja
Publication of WO2021014604A1 publication Critical patent/WO2021014604A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques

Definitions

  • the embodiment of the present invention relates to a capacitor diagnostic apparatus and a capacitor diagnostic method.
  • a capacitor that smoothes the voltage related to DC power and generates AC power based on the DC power.
  • a capacitor is one of the components with a limited life, but deterioration of the capacitor may not be easily detected in some cases.
  • An object of the present invention is to provide a capacitor diagnostic apparatus and a capacitor diagnostic method capable of easily detecting deterioration of a capacitor.
  • the capacitor diagnostic apparatus of the embodiment includes a sensor, a frequency spectrum analysis unit, a frequency component extraction unit, and a diagnostic processing unit.
  • the sensor detects a physical quantity that changes depending on the current flowing through the capacitor in the power conversion unit that converts DC power smoothed by a capacitor connected in parallel to the DC link into AC power by power running.
  • the frequency spectrum analysis unit generates a frequency spectrum based on the detection result of the sensor detected during the power running operation of the power conversion unit.
  • the frequency component extraction unit extracts components of a specific frequency band related to a frequency depending on the configuration of the power conversion unit based on the frequency spectrum.
  • the diagnostic processing unit diagnoses the state of the capacitor at least based on the size of the extracted component of the specific frequency band.
  • the block diagram of the capacitor diagnostic apparatus of 1st Embodiment. The timing chart of the signal which concerns on FFT processing of 1st Embodiment.
  • the block diagram of the power conversion system of the 2nd Embodiment. The block diagram of the capacitor diagnostic apparatus of 2nd Embodiment.
  • the figure for demonstrating the 3rd determination criterion of the capacitor in the modification of 2nd Embodiment The block diagram of the power conversion system of 3rd Embodiment.
  • the block diagram of the capacitor diagnostic apparatus of 3rd Embodiment The flowchart of the process for diagnosing the state of the capacitor of the 3rd Embodiment.
  • connection is not limited to the case of being physically connected, but also includes the case of being electrically connected.
  • the frequency of the fundamental wave of alternating current is referred to as a fundamental frequency.
  • FIG. 1 is a configuration diagram showing a power conversion system 2 of the first embodiment.
  • FIG. 1 shows an AC power supply 1, a power conversion system 2, and an electric motor 3.
  • the AC power supply 1 is a commercial power supply system (PS), a generator, or the like, and supplies, for example, three-phase AC power to the power conversion system 2.
  • PS commercial power supply system
  • generator generator
  • the electric motor 3 is, for example, an AC variable speed electric motor (M) such as an induction motor.
  • the electric motor 3 is driven by AC power supplied from the power conversion system 2, outputs a rotational driving force to an output shaft (not shown), and drives a load connected to the output shaft by the rotational driving force.
  • M AC variable speed electric motor
  • the power conversion system 2 converts the AC power supplied from the AC power supply 1 into DC power, reversely converts the DC power into AC power, and supplies the single-phase AC power obtained by the reverse conversion to the motor 3. .
  • the power conversion system 2 may supply the three-phase AC power to the electric motor 3.
  • the electric motor 3 is a single-phase AC type will be described as an example.
  • the power conversion system 2 includes, for example, a forward conversion device 20, a capacitor 30, a capacitor diagnostic device 40, an inverse conversion device 50, a control unit 60, and a load current detector 70.
  • the forward conversion device 20 includes a positive electrode output terminal 20P and a DC side output negative electrode terminal 20N in addition to the AC side terminal connected to the AC power supply 1.
  • the positive electrode output terminal 20P is connected to the first end of the positive electrode wire 80P.
  • the second end of the positive electrode line 80P is connected to the positive electrode input terminal 50P of the inverse converter 50.
  • the DC side output negative electrode terminal 20N is connected to the first end of the negative electrode wire 80N.
  • the second end of the negative electrode wire 80N is connected to the negative electrode input terminal 50N of the inverse conversion device 50.
  • the forward conversion device 20 includes one or a plurality of switching elements 20S such as an IGBT (Insulated Gate Bipolar Transistor).
  • the switching element 20S is controlled by the control unit 60 so that the DC voltage on the output side of the forward conversion device 20 becomes a desired voltage.
  • the forward conversion device 20 outputs the converted DC power from the positive electrode output terminal 20P and the DC side output negative electrode terminal 20N to the positive electrode line 80P and the negative electrode line 80N.
  • the capacitor 30 is connected in parallel to the positive electrode line 80P and the negative electrode line 80N to smooth the DC power output by the forward conversion device 20.
  • the capacitor 30 includes a plurality of capacitor units connected in parallel to each other in direct current.
  • the capacitor unit 31 (first capacitor unit), the capacitor unit 32 (second capacitor unit), and the capacitor unit 33 are examples of a plurality of capacitor units.
  • the capacitor 30 includes a positive electrode branch terminal 30P connected to the positive electrode line 80P and a negative electrode branch terminal 30N connected to the negative electrode line 80N.
  • the positive electrode sides of the capacitor units 31, 32, and 33 are connected to the positive electrode line 80P via the positive electrode branch terminal 30P.
  • the negative electrode sides of the capacitor units 31, 32, and 33 are connected to the negative electrode wire 80N via the negative electrode branch terminal 30N.
  • the above connection form is an example of a form in which they are connected in parallel with each other in terms of direct current.
  • the type of capacitor 30 may be, for example, an electrolytic capacitor, a film capacitor, or the like.
  • the types and capacities of the capacitor units 31, 32, 33 may be the same type and the same capacity as each other. Capacitor units 31, 32, 33 are called each capacitor unit.
  • the capacitor diagnostic device 40 detects the current flowing through each capacitor unit during the power running operation of the power conversion system 2, extracts the current component of a specific frequency band from the frequency spectrum based on the detected current value, and identifies the extracted current.
  • the state of each capacitor unit is diagnosed based on the magnitude of the current component in the frequency band.
  • the above-mentioned specific frequency band includes a frequency band related to a frequency depending on the configuration of the inverse conversion device 50 described later. This will be described later.
  • the inverse converter 50 is, for example, a single-phase inverter including one or a plurality of switching elements 50S such as an IGBT.
  • the type of the switching element 50S is not limited to the IGBT, and may be changed to another type.
  • the switching element 50S of the inverse conversion device 50 is PWM (Pulse Width Modulation) controlled by the control unit 60.
  • the inverse conversion device 50 converts, for example, the DC power supplied from the forward conversion device 20 via the positive electrode line 80P and the negative electrode line 80N into single-phase AC power.
  • the inverse conversion device 50 supplies the converted single-phase AC power to the electric motor 3 via the load power line 58.
  • the load current detector 70 detects the current flowing through the load power line 58 for supplying electric power from the inverse converter 50 to the electric motor 3.
  • the control unit 60 performs feedback control based on the detection value of the load current detector 70 that detects the load current flowing through the load power line 58, and performs a gate pulse based on PWM control on the switching element 50S of the reverse conversion device 50 during power running operation. Output a signal.
  • the control unit 60 PWM-controls the switching element 50S.
  • the control unit 60 uses a carrier signal having a carrier frequency fixed to a specific frequency for PWM control.
  • the control unit 60 may supply information indicating the operating state of the inverse conversion device 50, the detected value of the load current detector 70, and the like to the capacitor diagnostic device 40, for example.
  • the information indicating the operating state of the inverse conversion device 50 may be information indicating that the inverse conversion device 50 is in the power running operation state or information indicating the direction in which active power flows.
  • FIG. 2 is a configuration diagram of the capacitor diagnostic device 40 of the first embodiment.
  • the capacitor diagnostic device 40 analyzes, for example, a communication interface unit 41 (the description in FIG. 2 is a communication IF unit), a current detector 42, a voltage detector 44 (first voltage sensor), and a display 45. It includes a processing unit 46.
  • the communication interface unit 41 communicates with an external device of the capacitor diagnostic device 40 under the control of the analysis processing unit 46 described later.
  • the communication interface unit 41 is communicably connected to the control unit 60 and communicates with the control unit 60 under the control of the analysis processing unit 46 described later.
  • the current detector 42 includes a plurality of current sensor units.
  • the current sensor unit 421 (first current sensor), the current sensor unit 422 (second current sensor), and the current sensor unit 423 are examples of a plurality of current sensor units.
  • the current sensor unit 421, the current sensor unit 422, and the current sensor unit 423 are collectively described, they are referred to as a current sensor unit 420.
  • the current sensor unit 420 detects the current flowing through each capacitor unit of the capacitor 30, and outputs a current detection value representing the detected current to the analysis processing unit 46, respectively.
  • the positive electrode side (first electrode terminal) of the capacitor unit 31 is connected to the positive electrode branch terminal 30P via the branch line 31BP (first branch path).
  • the positive electrode side of the capacitor unit 32 is connected to the positive electrode branch terminal 30P via the branch line 32BP (second branch path).
  • the positive electrode side of the capacitor unit 33 is connected to the positive electrode branch terminal 30P via the branch line 33BP.
  • the negative electrode side (second pole terminal) of the capacitor unit 31 is connected to the negative electrode branch terminal 30N via the branch line 31BN.
  • the negative electrode side of the capacitor unit 32 is connected to the negative electrode branch terminal 30N via the branch line 32BN.
  • the negative electrode side of the capacitor unit 33 is connected to the negative electrode branch terminal 30N via the branch line 33BN.
  • connection line from the positive electrode line 80P (first pole) to the positive electrode branch terminal 30P and the connection line from the negative electrode line 80N (second pole) to the negative electrode branch terminal 30N are examples of branch paths.
  • the current sensor unit 421 is provided on the branch line 31BP and detects the current flowing through the branch line 31BP.
  • the current flowing through the branch line 31BP becomes the current flowing through the capacitor unit 31.
  • the current sensor unit 422 is provided on the branch line 32BP and detects the current flowing through the branch line 32BP.
  • the current flowing through the branch line 32BP becomes the current flowing through the capacitor unit 32.
  • the current sensor unit 423 is provided on the branch line 33BP and detects the current flowing through the branch line 33BP.
  • the current flowing through the branch line 33BP becomes the current flowing through the capacitor unit 33.
  • the above example illustrates the case where the above current is detected on the positive electrode side of each capacitor unit, but instead of this, the current sensor is used so as to detect the above current on the negative electrode side of each capacitor unit.
  • the unit 420 may be provided on the branch line on the negative electrode side.
  • the current sensor unit 420 may include, for example, a Hall element (not shown), quantize the signal detected by the Hall element with an AD (Analog to Digital) converter (not shown), and output it as a current detection value representing the current value. ..
  • AD Analog to Digital
  • the voltage detector 44 detects the voltage applied between the positive electrode branch terminal 30P and the negative electrode branch terminal 30N, and outputs a voltage detection value representing this voltage to the analysis processing unit 46.
  • the voltage applied between the positive electrode branch terminal 30P and the negative electrode branch terminal 30N is equal to the voltage applied between the positive electrode wire 80P and the negative electrode wire 80N forming a DC link.
  • this voltage is referred to as a DC link voltage.
  • the voltage detector 44 detects the voltage of the DC link via, for example, a DC voltage converter whose input and output are isolated, quantifies the voltage of the DC link by an AD converter (not shown), and outputs the voltage as a voltage detection value. ..
  • control unit 60 may use the detection result of the voltage detector 44 in order to stabilize the voltage of the DC link and protect it from overvoltage. For example, the control unit 60 may adjust the voltage of the DC link by acquiring the detected value of the voltage of the DC link from the voltage detector 44 and controlling the forward conversion device 20.
  • the display 45 includes a display device such as a liquid crystal display, and displays desired information on the display device under the control of the analysis processing unit 46 described later.
  • the analysis processing unit 46 diagnoses the state of the capacitor 30 by using at least one of a current detection value representing the current detected by the current detector 42 and a voltage detection value representing the voltage detected by the voltage detector 44.
  • the analysis processing unit 46 includes a storage unit 461, a current value acquisition unit 462, a voltage value acquisition unit 464, a fast Fourier transform unit 465, an extraction unit 466, a determination unit 467, a display processing unit 468, and a communication processing unit 469.
  • the storage unit 461 is, for example, current detection value data representing the current flowing through each capacitor unit acquired by the current value acquisition unit 462, and the current flowing between the inverse converter 50 and the electric motor 3 acquired via the control unit 60.
  • Current value data representing, voltage detection value data representing the voltage of the DC link acquired by the voltage value acquisition unit 464, operating state data of the inverse conversion device 50, frequency spectrum data generated by the high-speed Fourier conversion unit 465, extraction frequency.
  • the above-mentioned current detection value data, current value data, voltage detection value data, and operating state data are time-series data. Details of each of the above information will be described later.
  • Each of the current value acquisition unit 462, the voltage value acquisition unit 464, the fast Fourier transform unit 465, the extraction unit 466, the determination unit 467, the display processing unit 468, and the communication processing unit 469 is, for example, a CPU (Central Processing Unit) or the like. It is realized by the hardware processor executing the program (software). In addition, some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by the part (including circuitry), or it may be realized by the cooperation of software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the storage unit 461 is realized by, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.
  • the current value acquisition unit 462 acquires a current detection value representing the current detected by the current sensor unit 420, and adds it to the current detection value data of the storage unit 461. Further, the detection values representing a predetermined number of current detection values are acquired from the current detection value data stored in the storage unit 461 and output to the fast Fourier transform unit 465.
  • the current value acquisition unit 462 refers to the operating state data, and among the current detection values acquired from the current detection value data, detects a predetermined number of currents in the period corresponding to the period in which the inverse transform device 50 is in the operating state. The detected value representing the value is supplied to the fast Fourier transform unit 465.
  • the current value acquisition unit 462 may acquire the current detection value from the current sensor unit 420 and read the current detection value from the storage unit 461 in parallel.
  • the voltage value acquisition unit 464 acquires a detection value (voltage detection value) representing the voltage of the DC link detected by the voltage detector 44, and adds it to the voltage detection value data of the storage unit 461. Further, the detection values representing a predetermined number of voltage detection values stored in the voltage detection value data of the storage unit 461 are acquired and output to the fast Fourier transform unit 465.
  • the voltage value acquisition unit 464 refers to the operating state data, and among the voltage detection values acquired from the voltage detection value data, detects a predetermined number of voltages during the period corresponding to the period during which the inverse converter 50 is in the operating state. The detected value representing the value is supplied to the fast Fourier transform unit 465.
  • the voltage value acquisition unit 464 may acquire the voltage detection value from the voltage detector 44 and read the voltage detection value from the voltage detection value data of the storage unit 461 in parallel.
  • the fast Fourier transform unit 465 generates a frequency spectrum FSi by performing FFT processing (fast Fourier transform processing) on a predetermined number of current detection values received from the current value acquisition unit 462, and generates the generated frequency spectrum FSi. It is added to the frequency spectrum data of the storage unit 461.
  • the frequency spectrum FSi obtained by the FFT process indicates a frequency component based on a predetermined number of current detection values received from the current value acquisition unit 462.
  • the number of current detection values received by the fast Fourier transform unit 465 from the current value acquisition unit 462 for the FFT processing may be set so as to include a component of a desired frequency in the frequency spectrum FSi obtained by the FFT processing.
  • the fast Fourier transform unit 465 may perform FFT processing on a predetermined number of voltage detection values received from the voltage value acquisition unit 464. This will be described later.
  • the extraction unit 466 extracts a component of a specific frequency band related to the frequency depending on the configuration of the inverse transform device 50 from the frequency spectrum FSi generated by the fast Fourier transform unit 465 and stored in the frequency spectrum data of the storage unit 461. , The extracted component is added to the extraction frequency component data of the storage unit 461 as the extraction frequency component ext1 .
  • the component of the frequency 2f which is twice the carrier frequency f of the PWM control, is an example of the current component or the voltage component of the specific frequency band related to the frequency depending on the configuration of the inverse converter 50.
  • the AC fundamental wave frequency generated by the inverse converter 50 and its harmonics should not interfere with the PWM-controlled carrier frequency f and an even multiple frequency of the carrier frequency f (for example, the above frequency 2f).
  • the fundamental frequency of the inverse converter 50 and the carrier frequency f may be defined.
  • the determination unit 467 determines the size of the extraction frequency component ext1 extracted by the extraction unit 466 and stored in the extraction frequency component data of the storage unit 461 based on a predetermined first determination criterion.
  • the first determination criterion will be described later.
  • the determination result by the determination unit 467 includes the result of determination as to whether or not the deterioration of each capacitor unit has progressed.
  • the display processing unit 468 displays the result of the determination by the determination unit 467 on the display 45.
  • the display processing unit 468 determines that there is a deteriorated capacitor unit in the capacitor 30 as a result of the judgment by the determination unit 467, the deterioration of the capacitor 30 including the deteriorated capacitor unit progresses. You may also display what you are doing on the display 45.
  • the communication processing unit 469 By communicating with the control unit 60, the communication processing unit 469 acquires information such as information indicating that the vehicle is in power running operation and a detection value of the load current detector 70 from the control unit 60. The communication processing unit 469 adds information indicating that the vehicle is in power running operation to the operating state data of the storage unit 461. The communication processing unit 469 adds the detection value of the load current detector 70 to the current value data of the storage unit 461.
  • FIG. 3 is a timing chart of a signal related to the FFT process of the first embodiment.
  • the timing chart shown in FIG. 3 shows, from the upper side, (a) the operating state of the inverse converter 50, (b) the current value detected by the current sensor unit 420, and (c) the current earned by the current value acquisition unit 462.
  • the value (sampled data) and (d) the data supplied by the current value acquisition unit 462 to the fast Fourier transform unit 465 are shown.
  • the operating state of the inverse conversion device 50 is the regenerative operation state as shown in (a) in FIG.
  • the capacitor 30 is charged by the regenerated electric power.
  • the current sensor unit 421 detects the current that charges the capacitor unit 31. Assuming that the current for discharging the capacitor unit 31 is indicated by a positive value, the current for charging the capacitor unit 31 becomes a negative value as shown in FIG. 3B.
  • the magnitude of the current for charging the capacitor unit 31 changes depending on the amount of regeneration of the electric motor 3.
  • (C) in FIG. 3 models and shows the data sampled as the current value earned by the current value acquisition unit 462, but the value is negative as in (b) in FIG.
  • the control unit 60 shifts the operating state of the reverse conversion device 50 to the power running state, and controls the reverse conversion device 50 by PWM control.
  • the control unit 60 controls the reverse conversion device 50 so as to drive the electric motor 3 according to a command value when the reverse conversion device 50 is in the power running state.
  • FIG. 3B in FIG. 3 shows the discharge current of the capacitor unit 31 as a positive value.
  • the data of the current value earned by the current value acquisition unit 462 shown in FIG. 3 (c) is also a positive value.
  • the interval for sampling data is defined to be sufficiently short so that fluctuations in the current value due to PWM control can be detected.
  • the power running state of the inverse converter 50 continues until time t4, after which the operating state of the inverse converter 50 transitions to the regenerative operating state.
  • the voltage value acquisition unit 464 has a predetermined length determined in advance from the period from time t1 to time t4 in which the reverse conversion device 50 is in the power running state based on the information on the operating state of the reverse conversion device 50.
  • Period T of. The start point of the selected period T is indicated by time t2, and the end point is indicated by time t3. The period T becomes the target period of the FFT process.
  • the voltage value acquisition unit 464 supplies the data from the time t2 to the time t3 to the fast Fourier transform unit 465, so that the fast Fourier transform unit 465 of the inverse transform device 50
  • the FFT process can be performed on the current detection value corresponding to the period of the operating state.
  • the amount of change in the current supplied to the motor 3 by the inverse converter 50 controlled according to the command value is relatively small if the load fluctuation of the motor 3 is small. As a result, the discharge current from the capacitor unit 31 is less likely to be affected by the load fluctuation of the electric motor 3. Therefore, the voltage value acquisition unit 464 may select data in a range in which a desired amount of current is detected.
  • the determination unit 467 may use the result of the FFT processing of each period for the determination, or may perform statistical processing such as averaging processing before the determination to suppress accidental components. ..
  • FIG. 4 is a diagram for explaining a first determination criterion of each capacitor unit of the first embodiment.
  • the graph shown in FIG. 4 shows the relationship between the capacitance (horizontal axis) of the capacitor unit and the current (vertical axis) of a specific frequency component flowing through each capacitor unit of the capacitor 30.
  • a straight line GI1 rising to the right is drawn in the range where the capacitance of each capacitor unit ranges from about 10% to 100%.
  • This straight line GI1 indicates the magnitude of the current component flowing through each capacitor unit that can be detected when the capacitance of the capacitor is less than 100%.
  • the magnitude (maximum value) of the specific frequency component is specified based on the current detection value in the initial state in which the deterioration of each capacitor unit has not progressed. For example, its size is indicated by 100%.
  • the reference value of the first criterion for determining the state of each capacitor unit is defined based on the value when the capacity of each capacitor unit is the rated capacity. When the capacity of each capacitor unit is the rated capacity, it means that each capacitor unit is in an initial state in which deterioration has not progressed.
  • the capacity of each capacitor unit does not necessarily have to be 100% as long as the actual capacity of each capacitor unit can be regarded as the rated capacity.
  • the value of the first determination criterion is determined to be smaller than the reference value (100%) of the first determination criterion according to the deterioration state of the capacitor unit. For example, as the deterioration of each capacitor unit progresses, the capacity of each capacitor unit is greatly reduced. Along with this, the magnitude of the current detection value detected by the current detector 42 becomes smaller.
  • the capacitor unit 32 is called a sound capacitor unit on the assumption that the sound state is maintained and the capacity satisfies the expected value. Even if the deteriorated capacitor unit and the sound capacitor unit are connected in parallel, the terminal voltage of each capacitor unit connected in parallel becomes equal, so the amount of power that can be stored in the deteriorated capacitor unit is sound. It is less than the amount of power that can be stored in the capacitor unit.
  • the deteriorated capacitor unit and the sound capacitor unit are connected in parallel and are discharged in parallel, and the voltage of the DC link drops from the voltage V1 before discharge to the voltage V2, the deteriorated capacitor unit The amount of charge lost is less than the amount of charge lost by the sound capacitor unit. Therefore, the current flowing from the deteriorated capacitor unit is smaller than the current flowing from the sound capacitor unit.
  • the first criterion of the embodiment is defined based on this tendency.
  • the first determination standard used by the determination unit 467 is defined based on the relationship between the magnitude of the current component in the specific frequency band and the deterioration status of the capacitor unit, and is stored in the determination standard data table of the storage unit 461. ..
  • the determination unit 467 determines the magnitude of the extracted current component of the specific frequency band based on the first determination criterion (determination criterion information) stored in the determination criterion data table, and determines the result of the determination. A case of diagnosing the state of the capacitor unit 31 based on this will be described.
  • a current component in a frequency band (referred to as a frequency 2f band) twice the carrier frequency f is flowing through the capacitor unit 31.
  • the magnitude of the current component is 100%.
  • the lower limit allowable value of the capacity when the capacity decreases due to deterioration is defined as the threshold current ITH .
  • the specific value of the threshold current ITH is defined as 40%. Assuming that the deterioration of the capacitor unit 31 progresses and the current component of the frequency 2f band is 50%, the deterioration is progressing, but 40% of the lower limit allowable value of the current component of the frequency 2f band is satisfied. , It may be diagnosed that it is not necessary to replace the capacitor unit 31 immediately. In the example shown in FIG. 4, the capacity of the capacitor unit 31 when the current component in the frequency 2f band is 50% is about 50%, so that the above diagnosis is valid.
  • the deterioration of the capacitor unit 31 progresses and the current component of the frequency 2f band becomes 30%, the deterioration progresses to a state where 40% of the limit allowable value of the current component of the frequency 2f band is not satisfied. Therefore, it may be diagnosed that it is necessary to immediately replace the capacitor unit 31.
  • the capacity of the capacitor unit 31 when the current component in the frequency 2f band is 30% is about 30%, so that the above diagnosis is valid.
  • the determination unit 467 uses the threshold current ITH as the first determination criterion defined based on the relationship between the magnitude of the current component in the specific frequency band and the deterioration status of the capacitor unit 31, so that the capacitor unit 31 situations can be determined.
  • a predetermined frequency range having the frequency 2f as the center frequency as the frequency band to be analyzed so that the above-mentioned subband component is included in the frequency band to be analyzed.
  • the signal component included in this frequency range is simply called the frequency 2f component.
  • the frequency 2f component corresponds to a frequency component twice the carrier frequency f.
  • the capacitor diagnostic device 40 can diagnose the state of the capacitor 30 applied to the inverse conversion device 50 of the full bridge type single-phase inverter.
  • FIG. 5 is a flowchart of a process for diagnosing the state of each capacitor unit according to the first embodiment.
  • the voltage detector 44 detects the detected value representing the voltage of the DC link
  • the acquisition unit 404 acquires the detected value, and stores it in the storage unit 461. It is assumed that the voltage acquisition process to be performed is performed.
  • the power conversion system 2 executes a process (referred to as a diagnostic process) for diagnosing the state of the capacitor unit at all times during system operation or when a specific event occurs.
  • a diagnostic process for diagnosing the state of the capacitor unit at all times during system operation or when a specific event occurs.
  • the term “always during system operation” means that diagnostic processing is continuously performed. For example, when the target periods of the first and second FFT processes to be executed in sequence are continuous, the first and second FFT processes to be executed in order are performed. This includes cases where the target periods of the FFT processing overlap, cases where the target periods are continuous except for the time related to switching between the first and second FFT processes, which are sequentially executed.
  • the timing at predetermined time intervals, when a specific condition is met, and the like are included.
  • the case where a specific condition is satisfied may be, for example, when a diagnosis request is received from the control unit 60. At that time, the control unit 60 may notify the above-mentioned diagnosis request when the inverse conversion device 50 is in
  • the acquisition unit 404 acquires a predetermined number of current detection value data when the inverse transform device 50 is in the power running state from the current detection value data stored in the storage unit 461, and is a fast Fourier transform unit. Output to 465 (step S100).
  • the fast Fourier transform unit 465 performs FFT processing on the data of a predetermined number of current detection values received from the acquisition unit 404, generates a frequency spectrum FSi, and stores the generated frequency spectrum FSi in the storage unit 461. (Step S110).
  • the extraction unit 466 extracts a specific frequency component, for example, a component having a frequency of 2f from the frequency spectrum FSi stored in the storage unit 461, and stores the extracted component as the extraction frequency component ext1 in the storage unit 461. (Step S120).
  • the determination unit 467 determines whether or not greater than the threshold current I TH predetermined (step S130). If current I Fext is greater than the threshold current I TH, the determination unit 467, the deterioration of the capacitor unit is determined to be in the allowable range, the determination result in association with the current I Fext extract frequency components F ext1 storage It is stored in the unit 461 (step S140).
  • the determination unit 467 determines that the degradation of the capacitor unit deviates from the allowable range, corresponding to the current I Fext extract frequency components F ext1 the determination result It is attached and stored in the storage unit 461 (step S150).
  • step S140 or step S150 the display processing unit 468 displays the determination result for each capacitor unit on the display 45 (step S160), and ends the series of processing.
  • the capacitor diagnostic device 40 can determine the state of each capacitor unit.
  • the capacitor diagnostic device 40 is smoothed by a capacitor unit 31 (first capacitor unit) and a capacitor unit 32 (second capacitor unit) connected in parallel to a DC link.
  • the inverse converter 50 that converts the generated DC power into AC power by power running is diagnosed.
  • the capacitor diagnostic device 40 includes a current sensor unit 421, a fast Fourier transform unit 465 (first frequency spectrum analysis unit), an extraction unit 466, and a determination unit 467.
  • the current sensor unit 421 detects the current flowing through the capacitor unit 31.
  • the fast Fourier transform unit 465 generates a frequency spectrum FSi (first frequency spectrum) based on the detection result of the current sensor unit 421 detected during the power running operation of the inverse transform device 50.
  • the extraction unit 466 extracts the current component of the specific frequency band related to the frequency depending on the configuration of the inverse conversion device 50 based on the frequency spectrum FSi.
  • the determination unit 467 can easily detect the deterioration of the capacitor unit 31 by diagnosing the state of the capacitor unit 31 based on at least the magnitude of the extracted current component of the specific frequency band.
  • the capacitor units 31, 32, and 33 are examples of capacitors.
  • the current sensor unit 420 is an example of a sensor.
  • the current value detected by the current sensor unit 420 is an example of a physical quantity.
  • the current sensor unit 422 detects the current flowing through the capacitor unit 32.
  • the fast Fourier transform unit 465 generates a frequency spectrum FSi2 (second frequency spectrum) based on the detection result of the current sensor unit 422 detected during the power running operation of the inverse transform device 50.
  • the extraction unit 466 extracts the current component of the specific frequency band based on the frequency spectrum FSi2 in the same manner as described above.
  • the determination unit 467 may diagnose the state of the capacitor unit 32 at least based on the magnitude of the extracted current component of the specific frequency band.
  • the power conversion system 2 includes at least a capacitor 30, a capacitor diagnostic device 40, an inverse conversion device 50, and a control unit 60.
  • the inverse conversion device 50 includes a switching element 50S, and converts the DC power smoothed by the capacitor 30 including the capacitor units 31, 32, 33, etc. into AC power by a power running operation for switching the switching element 50S.
  • the capacitor diagnostic device 40 deteriorates the first frequency spectrum generated based on the detection result of the current sensor unit 421 detected during the power running operation of the reverse conversion device 50, such as the capacitor units 31, 32, and 33. Used for diagnosis of. As a result, the power conversion system 2 can easily detect deterioration of the capacitor units 31, 32, 33 and the like.
  • the switching element 50S of the inverse conversion device 50 is controlled by PWM control using a carrier signal having a fixed carrier frequency.
  • the extraction unit 466 may extract a current component in a frequency band defined based on a frequency that is an integral multiple of the carrier frequency as a current component in a specific frequency band.
  • the current component of the frequency band defined based on the carrier frequency can be extracted as the current component of the specific frequency band.
  • the magnification with respect to the carrier frequency that defines the above frequency band is specified based on the configuration (specification) of the inverse conversion device 50.
  • the above magnification may be specified as 2 times if the inverse converter 50 is a single-phase full-bridge inverter, and 6 times if the inverse conversion device 50 is a three-phase full-bridge inverter.
  • the above magnification is an even number regardless of the number of phases of the inverse conversion device 50.
  • the power conversion system 2A of the second embodiment will be described.
  • the power conversion system 2 of the first embodiment diagnoses the state of each capacitor unit based on the magnitude of a specific frequency component of the current flowing through each capacitor unit. Instead, the power conversion system 2A diagnoses the condition of the capacitor 30 including the plurality of capacitor units. This will be described below.
  • FIG. 6 is a block diagram of the power conversion system 2A of the second embodiment.
  • the power conversion system 2A shown in FIG. 6 includes a capacitor diagnostic device 40A instead of the capacitor diagnostic device 40 in the power conversion system 2 described above.
  • FIG. 7 is a block diagram of the capacitor diagnostic device 40A of the second embodiment.
  • the capacitor diagnostic device 40A shown in FIG. 7 does not include the current detector 42 of the capacitor diagnostic device 40, and includes an analysis processing unit 46A instead of the analysis processing unit 46.
  • the analysis processing unit 46A does not include the current value acquisition unit 462, and instead of the fast Fourier transform unit 465, the extraction unit 466, and the determination unit 467 of the analysis processing unit 46, the fast Fourier transform unit 465A, the extraction unit 466A, and the determination unit 467A.
  • the analysis processing unit 46A performs FFT processing on a predetermined number of voltage detection values received from the voltage value acquisition unit 464 instead of performing FFT processing on a predetermined number of current detection values received from the current value acquisition unit 462. This will be described below.
  • the fast Fourier transform unit 465A (third frequency spectrum analysis unit) generates a frequency spectrum FSv by performing FFT processing on a predetermined number of voltage detection values received from the voltage value acquisition unit 464, and generates the generated frequency spectrum FSv. It is stored in the storage unit 461. In addition to this, the current detection value in the description regarding the above-mentioned fast Fourier transform unit 465 is read as a voltage detection value.
  • the extraction unit 466A extracts and extracts the voltage component of the specific frequency band related to the frequency depending on the configuration of the inverse transform device 50 from the frequency spectrum FSv generated by the fast Fourier transform unit 465 and stored in the storage unit 461.
  • the component is added to the extraction frequency component data of the storage unit 461 as the extraction frequency component Fast2 .
  • the determination unit 467A determines the size of the extraction frequency component ext2 extracted by the extraction unit 466 and stored in the storage unit 461 based on a second determination criterion defined in advance.
  • FIG. 8 is a diagram for explaining a second determination criterion of the capacitor 30 of the second embodiment.
  • the graph shown in FIG. 8 shows the relationship between the voltage (vertical axis) of a specific frequency component of the DC link with respect to the capacitance (horizontal axis) of the capacitor 30.
  • a straight line GV1 with a downward slope is drawn in the range where the capacitance of the capacitor 30 is in the range of about 10% to 100%.
  • This straight line GV1 indicates the magnitude of the voltage component (ripple voltage component) of the DC link that can be detected when the capacitance of the capacitor 30 is less than 100%.
  • the second criterion for the capacitor 30 is defined as follows.
  • the magnitude (minimum value) of the specific frequency component is defined based on the voltage detection value in the initial state in which the deterioration of the capacitor 30 has not progressed. For example, its size is indicated by 100%.
  • the value of the above-mentioned judgment standard is determined to be a value larger than the reference value (100%) of the above-mentioned judgment standard according to the deterioration state of the capacitor 30. For example, as the deterioration of the capacitor 30 progresses, the capacity of the capacitor 30 becomes smaller, and the voltage detection value detected by the voltage detector 44 becomes larger accordingly.
  • the second criterion may be defined so that it can be identified.
  • the second determination standard used by the determination unit 467A is defined based on the relationship between the magnitude of the voltage component of the specific frequency band and the deterioration status of the capacitor 30, and is stored in the determination standard data table of the storage unit 461. ..
  • the determination unit 467A determines the magnitude of the extracted current component of the specific frequency band based on the second determination criterion stored in the determination reference data table, and determines the state of the capacitor 30 based on the determination result. Diagnose.
  • the capacity of the capacitor 30 in the initial state without deterioration is 100%
  • a current component in the frequency 2f band is flowing through the capacitor 30, and the voltage component (ripple voltage component) of the DC link in that case is large.
  • the value be 100%.
  • the upper limit allowable value of the capacity when the capacity decreases due to deterioration is defined as the threshold voltage VTH .
  • the specific value of the threshold voltage VTH is defined as 160%. If the deterioration of the capacitor 30 progresses and the voltage component in the frequency 2f band is 150%, the deterioration does not exceed 160% of the upper limit allowable value, so that the capacitor 30 is replaced immediately. You may diagnose that you do not need to. In the example shown in FIG. 8, the capacity of the capacitor 30 when the current component in the frequency 2f band is 150% is about 50%, so that the above diagnosis is valid.
  • the capacity of the capacitor 30 when the current component in the frequency 2f band is 170% is about 30%, so that the above diagnosis is valid.
  • the second determination criterion is to determine the total capacitance of each capacitor unit in the capacitor 30, and the deteriorated capacitor unit is determined only by the determination result of the determination using the second determination criterion.
  • the capacitor 30 in which the deteriorated capacitor unit may be generated can be specified by collectively diagnosing the capacitor units connected in parallel. With the above method, it is possible to identify the capacitor 30 in which the deteriorated capacitor unit may be generated more easily than the method of individually diagnosing the capacitor unit.
  • the unit of determination according to the present embodiment is the same, so that the diagnostic method of the present embodiment is effective in reducing the load of the analysis process. ..
  • the determination unit 467A can use the second determination criterion defined based on the relationship between the magnitude of the current component in the specific frequency band and the deterioration status of the capacitor 30, and further, the deterioration capacitor unit The presence or absence can be diagnosed using the above-mentioned second criterion.
  • FIG. 9 is a flowchart of a process for diagnosing the state of the capacitor 30 of the second embodiment.
  • the voltage detector 44 detects the detected value representing the voltage of the DC link
  • the voltage value acquisition unit 464 acquires the detected value
  • the power conversion system 2A executes a process (referred to as a diagnostic process) for diagnosing the state of the capacitor 30 at all times during system operation or when a specific event occurs.
  • a diagnostic process for diagnosing the state of the capacitor 30 at all times during system operation or when a specific event occurs.
  • the term “always during system operation” means that diagnostic processing is continuously performed. For example, when the target periods of the first and second FFT processes to be executed in sequence are continuous, the first and second FFT processes to be executed in order are performed. This includes cases where the target periods of the FFT processing overlap, cases where the target periods are continuous except for the time related to switching between the first and second FFT processes, which are sequentially executed.
  • the timing at predetermined time intervals, when a specific condition is met, and the like are included.
  • the case where a specific condition is satisfied may be, for example, when a diagnosis request is received from the control unit 60. At that time, the control unit 60 may notify the above-mentioned diagnosis request when the inverse conversion device 50 is
  • the voltage value acquisition unit 464 acquires a predetermined number of voltage detection value data when the inverse transform device 50 is in the power running state from the voltage detection value data stored in the storage unit 461, and performs high-speed Fourier. Output to the conversion unit 465A (step S200).
  • the fast Fourier transform unit 465A performs FFT processing on the data of a predetermined number of voltage detection values received from the voltage value acquisition unit 464 to generate a frequency spectrum FSv, and stores the generated frequency spectrum FSv in the storage unit 461. Store it (step S210).
  • the extraction unit 466A extracts, for example, a component having a frequency 2f from the frequency spectrum FSv stored in the storage unit 461, and stores the extracted component as the extraction frequency component ext2 in the storage unit 461 (step S220). ..
  • the determination unit 467A determines the voltage V Fext of extraction frequency components F ext2 stored in the storage unit 461, whether the threshold voltage V TH is less than or a predetermined (step S230). If the voltage V Fext smaller than the threshold value voltage V TH, the determination unit 467A determines that the deterioration of the capacitor 30 is in the acceptable range, the determination result in association with the voltage V Fext extract frequency components F ext2 storage unit It is stored in 461 (step S240).
  • the determination unit 467A determines that the deterioration of the capacitor 30 deviates from the allowable range, corresponding to the voltage V Fext extract frequency components F ext2 determination results It is attached and stored in the storage unit 461 (step S250).
  • step S240 or step S250 displays the determination result of the capacitor 30 on the display 45 (step S260), and ends the series of processing.
  • the capacitor diagnostic device 40A can determine the state of the capacitor 30.
  • the capacitor unit 31 connected in parallel to the DC link and the inverse conversion device 50 that converts the DC power smoothed by the capacitor unit 32 into AC power by power running are diagnosed.
  • the capacitor diagnostic device 40A includes a voltage detector 44, a fast Fourier transform unit 465A, an extraction unit 466A, and a determination unit 467A.
  • the voltage detector 44 detects the voltage of the DC link.
  • the fast Fourier transform unit 465A generates a frequency spectrum FSv (third frequency spectrum) based on the detection result of the voltage detector 44 detected during the power running operation of the inverse transform device 50.
  • the extraction unit 466A extracts the voltage component of the specific frequency band related to the frequency depending on the configuration of the inverse conversion device 50 based on the frequency spectrum FSv.
  • the determination unit 467A can easily detect the deterioration of the capacitor 30 by diagnosing the state of the capacitor 30 based on at least the magnitude of the extracted current component of the specific frequency band.
  • the voltage detector 44 is an example of a sensor.
  • the voltage value detected by the voltage detector 44 is an example of a physical quantity.
  • FIG. 10 is a diagram for explaining a third determination criterion of the capacitor 30 in the modified example of the second embodiment.
  • a straight line GV1 and a straight line GV2 descending to the right are drawn in a range in which the capacitance of each capacitor unit ranges from about 10% to 100%, as in the graph shown in FIG.
  • the straight line GV2 has a gentler slope than the straight line GV1.
  • the third determination criterion in this modification is the determination of the AC load current dependence associated with the magnitude of the detected value of the AC current (AC load current) flowing through the motor 3 detected by the load current detector 70.
  • the straight line GV1 is used when the current flowing through the electric motor 3 is relatively large, and the straight line GV2 is used when the current flowing through the electric motor 3 is relatively small.
  • the determination unit 467A selects a suitable characteristic value from the selectable characteristic values based on the magnitude of the current flowing through the electric motor 3, and sets this as the determination criterion.
  • the third determination criterion uses the threshold voltage VTH1 and the threshold voltage VTH2 as thresholds.
  • the threshold voltage V TH1 is the same as the threshold voltage V TH .
  • the determination unit 467A includes the size of the component in a specific frequency band at least extracted, and the detection value of the AC current flowing through the electric motor 3 The state of the capacitor 30 can be diagnosed based on the above.
  • the power conversion system 2B of the third embodiment (Third Embodiment) The power conversion system 2B of the third embodiment will be described.
  • the power conversion system 2B of the third embodiment identifies the capacitor 30 in a deteriorated state, and then diagnoses the state of each capacitor unit in the capacitor 30. This will be described below.
  • FIG. 11 is a configuration diagram of the power conversion system 2B of the third embodiment.
  • the power conversion system 2B shown in FIG. 11 includes a capacitor diagnostic device 40B instead of the capacitor diagnostic device 40 in the power conversion system 2 described above.
  • FIG. 12 is a block diagram of the capacitor diagnostic device 40B of the third embodiment.
  • the capacitor diagnostic device 40B shown in FIG. 12 includes an analysis processing unit 46B instead of the analysis processing unit 46 of the capacitor diagnostic device 40.
  • the analysis processing unit 46B includes a fast Fourier transform unit 465B, an extraction unit 466B, and a determination unit 467B in place of the fast Fourier transform unit 465, the extraction unit 466, and the determination unit 467 of the analysis processing unit 46.
  • the fast Fourier transform unit 465B carries out the processing of the above-mentioned fast Fourier transform unit 465 and the fast Fourier transform unit 465A.
  • the notation of the fast Fourier transform unit 465 and the fast Fourier transform unit 465A in the description of the fast Fourier transform unit 465 and the fast Fourier transform unit 465A described above is read as the fast Fourier transform unit 465B.
  • the extraction unit 466B carries out the processing of the extraction unit 466 and the extraction unit 466A described above.
  • the notation of the extraction unit 466 and the extraction unit 466A in the description of the extraction unit 466 and the extraction unit 466A described above is read as the extraction unit 466B.
  • the determination unit 467B carries out the processing of the determination unit 467 and the determination unit 467A described above.
  • the notation of the determination unit 467 and the determination unit 467A in the description of the determination unit 467 and the determination unit 467A described above is read as the determination unit 467B.
  • the analysis processing unit 46B performs FFT processing on a predetermined number of voltage detection values received from the voltage value acquisition unit 464, and receives from the current value acquisition unit 462 when a predetermined condition is satisfied. FFT processing is performed on a predetermined number of current detection values.
  • FIG. 13 is a flowchart of a process for diagnosing the state of the capacitor according to the third embodiment.
  • the power conversion system 2 for diagnosing the state of each capacitor unit based on the magnitude of a specific frequency component of the current flowing through each capacitor unit has been described.
  • the power conversion system 2A for diagnosing the state of the capacitor 30 including a plurality of capacitor units has been described.
  • the differences between the first embodiment and the second embodiment will be mainly described.
  • the analysis processing unit 46B of the capacitor diagnostic apparatus 40B carries out the processing from steps S200 to S220.
  • the determination unit 467B determines whether or not smaller than the threshold voltage V TH of a predetermined (step S230). If the voltage V Fext smaller than the threshold voltage V TH, the determination unit 467B, the deterioration of the capacitor 30 is determined to be in the allowable range, the determination result in association with the voltage V Fext extract frequency components F ext2 storage It is stored in the unit 461 (step S240).
  • the determination section 467B determines that the deterioration of the capacitor 30 deviates from the allowable range, the determination result extracted frequency component voltage of the F ext2 V Fext Is stored in the storage unit 461 in association with (step S250).
  • the analysis processing unit 46B performs a determination process for each capacitor unit in the capacitor 30 (step S270).
  • the determination process for each capacitor unit is such that the above-mentioned processes from steps S100 to S150 in FIG. 5 are performed for each capacitor unit in the capacitor 30. By this determination process, the deteriorated capacitor unit and the sound capacitor unit in the capacitor 30 are distinguished.
  • step S240 or step S270 the display processing unit 468 displays the determination result for each capacitor 30 and the determination result for each capacitor unit on the display 45 (step S260A), and a series of steps. End the processing of.
  • the analysis processing unit 46B generates a frequency spectrum FSv (third frequency spectrum) based on the detection result of the voltage detector 44 detected during the power running operation of the inverse converter 50.
  • the state of deterioration of the capacitor 30 is determined.
  • the frequency spectrum FSi (1) based on the detection result of the current detector 42 detected during the power running operation of the inverse converter 50.
  • the first frequency spectrum and the second frequency spectrum) are generated, and the state of each capacitor unit is determined.
  • the determination of the capacitor 30 level and the determination of each capacitor unit level can be performed separately, so that the processing related to the determination can be simplified.
  • the capacitor diagnostic apparatus includes a sensor, a frequency spectrum analysis unit, a frequency component extraction unit, and a diagnostic processing unit.
  • the sensor detects the current flowing through the capacitor in the power conversion unit that converts the DC power smoothed by the capacitors connected in parallel to the DC link into AC power by power running.
  • the frequency spectrum analysis unit generates a frequency spectrum based on the detection result of the sensor detected during the power running operation of the power conversion unit.
  • the frequency component extraction unit extracts a component of a specific frequency band related to a frequency depending on the configuration of the power conversion unit based on the first frequency spectrum.
  • the diagnostic processing unit diagnoses the state of the capacitor at least based on the size of the extracted component of the specific frequency band. As a result, the capacitor diagnostic device can easily detect the deterioration of the capacitor.
  • the fundamental frequency of the AC output of the inverse converter 50 may be fixed to a predetermined value, and the AC output of the inverse converter 50 for accelerating or decelerating the electric motor 3 or the like.
  • the fundamental frequency may be changed in real time.
  • the capacitor diagnostic device 40 may perform a predetermined diagnostic process when the fundamental frequency of the AC output of the inverse conversion device 50 does not interfere with the frequency band detected by the capacitor diagnostic device 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Power Conversion In General (AREA)

Abstract

実施形態のキャパシタ診断装置は、センサと、周波数スペクトル解析部と、周波数成分抽出部と、診断処理部とを備える。センサは、直流リンクに対して並列に接続されるキャパシタによって平滑化された直流電力を力行運転によって交流電力に変換する電力変換ユニットにおける前記キャパシタに流れる電流によって変化する物理量を検出する。周波数スペクトル解析部は、前記電力変換ユニットの前記力行運転中に検出された前記センサの検出結果に基づいた周波数スペクトルを生成する。周波数成分抽出部は、前記電力変換ユニットの構成に依存する周波数に係る特定周波数帯の成分を、前記周波数スペクトルに基づいて抽出する。診断処理部は、少なくとも前記抽出された特定周波数帯の成分の大きさに基づいて、前記キャパシタの状態を診断する。

Description

キャパシタ診断装置及びキャパシタ診断方法
 本発明の実施形態は、キャパシタ診断装置及びキャパシタ診断方法に関する。
 直流電力に関わる電圧を平滑化するキャパシタ(コンデンサ)を備え、その直流電力に基づいて交流電力に生成する電力変換装置が知られている。キャパシタは、有寿命部品の一つであるが、キャパシタの劣化を容易に検出することができない場合があった。
特開2018-191446号公報
 本発明の目的は、キャパシタの劣化を容易に検出することが可能なキャパシタ診断装置及びキャパシタ診断方法を提供することである。
 実施形態のキャパシタ診断装置は、センサと、周波数スペクトル解析部と、周波数成分抽出部と、診断処理部とを備える。センサは、直流リンクに対して並列に接続されるキャパシタによって平滑化された直流電力を力行運転によって交流電力に変換する電力変換ユニットにおける前記キャパシタに流れる電流によって変化する物理量を検出する。周波数スペクトル解析部は、前記電力変換ユニットの前記力行運転中に検出された前記センサの検出結果に基づいた周波数スペクトルを生成する。周波数成分抽出部は、前記電力変換ユニットの構成に依存する周波数に係る特定周波数帯の成分を、前記周波数スペクトルに基づいて抽出する。診断処理部は、少なくとも前記抽出された特定周波数帯の成分の大きさに基づいて、前記キャパシタの状態を診断する。
第1の実施形態の電力変換システムの構成図。 第1の実施形態のキャパシタ診断装置の構成図。 第1の実施形態のFFT処理に係る信号のタイミングチャート。 第1の実施形態の各キャパシタユニットの判定基準を説明するための図。 第1の実施形態の各キャパシタユニットの状態を診断する処理のフローチャート。 第2の実施形態の電力変換システムの構成図。 第2の実施形態のキャパシタ診断装置の構成図。 第2の実施形態のキャパシタの第2の判定基準を説明するための図。 第2の実施形態のキャパシタの状態を診断する処理のフローチャート。 第2の実施形態の変形例におけるキャパシタの第3の判定基準を説明するための図。 第3の実施形態の電力変換システムの構成図。 第3の実施形態のキャパシタ診断装置の構成図。 第3の実施形態のキャパシタの状態を診断する処理のフローチャート。
 以下、実施形態のキャパシタ診断装置及びキャパシタ診断方法を、図面を参照して説明する。以下の説明では、同一又は類似の機能を有する構成に同一の符号を付す。
 明細書で言う「接続」とは、物理的に接続される場合に限定されず、電気的に接続される場合も含む。本明細書では、交流の基本波の周波数を基本周波数と呼ぶ。
(第1の実施形態)
 まず、実施形態のキャパシタ診断装置を含む電力変換システム2について説明する。
 図1は、第1の実施形態の電力変換システム2を示す構成図である。図1には、交流電源1、電力変換システム2、及び電動機3が示される。
 交流電源1は、商用電源系統(PS)や発電機などであり、例えば、3相交流電力を電力変換システム2に供給する。
 電動機3は、例えば、誘導電動機などの交流可変速電動機(M)である。電動機3は、電力変換システム2から供給された交流電力によって駆動し、回転駆動力を図示しない出力軸に出力し、その回転駆動力により出力軸に連結される負荷を駆動する。
 電力変換システム2は、交流電源1から供給される交流電力を直流電力に変換して、直流電力を交流電力に逆変換して、逆変換によって得られた単相交流電力を電動機3に供給する。これに制限されることなく、電動機3が3相交流型であれば、電力変換システム2は、3相交流電力を電動機3に供給してもよい。以下の説明では、電動機3が単相交流型の場合を例示して説明する。
 電力変換システム2は、例えば、順変換装置20、キャパシタ30、キャパシタ診断装置40、逆変換装置50、制御部60、及び負荷電流検出器70を備える。
 順変換装置20は、交流電源1に接続される交流側端子の他に、正極出力端子20Pと、直流側出力負極端子20Nとを備える。正極出力端子20Pは、正極線80Pの第1の端部に接続される。正極線80Pの第2の端部は、逆変換装置50の正極入力端子50Pに接続される。直流側出力負極端子20Nは、負極線80Nの第1の端部に接続される。負極線80Nの第2の端部は、逆変換装置50の負極入力端子50Nに接続される。
 例えば、順変換装置20は、例えば、IGBT(Insulated Gate Bipolar Transistor)などの1又は複数のスイッチング素子20Sを含む。スイッチング素子20Sは、順変換装置20の出力側の直流電圧が所望の電圧になるように、制御部60によって制御される。順変換装置20は、変換した直流電力を、正極出力端子20Pと直流側出力負極端子20Nとから、正極線80Pと負極線80Nとに出力する。
 キャパシタ30は、正極線80Pと負極線80Nとに並列に接続され、順変換装置20が出力する直流電力を平滑化する。キャパシタ30は、直流的に互いに並列に接続される複数のキャパシタユニットを含む。キャパシタユニット31(第1キャパシタユニット)、キャパシタユニット32(第2キャパシタユニット)、及びキャパシタユニット33は、複数のキャパシタユニットの一例である。キャパシタ30は、正極線80Pに接続される正極分岐端子30Pと、負極線80Nに接続される負極分岐端子30Nとを備える。
 例えば、キャパシタユニット31、32、33の正極側は、正極分岐端子30Pを介して正極線80Pに接続される。同様に、キャパシタユニット31、32、33の負極側は、負極分岐端子30Nを介して負極線80Nに接続される。上記の接続形態は、直流的に互いに並列に接続される形態の一例である。
 なお、キャパシタ30の種類は、例えば電解コンデンサ、フィルムコンデンサなどであってよい。キャパシタユニット31、32、33の種類と容量は、互いに同じ種類であって、かつ互いに同じ容量のものに揃えるとよい。キャパシタユニット31、32、33を各キャパシタユニットと呼ぶ。
 キャパシタ診断装置40は、電力変換システム2の力行運転中に各キャパシタユニットに流れる電流を検出し、検出された電流値に基づいた周波数スペクトルから特定周波数帯の電流成分を抽出し、抽出された特定周波数帯の電流成分の大きさに基づいて、各キャパシタユニットの状態を診断する。例えば、上記の特定周波数帯は、後述する逆変換装置50の構成に依存する周波数に係る周波数帯を含む。これについて後述する。
 逆変換装置50は、例えば、IGBTなどの1又は複数のスイッチング素子50Sを含む単相インバータである。スイッチング素子50Sの種類は、IGBTに制限されることなく、他の種類のものに変更してよい。逆変換装置50のスイッチング素子50Sは、制御部60によってPWM(Pulse Width Modulation)制御される。逆変換装置50は、例えば、順変換装置20から正極線80Pと負極線80Nを介して供給される直流電力を単相交流電力に変換する。逆変換装置50は、変換した単相交流電力を、負荷電力線58を介して電動機3に供給する。
 負荷電流検出器70は、逆変換装置50から電動機3に電力を供給するための負荷電力線58に流れる電流を検出する。
 制御部60は、負荷電力線58を流れる負荷電流を検出する負荷電流検出器70の検出値などに基づいたフィードバック制御によって、力行運転時に逆変換装置50のスイッチング素子50SにPWM制御に基づいたゲートパルス信号を出力する。これにより、制御部60は、スイッチング素子50SをPWM制御する。例えば、制御部60は、PWM制御に、特定の周波数に固定されたキャリア周波数のキャリア信号を用いる。
 制御部60は、キャパシタ診断装置40と通信することにより、例えば、逆変換装置50の運転状態を示す情報、負荷電流検出器70の検出値などをキャパシタ診断装置40に供給してもよい。逆変換装置50の運転状態を示す情報は、例え逆変換装置50が力行運転状態にあることを示す情報、有効電力が流れる方向を示す情報であってよい。
 図2は、第1の実施形態のキャパシタ診断装置40の構成図である。
 キャパシタ診断装置40は、例えば、通信インタフェースユニット41(図2中の記載は通信IFユニット。)と、電流検出器42と、電圧検出器44(第1電圧センサ)と、表示器45と、解析処理ユニット46とを備える。
 通信インタフェースユニット41は、後述する解析処理ユニット46の制御によりキャパシタ診断装置40の外部の装置と通信する。例えば、通信インタフェースユニット41は、制御部60に通信可能に接続され、後述する解析処理ユニット46の制御により制御部60と通信する。
 電流検出器42は、複数の電流センサユニットを含む。電流センサユニット421(第1電流センサ)、電流センサユニット422(第2電流センサ)、及び電流センサユニット423は、複数の電流センサユニットの一例である。電流センサユニット421、電流センサユニット422、及び電流センサユニット423を纏めて説明する場合には、電流センサユニット420と呼ぶ。
 電流センサユニット420は、キャパシタ30の各キャパシタユニットにそれぞれに流れる電流をそれぞれ検出し、それぞれ検出した電流を表す電流検出値を解析処理ユニット46にそれぞれ出力する。
 例えば、キャパシタユニット31の正極側(第1極端子)は、分岐線31BP(第1分岐路)を介して正極分岐端子30Pに接続される。キャパシタユニット32の正極側は、分岐線32BP(第2分岐路)を介して正極分岐端子30Pに接続される。キャパシタユニット33の正極側は、分岐線33BPを介して正極分岐端子30Pに接続される。同様に、キャパシタユニット31の負極側(第2極端子)は、分岐線31BNを介して負極分岐端子30Nに接続される。キャパシタユニット32の負極側は、分岐線32BNを介して負極分岐端子30Nに接続される。キャパシタユニット33の負極側は、分岐線33BNを介して負極分岐端子30Nに接続される。正極線80P(第1極)から正極分岐端子30Pまでの接続線路と、負極線80N(第2極)から負極分岐端子30Nまでの接続線路は、分岐路の一例である。換言すれば、キャパシタユニット31の正極側に、正極線80P(第1極)から正極分岐端子30Pまでの接続線路と、その接続線路からさらに分岐された分岐線31BPと分岐線32BPと分岐線33BPとが形成されている。
 上記の場合、電流センサユニット421は、分岐線31BPに設けられ、分岐線31BPに流れる電流を検出する。分岐線31BPに流れる電流は、キャパシタユニット31に流れる電流になる。同様に、電流センサユニット422は、分岐線32BPに設けられ、分岐線32BPに流れる電流を検出する。分岐線32BPに流れる電流は、キャパシタユニット32に流れる電流になる。電流センサユニット423は、分岐線33BPに設けられ、分岐線33BPに流れる電流を検出する。分岐線33BPに流れる電流は、キャパシタユニット33に流れる電流になる。なお、上記の例は各キャパシタユニットの正極側で上記の電流を検出する場合を例示したものであるが、これに代えて各キャパシタユニットの負極側で上記の電流を検出するように、電流センサユニット420を負極側の分岐線に設けてもよい。
 電流センサユニット420は、例えば、図示しないホール素子を含み、ホール素子によって検出された信号を図示しないAD(Analog to Digital)コンバータによって量子化して、電流値を表す電流検出値として出力するものでよい。
 電圧検出器44は、正極分岐端子30Pと負極分岐端子30Nの間に掛かる電圧を検出し、この電圧を表す電圧検出値を解析処理ユニット46に出力する。正極分岐端子30Pと負極分岐端子30Nの間に掛かる電圧は、直流リンクを成す正極線80Pと負極線80Nの間に掛かる電圧に等しい。以下、この電圧を直流リンクの電圧という。
 電圧検出器44は、例えば、入出力が絶縁される直流電圧変換器などを介して、直流リンクの電圧を検出し、図示しないADコンバータによって直流リンクの電圧を量子化して電圧検出値として出力する。
 なお、制御部60は、直流リンクの電圧を安定化させたり、過電圧にならないように保護したりするために、電圧検出器44による検出結果を利用してもよい。例えば、制御部60は、電圧検出器44から直流リンクの電圧の検出値を取得して、順変換装置20を制御することによって、直流リンクの電圧を調整してもよい。
 表示器45は、液晶表示器などの表示デバイスを含み、後述する解析処理ユニット46の制御により所望の情報を表示デバイスに表示させる。
 解析処理ユニット46は、電流検出器42が検出した電流を表す電流検出値と、電圧検出器44が検出した電圧を表す電圧検出値との少なくとも一方を用いて、キャパシタ30の状態を診断する。
 例えば、解析処理ユニット46は、記憶部461、電流値取得部462、電圧値取得部464、高速フーリエ変換部465、抽出部466、判定部467、表示処理部468及び通信処理部469を備える。
 記憶部461は、例えば、電流値取得部462によって取得された各キャパシタユニットに流れる電流を表す電流検出値データ、制御部60を介して取得した逆変換装置50と電動機3との間に流れる電流を表す電流値データ、電圧値取得部464によって取得された直流リンクの電圧を表す電圧検出値データ、逆変換装置50の稼働状態データ、高速フーリエ変換部465によって生成された周波数スペクトラムデータ、抽出周波数成分データ、判定基準データテーブル、キャパシタ診断処理のプログラムなどを格納する。上記の電流検出値データ、電流値データ、電圧検出値データ、及び稼働状態データは、時系列データである。上記の各情報の詳細は後述する。
 電流値取得部462、電圧値取得部464、高速フーリエ変換部465、抽出部466、判定部467、表示処理部468、及び通信処理部469のそれぞれは、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。記憶部461は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、又はRAM(Random Access Memory)等により実現される。
 電流値取得部462は、電流センサユニット420によって検出された電流を表す電流検出値を取得し、記憶部461の電流検出値データに追加する。また、記憶部461に格納されている電流検出値データから所定の数の電流検出値を表す検出値を取得して高速フーリエ変換部465に出力する。例えば、電流値取得部462は、稼働状態データを参照し、電流検出値データから取得した電流検出値のうち、逆変換装置50が稼働状態にある期間に対応する期間の所定の数の電流検出値を表す検出値を高速フーリエ変換部465に供給する。なお、電流値取得部462は、電流センサユニット420からの電流検出値の取得と、記憶部461からの電流検出値の読み出しとを並列に行ってもよい。
 電圧値取得部464は、電圧検出器44によって検出される直流リンクの電圧を表す検出値(電圧検出値)を取得し、記憶部461の電圧検出値データに追加する。また、記憶部461の電圧検出値データに格納されている所定の数の電圧検出値を表す検出値を取得し高速フーリエ変換部465に出力する。例えば、電圧値取得部464は、稼働状態データを参照し、電圧検出値データから取得した電圧検出値のうち、逆変換装置50が稼働状態にある期間に対応する期間の所定の数の電圧検出値を表す検出値を高速フーリエ変換部465に供給する。なお、電圧値取得部464は、電圧検出器44からの電圧検出値の取得と、記憶部461の電圧検出値データからの電圧検出値の読み出しとを並列に行ってもよい。
 高速フーリエ変換部465は、例えば、電流値取得部462から受け取った所定の数の電流検出値に対するFFT処理(高速フーリエ変換処理)を行うことにより周波数スペクトラムFSiを生成し、生成した周波数スペクトラムFSiを記憶部461の周波数スペクトラムデータに追加する。FFT処理により得られた周波数スペクトラムFSiは、電流値取得部462から受け取った所定の数の電流検出値に基づいた周波数成分を示す。高速フーリエ変換部465がFFT処理のために電流値取得部462から受け取る電流検出値の数は、FFT処理により得られる周波数スペクトラムFSiにおいて、所望の周波数の成分が含まれるように設定するとよい。
 なお、高速フーリエ変換部465は、電圧値取得部464から受け取った所定の数の電圧検出値にFFT処理を行ってもよい。これについては後述する。
 抽出部466は、高速フーリエ変換部465が生成して記憶部461の周波数スペクトラムデータに記憶させた周波数スペクトラムFSiから、逆変換装置50の構成に依存する周波数に係る特定周波数帯の成分を抽出し、抽出した成分を抽出周波数成分Fext1として記憶部461の抽出周波数成分データに追加する。例えば、PWM制御のキャリア周波数fの2倍の周波数である周波数2fの成分は、逆変換装置50の構成に依存する周波数に係る特定周波数帯の電流成分又は電圧成分の一例である。なお、逆変換装置50が生成する交流の基本波周波数とその高調波が、PWM制御のキャリア周波数fと、キャリア周波数fの偶数倍の周波数(例えば、上記の周波数2f。)に干渉しないように、逆変換装置50の基本波周波数と、キャリア周波数fを規定するとよい。
 判定部467は、抽出部466が抽出し記憶部461の抽出周波数成分データに記憶させた抽出周波数成分Fext1の大きさを、予め規定された第1の判定基準に基づいて判定する。第1の判定基準について後述する。判定部467による判定の結果には、各キャパシタユニットの劣化が進行した状態か否かの判定の結果が含まれる。
 表示処理部468は、判定部467による判定の結果を表示器45に表示させる。表示処理部468は、判定部467による判定の結果に、キャパシタ30内に劣化が進行したキャパシタユニットがあると判定された場合には、劣化が進行したキャパシタユニットを含むキャパシタ30について、劣化が進行していることを併せて表示器45に表示させてもよい。
 通信処理部469は、制御部60と通信することで、制御部60から、力行運転時にあることを示す情報、負荷電流検出器70の検出値などの情報を取得する。通信処理部469は、力行運転時にあることを示す情報を記憶部461の稼働状態データに追加する。通信処理部469は、負荷電流検出器70の検出値を記憶部461の電流値データに追加する。
 次に、図3を参照して、FFT処理の対象のデータについて説明する。図3は、第1の実施形態のFFT処理に係る信号のタイミングチャートである。
 図3に示されるタイミングチャートは、上段側から、(a)逆変換装置50の稼働状態、(b)電流センサユニット420によって検出された電流値、(c)電流値取得部462が所得した電流値(標本化されたデータ)、(d)電流値取得部462が高速フーリエ変換部465に供給するデータをそれぞれ示す。
 この図3に示す初期状態は、図3中の(a)に示されるように逆変換装置50の稼働状態が回生運転状態にある。このとき、回生された電力によってキャパシタ30は充電される。例えば、電流センサユニット421は、キャパシタユニット31を充電する電流を検出する。キャパシタユニット31が放電する電流を正の値で示すとすれば、図3中の(b)に示すように、キャパシタユニット31を充電する電流が負の値になる。逆変換装置50が回生運転状態にあると、電動機3の回生量により、キャパシタユニット31を充電する電流の大きさが変化する。図3中の(c)に、電流値取得部462が所得した電流値として標本化されたデータをモデル化して示しているが、図3中の(b)と同様に負の値になる。
 時刻t1になると、制御部60は、逆変換装置50の稼働状態を力行運転状態に遷移させて、逆変換装置50をPWM制御によって制御する。例えば、制御部60は、逆変換装置50が力行運転状態にあるときには、電動機3を指令値に従い駆動させるように逆変換装置50を制御する。
 これにより、上記の力行運転状態になると、キャパシタ30に放電電流が流れる。例えば、電流センサユニット421は、キャパシタユニット31からの放電電流を検出する。この図3中の(b)に、キャパシタユニット31の放電電流を正の値で示す。同様に、図3中の(c)に示す、電流値取得部462が所得した電流値のデータも、正の値になる。なお、データを標本化する間隔は、PWM制御による電流値の変動を検出できる程度に十分に短く規定されている。
 この逆変換装置50の力行運転状態は時刻t4まで継続し、その後、逆変換装置50の稼働状態が回生運転状態に遷移する。
 電圧値取得部464は、逆変換装置50の稼働状態の情報に基づいて、逆変換装置50が力行運転状態にある時刻t1から時刻t4までの期間の中から、予め定められた所定の長さの期間Tを選択する。選択された期間Tの始点を時刻t2で示し、終点を時刻t3で示す。期間Tが、FFT処理の対象期間になる。
 図3中の(d)に示すように、電圧値取得部464が時刻t2から時刻t3までのデータを高速フーリエ変換部465に供給することで、高速フーリエ変換部465は、逆変換装置50の稼働状態の期間に対応する電流検出値についてFFT処理を実施することができる。
 なお、指令値に従って制御される逆変換装置50が電動機3に供給する電流の変化量は、電動機3の負荷変動が小さければ比較的少なくなる。その結果、キャパシタユニット31からの放電電流に、電動機3の負荷変動による影響が生じにくい。そこで、電圧値取得部464は、所望の電流量が検出されている範囲のデータを選択してもよい。
 なお、上記のタイミングチャートでは、時刻t1から時刻t4までの間に、FFT処理の対象期間を1つ設ける場合を例示したが、これに制限されることなくFFT処理の対象期間を複数設けてもよい。この場合、判定部467は、各期間のFFT処理の結果をそれぞれ判定に用いてもよく、判定の前に平均化処理などの統計的処理を行って、偶発的な成分を抑圧してもよい。
 次に、図4を参照して、キャパシタユニットの第1の判定基準について説明する。図4は、第1の実施形態の各キャパシタユニットの第1の判定基準を説明するための図である。図4に示すグラフは、キャパシタユニットの容量(横軸)に対するキャパシタ30の各キャパシタユニットに流れる特定の周波数成分の電流(縦軸)の関係を示す。
 図4に示すグラフには、各キャパシタユニットの容量が約10%から100%までの範囲で、右肩上がりの直線GI1が描かれている。この直線GI1は、キャパシタの容量が100%よりも少ないときに検出され得る各キャパシタユニットに流れる電流成分の大きさを示している。このグラフに示された直線GI1を用いて、各キャパシタユニットの判定基準を、下記のように規定する。
・各キャパシタユニットの劣化が進行していない初期状態時の電流検出値に基づいて、特定周波数成分の大きさ(最大値)を規定する。例えば、その大きさを100%で示す。各キャパシタユニットの状態を判定するための第1の判定基準の基準値は、各キャパシタユニットの容量が定格容量のときの値を基準に規定される。なお、各キャパシタユニットの容量が定格容量のときとは、各キャパシタユニットの劣化が進行していない初期状態にあるときのことである。各キャパシタユニット実際の容量が定格容量とみなせる状態であれば、各キャパシタユニットの容量は必ずしも100%でなくてもよい。
・上記の第1の判定基準の値は、キャパシタユニットの劣化状態に対応させて、上記の第1の判定基準の基準値(100%)よりも小さな値に決定される。例えば、各キャパシタユニットの劣化が進行するほど、各キャパシタユニットの容量が大きく減少した状態になる。これにつれて電流検出器42によって検出される電流検出値の大きさが小さくなる。
 このような事象が生じる要因として下記の要因が挙げられる。例えば、キャパシタユニット31の劣化が進行して容量が期待値よりも少なくなった仮定し、これを劣化キャパシタユニットと呼ぶ。これに対し、キャパシタユニット32は、健全な状態が保たれていて容量が期待値を満たしていると仮定し、これを健全キャパシタユニットと呼ぶ。劣化キャパシタユニットと健全キャパシタユニットとが並列に接続されている状態になっても、並列に接続された各キャパシタユニットの端子電圧が等しくなるから、劣化キャパシタユニットに蓄えることができる電力量は、健全キャパシタユニットに蓄えることができる電力量よりも少なくなる。
 上記の劣化キャパシタユニットと健全キャパシタユニットとが、並列に接続されている状態で並行してそれぞれ放電して、直流リンクの電圧が放電前の電圧V1から電圧V2まで低下したとすると、劣化キャパシタユニットが失った電荷量は、健全キャパシタユニットが失った電荷量よりも少ない。そのため、劣化キャパシタユニットから流れる電流は、健全キャパシタユニットから流れる電流よりも少なくなる。実施形態の第1の判断基準は、この傾向に基づいて規定されている。
 判定部467が用いる第1の判定基準は、上記の特定周波数帯の電流成分の大きさとキャパシタユニットの劣化状況との関係に基づいて規定され、記憶部461の判定基準データテーブルに格納されている。例えば、判定部467は、抽出された特定周波数帯の電流成分の大きさを、判定基準データテーブルに格納された第1の判定基準(判定基準情報)に基づいて判定して、判定の結果に基づいてキャパシタユニット31の状態を診断する場合について説明する。
 例えば、劣化していない初期状態のキャパシタユニット31の容量を100%としたときに、キャリア周波数fの2倍の周波数帯域(周波数2f帯域という。)の電流成分がキャパシタユニット31に流れていて、その電流成分の大きさを100%とする。さらに、劣化によって容量が低下したときのその容量の下限許容値を閾値電流ITHと規定する。ここでは、閾値電流ITHの具体的な値を40%と規定する。キャパシタユニット31の劣化が進行して、周波数2f帯域の電流成分が50%であると仮定すると、劣化が進行しているものの周波数2f帯域の電流成分の下限許容値の40%を満たしているから、キャパシタユニット31の交換をすぐに実施する必要がないと診断してもよい。図4に示す例であれば、周波数2f帯域の電流成分が50%であるときのキャパシタユニット31の容量は、約50%であるから、上記の診断は妥当である。
 さらに、キャパシタユニット31の劣化が進行して、周波数2f帯域の電流成分が30%になっていると仮定すると、周波数2f帯域の電流成分の限界許容値の40%を満たさない状態まで劣化が進行しているため、キャパシタユニット31の交換をすぐに実施することが必要と診断してもよい。図4に示す例であれば、周波数2f帯域の電流成分が30%であるときのキャパシタユニット31の容量は、約30%であるから、上記の診断は妥当である。
 これにより、判定部467は、特定周波数帯の電流成分の大きさとキャパシタユニット31の劣化状況との関係に基づいて規定された第1の判定基準として閾値電流ITHを利用することで、キャパシタユニット31の状況を判定することができる。
 次に、キャパシタ30の第1の診断処理における解析対象の周波数帯の定め方について説明する。本実施形態では、力行状態にある逆変換装置50から電動機3に供給される電力量が、PWM制御のキャリア周波数fに同期して変化することに着目する。例えば、フルブリッジ型の単相インバータを、所望の変調率でPWM制御する場合には、PWM制御に用いられるキャリア周波数fの2倍の周波数(周波数2fという。)を中心周波数とする所定の周波数範囲に、PWM制御の被変調信号に基づいたサブバンド成分が生じる。そのため、解析対象の周波数帯に上記のサブバンド成分が含まれるように、周波数2fを中心周波数とする所定の周波数範囲を、解析対象の周波数帯として決定するとよい。この周波数範囲に含まれる信号成分のことを、単に周波数2f成分と呼ぶ。周波数2f成分は、キャリア周波数fの2倍の周波数成分に相当する。
 キャパシタ診断装置40は、フルブリッジ型の単相インバータの逆変換装置50に適用されるキャパシタ30の状態を診断することができる。
 次に、図5を参照して、キャパシタユニットの状態の診断手順について説明する。図5は、第1の実施形態の各キャパシタユニットの状態を診断する処理のフローチャートである。
 なお、上記フローチャートには示されないものの、図5に示す処理と並列に、電圧検出器44が直流リンクの電圧を表す検出値を検出して取得部404が検出値を取得し記憶部461に記憶させる電圧取得処理が行われるものとする。
 電力変換システム2は、システム稼働中常時、又は特定のイベントが発生した場合に、キャパシタユニットの状態を診断するための処理(診断処理という。)を実行する。システム稼働中常時とは、継続的に診断処理を行うものであり、例えば、順に実施される第1と第2のFFT処理の対象期間が連続する場合、順に実施される第1と第2のFFT処理の対象期間が重複する場合、順に実施される第1と第2のFFT処理の切替に係る時間を除いて対象期間が連続する場合、などが含まれる。特定のイベントが発生した場合には、所定時間間隔ごとのタイミング、特定の条件が満たされたときなどが含まれる。特定の条件が満たされた場合とは、例えば、制御部60から診断要求を受信したときであってよい。その際に、制御部60は、逆変換装置50が力行状態にあるときに、上記の診断要求を通知してもよい。
 診断処理について以下説明する。まず、取得部404は、記憶部461に記憶された電流検出値のデータの中から、逆変換装置50が力行状態にあるときの所定の数の電流検出値のデータを取得し高速フーリエ変換部465に出力する(ステップS100)。次に、高速フーリエ変換部465は、取得部404から受け取った所定の数の電流検出値のデータにFFT処理を行い、周波数スペクトラムFSiを生成し、生成した周波数スペクトラムFSiを記憶部461に記憶させる(ステップS110)。次に、抽出部466は、記憶部461に記憶させた周波数スペクトラムFSiから、特定の周波数成分、例えば、周波数2fの成分を抽出し、抽出した成分を抽出周波数成分Fext1として記憶部461に記憶させる(ステップS120)。
 次に、判定部467は、記憶部461に記憶させた抽出周波数成分Fext1の電流IFextが、予め定められた閾値電流ITHよりも大きいか否か判定する(ステップS130)。電流IFextが閾値電流ITHよりも大きい場合は、判定部467は、当該キャパシタユニットの劣化は許容範囲にあると判定し、判定結果を抽出周波数成分Fext1の電流IFextに対応付けて記憶部461に格納する(ステップS140)。
 電流IFextが閾値電流ITH以下である場合は、判定部467は、当該キャパシタユニットの劣化は許容範囲から逸脱していると判定し、判定結果を抽出周波数成分Fext1の電流IFextに対応付けて記憶部461に格納する(ステップS150)。
 次に、ステップS140又はステップS150の処理を終えると、表示処理部468は、キャパシタユニットごとの判定結果を、表示器45に表示させて(ステップS160)、一連の処理を終了させる。
 以上の処理により、キャパシタ診断装置40はキャパシタユニットごとの状態を判定することができる。
 第1の実施形態によれば、キャパシタ診断装置40は、直流リンクに対して互いに並列に接続されるキャパシタユニット31(第1キャパシタユニット)と、キャパシタユニット32(第2キャパシタユニット)とによって平滑化された直流電力を力行運転によって交流電力に変換する逆変換装置50について診断する。キャパシタ診断装置40は、電流センサユニット421と、高速フーリエ変換部465(第1周波数スペクトル解析部)と、抽出部466と、判定部467とを備える。電流センサユニット421は、キャパシタユニット31に流れる電流を検出する。高速フーリエ変換部465は、逆変換装置50の力行運転中に検出された電流センサユニット421の検出結果に基づいた周波数スペクトルFSi(第1周波数スペクトル)を生成する。抽出部466は、逆変換装置50の構成に依存する周波数に係る特定周波数帯の電流成分を、周波数スペクトルFSiに基づいて抽出する。判定部467は、少なくとも抽出された特定周波数帯の電流成分の大きさに基づいて、キャパシタユニット31の状態を診断することにより、キャパシタユニット31の劣化を容易に検出することができる。なお、キャパシタユニット31、32、33は、キャパシタの一例である。電流センサユニット420は、センサの一例である。電流センサユニット420によって検出される電流値は、物理量の一例である。
 キャパシタユニット32とキャパシタユニット33についても同様である。例えば、キャパシタユニット32の場合には、電流センサユニット422は、キャパシタユニット32に流れる電流を検出する。高速フーリエ変換部465は、逆変換装置50の力行運転中に検出された電流センサユニット422の検出結果に基づいた周波数スペクトルFSi2(第2周波数スペクトル)を生成する。抽出部466は、上記と同様に特定周波数帯の電流成分を、周波数スペクトルFSi2に基づいて抽出する。判定部467は、少なくとも抽出された特定周波数帯の電流成分の大きさに基づいて、キャパシタユニット32の状態を診断するとよい。
 第1の実施形態によれば、電力変換システム2は、少なくともキャパシタ30、キャパシタ診断装置40、逆変換装置50、及び制御部60を備える。逆変換装置50は、スイッチング素子50Sを備え、スイッチング素子50Sをスイッチングさせる力行運転によって、キャパシタユニット31、32、33等を含むキャパシタ30によって平滑化された直流電力を交流電力に変換する。その際に、キャパシタ診断装置40は、逆変換装置50の力行運転中に検出された電流センサユニット421の検出結果に基づいて生成した第1周波数スペクトルを、キャパシタユニット31、32、33等の劣化の診断に用いる。これにより電力変換システム2は、キャパシタユニット31、32、33等の劣化を容易に検出することができる。
 第1の実施形態によれば、逆変換装置50のスイッチング素子50Sは、固定のキャリア周波数のキャリア信号を用いたPWM制御によって制御される。抽出部466は、生成された第1周波数スペクトルに基づいて、キャリア周波数の整数倍の周波数を基準に規定される周波数帯の電流成分を、特定周波数帯の電流成分として抽出してもよい。これによれば、キャリア周波数に基づいて規定される周波数帯の電流成分を、特定周波数帯の電流成分として抽出することができる。例えば、上記の周波数帯を規定するキャリア周波数に対する倍率は、逆変換装置50の構成(仕様)に基づいて規定する。上記の倍率は、逆変換装置50が単相フルブリッジインバータであれば2倍に規定され、3相フルブリッジインバータであれば6倍に規定されるとよい。なお、上記のように逆変換装置50がフルブリッジインバータの場合、上記の倍率は、逆変換装置50の相数によらずに偶数になる。
(第2の実施形態)
 第2の実施形態の電力変換システム2Aについて説明する。
 第1の実施形態の電力変換システム2は、各キャパシタユニットに流れる電流の特定周波数成分の大きさに基づいて、個々のキャパシタユニットの状態を診断する。これに代わり、電力変換システム2Aは、複数のキャパシタユニットを含むキャパシタ30の状態を診断する。以下これについて説明する。
 図6は、第2の実施形態の電力変換システム2Aの構成図である。
 図6に示された電力変換システム2Aは、前述の電力変換システム2におけるキャパシタ診断装置40に代えてキャパシタ診断装置40Aを備える。
 図7は、第2の実施形態のキャパシタ診断装置40Aの構成図である。
 図7に示されたキャパシタ診断装置40Aは、キャパシタ診断装置40の電流検出器42を備えず、かつ解析処理ユニット46に代えて解析処理ユニット46Aを備える。
 解析処理ユニット46Aは、電流値取得部462を備えず、解析処理ユニット46の高速フーリエ変換部465、抽出部466、判定部467に代えて、高速フーリエ変換部465A、抽出部466A、判定部467Aを備える。解析処理ユニット46Aは、電流値取得部462から受け取った所定の数の電流検出値に対するFFT処理を行う代わりに、電圧値取得部464から受け取った所定の数の電圧検出値に対するFFT処理を行う。以下、これについて説明する。
 高速フーリエ変換部465A(第3周波数スペクトル解析部)は、電圧値取得部464から受け取った所定の数の電圧検出値にFFT処理を行うことにより周波数スペクトラムFSvを生成し、生成した周波数スペクトラムFSvを記憶部461に記憶させる。これの他、前述の高速フーリエ変換部465に関する説明中の電流検出値を、電圧検出値に読み替える。
 抽出部466Aは、高速フーリエ変換部465が生成して記憶部461に記憶させた周波数スペクトラムFSvから、逆変換装置50の構成に依存する周波数に係る特定周波数帯の電圧成分を抽出し、抽出した成分を抽出周波数成分Fext2として記憶部461の抽出周波数成分データに追加する。
 判定部467Aは、抽出部466が抽出し記憶部461に記憶させた抽出周波数成分Fext2の大きさを、予め規定された第2の判定基準に基づいて判定する。
 次に、図8を参照して、キャパシタ30の第2の判定基準について説明する。図8は、第2の実施形態のキャパシタ30の第2の判定基準を説明するための図である。図8に示すグラフは、キャパシタ30の容量(横軸)に対する直流リンクの特定の周波数成分の電圧(縦軸)の関係を示す。
 図8に示すグラフには、キャパシタ30の容量が約10%から100%までの範囲で、右肩下がりの直線GV1が描かれている。この直線GV1は、キャパシタ30の容量が100%よりも少ないときに検出され得る直流リンクの電圧成分(リプル電圧成分)の大きさを示している。このグラフに示されたGV1を用いて、キャパシタ30の第2の判定基準を、下記のように規定する。
・キャパシタ30の劣化が進行していない初期状態時の電圧検出値に基づいて、特定周波数成分の大きさ(最小値)を規定する。例えば、その大きさを100%で示す。
・上記の判定基準の値は、キャパシタ30の劣化状態に対応させて、上記の判定基準の基準値(100%)よりも大きな値に決定される。例えば、キャパシタ30の劣化が進行するほど、キャパシタ30の容量がより少なくなり、これにつれて電圧検出器44によって検出される電圧検出値が大きくなる。第2の判定基準は、これを識別できるように規定されたものであるとよい。
 このような事象が生じる要因として下記の要因が挙げられる。例えば、並列に接続されているキャパシタ30の中に劣化キャパシタユニットが発生すると、並列に接続されたキャパシタユニットの容量の総和が少なくなるから、平滑化しきれない成分がリプル電圧として生じることによる。
 判定部467Aが用いる第2の判定基準は、上記の特定周波数帯の電圧成分の大きさとキャパシタ30の劣化状況との関係に基づいて規定され、記憶部461の判定基準データテーブルに格納されている。判定部467Aは、抽出された特定周波数帯の電流成分の大きさを、判定基準データテーブルに格納された第2の判定基準に基づいて判定して、判定の結果に基づいてキャパシタ30の状態を診断する。
 例えば、劣化していない初期状態のキャパシタ30の容量を100%としたときに、周波数2f帯域の電流成分がキャパシタ30に流れていて、その場合の直流リンクの電圧成分(リプル電圧成分)の大きさを100%とする。さらに、劣化によって容量が低下したときのその容量の上限許容値を閾値電圧VTHと規定する。ここでは、閾値電圧VTHの具体的な値を160%と規定する。キャパシタ30の劣化が進行して、周波数2f帯域の電圧成分が150%であれば、劣化が進行しているものの上限許容値の160%を超えるものではないから、キャパシタ30の交換をすぐに実施する必要がないと診断してもよい。図8に示す例であれば、周波数2f帯域の電流成分が150%であるときのキャパシタ30の容量は、約50%であるから、上記の診断は妥当である。
 さらに、周波数2f帯域の電流成分が170%であれば、限界許容値の160%を超える状態まで劣化が進行しているため、キャパシタ30の交換をすぐに実施することが必要と診断してもよい。図8に示す例であれば、周波数2f帯域の電流成分が170%であるときのキャパシタ30の容量は、約30%であるから、上記の診断は妥当である。
 上記のように、第2の判断基準は、キャパシタ30における各キャパシタユニットの容量の総和を判定の対象にするものであり、第2の判断基準を用いた判定の判定結果だけで劣化キャパシタユニットを特定することはできないが、並列接続されたキャパシタユニットを纏めて診断することにより、劣化キャパシタユニットが発生している可能性があるキャパシタ30を特定することができる。上記の方法であれば、キャパシタユニットを個別に診断する方法よりも容易に劣化キャパシタユニットが発生している可能性があるキャパシタ30を特定することができる。
 特に、キャパシタ30単位で新たなキャパシタ30に交換する保守方法をとる場合には、本実施形態による判定の単位と一致するため、本実施形態の診断方法は、解析処理の負荷軽減に有効である。
 これにより、判定部467Aは、特定周波数帯の電流成分の大きさとキャパシタ30の劣化状況との関係に基づいて規定された第2の判定基準を利用することができ、さらには、劣化キャパシタユニットの有無を上記の第2の判定基準を利用して診断することができる。
 次に、図9を参照して、キャパシタ30の状態の診断手順について説明する。図9は、第2の実施形態のキャパシタ30の状態を診断する処理のフローチャートである。
 なお、上記フローチャートには示されないものの、図9に示す処理と並列に、電圧検出器44が直流リンクの電圧を表す検出値を検出して電圧値取得部464が検出値を取得し記憶部461に記憶させる電圧取得処理が行われるものとする。
 電力変換システム2Aは、システム稼働中常時、又は特定のイベントが発生した場合に、キャパシタ30の状態を診断するための処理(診断処理という。)を実行する。システム稼働中常時とは、継続的に診断処理を行うものであり、例えば、順に実施される第1と第2のFFT処理の対象期間が連続する場合、順に実施される第1と第2のFFT処理の対象期間が重複する場合、順に実施される第1と第2のFFT処理の切替に係る時間を除いて対象期間が連続する場合、などが含まれる。特定のイベントが発生した場合には、所定時間間隔ごとのタイミング、特定の条件が満たされたときなどが含まれる。特定の条件が満たされた場合とは、例えば、制御部60から診断要求を受信したときであってよい。その際に、制御部60は、逆変換装置50が力行状態にあるときに、上記の診断要求を通知してもよい。
 診断処理について以下説明する。まず、電圧値取得部464は、記憶部461に記憶された電圧検出値のデータの中から、逆変換装置50が力行状態にあるときの所定の数の電圧検出値のデータを取得し高速フーリエ変換部465Aに出力する(ステップS200)。次に、高速フーリエ変換部465Aは、電圧値取得部464から受け取った所定の数の電圧検出値のデータにFFT処理を行い、周波数スペクトラムFSvを生成し、生成した周波数スペクトラムFSvを記憶部461に記憶させる(ステップS210)。次に、抽出部466Aは、記憶部461に記憶させた周波数スペクトラムFSvから、例えば、周波数2fの成分を抽出し、抽出した成分を抽出周波数成分Fext2として記憶部461に記憶させる(ステップS220)。
 次に、判定部467Aは、記憶部461に記憶させた抽出周波数成分Fext2の電圧VFextが、予め定められた閾値電圧VTHより小さいか否か判定する(ステップS230)。電圧VFextが閾値電圧VTHより小さい場合は、判定部467Aは、当該キャパシタ30の劣化は許容範囲にあると判定し、判定結果を抽出周波数成分Fext2の電圧VFextに対応付けて記憶部461に格納する(ステップS240)。
 電圧VFextが閾値電圧VTH以上である場合は、判定部467Aは、当該キャパシタ30の劣化は許容範囲から逸脱していると判定し、判定結果を抽出周波数成分Fext2の電圧VFextに対応付けて記憶部461に格納する(ステップS250)。
 次に、ステップS240又はステップS250の処理を終えると、表示処理部468は、キャパシタ30の判定結果を、表示器45に表示させて(ステップS260)、一連の処理を終了させる。
 以上の処理により、キャパシタ診断装置40Aはキャパシタ30の状態を判定することができる。
 第2の実施形態によれば、直流リンクに対して並列に接続されるキャパシタユニット31と、キャパシタユニット32とによって平滑化された直流電力を力行運転によって交流電力に変換する逆変換装置50について診断する。キャパシタ診断装置40Aは、電圧検出器44と、高速フーリエ変換部465Aと、抽出部466Aと、判定部467Aとを備える。電圧検出器44は、直流リンクの電圧を検出する。高速フーリエ変換部465Aは、逆変換装置50の力行運転中に検出された電圧検出器44の検出結果に基づいた周波数スペクトルFSv(第3周波数スペクトル)を生成する。抽出部466Aは、逆変換装置50の構成に依存する周波数に係る特定周波数帯の電圧成分を、周波数スペクトルFSvに基づいて抽出する。判定部467Aは、少なくとも抽出された特定周波数帯の電流成分の大きさに基づいて、キャパシタ30の状態を診断することにより、キャパシタ30の劣化を容易に検出することができる。電圧検出器44は、センサの一例である。電圧検出器44によって検出される電圧値は、物理量の一例である。
(第2の実施形態の変形例)
 第2の実施形態の変形例について説明する。
 第2の実施形態において、図8に示す1つの判定基準を有する第2の判定基準を用いて判定する事例について説明した。本変形例では、図10を参照して、複数の判定基準を含む第3の判定基準を用いて判定する事例について説明する。図10は、第2の実施形態の変形例におけるキャパシタ30の第3の判定基準を説明するための図である。図10に示すグラフには、図8に示したグラフと同様に各キャパシタユニットの容量が約10%から100%までの範囲で、右肩下がりの直線GV1と直線GV2とが描かれている。直線GV2は、直線GV1に比べて傾きが緩やかである。
 電動機3の消費電力が変動すると、電動機3に流れる電流が変化する。また、これに伴い、直流リンクのリプル電圧の大きさも変化する。そこで、本変形例における第3の判定基準は、負荷電流検出器70によって検出された電動機3に流れる交流電流(交流負荷電流)の検出値の大きさに対応付けられた交流負荷電流依存の判定基準にする。その場合、電動機3に流れる交流電流の検出値が大きいほど、閾値電圧VTHを大きくするとよい。例えば、電動機3に流れる電流が比較的多いときに直線GV1を利用して、電動機3に流れる電流が比較的少ないときに直線GV2を利用する。
 例えば、判定部467Aは、電動機3に流れる電流の大きさに基づいて、選択可能な特性値の中から適した特性値を選択して、これを判定基準に定める。例えば、第3の判定基準は、閾値電圧VTH1と、閾値電圧VTH2とを閾値として用いる。なお、閾値電圧VTH1は、閾値電圧VTHと同じである。
 上記のように規定された閾値電圧VTH1と閾値電圧VTH2とを利用することで、判定部467Aは、少なくとも抽出した特定周波数帯の成分の大きさと、電動機3に流れる交流電流の検出値とに基づいて、キャパシタ30の状態を診断することができる。
 これにより、電動機3の消費電力の変動に伴って直流リンクのリプル電圧の大きさが変動する場合であっても、電動機3の消費電力の変動に影響されずに、キャパシタ30の状態を診断できる。
(第3の実施形態)
 第3の実施形態の電力変換システム2Bについて説明する。
 第3の実施形態の電力変換システム2Bは、劣化状態にあるキャパシタ30を特定して、その後、キャパシタ30内の各キャパシタユニットの状態を診断する。以下、これについて説明する。
 図11は、第3の実施形態の電力変換システム2Bの構成図である。
 図11に示された電力変換システム2Bは、前述の電力変換システム2におけるキャパシタ診断装置40に代えてキャパシタ診断装置40Bを備える。
 図12は、第3の実施形態のキャパシタ診断装置40Bの構成図である。
 図12に示されたキャパシタ診断装置40Bは、キャパシタ診断装置40の解析処理ユニット46に代えて解析処理ユニット46Bを備える。
 解析処理ユニット46Bは、解析処理ユニット46の高速フーリエ変換部465、抽出部466、判定部467に代えて、高速フーリエ変換部465B、抽出部466B、判定部467Bを備える。
 高速フーリエ変換部465Bは、前述の高速フーリエ変換部465と高速フーリエ変換部465Aの処理を実施する。前述した高速フーリエ変換部465と高速フーリエ変換部465Aの説明中の高速フーリエ変換部465と高速フーリエ変換部465Aの表記を高速フーリエ変換部465Bと読み替える。
 抽出部466Bは、前述の抽出部466と抽出部466Aの処理を実施する。前述した抽出部466と抽出部466Aの説明中の抽出部466と抽出部466Aの表記を抽出部466Bと読み替える。
 判定部467Bは、前述の判定部467と判定部467Aの処理を実施する。前述した判定部467と判定部467Aの説明中の判定部467と判定部467Aの表記を判定部467Bと読み替える。
 解析処理ユニット46Bは、上記の構成を有することにより、電圧値取得部464から受け取った所定の数の電圧検出値に対するFFT処理を行い、所定の条件を満たす場合に、電流値取得部462から受け取った所定の数の電流検出値に対するFFT処理を行う。
 図13は、第3の実施形態のキャパシタの状態を診断する処理のフローチャートである。
 すでに、第1の実施形態において、各キャパシタユニットに流れる電流の特定周波数成分の大きさに基づいて、各キャパシタユニットの状態を診断する電力変換システム2について説明した。また、第2の実施形態において、複数のキャパシタユニットを含むキャパシタ30の状態を診断する電力変換システム2Aについて説明した。本実施形態では、第1の実施形態と第2の実施形態との相違点を中心に説明する。
 まず、キャパシタ診断装置40Bの解析処理ユニット46Bは、ステップS200からS220までの処理を実施する。
 次に、判定部467Bは、記憶部461に記憶させた抽出周波数成分Fext2の電圧VFextが、予め定められた閾値電圧VTHよりも小さいか否か判定する(ステップS230)。電圧VFextが閾値電圧VTHよりも小さい場合は、判定部467Bは、当該キャパシタ30の劣化は許容範囲にあると判定し、判定結果を抽出周波数成分Fext2の電圧VFextに対応付けて記憶部461に格納する(ステップS240)。
 一方、電圧VFextが閾値電圧VTH以上である場合は、判定部467Bは、当該キャパシタ30の劣化は許容範囲から逸脱していると判定し、判定結果を抽出周波数成分Fext2の電圧VFextに対応付けて記憶部461に格納する(ステップS250)。
 次に、解析処理ユニット46Bは、当該キャパシタ30内のキャパシタユニットごとの判定処理を実施する(ステップS270)。このキャパシタユニットごとの判定処理は、当該キャパシタ30内のキャパシタユニットごとに、前述の図5のステップS100からS150までの処理を実施するものである。この判定処理により、当該キャパシタ30内の劣化キャパシタユニットと健全キャパシタユニットが識別される。
 次に、ステップS240又はステップS270の処理を終えると、表示処理部468は、キャパシタ30ごとの判定結果と、キャパシタユニットごとの判定結果とを、表示器45に表示させて(ステップS260A)、一連の処理を終了させる。
 上記の実施形態によれば、解析処理ユニット46Bは、逆変換装置50の力行運転中に検出された電圧検出器44の検出結果に基づいた周波数スペクトルFSv(第3周波数スペクトル)を生成して、キャパシタ30の劣化の状態を判定する。さらに、周波数スペクトルFSvに基づいた判定の結果においてキャパシタ30の劣化が検出された場合には、逆変換装置50の力行運転中に検出された電流検出器42の検出結果に基づいた周波数スペクトルFSi(第1周波数スペクトルと第2周波数スペクトル)を生成し、各キャパシタユニットの状態を判定する。これにより、キャパシタ30レベルの判定と、各キャパシタユニットレベルの判定を分けて実施することができることから、判定に係る処理を簡素化することが可能になる。
 以上説明した少なくとも一つの実施形態によれば、キャパシタ診断装置は、センサと、周波数スペクトル解析部と、周波数成分抽出部と、診断処理部とを備える。センサは、直流リンクに対して並列に接続されるキャパシタによって平滑化された直流電力を力行運転によって交流電力に変換する電力変換ユニットにおける前記キャパシタに流れる電流を検出する。周波数スペクトル解析部は、電力変換ユニットの力行運転中に検出されたセンサの検出結果に基づいた周波数スペクトルを生成する。周波数成分抽出部は、前記電力変換ユニットの構成に依存する周波数に係る特定周波数帯の成分を、前記第1周波数スペクトルに基づいて抽出する。診断処理部は、少なくとも前記抽出された特定周波数帯の成分の大きさに基づいて、前記キャパシタの状態を診断する。これにより、キャパシタ診断装置は、キャパシタの劣化を容易に検出することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 上記に説明した実施形態においては、逆変換装置50の交流出力の基本周波数は、所定の値に固定されていてもよく、電動機3を加減速するなどのために逆変換装置50の交流出力の基本周波数がリアルタイムに変更されてもよい。この場合、キャパシタ診断装置40は、逆変換装置50の交流出力の基本周波数が、キャパシタ診断装置40が検出する周波数帯に干渉しないときに、所定の診断処理を実施するとよい。
 1…交流電源、2、2A、2B…電力変換システム、3…電動機、20…順変換装置、30…キャパシタ、31、32、33…キャパシタユニット、40、40A、40B…キャパシタ診断装置、50…逆変換装置、60…制御部、70…負荷電流検出器、42…電流検出器、420、423…電流センサユニット、421…電流センサユニット(第1電流センサ)、422…電流センサユニット(第2電流センサ)、44…電圧検出器、46、46A、46B…解析処理ユニット、465、465A、465B…高速フーリエ変換部、466、466A,466B…抽出部、467、467A,467B…判定部

Claims (14)

  1.  直流リンクに対して並列に接続されるキャパシタによって平滑化された直流電力を力行運転によって交流電力に変換する電力変換ユニットにおける前記キャパシタに流れる電流によって変化する物理量を検出するセンサと、
     前記電力変換ユニットの前記力行運転中に検出された前記センサによって検出された前記物理量に基づいた周波数スペクトルを生成する周波数スペクトル解析部と、
     前記電力変換ユニットの構成に依存する周波数に係る特定周波数帯の成分を、前記周波数スペクトルに基づいて抽出する周波数成分抽出部と、
     少なくとも前記抽出された特定周波数帯の成分の大きさに基づいて、前記キャパシタの状態を診断する診断処理部と
     を備えるキャパシタ診断装置。
  2.  前記キャパシタは、第1キャパシタユニットと第2キャパシタユニットを含み、
     前記センサは、前記第1キャパシタユニットに流れる電流を検出する第1電流センサを含み、
     前記周波数スペクトル解析部は、
     前記電力変換ユニットの前記力行運転中に検出された前記第1電流センサの検出結果に基づいた第1周波数スペクトルを生成する第1周波数スペクトル解析部を含み、
     前記周波数スペクトルには、前記第1周波数スペクトルが含まれ、
     前記周波数成分抽出部は、
     前記特定周波数帯の成分として、前記特定周波数帯の電流成分を、前記第1周波数スペクトルに基づいて抽出し、
     前記診断処理部は、
     少なくとも前記抽出された特定周波数帯の電流成分の大きさに基づいて、前記第1キャパシタユニットの状態を診断する
     請求項1に記載のキャパシタ診断装置。
  3.  前記電力変換ユニットは、固定のキャリア周波数のキャリア信号を用いたPWM制御によって制御されることにより前記直流電力を前記交流電力に変換する際にスイッチングするスイッチング素子を備えていて、
     前記周波数成分抽出部は、
     前記生成された第1周波数スペクトルに基づいて、前記キャリア周波数の整数倍の周波数を基準に規定される周波数帯の電流成分を、前記特定周波数帯の電流成分として抽出する、
     請求項2に記載のキャパシタ診断装置。
  4.  前記周波数成分抽出部は、
     前記キャリア周波数に基づいて決定された前記特定周波数帯の電流成分の大きさを抽出する、
     請求項3に記載のキャパシタ診断装置。
  5.  前記診断処理部の判定基準は、
     前記特定周波数帯の電流成分の大きさと前記キャパシタの劣化状況との関係に基づいて規定され、
     前記診断処理部は、
     前記抽出された特定周波数帯の電流成分の大きさを前記判定基準に基づいて判定して、前記判定の結果に基づいて前記第1キャパシタユニットの状態を診断する、
     請求項2に記載のキャパシタ診断装置。
  6.  前記直流リンクの第1極からの分岐路と、前記分岐路からさらに分岐された第1分岐路と第2分岐路とが形成されていて、
     前記第1分岐路には前記第1キャパシタユニットの第1極端子が接続され、前記第1キャパシタユニットの第2極端子が前記直流リンクの第2極に接続され、
     前記第2分岐路には前記第2キャパシタユニットの第1極端子が接続され、前記第2キャパシタユニットの第2極端子が前記直流リンクの第2極に接続され、
     前記第1電流センサは、
     前記第1分岐路に流れる電流を検出する
     請求項2に記載のキャパシタ診断装置。
  7.  前記センサは、
     前記第2分岐路に流れる電流を検出する第2電流センサを含み、
     前記第1周波数スペクトル解析部は、
     前記電力変換ユニットの前記力行運転中に検出された前記第2電流センサの検出結果に基づいた第2周波数スペクトルを生成し、
     前記周波数成分抽出部は、
     前記特定周波数帯の電流成分を、前記第2周波数スペクトルに基づいて抽出し、
     前記診断処理部は、
     前記第2周波数スペクトルに基づいて抽出された前記特定周波数帯の電流成分の大きさに基づいて、前記第2キャパシタユニットの状態を診断する
     請求項6に記載のキャパシタ診断装置。
  8.  前記センサは、前記直流リンクの電圧を検出する第1電圧センサを含み、
     前記周波数スペクトル解析部は、
     前記電力変換ユニットの前記力行運転中に検出された前記第1電圧センサの検出結果に基づいた第3周波数スペクトルを生成する第3周波数スペクトル解析部を含み、
     前記周波数スペクトルには、前記第3周波数スペクトルが含まれ、
     前記周波数成分抽出部は、
     前記特定周波数帯の成分として、前記特定周波数帯の電圧成分を、前記第3周波数スペクトルに基づいて抽出し、
     前記診断処理部は、
     少なくとも前記抽出された特定周波数帯の電圧成分の大きさに基づいて、前記キャパシタの状態を診断する
     請求項1に記載のキャパシタ診断装置。
  9.  前記電力変換ユニットは、固定のキャリア周波数のキャリア信号を用いたPWM制御によって制御されることにより前記直流電力を前記交流電力に変換するスイッチング素子を備えていて、
     前記周波数成分抽出部は、
     前記生成された第3周波数スペクトルに基づいて、前記キャリア周波数の整数倍の周波数を基準に規定される周波数帯の電流成分を、前記特定周波数帯の電流成分として抽出する、
     請求項8に記載のキャパシタ診断装置。
  10.  前記周波数成分抽出部は、
     前記キャリア周波数に基づいて決定された前記特定周波数帯の電圧成分の大きさを抽出する、
     請求項9に記載のキャパシタ診断装置。
  11.  前記診断処理部の判定基準は、
     前記特定周波数帯の電圧成分の大きさと前記キャパシタの劣化状況との関係に基づいて規定され、
     前記診断処理部は、
     前記抽出された特定周波数帯の電圧成分の大きさを前記判定基準に基づいて判定して、前記判定の結果に基づいて前記キャパシタの状態を診断する、
     請求項8に記載のキャパシタ診断装置。
  12.  前記電力変換ユニットから負荷に流れる交流電流を検出する第2電流センサ
     を備え、
     前記診断処理部は、
     少なくとも前記抽出した特定周波数帯の成分の大きさと、前記交流電流の検出値とに基づいて、前記キャパシタの状態を診断する、
     請求項8に記載のキャパシタ診断装置。
  13.  前記診断処理部の判定基準は、
     前記電力変換ユニットから前記負荷に流れる電流の大きさと、前記特定周波数帯の電圧成分の大きさと前記キャパシタの劣化状況との関係に基づいて規定され、
     前記診断処理部は、
     前記判定基準に基づいて、前記抽出された特定周波数帯の電圧成分の大きさを判定して、前記判定の結果に基づいて前記キャパシタの状態を診断する、
     請求項12に記載のキャパシタ診断装置。
  14.  直流リンクに対して並列に接続されるキャパシタによって平滑化された直流電力を力行運転によって交流電力に変換する電力変換ユニットにおける前記キャパシタに流れる電流によって変化する物理量をセンサによって検出し、
     前記電力変換ユニットの前記力行運転中に検出された前記センサによって検出された前記物理量に基づいた周波数スペクトルを生成し、
     前記電力変換ユニットの構成に依存する周波数に係る特定周波数帯の成分を、前記周波数スペクトルに基づいて抽出し、
     少なくとも前記抽出された特定周波数帯の成分の大きさに基づいて、前記キャパシタの状態を診断するステップ
     を含むキャパシタ診断方法。
PCT/JP2019/028983 2019-07-24 2019-07-24 キャパシタ診断装置及びキャパシタ診断方法 WO2021014604A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019569496A JP6800352B1 (ja) 2019-07-24 2019-07-24 キャパシタ診断装置及びキャパシタ診断方法
US17/265,979 US11632035B2 (en) 2019-07-24 2019-07-24 Capacitor diagnosis device and capacitor diagnosis method
CN201980004161.9A CN112639492A (zh) 2019-07-24 2019-07-24 电容器诊断装置以及电容器诊断方法
PCT/JP2019/028983 WO2021014604A1 (ja) 2019-07-24 2019-07-24 キャパシタ診断装置及びキャパシタ診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028983 WO2021014604A1 (ja) 2019-07-24 2019-07-24 キャパシタ診断装置及びキャパシタ診断方法

Publications (1)

Publication Number Publication Date
WO2021014604A1 true WO2021014604A1 (ja) 2021-01-28

Family

ID=73740973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028983 WO2021014604A1 (ja) 2019-07-24 2019-07-24 キャパシタ診断装置及びキャパシタ診断方法

Country Status (4)

Country Link
US (1) US11632035B2 (ja)
JP (1) JP6800352B1 (ja)
CN (1) CN112639492A (ja)
WO (1) WO2021014604A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489713B2 (ja) 2020-11-09 2024-05-24 国立大学法人九州工業大学 キャパシタ寿命診断装置及びキャパシタ寿命診断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165357A (ja) * 2000-11-27 2002-06-07 Canon Inc 電力変換装置およびその制御方法、および発電システム
WO2004070402A1 (ja) * 2003-02-07 2004-08-19 Atec Co., Ltd. 電気設備の高調波診断方法
JP2005251185A (ja) * 2004-02-05 2005-09-15 Toenec Corp 電気設備診断システム
JP2007252057A (ja) * 2006-03-15 2007-09-27 Hisahiro Sasaki インバータ診断装置
JP2016019309A (ja) * 2014-07-04 2016-02-01 富士通株式会社 電源装置、制御装置及びそのプログラム
JP2018191446A (ja) * 2017-05-09 2018-11-29 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
US20190058428A1 (en) * 2017-08-17 2019-02-21 Alstom Transport Technologies Method for determining a state of a bearing, module for determining a state of a bearing, railway vehicle and system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222457B2 (ja) * 2005-09-26 2013-06-26 株式会社日立製作所 センサおよびセンサモジュール
KR100998577B1 (ko) * 2007-08-29 2010-12-07 주식회사 와튼 전력변환장치의 노화상태 진단장치 및 이의 진단방법
JP2011055590A (ja) 2009-08-31 2011-03-17 Jfe Steel Corp 電力変換装置及び電力変換装置の異常検出方法
US8466689B2 (en) * 2010-03-31 2013-06-18 General Electric Company Methods and systems for monitoring capacitor banks
CN103222175B (zh) * 2010-09-29 2015-07-01 松下电器产业株式会社 电力变换装置
US8796982B2 (en) * 2011-12-15 2014-08-05 Eaton Corporation System and method for detecting phase loss and diagnosing DC link capacitor health in an adjustable speed drive
US9294005B2 (en) * 2013-10-01 2016-03-22 Rockwell Automation Technologies, Inc. Method and apparatus for detecting AFE filter capacitor degradation
CN104020357B (zh) * 2014-05-29 2017-03-29 南京航空航天大学 一种直流偏压下的电容测试电路及测试方法
JP5874800B1 (ja) * 2014-10-15 2016-03-02 ダイキン工業株式会社 直接型電力変換器用制御装置
JP6500522B2 (ja) * 2015-03-16 2019-04-17 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体
CN106208729B (zh) * 2015-05-25 2020-01-21 松下知识产权经营株式会社 电力变换装置
JP6666551B2 (ja) * 2016-04-07 2020-03-18 富士通株式会社 コンデンサ寿命診断装置、コンデンサ寿命診断方法及びプログラム
CN107017762B (zh) * 2017-02-21 2019-10-08 三峡大学 一种直流电容器谐波电流抑制方法
DE112018007585B4 (de) * 2018-06-13 2021-12-23 Mitsubishi Electric Corporation Vorrichtung zum Schätzen der Kapazität von Kondensatoren, Kraftfahrzeug-Steuersystem, FA-System und Verfahren zum Schätzen der Kapazität von Kondensatoren

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165357A (ja) * 2000-11-27 2002-06-07 Canon Inc 電力変換装置およびその制御方法、および発電システム
WO2004070402A1 (ja) * 2003-02-07 2004-08-19 Atec Co., Ltd. 電気設備の高調波診断方法
JP2005251185A (ja) * 2004-02-05 2005-09-15 Toenec Corp 電気設備診断システム
JP2007252057A (ja) * 2006-03-15 2007-09-27 Hisahiro Sasaki インバータ診断装置
JP2016019309A (ja) * 2014-07-04 2016-02-01 富士通株式会社 電源装置、制御装置及びそのプログラム
JP2018191446A (ja) * 2017-05-09 2018-11-29 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
US20190058428A1 (en) * 2017-08-17 2019-02-21 Alstom Transport Technologies Method for determining a state of a bearing, module for determining a state of a bearing, railway vehicle and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489713B2 (ja) 2020-11-09 2024-05-24 国立大学法人九州工業大学 キャパシタ寿命診断装置及びキャパシタ寿命診断方法

Also Published As

Publication number Publication date
US20220137155A1 (en) 2022-05-05
JP6800352B1 (ja) 2020-12-16
JPWO2021014604A1 (ja) 2021-09-13
CN112639492A (zh) 2021-04-09
US11632035B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
US10073128B2 (en) Leak detection device
JP5837534B2 (ja) インバータの直流リンクコンデンサ診断装置
US9455569B2 (en) Procedures for the operation of an electrical circuit
US11502620B2 (en) Voltage supply system and power source constituting same
US20170361716A1 (en) Power conversion system
EP3037830A1 (en) Battery monitoring device
US20210293865A1 (en) Insulation resistance detection device
JP6800352B1 (ja) キャパシタ診断装置及びキャパシタ診断方法
CN115885469A (zh) 异常诊断装置、功率转换装置及异常诊断方法
EP2940851A1 (en) Power conversion device and power conversion method
US10110139B1 (en) Matrix converter and method for determining constants of alternating-current motor
CN109494984B (zh) Dc/dc转换器装置
US9887645B2 (en) Motor drive apparatus having function of suppressing temporal variation of regenerative current
JP2008228359A (ja) 電気車両の蓄電装置及び蓄電装置システム
US20200274477A1 (en) Fault determination apparatus, motor driving system, and failure determination method
JP2021023097A (ja) 制御デバイス、インバータ、インバータおよび電気機械を備える装置、インバータを動作させる方法、ならびに、コンピュータープログラム
JPH11160377A (ja) 電力変換器用コンデンサの劣化検出方式
CN111262461B (zh) 一种驱动控制方法、驱动控制装置及计算机可读存储介质
US10189370B2 (en) Electrical source control apparatus for converter switch temperature control
WO2017144086A1 (en) Power supply for providing an electrical pulse to an electrical consumer and a tester comprising the power supply
EP4270766A1 (en) Power conversion device, and control method
JPH07184376A (ja) インバータ装置
CN114008907B (zh) 电力转换装置和劣化诊断系统
US20170101028A1 (en) Electrical source control apparatus
CN111433615B (zh) 待充电设备的适配器老化检测方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569496

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938624

Country of ref document: EP

Kind code of ref document: A1