WO2021012770A1 - 光学成像镜头组 - Google Patents
光学成像镜头组 Download PDFInfo
- Publication number
- WO2021012770A1 WO2021012770A1 PCT/CN2020/091850 CN2020091850W WO2021012770A1 WO 2021012770 A1 WO2021012770 A1 WO 2021012770A1 CN 2020091850 W CN2020091850 W CN 2020091850W WO 2021012770 A1 WO2021012770 A1 WO 2021012770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical imaging
- imaging lens
- object side
- image side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- the present application relates to an optical imaging lens set, and more specifically, to an optical imaging lens set including six lenses.
- optical imaging lens sets are playing an increasingly important role in people's work and life.
- the telephoto imaging lens group occupies an important place among many imaging lens groups due to its advantages in long-distance photography.
- the ordinary short-focus imaging lens group can clearly image the scene when shooting at a short distance, it cannot clearly image the scene on the detector when shooting at a long distance.
- the method of magnifying the shooting picture to make the scene clear will make the picture appear more noise and produce a sense of smear.
- the long-focus imaging lens group can achieve long-distance clear imaging with its long-focus characteristics, and can still maintain a clear picture even when the object is doubled. Therefore, in order to achieve clearer imaging during long-distance shooting, it is necessary to use an optical imaging lens group with a longer focal length.
- the present application provides an optical imaging lens set suitable for portable electronic products, which can at least solve or partially solve at least one of the above-mentioned shortcomings in the prior art.
- the optical imaging lens group includes: an aperture; a first lens having a positive refractive power and a convex object side surface along the optical axis from the object side to the image side. ; A second lens with refractive power; a third lens with negative refractive power; a fourth lens with refractive power, with a convex object side surface and a concave image side surface; a fifth lens with refractive power; The sixth lens with negative refractive power has a concave image side surface.
- the fifth lens may have a positive refractive power, and its effective focal length f5 and the half field angle ⁇ of the optical imaging lens group may satisfy: 0.50mm ⁇ f5 ⁇ (tan ⁇ ) 2 ⁇ 1.00mm.
- the distance from the object side of the first lens to the imaging surface of the optical imaging lens group on the optical axis TTL, the total effective focal length f of the optical imaging lens group and the effective pixel area of the imaging surface of the optical imaging lens group Half of the diagonal length of ImgH can satisfy: ImgH/f ⁇ TTL>3.50mm.
- the radius of curvature R9 of the object side surface of the fifth lens and the radius of curvature R10 of the image side surface of the fifth lens may satisfy: 3.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00.
- the curvature radius R1 of the object side surface of the first lens and the curvature radius R6 of the image side surface of the third lens may satisfy: 1.00 ⁇ R6/R1 ⁇ 2.00.
- the on-axis distance from the intersection of the object side surface of the fifth lens and the optical axis to the vertex of the effective radius of the object side surface of the fifth lens SAG51 and the intersection of the image side surface of the fifth lens and the optical axis to the image side surface of the fifth lens can satisfy: 1.40 ⁇ SAG52/SAG51 ⁇ 2.00.
- the total effective focal length f of the optical imaging lens group, the effective focal length f1 of the first lens, and the effective focal length f2 of the second lens may satisfy: 1.50 ⁇ (f1+f2)/f ⁇ 4.00.
- the separation distance T34 between the third lens and the fourth lens on the optical axis and the central thickness CT3 of the third lens on the optical axis may satisfy: 0.50 ⁇ CT3/T34 ⁇ 1.50.
- the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, and the radius of curvature R1 of the object side surface of the first lens may satisfy: 15.00mm ⁇ f2/f1 ⁇ R1 ⁇ 40.00mm.
- the sum of the distance TD from the object side surface of the first lens to the image side surface of the sixth lens on the optical axis and the central thickness of the first lens to the sixth lens on the optical axis ⁇ CT may satisfy: 1.50 ⁇ TD/ ⁇ CT ⁇ 2.50.
- the maximum effective radius DT11 of the object side surface of the first lens and the maximum effective radius DT12 of the image side surface of the first lens may satisfy: 30.00 ⁇ (DT11+DT12)/(DT11-DT12) ⁇ 50.50.
- the total effective focal length f of the optical imaging lens group may satisfy: f>23.50mm.
- This application uses six aspherical lenses. By reasonably distributing the refractive power, surface shape, center thickness of each lens, and on-axis distance between each lens, the above-mentioned optical imaging lens group is ultra-thin, At least one beneficial effect such as long focal length and high imaging quality.
- FIG. 1 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 1 of the present application
- 2A to 2D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens set of Embodiment 1;
- FIG. 3 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 2 of the present application
- 4A to 4D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens set of Embodiment 2;
- FIG. 5 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 3 of the present application.
- 6A to 6D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens set of Embodiment 3;
- FIG. 7 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 4 of the present application.
- 8A to 8D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens group of the embodiment 4;
- FIG. 9 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 5 of the present application.
- 10A to 10D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens set of Embodiment 5;
- FIG. 11 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 6 of the present application.
- 12A to 12D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens set of Embodiment 6.
- first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
- the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
- the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
- the drawings are only examples and are not drawn strictly to scale.
- the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
- the optical imaging lens group may include a diaphragm and six lenses with optical power, which are a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens, respectively. lens.
- the six lenses are arranged in order from the object side to the image side along the optical axis. Any two adjacent lenses among the first lens to the sixth lens may have an interval distance between them.
- the first lens may have positive refractive power, and its object side surface is convex; the second lens may have refractive power; the third lens may have negative refractive power; the fourth lens may have refractive power, The object side surface is convex, and the image side surface is concave; the fifth lens may have refractive power; the sixth lens may have negative refractive power, and the image side surface is concave.
- the optical imaging lens set according to the present application may satisfy: 0.50mm ⁇ f5 ⁇ (tan ⁇ ) 2 ⁇ 1.00mm, where f5 is the effective focal length of the fifth lens, and ⁇ is half of the optical imaging lens set. Angle of view. More specifically, ⁇ can further satisfy 0.55 mm ⁇ f5 ⁇ (tan ⁇ ) 2 ⁇ 0.85 mm. Satisfy 0.50mm ⁇ f5 ⁇ (tan ⁇ ) 2 ⁇ 1.00mm, the field of view can be controlled within a certain range, so that the refraction of incident light in the first mirror is more relaxed, preventing excessive aberrations from increasing, and helping to improve Image quality.
- the fifth lens may have a positive refractive power. The optical power of the fifth lens is distributed reasonably to prevent the light from being too bent, which is beneficial to correct the curvature of the optical imaging lens group and correct the distortion of the optical imaging lens group.
- the optical imaging lens set according to the present application may satisfy: ImgH/f ⁇ TTL>3.50mm, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging lens set on the optical axis Distance, f is the total effective focal length of the optical imaging lens group, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group. More specifically, TTL, f, and ImgH can further satisfy ImgH/f ⁇ TTL>3.58 mm.
- Satisfy ImgH/f ⁇ TTL>3.50mm can control the total length of the lens group within a certain range while ensuring that the lens group has a long focal length, which is beneficial to ensure the compactness of the optical imaging lens group and also helps prevent aberrations Excessive enlargement can help improve image quality.
- the optical imaging lens group according to the present application may satisfy: 3.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00.
- R9 is the radius of curvature of the object side surface of the fifth lens
- R10 is the radius of curvature of the image side surface of the fifth lens. More specifically, R9 and R10 may further satisfy: 3.10 ⁇ (R9+R10)/(R9-R10) ⁇ 4.90. Satisfying 3.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00 is beneficial to better balance the aberration of the optical imaging lens group.
- the optical imaging lens group according to the present application may satisfy: 1.00 ⁇ R6/R1 ⁇ 2.00.
- R1 is the radius of curvature of the object side of the first lens
- R6 is the radius of curvature of the image side of the third lens. More specifically, R1 and R6 may further satisfy 1.05 ⁇ R6/R1 ⁇ 1.80. Satisfying 1.00 ⁇ R6/R1 ⁇ 2.00 can effectively prevent the incident light from being excessively bent after passing through the first lens and the third lens, which is beneficial to better balance the aberration of the optical imaging lens group.
- the optical imaging lens group according to the present application may satisfy: 1.40 ⁇ SAG52/SAG51 ⁇ 2.00.
- SAG51 is the on-axis distance from the intersection of the object side of the fifth lens and the optical axis to the vertex of the effective radius of the object side of the fifth lens
- SAG52 is the distance from the intersection of the image side of the fifth lens and the optical axis to the image side of the fifth lens.
- SAG51 and SAG52 can further satisfy: 1.45 ⁇ SAG52/SAG51 ⁇ 1.80. Satisfying 1.40 ⁇ SAG52/SAG51 ⁇ 2.00 can effectively prevent the fifth lens from being too curved, thereby reducing the processing difficulty, and at the same time, it can better balance the chromatic aberration and distortion of the optical imaging lens group.
- the optical imaging lens group according to the present application may satisfy: 1.50 ⁇ (f1+f2)/f ⁇ 4.00.
- f is the total effective focal length of the optical imaging lens group
- f1 is the effective focal length of the first lens
- f2 is the effective focal length of the second lens. More specifically, f, f1, and f2 may further satisfy: 1.75 ⁇ (f1+f2)/f ⁇ 3.80.
- Satisfying 1.50 ⁇ (f1+f2)/f ⁇ 4.00 can effectively prevent the effective focal length of the first lens and the effective focal length of the second lens from being too large, reducing the sensitivity of the first lens and the second lens of the optical imaging lens group, and at the same time It is beneficial to better balance the aberration of the optical imaging lens group.
- the optical imaging lens set according to the present application may satisfy: 0.50 ⁇ CT3/T34 ⁇ 1.50.
- T34 is the distance between the third lens and the fourth lens on the optical axis
- CT3 is the center thickness of the third lens on the optical axis.
- T34 and CT3 can further satisfy: 0.55 ⁇ CT3/T34 ⁇ 1.30. Satisfying 0.50 ⁇ CT3/T34 ⁇ 1.50, not only can effectively reduce the size of the optical imaging lens group, avoid the volume of the optical imaging lens group is too large; but also can reduce the assembly difficulty of the optical imaging lens group, and achieve a higher optical imaging lens group Space utilization.
- the optical imaging lens group according to the present application may satisfy: 15.00mm ⁇ f2/f1 ⁇ R1 ⁇ 40.00mm.
- f1 is the effective focal length of the first lens
- f2 is the effective focal length of the second lens
- R1 is the radius of curvature of the object side surface of the first lens.
- f1, f2, and R1 may further satisfy: 15.30mm ⁇ f2/f1 ⁇ R1 ⁇ 38.00mm. Satisfying 15.00mm ⁇ f2/f1 ⁇ R1 ⁇ 40.00mm, which can prevent the incident light from being excessively bent after passing through the optical imaging lens group, is beneficial to correct the curvature of the optical imaging lens group, and can also correct the distortion of the optical imaging lens group.
- the optical imaging lens group according to the present application may satisfy: 1.50 ⁇ TD/ ⁇ CT ⁇ 2.50.
- TD is the distance from the object side of the first lens to the image side of the sixth lens on the optical axis
- ⁇ CT is the sum of the central thickness of the first lens to the sixth lens on the optical axis. More specifically, TD and ⁇ CT can further satisfy: 1.70 ⁇ TD/ ⁇ CT ⁇ 2.30.
- Satisfying 1.50 ⁇ TD/ ⁇ CT ⁇ 2.50 can ensure the processing and assembly characteristics of the lenses of the optical imaging lens group, which is beneficial to reduce the deflection of incident light, adjust the field curvature of the optical imaging lens group, and reduce the sensitivity of the optical imaging lens group , And then obtain better imaging quality of the optical imaging lens group.
- the optical imaging lens set according to the present application may satisfy: 30.00 ⁇ (DT11+DT12)/(DT11-DT12) ⁇ 50.50.
- DT11 is the maximum effective radius of the object side of the first lens
- DT12 is the maximum effective radius of the image side of the first lens.
- DT11 and DT12 may further satisfy: 31.00 ⁇ (DT11+DT12)/(DT11-DT12) ⁇ 50.40. Satisfying 30.00 ⁇ (DT11+DT12)/(DT11-DT12) ⁇ 50.50, which can effectively prevent the effective radius difference between the object side and the image side of the first lens from being too large, which is beneficial to the processing and molding of the lenses of the optical imaging lens group. It is beneficial to improve the stability of the performance of the optical imaging lens group.
- the optical imaging lens set according to the present application may satisfy: f>23.50mm.
- f is the total effective focal length of the optical imaging lens group. More specifically, f can further satisfy: f>23.60mm. Satisfying f>23.50mm can ensure that the optical imaging lens group still has a good resolution when shooting at a long distance, and at the same time, it is beneficial to realize the higher magnification zoom function of the optical imaging lens group.
- the above-mentioned optical imaging lens set may further include a filter used to correct color deviation and/or a protective glass used to protect the photosensitive element located on the imaging surface.
- This application proposes a six-element optical imaging lens group with a long focal length and an aspheric surface.
- the optical imaging lens set according to the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
- the machinability makes the optical imaging lens group more conducive to production and processing.
- At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one of the object side surface of the first lens to the image side surface of the sixth lens is an aspheric mirror surface.
- the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens.
- an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatic aberration. After the aspheric lens is used, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
- At least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens is an aspheric mirror surface.
- the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are aspheric mirror surfaces.
- the number of lenses constituting the optical imaging lens group can be changed to obtain the various results and advantages described in this specification.
- the optical imaging lens group is not limited to including six lenses. If necessary, the optical imaging lens group may also include other numbers of lenses.
- FIG. 1 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 1 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is convex.
- the second lens E2 has positive refractive power, the object side surface S3 is concave, and the image side surface S4 is convex.
- the third lens E3 has negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 1 shows the basic parameter table of the optical imaging lens group of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- the total effective focal length f of the optical imaging lens group is 24.00mm
- the total length of the optical imaging lens group is TTL (that is, from the object side S1 of the first lens E1 to the imaging surface S15 of the optical imaging lens group on the optical axis The distance above) is 20.30mm
- the diagonal half of the effective pixel area ImgH on the imaging surface S15 of the optical imaging lens group is 4.30mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 9.9°
- Example 1 the object side and image side of any one of the first lens E1 to the sixth lens E6 are aspherical, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
- x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
- k is the conic coefficient;
- Ai is the correction coefficient of the i-th order of the aspheric surface.
- Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspheric mirror surface S1-S12 in Example 1.
- FIG. 2A shows the on-axis chromatic aberration curve of the optical imaging lens set of Embodiment 1, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
- 2B shows the astigmatism curve of the optical imaging lens group of Example 1, which represents meridional field curvature and sagittal field curvature.
- FIG. 2C shows a distortion curve of the optical imaging lens set of Embodiment 1, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 2D shows the chromatic aberration curve of magnification of the optical imaging lens set of Embodiment 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 2A to 2D, it can be seen that the optical imaging lens set provided in Embodiment 1 can achieve good imaging quality.
- FIG. 3 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 2 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
- the third lens E3 has a negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- the total effective focal length f of the optical imaging lens group is 23.70mm
- the total length TTL of the optical imaging lens group is 20.20mm
- the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens group ImgH is 4.23mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 9.9°
- the aperture value Fno is 3.04.
- Table 3 shows the basic parameter table of the optical imaging lens set of Embodiment 2, in which the units of the radius of curvature, thickness/distance and focal length are all millimeters (mm).
- Table 4 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 4A shows the axial chromatic aberration curve of the optical imaging lens set of Embodiment 2, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
- 4B shows the astigmatism curve of the optical imaging lens group of Example 2, which represents meridional field curvature and sagittal field curvature.
- FIG. 4C shows a distortion curve of the optical imaging lens set of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 4D shows the chromatic aberration curve of magnification of the optical imaging lens set of Embodiment 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 4A to 4D that the optical imaging lens set provided in Embodiment 2 can achieve good imaging quality.
- FIG. 5 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 3 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
- the third lens E3 has negative refractive power, the object side surface S5 is convex, and the image side surface S6 is concave.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- the total effective focal length f of the optical imaging lens group is 23.90mm
- the total length of the optical imaging lens group TTL is 20.30mm
- the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens group ImgH is 4.33mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 10.0°
- the aperture value Fno is 3.08.
- Table 5 shows the basic parameter table of the optical imaging lens group of Embodiment 3, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 6 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging lens set of Embodiment 3, which represents the deviation of the focus point of light rays of different wavelengths after passing through the lens.
- 6B shows the astigmatism curve of the optical imaging lens group of Example 3, which represents meridional field curvature and sagittal field curvature.
- FIG. 6C shows a distortion curve of the optical imaging lens set of Embodiment 3, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 6D shows the chromatic aberration curve of magnification of the optical imaging lens set of Embodiment 3, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging lens set provided in Embodiment 3 can achieve good imaging quality.
- FIG. 7 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 4 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
- the third lens E3 has negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- the total effective focal length f of the optical imaging lens group is 23.90mm
- the total length of the optical imaging lens group TTL is 20.30mm
- the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens group ImgH is 4.33mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 10.0°
- the aperture value Fno is 3.07.
- Table 7 shows the basic parameter table of the optical imaging lens set of Embodiment 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 8 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens set of Embodiment 4, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
- FIG. 8B shows the astigmatism curve of the optical imaging lens group of Example 4, which represents meridional field curvature and sagittal field curvature.
- FIG. 8C shows a distortion curve of the optical imaging lens set of Embodiment 4, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 8D shows the chromatic aberration curve of magnification of the optical imaging lens set of Embodiment 4, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 8A to 8D that the optical imaging lens set provided in Embodiment 4 can achieve good imaging quality.
- FIG. 9 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 5 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: stop STO, first lens E1, second lens E2, third lens E3, fourth lens E4, fifth lens E5, and second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
- the third lens E3 has negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- the total effective focal length f of the optical imaging lens group is 23.70mm
- the total length of the optical imaging lens group TTL is 20.40mm
- the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens group ImgH is 4.33mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 10.2°
- the aperture value Fno is 3.05.
- Table 9 shows the basic parameter table of the optical imaging lens set of Embodiment 5, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 10 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens set of Embodiment 5, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
- Fig. 10B shows the astigmatism curve of the optical imaging lens group of Example 5, which represents meridional field curvature and sagittal field curvature.
- FIG. 10C shows a distortion curve of the optical imaging lens set of Embodiment 5, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 10D shows the chromatic aberration curve of magnification of the optical imaging lens set of Embodiment 5, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens set provided in Embodiment 5 can achieve good imaging quality.
- FIG. 11 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 6 of the present application.
- the optical imaging lens group includes in order from the object side to the image side: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a second lens.
- the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is convex.
- the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
- the third lens E3 has negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
- the fifth lens E5 has a positive refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a convex surface.
- the sixth lens E6 has a negative refractive power
- the object side surface S11 is a convex surface
- the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- the total effective focal length f of the optical imaging lens group is 24.00mm
- the total length of the optical imaging lens group TTL is 20.30mm
- the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens group ImgH is 4.33mm
- the maximum half-field angle ⁇ of the optical imaging lens group is 10.0°
- the aperture value Fno is 3.06.
- Table 11 shows the basic parameter table of the optical imaging lens group of Embodiment 6, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm). Table 11 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 12A shows the on-axis chromatic aberration curve of the optical imaging lens set of Embodiment 6, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
- FIG. 12B shows the astigmatism curve of the optical imaging lens group of Example 6, which represents meridional field curvature and sagittal field curvature.
- FIG. 12C shows a distortion curve of the optical imaging lens set of Embodiment 6, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 12D shows the chromatic aberration curve of magnification of the optical imaging lens group of Embodiment 6, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 12A to 12D, it can be seen that the optical imaging lens set provided in Embodiment 6 can achieve good imaging quality.
- Example 1 to Example 6 respectively satisfy the relationships shown in Table 13.
- the present application also provides an imaging device, the electronic photosensitive element of which may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
- the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
- the imaging device is equipped with the above-described optical imaging lens group.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学成像镜头组,其沿着光轴由物侧至像侧依序包括:光阑(STO);具有正光焦度的第一透镜(E1),其物侧面(S1)为凸面;具有光焦度的第二透镜(E2);具有负光焦度的第三透镜(E3);具有光焦度的第四透镜(E4),其物侧面(S7)为凸面,像侧面(S8)为凹面;具有正光焦度的第五透镜(E5);具有负光焦度的第六透镜(E6),其像侧面(S12)为凹面;其中,第五透镜(E5)的有效焦距f5与光学成像镜头组的半视场角ω满足:0.50mm<f5×(tanω) 2<1.00mm。
Description
相关申请的交叉引用
本申请要求于2019年7月22日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910661727.7的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
本申请涉及一种光学成像镜头组,更具体地,涉及一种包括六片透镜的光学成像镜头组。
随着科学技术的不断发展,光学成像镜头组在人们的工作生活中扮演着越来越重要的角色。其中,长焦成像镜头组由于其远距离摄像的优势在众多成像镜头组中占有重要的一席之地。
普通的短焦成像镜头组虽然在短距离拍摄景物时可以清晰成像,但在远距离拍摄时,无法将景物清晰地成像在探测器上。而通过放大拍摄画面来让景物变得清晰的方法又会使得画面呈现较多噪点并产生涂抹感。相比于短焦成像镜头组,长焦成像镜头组以其长焦的特性可以实现远距离清晰成像,并且在将物体放大一倍的情况下依然可以保持画面清晰。因此,为了在远距离拍摄时实现更清晰的成像,有必要使用焦距更长的光学成像镜头组。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头组。
本申请一方面提供了这样一种光学成像镜头组,该光学成像镜头组沿着光轴由物侧至像侧依序包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,其像侧面为凹面;具有光焦度的第五透镜;具有负光焦度的第六透镜,其像侧面为凹面。
在一个实施方式中,第五透镜可具有正光焦度,其有效焦距f5与光学成像镜头组的半视场角ω可满足:0.50mm<f5×(tanω)
2<1.00mm。
在一个实施方式中,第一透镜的物侧面至光学成像镜头组的成像面在光轴上的距离TTL、光学成像镜头组的总有效焦距f和光学成像镜头组的成像面上有效像素区域的对角线长的一半ImgH可满足:ImgH/f×TTL>3.50mm。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足:3.00<(R9+R10)/(R9-R10)<5.00。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第三透镜的像侧面的曲率半径R6可满足:1.00<R6/R1<2.00。
在一个实施方式中,第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51与第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离SAG52可满足:1.40<SAG52/SAG51<2.00。
在一个实施方式中,光学成像镜头组的总有效焦距f、第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足:1.50<(f1+f2)/f<4.00。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34与第三透镜在光轴上的中心厚度CT3可满足:0.50<CT3/T34<1.50。
在一个实施方式中,第一透镜的有效焦距f1、第二透镜的有效焦距f2和第一透镜的物侧面的曲率半径R1可满足:15.00mm<f2/f1×R1<40.00mm。
在一个实施方式中,第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TD与第一透镜至第六透镜分别在光轴上的中心厚度之和∑CT可满足:1.50<TD/∑CT<2.50。
在一个实施方式中,第一透镜的物侧面的最大有效半径DT11与第一透镜的像侧面的最大有效半径DT12可满足:30.00<(DT11+DT12)/(DT11-DT12)<50.50。
在一个实施方式中,光学成像镜头组的总有效焦距f可满足:f>23.50mm。
本申请采用了六片非球面透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头组具有超薄化、长焦距、高成像质量等至少一个有益效果。
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施例1的光学成像镜头组的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头组的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头组的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头组的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头组的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头组的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头组可包括光阑和六片具有光焦度的透镜,分别是第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。第一透镜至第六透镜中的任意相邻两透镜之间均可具有间隔距离。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其物侧面为凸面,其像侧面为凹面;第五透镜可具有光焦度;第六透镜可具有负光焦度,其像侧面为凹面。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:0.50mm<f5×(tanω)
2<1.00mm,其中,f5为第五透镜的有效焦距,ω为光学成像镜头组的半视场角。更具体地,ω进一步可满足0.55mm<f5×(tanω)
2<0.85mm。满足0.50mm<f5×(tanω)
2<1.00mm,可以将视场角控制在一定的范围内,使入射光线在第一个镜子的折射更加缓和,防止像差过度增大,有助于改善像质。可选地,第五透镜可具有正光焦度。合理的分配第五透镜的光焦度,防止光线过于弯折,有利于矫正光学成像镜头组的场曲,同时矫正光学成像镜头组畸变。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:ImgH/f×TTL>3.50mm,其中,TTL为第一透镜的物侧面至光学成像镜头组的成像面在光轴上的距离,f为光学成像镜头组的总有效焦距,ImgH为光学成像镜头组的成像面上有效像素区域的对角线长的一半。更具体地,TTL、f和ImgH进一步可满足ImgH/f×TTL>3.58mm。满足ImgH/f×TTL>3.50mm,可以在保证镜头组具有长焦距的情况下将镜头组的总长控制在一定的范围内,有利于确保光学成像镜头组的紧凑性,同时有利于防止像差过度增大,有助于改善成像质量。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:3.00<(R9+R10)/(R9-R10)<5.00。其中,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R9和R10进一步可满足:3.10<(R9+R10)/(R9-R10)<4.90。满足3.00<(R9+R10)/(R9-R10)<5.00,有利于更好地平衡光学成像镜头组的像差。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:1.00<R6/R1<2.00。其中,R1为第一透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径。更具体地,R1和R6进一步可满足1.05<R6/R1<1.80。满足1.00<R6/R1<2.00,可以有效防止入射光线经第一透镜和第三透镜后过于弯折,有利于更好地平衡光学成像镜头组的像差。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:1.40<SAG52/SAG51<2.00。其中,SAG51为第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离,SAG52为第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离。更具体地,SAG51和SAG52进一步可满足:1.45<SAG52/SAG51<1.80。满足1.40<SAG52/SAG51<2.00,可以有效避免第五透镜过于弯曲,从而减少加工难度,同时能较好的平衡光学成像镜头组的色差和畸变的能力。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:1.50<(f1+f2)/f<4.00。其中,f为光学成像镜头组的总有效焦距,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f、f1和f2进一步可满足:1.75<(f1+f2)/f<3.80。满足1.50<(f1+f2)/f<4.00,可有效防止第一透镜的有效焦距和第二透镜的有效焦距过大,降低光学成像镜头组的第一透镜和第二透镜的敏感度,同时有利于更好地平衡光学成像镜头组的像差。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:0.50<CT3/T34<1.50。其中,T34为第三透镜和第四透镜在光轴上的间隔距离,CT3为第三透镜在光轴上的中心厚度。更具体地,T34和CT3进一步可满足:0.55<CT3/T34<1.30。满足0.50<CT3/T34<1.50,既可以有效缩小光学成像镜头组的尺寸,避免光学成像镜头组的体积过大;又可以降低光学成像镜头组的组装难度,实现光学成像镜头组的较高的空间利用率。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:15.00mm<f2/f1×R1<40.00mm。其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距,R1为第一透镜的物侧面的曲率半径。更具体地,f1、f2和R1进一步可满足:15.30mm<f2/f1×R1<38.00mm。满足15.00mm<f2/f1×R1<40.00mm,既可以防止入射光线经光学成像镜头组后过于弯折,有利于矫正光学成像镜头组的场曲,又可以矫正光学成像镜头组的畸变。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:1.50<TD/∑CT<2.50。其中,TD为第一透镜的物侧面至第六透镜的像侧面在光轴上的距离,∑CT为第一透镜至第六透镜分别在光轴上的中心厚度之和。更具体地,TD和∑CT进一步可满足:1.70<TD/∑CT<2.30。满足1.50<TD/∑CT<2.50,可以保证光学成像镜头组的镜片的加工以及组装特性,有利于减缓入射光线的偏折,调整光学成像镜头组的场曲,降低光学成像镜头组的敏感程度,进而获得更好的光学成像镜头组的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:30.00<(DT11+DT12)/(DT11-DT12)<50.50。其中,DT11为第一透镜的物侧面的最大有效半径,DT12为第一透镜的像侧面的最大有效半径。更具体地,DT11和DT12进一步可满足:31.00<(DT11+DT12)/(DT11-DT12)<50.40。满足30.00< (DT11+DT12)/(DT11-DT12)<50.50,可以有效防止第一透镜的物侧面及其像侧面的有效半径差距过大,有利于光学成像镜头组的镜片的加工成型,有利于提高光学成像镜头组性能的稳定性。
在示例性实施方式中,根据本申请的光学成像镜头组可满足:f>23.50mm。其中,f为光学成像镜头组的总有效焦距。更具体地,f更进一步可满足:f>23.60mm。满足f>23.50mm,可以保证远距离拍摄时,光学成像镜头组依然有较好的解像力,同时有利于实现光学成像镜头组更高倍数的变焦功能。
可选地,上述光学成像镜头组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
本申请提出了一种具有长焦距、采用非球面的六片式光学成像镜头组。根据本申请的上述实施方式的光学成像镜头组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像镜头的体积、降低成像镜头组的敏感度并提高成像镜头组的可加工性,使得光学成像镜头组更有利于生产加工。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第六透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头组不限于包括六个透镜。如果需要,该光学成像镜头组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头组。图1示出了根据本申请实施例1的光学成像镜头组的结构示意图。
如图1所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
表1
在本示例中,光学成像镜头组的总有效焦距f为24.00mm,光学成像镜头组的总长度TTL(即,从第一透镜E1的物侧面S1至光学成像镜头组的成像面S15在光轴上的距离)为20.30mm,光学成像镜头组的成像面S15上有效像素区域对角线长的一半ImgH为4.30mm,光学成像镜头组的最大半视场角ω为9.9°,以及光圈值Fno为3.06。
在实施例1中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.6181E-04 | 2.3270E-05 | -9.5760E-06 | 1.8158E-06 | -2.6801E-07 | 2.5473E-08 | -1.4419E-09 | 4.2908E-11 | -5.0704E-13 |
S2 | -2.1747E-04 | 1.8603E-04 | -6.8565E-05 | 1.3070E-05 | -1.5872E-06 | 1.2919E-07 | -7.0115E-09 | 2.2965E-10 | -3.3689E-12 |
S3 | 5.3651E-06 | 9.3639E-05 | -5.7226E-05 | 1.7652E-05 | -2.9155E-06 | 2.9639E-07 | -2.0019E-08 | 8.5702E-10 | -1.7085E-11 |
S4 | -3.4914E-03 | 4.6184E-03 | -2.3494E-03 | 7.1102E-04 | -1.3478E-04 | 1.6291E-05 | -1.2282E-06 | 5.3062E-08 | -1.0093E-09 |
S5 | 8.8358E-04 | 8.4720E-03 | -4.9758E-03 | 1.5490E-03 | -2.9774E-04 | 3.6553E-05 | -2.8013E-06 | 1.2283E-07 | -2.3706E-09 |
S6 | 3.5033E-03 | 7.1099E-03 | -3.5489E-03 | 7.2160E-04 | -1.7011E-05 | -2.0456E-05 | 4.0550E-06 | -3.2302E-07 | 9.5740E-09 |
S7 | -7.3254E-03 | 4.2868E-03 | -5.4165E-04 | -5.7684E-04 | 3.4241E-04 | -8.7800E-05 | 1.2255E-05 | -9.0671E-07 | 2.7985E-08 |
S8 | -7.2942E-03 | 1.8661E-03 | 1.3780E-04 | -5.3411E-04 | 2.6916E-04 | -6.8983E-05 | 9.9812E-06 | -7.7688E-07 | 2.5435E-08 |
S9 | 1.2966E-03 | -4.4228E-03 | 3.4433E-03 | -1.8031E-03 | 5.3003E-04 | -8.3508E-05 | 5.8119E-06 | 8.6696E-09 | -1.5269E-08 |
S10 | -1.6380E-03 | -2.2619E-03 | 4.6565E-03 | -3.9288E-03 | 1.6050E-03 | -3.6321E-04 | 4.6630E-05 | -3.1806E-06 | 8.9270E-08 |
S11 | -3.5938E-02 | 1.0149E-02 | 8.1562E-04 | -3.5777E-03 | 1.9056E-03 | -5.0034E-04 | 7.2529E-05 | -5.5596E-06 | 1.7651E-07 |
S12 | -3.4786E-02 | 1.1022E-02 | -3.8861E-03 | 1.0060E-03 | -1.5740E-04 | 1.1049E-05 | 3.2488E-07 | -1.0041E-07 | 4.4962E-09 |
表2
图2A示出了实施例1的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图2D示出了实施例1的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头组的结构示意图。
如图3所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3 具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像镜头组的总有效焦距f为23.70mm,光学成像镜头组的总长度TTL为20.20mm,光学成像镜头组的成像面S15上有效像素区域对角线长的一半ImgH为4.23mm,光学成像镜头组的最大半视场角ω为9.9°,以及光圈值Fno为3.04。
表3示出了实施例2的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表3
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.2798E-04 | -2.0757E-05 | 9.5516E-06 | -2.8716E-06 | 4.3990E-07 | -4.4309E-08 | 2.9316E-09 | -1.1339E-10 | 1.8920E-12 |
S2 | -2.2255E-04 | 1.7556E-04 | -5.5004E-05 | 9.6840E-06 | -1.4182E-06 | 1.6605E-07 | -1.2537E-08 | 5.0661E-10 | -8.1812E-12 |
S3 | 1.2410E-05 | 1.8590E-04 | -1.4518E-04 | 5.5968E-05 | -1.2172E-05 | 1.5972E-06 | -1.2538E-07 | 5.3855E-09 | -9.6557E-11 |
S4 | -5.0318E-03 | 6.8772E-03 | -4.0030E-03 | 1.3754E-03 | -2.9096E-04 | 3.8374E-05 | -3.0750E-06 | 1.3703E-07 | -2.6034E-09 |
S5 | -6.7667E-04 | 1.0769E-02 | -6.6003E-03 | 2.2067E-03 | -4.5873E-04 | 6.0558E-05 | -4.9216E-06 | 2.2427E-07 | -4.3866E-09 |
S6 | 2.8655E-03 | 8.5148E-03 | -4.8867E-03 | 1.4395E-03 | -2.4249E-04 | 2.0879E-05 | -1.5558E-07 | -1.1376E-07 | 6.0722E-09 |
S7 | -6.7505E-03 | 5.3807E-03 | -2.6081E-03 | 8.0252E-04 | -1.5997E-04 | 2.0495E-05 | -1.4928E-06 | 4.3517E-08 | 3.3791E-10 |
S8 | -6.0721E-03 | 2.1382E-03 | -9.1392E-04 | 2.2095E-04 | -1.7578E-05 | -4.7935E-06 | 1.5220E-06 | -1.6946E-07 | 7.0846E-09 |
S9 | 1.7946E-03 | -6.6801E-03 | 5.7947E-03 | -3.1391E-03 | 1.0195E-03 | -2.0249E-04 | 2.4268E-05 | -1.6294E-06 | 4.7779E-08 |
S10 | 1.6194E-03 | -9.8596E-03 | 1.1263E-02 | -6.9094E-03 | 2.3934E-03 | -4.9217E-04 | 5.9909E-05 | -4.0088E-06 | 1.1433E-07 |
S11 | -3.4039E-02 | 3.6903E-03 | 6.4291E-03 | -5.7675E-03 | 2.2796E-03 | -5.0227E-04 | 6.3693E-05 | -4.3562E-06 | 1.2471E-07 |
S12 | -3.5504E-02 | 1.0968E-02 | -3.4160E-03 | 7.4041E-04 | -8.9335E-05 | 2.7223E-06 | 6.3696E-07 | -7.6056E-08 | 2.6040E-09 |
表4
图4A示出了实施例2的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图4D示出了实施例2的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头组。图5示出了根据本申请实施例3的光学成像镜头组的结构示意图。
如图5所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像镜头组的总有效焦距f为23.90mm,光学成像镜头组的总长度TTL为20.30mm,光学成像镜头组的成像面S15上有效像素区域对角线长的一半ImgH为4.33mm,光学成像镜头组的最大半视场角ω为10.0°,以及光圈值Fno为3.08。
表5示出了实施例3的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表5
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -3.3435E-04 | 3.3406E-05 | -6.8710E-06 | -1.3221E-06 | 5.9828E-07 | -9.2693E-08 | 7.2991E-09 | -2.9233E-10 | 4.7178E-12 |
S2 | -5.0497E-04 | 5.9171E-04 | -2.8534E-04 | 7.3811E-05 | -1.1472E-05 | 1.0956E-06 | -6.2795E-08 | 1.9768E-09 | -2.6202E-11 |
S3 | 9.3637E-05 | 3.8722E-04 | -3.0656E-04 | 1.0969E-04 | -2.1761E-05 | 2.5750E-06 | -1.8175E-07 | 7.0813E-09 | -1.1729E-10 |
S4 | -5.8513E-03 | 7.2648E-03 | -3.7714E-03 | 1.1254E-03 | -2.0453E-04 | 2.3118E-05 | -1.5926E-06 | 6.1600E-08 | -1.0327E-09 |
S5 | -3.0074E-03 | 1.2935E-02 | -7.2464E-03 | 2.1597E-03 | -3.8829E-04 | 4.3274E-05 | -2.9103E-06 | 1.0772E-07 | -1.6823E-09 |
S6 | 9.8362E-04 | 1.0273E-02 | -5.4611E-03 | 1.3128E-03 | -1.0400E-04 | -1.9751E-05 | 5.7098E-06 | -5.3985E-07 | 1.8519E-08 |
S7 | -8.0369E-03 | 6.0949E-03 | -2.2550E-03 | 3.0108E-04 | 7.5375E-05 | -3.8538E-05 | 6.8811E-06 | -5.8995E-07 | 2.0221E-08 |
S8 | -7.5417E-03 | 3.1131E-03 | -8.4888E-04 | -1.0584E-04 | 1.5288E-04 | -4.9316E-05 | 8.0071E-06 | -6.7079E-07 | 2.3089E-08 |
S9 | 2.4723E-03 | -7.0383E-03 | 6.0418E-03 | -3.1372E-03 | 9.5061E-04 | -1.7095E-04 | 1.7762E-05 | -9.7427E-07 | 2.1265E-08 |
S10 | -5.5028E-03 | -1.2459E-03 | 5.5301E-03 | -4.3395E-03 | 1.6106E-03 | -3.3357E-04 | 3.9529E-05 | -2.5122E-06 | 6.6504E-08 |
S11 | -4.2502E-02 | 1.4401E-02 | -1.0925E-03 | -2.5351E-03 | 1.3862E-03 | -3.4203E-04 | 4.5616E-05 | -3.1859E-06 | 9.1549E-08 |
S12 | -3.4526E-02 | 1.1221E-02 | -4.1011E-03 | 1.0916E-03 | -1.8616E-04 | 1.8926E-05 | -1.0086E-06 | 1.7693E-08 | 3.0234E-10 |
表6
图6A示出了实施例3的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图6D示出了实施例3的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头组。图7 示出了根据本申请实施例4的光学成像镜头组的结构示意图。
如图7所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像镜头组的总有效焦距f为23.90mm,光学成像镜头组的总长度TTL为20.30mm,光学成像镜头组的成像面S15上有效像素区域对角线长的一半ImgH为4.33mm,光学成像镜头组的最大半视场角ω为10.0°,以及光圈值Fno为3.07。
表7示出了实施例4的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.3991E-04 | 6.9075E-07 | 2.3751E-06 | -1.3122E-06 | 1.8757E-07 | -1.3199E-08 | 4.5147E-10 | -6.3399E-12 | 1.6909E-14 |
S2 | -2.7883E-04 | 2.0533E-04 | -5.4809E-05 | 3.9194E-06 | 5.8745E-07 | -1.3815E-07 | 1.1073E-08 | -4.0902E-10 | 5.8350E-12 |
S3 | 7.8074E-05 | -9.3782E-06 | 6.0717E-06 | -2.3865E-06 | 6.4692E-07 | -6.2479E-08 | -8.5265E-10 | 4.2302E-10 | -1.6126E-11 |
S4 | -2.6422E-03 | 3.0728E-03 | -1.3392E-03 | 3.7947E-04 | -7.4268E-05 | 1.0079E-05 | -8.9654E-07 | 4.6349E-08 | -1.0422E-09 |
S5 | 1.1459E-03 | 7.9332E-03 | -4.5951E-03 | 1.4347E-03 | -2.8536E-04 | 3.7493E-05 | -3.1578E-06 | 1.5429E-07 | -3.3179E-09 |
S6 | 2.2955E-03 | 8.9761E-03 | -4.7502E-03 | 1.1284E-03 | -9.6050E-05 | -1.1314E-05 | 3.4211E-06 | -2.9761E-07 | 9.1025E-09 |
S7 | -8.2175E-03 | 5.6741E-03 | -1.2607E-03 | -4.9624E-04 | 3.9600E-04 | -1.1009E-04 | 1.5834E-05 | -1.1744E-06 | 3.5646E-08 |
S8 | -7.2469E-03 | 2.0930E-03 | 1.3803E-04 | -6.9953E-04 | 3.7481E-04 | -9.9225E-05 | 1.4516E-05 | -1.1223E-06 | 3.5949E-08 |
S9 | 3.8657E-04 | -3.4559E-03 | 3.7962E-03 | -2.7649E-03 | 1.1146E-03 | -2.5944E-04 | 3.4708E-05 | -2.4607E-06 | 7.0493E-08 |
S10 | -5.3709E-03 | 4.5915E-03 | 3.0714E-04 | -2.9644E-03 | 1.7575E-03 | -4.8942E-04 | 7.3784E-05 | -5.8186E-06 | 1.8843E-07 |
S11 | -4.0334E-02 | 1.8660E-02 | -5.5938E-03 | -1.3473E-03 | 1.6212E-03 | -5.3919E-04 | 8.9919E-05 | -7.6713E-06 | 2.6726E-07 |
S12 | -3.4851E-02 | 1.1774E-02 | -4.4538E-03 | 1.2116E-03 | -1.9159E-04 | 1.1802E-05 | 9.1031E-07 | -1.8168E-07 | 7.9544E-09 |
表8
图8A示出了实施例4的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图8D示出了实施例4的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头组。图9示出了根据本申请实施例5的光学成像镜头组的结构示意图。
如图9所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像镜头组的总有效焦距f为23.70mm,光学成像镜头组的总长度TTL为20.40mm,光学成像镜头组的成像面S15上有效像素区域对角线长的 一半ImgH为4.33mm,光学成像镜头组的最大半视场角ω为10.2°,以及光圈值Fno为3.05。
表9示出了实施例5的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表9
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.5504E-04 | 1.2190E-06 | -5.6937E-07 | -2.7927E-07 | 5.4529E-09 | 4.1813E-09 | -4.3265E-10 | 1.5042E-11 | -1.4635E-13 |
S2 | -1.0366E-04 | 2.9643E-05 | 2.6110E-05 | -1.4579E-05 | 2.8365E-06 | -2.7973E-07 | 1.4677E-08 | -3.8041E-10 | 3.6724E-12 |
S3 | 5.2007E-04 | -6.2548E-04 | 3.1433E-04 | -8.0305E-05 | 1.1425E-05 | -8.6253E-07 | 2.5616E-08 | 4.0906E-10 | -2.9656E-11 |
S4 | -2.2447E-03 | 3.0874E-03 | -1.6594E-03 | 5.8269E-04 | -1.3228E-04 | 1.9095E-05 | -1.6810E-06 | 8.2004E-08 | -1.6941E-09 |
S5 | -1.0408E-05 | 1.0273E-02 | -6.4599E-03 | 2.2154E-03 | -4.7417E-04 | 6.4700E-05 | -5.4530E-06 | 2.5831E-07 | -5.2585E-09 |
S6 | 7.3848E-04 | 1.1660E-02 | -6.8356E-03 | 2.0082E-03 | -3.0537E-04 | 1.5423E-05 | 2.0175E-06 | -3.2422E-07 | 1.3172E-08 |
S7 | -9.0396E-03 | 8.1330E-03 | -4.0140E-03 | 1.1185E-03 | -1.6063E-04 | 5.8679E-06 | 1.5284E-06 | -2.1400E-07 | 8.6172E-09 |
S8 | -7.6648E-03 | 4.0092E-03 | -2.0821E-03 | 6.6056E-04 | -1.2021E-04 | 1.0343E-05 | 1.0134E-07 | -8.7922E-08 | 4.8083E-09 |
S9 | 1.4675E-03 | -3.5778E-03 | 1.9905E-03 | -7.4418E-04 | 1.0674E-04 | 1.4268E-05 | -7.1167E-06 | 9.1104E-07 | -4.0498E-08 |
S10 | -5.3243E-04 | -4.0023E-03 | 4.9747E-03 | -3.0959E-03 | 9.9757E-04 | -1.7786E-04 | 1.7246E-05 | -8.0044E-07 | 1.1435E-08 |
S11 | -3.3667E-02 | 4.5985E-03 | 4.0682E-03 | -3.7544E-03 | 1.3928E-03 | -2.7804E-04 | 3.0791E-05 | -1.7485E-06 | 3.8326E-08 |
S12 | -3.2832E-02 | 7.9632E-03 | -1.5497E-03 | 2.8475E-05 | 8.0535E-05 | -2.2691E-05 | 2.9504E-06 | -1.9315E-07 | 5.1386E-09 |
表10
图10A示出了实施例5的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头组的 象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图10D示出了实施例5的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头组。图11示出了根据本申请实施例6的光学成像镜头组的结构示意图。
如图11所示,光学成像镜头组由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像镜头组的总有效焦距f为24.00mm,光学成像镜头组的总长度TTL为20.30mm,光学成像镜头组的成像面S15上有效像素区域对角线长的一半ImgH为4.33mm,光学成像镜头组的最大半视场角ω为10.0°,以及光圈值Fno为3.06。
表11示出了实施例6的光学成像镜头组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表11示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表11
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.6519E-04 | 2.9863E-05 | -1.1788E-05 | 2.4438E-06 | -3.9468E-07 | 4.0748E-08 | -2.4885E-09 | 8.0657E-11 | -1.0637E-12 |
S2 | -2.8147E-04 | 2.1293E-04 | -6.2423E-05 | 7.6697E-06 | -3.2257E-07 | -2.0041E-08 | 2.6788E-09 | -1.0079E-10 | 1.2639E-12 |
S3 | 8.8533E-05 | -5.2711E-05 | 4.2206E-05 | -1.7760E-05 | 4.4142E-06 | -6.1336E-07 | 4.6567E-08 | -1.7932E-09 | 2.7227E-11 |
S4 | -3.2197E-03 | 4.0859E-03 | -1.9717E-03 | 5.6848E-04 | -1.0270E-04 | 1.1843E-05 | -8.5530E-07 | 3.5677E-08 | -6.6206E-10 |
S5 | 8.2633E-04 | 8.3620E-03 | -4.7692E-03 | 1.4332E-03 | -2.6533E-04 | 3.1392E-05 | -2.3232E-06 | 9.8637E-08 | -1.8491E-09 |
S6 | 3.1364E-03 | 7.3619E-03 | -3.4580E-03 | 5.6717E-04 | 5.2107E-05 | -3.6222E-05 | 6.0668E-06 | -4.6046E-07 | 1.3510E-08 |
S7 | -7.2930E-03 | 4.3059E-03 | -4.4763E-04 | -7.2129E-04 | 4.1868E-04 | -1.0813E-04 | 1.5214E-05 | -1.1313E-06 | 3.4958E-08 |
S8 | -7.0308E-03 | 1.8073E-03 | 1.9817E-04 | -6.3890E-04 | 3.3270E-04 | -8.8113E-05 | 1.3104E-05 | -1.0418E-06 | 3.4625E-08 |
S9 | 1.4002E-03 | -4.9697E-03 | 4.7220E-03 | -2.9189E-03 | 1.0138E-03 | -1.9918E-04 | 2.1165E-05 | -1.0253E-06 | 1.1002E-08 |
S10 | -3.4245E-03 | 7.4226E-04 | 3.4788E-03 | -4.3045E-03 | 2.0364E-03 | -5.0501E-04 | 6.9568E-05 | -5.0367E-06 | 1.4910E-07 |
S11 | -3.9739E-02 | 1.6055E-02 | -2.7139E-03 | -2.9595E-03 | 2.1402E-03 | -6.3718E-04 | 1.0037E-04 | -8.2271E-06 | 2.7747E-07 |
S12 | -3.5757E-02 | 1.2798E-02 | -5.1004E-03 | 1.4568E-03 | -2.4765E-04 | 1.9357E-05 | 3.6075E-07 | -1.6602E-07 | 8.0659E-09 |
表12
图12A示出了实施例6的光学成像镜头组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头组的畸变曲线,其表示不同像高对应的畸变大小值。图12D示出了实施例6的光学成像镜头组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头组能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表13中所示的关系。
条件式/实施例 | 1 | 2 | 3 | 4 | 5 | 6 |
f5×(tanω) 2(mm) | 0.58 | 0.63 | 0.78 | 0.60 | 0.69 | 0.59 |
ImgH/f×TTL(mm) | 3.64 | 3.60 | 3.68 | 3.68 | 3.73 | 3.66 |
(R9+R10)/(R9-R10) | 3.12 | 3.48 | 4.45 | 3.41 | 4.84 | 3.32 |
R6/R1 | 1.62 | 1.43 | 1.10 | 1.65 | 1.69 | 1.62 |
SAG52/SAG51 | 1.66 | 1.61 | 1.51 | 1.56 | 1.50 | 1.65 |
(f1+f2)/f | 2.19 | 3.64 | 3.49 | 2.02 | 1.79 | 2.15 |
CT3/T34 | 0.98 | 0.84 | 0.57 | 0.96 | 0.81 | 0.90 |
f2/f1×R1(mm) | 23.45 | 37.26 | 36.06 | 20.08 | 15.44 | 22.47 |
TD/∑CT | 2.06 | 2.08 | 2.29 | 2.00 | 1.98 | 2.03 |
(DT11+DT12)/(DT11-DT12) | 42.13 | 38.19 | 50.33 | 36.56 | 31.55 | 39.03 |
表13
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (22)
- 光学成像镜头组,其特征在于,沿着光轴由物侧至像侧依序包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,其像侧面为凹面;具有正光焦度的第五透镜;具有负光焦度的第六透镜,其像侧面为凹面;其中,所述第五透镜的有效焦距f5与所述光学成像镜头组的半视场角ω满足:0.50mm<f5×(tanω) 2<1.00mm。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面至所述光学成像镜头组的成像面在所述光轴上的距离TTL、所述光学成像镜头组的总有效焦距f和所述成像面上有效像素区域对角线长的一半ImgH满足:ImgH/f×TTL>3.50mm。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足:3.00<(R9+R10)/(R9-R10)<5.00。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第三透镜的像侧面的曲率半径R6满足:1.00<R6/R1<2.00。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51与所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足:1.40<SAG52/SAG51<2.00。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述光学成像镜头组的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足:1.50<(f1+f2)/f<4.00。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与所述第三透镜在所述光轴上的中心厚度CT3满足:0.50<CT3/T34<1.50。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2和所述第一透镜的物侧面的曲率半径R1满足:15.00mm<f2/f1×R1<40.00mm。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TD与所述第一透镜至所述第六透镜分别在所述光轴上的中心厚度之和∑CT满足:1.50<TD/∑CT<2.50。
- 根据权利要求1所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面的最大有效半径DT11与所述第一透镜的像侧面的最大有效半径DT12满足:30.00<(DT11+DT12)/(DT11-DT12)<50.50。
- 根据权利要求1至10中任一项所述的光学成像镜头组,其特征在于,所述光学成像镜头组的总有效焦距f满足:f>23.50mm。
- 光学成像镜头组,其特征在于,沿着光轴由物侧至像侧依序包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,其像侧面为凹面;具有光焦度的第五透镜;具有负光焦度的第六透镜,其像侧面为凹面;所述第一透镜的物侧面至所述光学成像镜头组的成像面在所述光轴上的距离TTL、所述光学成像镜头组的总有效焦距f和所述成像面上有效像素区域对角线长的一半ImgH满足:ImgH/f×TTL>3.50mm。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TD与所述第一透镜至所述第六透镜分别在所述光轴上的中心厚度之和∑CT满足:1.50<TD/∑CT<2.50。
- 根据权利要求13所述的光学成像镜头组,其特征在于,所述第五透镜的有效焦距f5与所述光学成像镜头组的半视场角ω满足:0.50mm<f5×(tanω) 2<1.00mm。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足:3.00<(R9+R10)/(R9-R10)<5.00。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第三透镜的像侧面的曲率半径R6满足:1.00<R6/R1<2.00。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51与所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足:1.40<SAG52/SAG51<2.00。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述光学成像镜头组的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足:1.50<(f1+f2)/f<4.00。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与所述第三透镜在所述光轴上的中心厚度CT3满足:0.50<CT3/T34<1.50。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2和所述第一透镜的物侧面的曲率半径R1满足:15.00mm<f2/f1×R1<40.00mm。
- 根据权利要求12所述的光学成像镜头组,其特征在于,所述第一透镜的物侧面的最大有效半径DT11与所述第一透镜的像侧面的最大有效半径DT12满足:30.00<(DT11+DT12)/(DT11-DT12)<50.50。
- 根据权利要求12至21中任一项所述的光学成像镜头组,其特征在于,所述光学成像镜头组的总有效焦距f满足:f>23.50mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/438,952 US20220146787A1 (en) | 2019-07-22 | 2020-05-22 | Optical Imaging Lens Group |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910661727.7A CN110376717B (zh) | 2019-07-22 | 2019-07-22 | 光学成像镜头组 |
CN201910661727.7 | 2019-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021012770A1 true WO2021012770A1 (zh) | 2021-01-28 |
Family
ID=68254789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/091850 WO2021012770A1 (zh) | 2019-07-22 | 2020-05-22 | 光学成像镜头组 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220146787A1 (zh) |
CN (1) | CN110376717B (zh) |
WO (1) | WO2021012770A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110376717B (zh) * | 2019-07-22 | 2024-04-23 | 浙江舜宇光学有限公司 | 光学成像镜头组 |
CN112558275A (zh) * | 2020-12-21 | 2021-03-26 | 成都理想境界科技有限公司 | 光学成像镜组、扫描显示装置及近眼显示设备 |
CN112904535B (zh) * | 2021-02-07 | 2022-09-02 | 浙江舜宇光学有限公司 | 摄像镜头组 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202067015U (zh) * | 2011-03-25 | 2011-12-07 | 大立光电股份有限公司 | 摄影用光学镜头组 |
US20160170182A1 (en) * | 2014-12-16 | 2016-06-16 | Fujifilm Corporation | Imaging lens and imaging apparatus equipped with the imaging lens |
CN107976788A (zh) * | 2018-01-22 | 2018-05-01 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN109283664A (zh) * | 2018-12-05 | 2019-01-29 | 浙江舜宇光学有限公司 | 光学成像镜片组 |
CN109709659A (zh) * | 2017-10-25 | 2019-05-03 | 大立光电股份有限公司 | 取像透镜组、取像装置及电子装置 |
CN110376717A (zh) * | 2019-07-22 | 2019-10-25 | 浙江舜宇光学有限公司 | 光学成像镜头组 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845002B2 (ja) * | 1973-03-20 | 1983-10-06 | オリンパス光学工業株式会社 | 後群くり出し広角レンズ |
TWI452332B (zh) * | 2012-08-08 | 2014-09-11 | Largan Precision Co Ltd | 光學攝影鏡片系統 |
JP2014202766A (ja) * | 2013-04-01 | 2014-10-27 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
CN103676107B (zh) * | 2013-08-29 | 2015-12-09 | 玉晶光电(厦门)有限公司 | 六片式光学成像镜头及应用该镜头的电子装置 |
CN105717609B (zh) * | 2014-12-05 | 2018-05-25 | 大立光电股份有限公司 | 光学取像透镜组、取像装置以及电子装置 |
TWI519808B (zh) * | 2014-12-05 | 2016-02-01 | 大立光電股份有限公司 | 光學取像透鏡組、取像裝置以及電子裝置 |
TWI531815B (zh) * | 2014-12-30 | 2016-05-01 | 大立光電股份有限公司 | 攝像光學鏡片組、取像裝置及電子裝置 |
TWI625543B (zh) * | 2015-12-03 | 2018-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
TWI597520B (zh) * | 2016-02-05 | 2017-09-01 | 先進光電科技股份有限公司 | 光學成像系統 |
CN110346923B (zh) * | 2019-06-30 | 2021-09-21 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110262006B (zh) * | 2019-06-30 | 2021-09-17 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN210155386U (zh) * | 2019-07-22 | 2020-03-17 | 浙江舜宇光学有限公司 | 光学成像镜头组 |
-
2019
- 2019-07-22 CN CN201910661727.7A patent/CN110376717B/zh active Active
-
2020
- 2020-05-22 WO PCT/CN2020/091850 patent/WO2021012770A1/zh active Application Filing
- 2020-05-22 US US17/438,952 patent/US20220146787A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202067015U (zh) * | 2011-03-25 | 2011-12-07 | 大立光电股份有限公司 | 摄影用光学镜头组 |
US20160170182A1 (en) * | 2014-12-16 | 2016-06-16 | Fujifilm Corporation | Imaging lens and imaging apparatus equipped with the imaging lens |
CN109709659A (zh) * | 2017-10-25 | 2019-05-03 | 大立光电股份有限公司 | 取像透镜组、取像装置及电子装置 |
CN107976788A (zh) * | 2018-01-22 | 2018-05-01 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN109283664A (zh) * | 2018-12-05 | 2019-01-29 | 浙江舜宇光学有限公司 | 光学成像镜片组 |
CN110376717A (zh) * | 2019-07-22 | 2019-10-25 | 浙江舜宇光学有限公司 | 光学成像镜头组 |
Also Published As
Publication number | Publication date |
---|---|
CN110376717A (zh) | 2019-10-25 |
CN110376717B (zh) | 2024-04-23 |
US20220146787A1 (en) | 2022-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109164560B (zh) | 成像镜头 | |
WO2021073275A1 (zh) | 光学成像镜头 | |
WO2021082727A1 (zh) | 光学成像镜头 | |
WO2020093725A1 (zh) | 摄像光学系统 | |
WO2020191951A1 (zh) | 光学成像镜头 | |
WO2020038134A1 (zh) | 光学成像系统 | |
WO2019223263A1 (zh) | 摄像镜头 | |
WO2020168717A1 (zh) | 光学成像镜头 | |
WO2020010879A1 (zh) | 光学成像系统 | |
WO2020007081A1 (zh) | 光学成像镜头 | |
WO2020164236A1 (zh) | 光学成像镜头 | |
WO2020134129A1 (zh) | 光学成像系统 | |
WO2020024635A1 (zh) | 光学成像镜头 | |
CN110596865B (zh) | 摄像镜头组 | |
WO2020164247A1 (zh) | 光学成像系统 | |
WO2021008232A1 (zh) | 光学成像镜头 | |
WO2020134130A1 (zh) | 光学成像镜头 | |
WO2020029613A1 (zh) | 光学成像镜头 | |
WO2020088024A1 (zh) | 光学成像镜头 | |
CN108802972B (zh) | 光学成像系统 | |
WO2020007068A1 (zh) | 光学成像系统 | |
WO2019233142A1 (zh) | 光学成像镜头 | |
WO2019233159A1 (zh) | 光学成像镜头 | |
WO2020042799A1 (zh) | 光学成像镜片组 | |
WO2019233143A1 (zh) | 光学成像镜片组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20844638 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20844638 Country of ref document: EP Kind code of ref document: A1 |