WO2021008232A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2021008232A1
WO2021008232A1 PCT/CN2020/091848 CN2020091848W WO2021008232A1 WO 2021008232 A1 WO2021008232 A1 WO 2021008232A1 CN 2020091848 W CN2020091848 W CN 2020091848W WO 2021008232 A1 WO2021008232 A1 WO 2021008232A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
optical
imaging lens
object side
Prior art date
Application number
PCT/CN2020/091848
Other languages
English (en)
French (fr)
Inventor
计云兵
唐大维
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2021008232A1 publication Critical patent/WO2021008232A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging lens, in particular to an optical imaging lens including a prism and six lenses with optical power.
  • the present application provides an optical imaging lens device that can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art, for example, an optical imaging lens including a prism.
  • an optical imaging lens including a prism In this application, a reflecting prism is added to deflect the light transmission path in the lens group, so that the light does not travel completely longitudinally.
  • This arrangement can convert the volume of the modules originally stacked on the longitudinal axis to the lateral direction, so that a focal length of more than 20mm can be achieved while meeting the characteristics of the mobile phone's lightness and thinness.
  • the present application provides an optical imaging lens, which may include a prism in order from the object side to the image side along the optical axis, and the angle between the reflective surface of the prism and the optical axis is 45°; a diaphragm; The first lens with optical power; the second lens with optical power; the third lens with negative optical power; the fourth lens with optical power; the fifth lens with optical power, whose image side surface is convex; The sixth lens with optical power has a convex object side surface.
  • the effective focal length f of the optical imaging lens may satisfy f>23.50mm.
  • the on-axis distance TTL from the reflecting surface of the prism to the imaging surface of the optical imaging lens and the on-axis distance PL from the image side surface of the prism to the object side surface of the first lens may satisfy 1.00 ⁇ 100 ⁇ PL/TTL ⁇ 4.00.
  • the effective focal length f of the optical imaging lens, the effective focal length f5 of the fifth lens, and the effective focal length f6 of the sixth lens may satisfy 2.00 ⁇ f/f5-f/f6 ⁇ 4.00.
  • the radius of curvature R6 of the image side surface of the third lens and the radius of curvature R7 of the object side surface of the fourth lens can satisfy 9.00 ⁇ (R6+R7)/(R6-R7) ⁇ 33.00.
  • the radius of curvature R9 of the object side surface of the fifth lens and the radius of curvature R10 of the image side surface of the fifth lens may satisfy 3.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00.
  • the central thickness CT5 of the fifth lens on the optical axis and the central thickness CT6 of the sixth lens on the optical axis may satisfy 9.00 ⁇ (CT5+CT6)/(CT5-CT6) ⁇ 20.00.
  • the on-axis distance SAG31 from the intersection of the object side surface of the third lens and the optical axis to the vertex of the effective radius of the object side of the third lens, the intersection of the image side surface of the third lens and the optical axis to the image of the third lens The on-axis distance of the apex of the effective radius of the side surface SAG32, the on-axis distance SAG51 from the intersection of the object side of the fifth lens and the optical axis to the apex of the effective radius of the object side of the fifth lens, and the intersection of the image side of the fifth lens and the optical axis to the first
  • the on-axis distance SAG52 of the apex of the effective radius of the image side surface of the five lens can satisfy 3.00 ⁇ SAG32/SAG31+SAG52/SAG51 ⁇ 5.00.
  • the separation distance T45 between the fourth lens and the fifth lens on the optical axis and the separation distance T56 between the fifth lens and the sixth lens on the optical axis may satisfy 7.00 ⁇ T45/T56 ⁇ 10.00.
  • the effective focal length f of the optical imaging lens and the curvature radius R9 of the object side surface of the fifth lens may satisfy 1.50 ⁇ f/R9 ⁇ 3.00.
  • the central thickness CT1 of the first lens on the optical axis and the separation distance T12 between the first lens and the second lens on the optical axis may satisfy 2.00 ⁇ CT1/T12 ⁇ 4.00.
  • half of the diagonal length ImgH of the effective pixel area on the imaging surface of the optical imaging lens can satisfy ImgH ⁇ 4.30mm.
  • the on-axis distance between the reflecting surface of the prism and the imaging surface of the optical imaging lens is TTL and half the diagonal length ImgH of the effective pixel area on the imaging surface of the optical imaging lens can satisfy TTL/ImgH>6.00.
  • the present application provides an optical imaging lens including a prism and multiple (for example, six) lenses.
  • the prism is arranged so that the incident direction of the light and the arrangement direction of the multiple lenses form an angle of 90 degrees, thereby making the optical imaging lens The size in the direction of light incidence is reduced.
  • the optical imaging lens set has the beneficial effects of miniaturization, high imaging quality, and long focal length by reasonably distributing the power, surface shape, center thickness of each lens, and on-axis distance between each lens.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • 2A to 2D sequentially show the axial chromatic aberration curve, the magnification chromatic aberration curve, the astigmatism curve and the distortion curve according to the first embodiment of the present application;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to the second embodiment of the present application.
  • 4A to 4D sequentially show the axial chromatic aberration curve, the magnification chromatic aberration curve, the astigmatism curve, and the distortion curve according to the second embodiment of the present application;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D sequentially show the on-axis chromatic aberration curve, the magnification chromatic aberration curve, the astigmatism curve and the distortion curve according to the third embodiment of the present application;
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens of the optical imaging lens discussed below may also be referred to as the second lens or the third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. In each lens, the surface closest to the subject is called the object side of the lens; in each lens, the surface closest to the imaging surface is called the image side of the lens.
  • the optical imaging lens may include: a prism, a diaphragm, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens, in which the reflective surface of the prism and the light The angle between the shafts is 45°.
  • the six lenses are arranged in sequence from the image side to the image side of the prism along the optical axis, and there may be air spaces between adjacent lenses and between the prism and the first lens.
  • the prism can be a triangular prism, the incident surface of which is perpendicular to the exit surface, and is used to change the direction of the light that is perpendicularly incident to the incident surface by 90°, and the light exits perpendicular to the exit surface.
  • the prism makes the direction of the incident light of the optical imaging lens perpendicular to the arrangement direction of the aforementioned multiple lenses, so that the length space of the mobile phone is used to match the arrangement length of the multiple lenses, and the limitation of the focal length of the lens by the thickness of the body is avoided.
  • the first lens may have positive refractive power
  • the second lens may have positive refractive power or negative refractive power
  • the third lens may have negative refractive power
  • the fourth lens may have positive refractive power or negative refractive power.
  • the fifth lens has positive or negative refractive power, and its image side surface is convex
  • the sixth lens has positive or negative refractive power, and its object side surface is convex.
  • the optical imaging lens provided in the present application may satisfy the conditional formula f>23.50mm, where f is the effective focal length of the optical imaging lens.
  • f is the effective focal length of the optical imaging lens.
  • the optical imaging lens can have a better resolution when shooting in a long range.
  • the optical imaging lens is a zoom lens, a high magnification zoom can be achieved.
  • the optical imaging lens provided by the present application can satisfy the conditional formula 1.00 ⁇ 100 ⁇ PL/TTL ⁇ 4.00, where TTL is the on-axis distance from the reflecting surface of the prism to the imaging surface of the optical imaging lens (ie, The on-axis distance from the intersection of the reflection surface of the prism and the optical axis to the imaging surface of the optical imaging lens), PL is the on-axis distance from the image side surface of the prism to the object side surface of the first lens.
  • TTL and PL may satisfy 1.50 ⁇ 100 ⁇ PL/TTL ⁇ 3.50.
  • Controlling the ratio of the on-axis distance from the image side surface of the prism to the object side surface of the first lens to the on-axis distance from the reflecting surface of the prism to the imaging surface of the optical imaging lens can control the divergence angle of the light beam at the prism, so that the optical imaging lens has Higher imaging quality can also reduce the difficulty of assembling prisms and lenses.
  • the optical imaging lens provided by the present application may satisfy the conditional formula 2.00 ⁇ f/f5-f/f6 ⁇ 4.00, where f is the effective focal length of the optical imaging lens, and f5 is the effective focal length of the fifth lens, f6 is the effective focal length of the sixth lens.
  • f, f5, and f6 may satisfy 2.50 ⁇ f/f5-f/f6 ⁇ 3.50.
  • the optical imaging lens provided by the present application can satisfy the conditional formula 9.00 ⁇ (R6+R7)/(R6-R7) ⁇ 33.00, where R6 is the radius of curvature of the image side surface of the third lens, and R7 is The curvature radius of the object side surface of the fourth lens is R7.
  • R6 and R7 may satisfy 9.50 ⁇ (R6+R7)/(R6-R7) ⁇ 32.50. Controlling the radius of curvature of the image side surface of the third lens and the object side surface of the fourth lens can prevent the curvature of the third lens and the fourth lens from being too large, making the third lens and the fourth lens easier to process.
  • the optical imaging lens has a better ability to balance chromatic aberration and balance distortion.
  • the optical imaging lens provided by the present application can satisfy the conditional formula 3.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00, where R9 is the radius of curvature of the object side surface of the fifth lens, and R10 is The radius of curvature of the image side surface of the fifth lens.
  • R9 and R10 may satisfy 3.10 ⁇ (R9+R10)/(R9-R10) ⁇ 4.90. Controlling the curvature radii of the two mirror surfaces of the object side surface and the image side surface of the fifth lens can make the fifth lens have a lower curvature and make the fifth lens easier to process. At the same time, the optical imaging lens has a better ability to balance chromatic aberration and balance distortion.
  • the optical imaging lens provided by the present application can satisfy the conditional formula 9.00 ⁇ (CT5+CT6)/(CT5-CT6) ⁇ 20.00, where CT5 is the central thickness of the fifth lens on the optical axis, CT6 Is the center thickness of the sixth lens on the optical axis.
  • CT5 and CT6 may satisfy 9.50 ⁇ (CT5+CT6)/(CT5-CT6) ⁇ 19.72. Controlling the respective central thickness of the fifth lens and the sixth lens on the optical axis can effectively reduce the size of the optical imaging lens and achieve higher space utilization. In addition, it can also reduce the difficulty of lens assembly.
  • the optical imaging lens provided by the present application can satisfy the conditional expression 3.00 ⁇ SAG32/SAG31+SAG52/SAG51 ⁇ 5.00, where SAG31 is the intersection of the object side surface of the third lens and the optical axis to the object of the third lens.
  • SAG32 is the on-axis distance from the intersection of the image side of the third lens and the optical axis to the apex of the effective radius of the image side of the third lens
  • SAG51 is the intersection of the object side of the fifth lens and the optical axis
  • SAG52 is the on-axis distance from the intersection of the image side surface of the fifth lens and the optical axis to the apex of the effective radius of the image side surface of the fifth lens.
  • SAG31, SAG32, SAG51, and SAG52 may satisfy 3.30 ⁇ SAG32/SAG31+SAG52/SAG51 ⁇ 4.95.
  • the optical imaging lens provided by the present application can satisfy the conditional formula 7.00 ⁇ T45/T56 ⁇ 10.00, T45 is the separation distance between the fourth lens and the fifth lens on the optical axis, and T56 is the fifth lens and the first lens. The distance between the six lenses on the optical axis.
  • T45 and T56 may satisfy 7.40 ⁇ T45/T56 ⁇ 9.7.
  • the optical imaging lens can have better assembly performance and can prevent interference between adjacent lenses during the assembly process; in addition, it is also beneficial to slow down the light in the optical path of the optical imaging lens Segregation can adjust the field curvature of the optical imaging lens, reduce the sensitivity of the optical imaging lens, and improve the imaging quality of the optical imaging lens.
  • the optical imaging lens provided by the present application may satisfy the conditional formula 1.50 ⁇ f/R9 ⁇ 3.00, where f is the effective focal length of the optical imaging lens, and R9 is the radius of curvature of the object side surface of the fifth lens.
  • f and R9 may satisfy 1.90 ⁇ f/R9 ⁇ 2.95. Controlling the ratio between the effective focal length of the optical imaging lens and the radius of curvature of the object side surface of the fourth or fifth lens can improve the field curvature and distortion of the optical imaging lens, and also reduce the difficulty of processing and production of the fifth lens.
  • the optical imaging lens provided by the present application may satisfy the conditional formula 2.00 ⁇ CT1/T12 ⁇ 4.00, where CT1 is the central thickness of the first lens on the optical axis, and T12 is the first lens and the second lens The separation distance on the optical axis.
  • CT1 and T12 may satisfy 2.50 ⁇ CT1/T12 ⁇ 3.90. Controlling the ratio of the center thickness of the first lens on the optical axis to the separation distance between the first lens and the second lens on the optical axis can reduce the size of the optical imaging lens and improve the space utilization of the optical imaging lens. The difficulty of assembling the lens can be reduced.
  • the optical imaging lens provided in the present application may satisfy the conditional formula ImgH ⁇ 4.30mm, where ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens. Controlling the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens to be greater than or equal to 4.30mm can enable the optical imaging lens to have a large image area and high-quality imaging, and improve the resolution of the optical imaging lens.
  • the optical imaging lens provided in the present application can satisfy the conditional TTL/ImgH>6.00, where TTL is the on-axis distance from the reflective surface of the prism to the imaging surface of the optical imaging lens, and ImgH is the distance of the optical imaging lens Half of the diagonal of the effective pixel area on the imaging surface.
  • TTL/ImgH >6.20.
  • the above-mentioned optical imaging lens may further include a diaphragm, and the optical cable is disposed between the prism and the first lens.
  • the diaphragm is provided on the side of the prism facing the object side.
  • the diaphragm is arranged between any two adjacent lenses. The diaphragm is used to limit the beam and can control the cross-sectional area of the beam at its corresponding position.
  • the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located at the imaging surface.
  • the optical imaging lens according to the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • the optical imaging lens is more conducive to production and processing and can be applied to portable electronic products.
  • the mirror surface of each lens is mostly an aspheric mirror surface.
  • At least one mirror surface from the object side surface of the first lens to the image side surface of the sixth lens is an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens.
  • an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatic aberration. After the aspheric lens is used, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • At least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens may be aspherical.
  • both the object side and the image side of the first lens are aspherical, while the object side of the second lens is aspheric; for example, the image side of the first lens is aspheric, the object side of the second lens is aspheric, and the third lens
  • the image side surface and the object side surface of the fourth lens are aspherical; for example, the image side surface of the first lens and the image side surface of the third lens are aspherical surfaces, while the object side surface and the image side surface of the fifth lens are aspherical surfaces.
  • the image side surface of the fifth lens and the object side surface of the sixth lens are aspherical surfaces.
  • the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens may be aspherical.
  • the optical imaging lens of this embodiment sequentially includes a prism E1, a first lens E2, a second lens E3, a third lens E4, and a fourth lens E5 along the optical axis from the object side to the image side.
  • the fifth lens E6, the sixth lens E7 and the filter E8, and a stop STO can be arranged between the prism E1 and the first lens E2. There may be an air gap between any two adjacent lenses.
  • the reflection surface of the prism E1 forms an angle of 45° with the optical axis, so that the incident light rays perpendicular to the object side surface S1 of the prism E1 are deflected by 90° and then pass through the prism E1.
  • the first lens E2 has a positive refractive power
  • the object side surface S4 is a convex surface
  • the image side surface S5 is a concave surface.
  • the second lens E3 has a positive refractive power
  • the object side surface S6 is a convex surface
  • the image side surface S7 is a convex surface.
  • the third lens E4 has negative refractive power
  • the object side surface S8 is a concave surface
  • the image side surface S9 is a concave surface.
  • the fourth lens E5 has negative refractive power, the object side surface S10 is convex, and the image side surface S11 is concave.
  • the fifth lens E6 has a positive refractive power, the object side surface S12 is a concave surface, and the image side surface S13 is a convex surface.
  • the sixth lens E7 has negative refractive power, and its object side surface S14 is a convex surface, and the image side surface S15 is a concave surface.
  • the filter E8 has an object side surface S16 and an image side surface S17.
  • the optical imaging lens of this embodiment has an imaging surface S18. The light from the object sequentially passes through each surface (S1 to S17) and is imaged on the imaging surface S18.
  • Table 1 shows the basic parameter table of the optical imaging lens of this embodiment, where the units of the radius of curvature, thickness, and focal length are all millimeters (mm), and the details are as follows:
  • TTL is the on-axis distance from the reflective surface S2 of the prism E1 to the imaging surface of the optical imaging lens
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface
  • Semi-FOV is the maximum half of the optical imaging lens Field of view
  • Fno is the aperture value of the optical imaging lens
  • f is the effective focal length of the optical imaging lens.
  • the object side and the image side of any one of the first lens E2 to the sixth lens E7 of the optical imaging lens are aspherical, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula:
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric surface S4 to S15 in the first embodiment. .
  • FIG. 2A shows the axial chromatic aberration curve of the optical imaging lens of the first embodiment, which represents the deviation of the focusing point of light of different wavelengths after passing through the optical imaging lens.
  • FIG. 2B shows the chromatic aberration curve of magnification of the optical imaging lens of the first embodiment, which represents the deviation of different image heights on the imaging surface after light passes through the optical imaging lens.
  • 2C shows the astigmatism curve of the optical imaging lens of the first embodiment, which represents the meridional field curvature and the sagittal field curvature.
  • FIG. 2D shows the distortion curve of the optical imaging lens of the first embodiment, which represents the distortion magnitude values corresponding to different image heights. According to FIGS. 2A to 2D, it can be seen that the optical imaging lens provided in the first embodiment can achieve good imaging quality.
  • Embodiment 2 of the present application will be described below with reference to FIGS. 3 to 4D.
  • some descriptions similar to the optical imaging lens of Embodiment 1 will be omitted.
  • the optical imaging lens of this embodiment includes in order from the object side to the image side along the optical axis: a prism E1, a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, and a fifth lens.
  • the lens E6, the sixth lens E7 and the filter E8 may be provided with a stop STO between the prism E1 and the first lens E2. There may be an air gap between any two adjacent lenses.
  • the reflection surface of the prism E1 forms an angle of 45° with the optical axis, so that the incident light rays perpendicular to the object side surface S1 of the prism E1 are deflected by 90° and then pass through the prism E1.
  • the first lens E2 has a positive refractive power
  • the object side surface S4 is a convex surface
  • the image side surface S5 is a concave surface.
  • the second lens E3 has a positive refractive power
  • the object side surface S6 is a convex surface
  • the image side surface S7 is a convex surface.
  • the third lens E4 has negative refractive power
  • the object side surface S8 is concave
  • the image side surface S9 is concave.
  • the fourth lens E5 has a positive refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface.
  • the fifth lens E6 has a positive refractive power
  • the object side surface S12 is a concave surface
  • the image side surface S13 is a convex surface.
  • the sixth lens E7 has negative refractive power, and its object side surface S14 is a convex surface, and the image side surface S15 is a concave surface.
  • the filter E8 has an object side surface S16 and an image side surface S17.
  • the optical imaging lens of this embodiment has an imaging surface S18. The light from the object sequentially passes through each surface (S1 to S17) and is imaged on the imaging surface S18.
  • Table 3 shows the basic parameter table of the optical imaging lens of this embodiment, in which the units of the radius of curvature, thickness and focal length are all millimeters (mm), and Table 4 shows various non-standard parameters that can be used in the optical imaging lens of this embodiment.
  • the high-order coefficients of the spherical surface, where each aspheric surface type can be defined by the aforementioned formula (1), as follows:
  • FIG. 4A shows the axial chromatic aberration curve of the optical imaging lens of this embodiment, which represents the deviation of the focal point of light rays of different wavelengths after passing through the optical imaging lens.
  • Fig. 4B shows the chromatic aberration curve of magnification of the optical imaging lens of the present embodiment, which represents the deviation of different image heights on the imaging surface after light passes through the optical imaging lens.
  • FIG. 4C shows the astigmatism curve of the optical imaging lens of this embodiment, which represents meridional field curvature and sagittal field curvature.
  • FIG. 4D shows the distortion curve of the optical imaging lens of this embodiment, which represents the distortion magnitude values corresponding to different image heights. It can be seen from FIGS. 4A to 4D that the optical imaging lens provided in this embodiment can achieve good imaging quality.
  • the optical imaging lens of this embodiment includes in order from the object side to the image side along the optical axis: a prism E1, a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, and a fifth lens.
  • the lens E6, the sixth lens E7 and the filter E8 can be provided with a stop STO between the prism E1 and the first lens E2. There may be an air gap between any two adjacent lenses.
  • the reflection surface of the prism E1 forms an angle of 45° with the optical axis, so that the incident light rays perpendicular to the object side surface S1 of the prism E1 are deflected by 90° and then pass through the prism E1.
  • the first lens E2 has a positive refractive power
  • the object side surface S4 is a convex surface
  • the image side surface S5 is a convex surface.
  • the second lens E3 has a positive refractive power
  • the object side surface S6 is a concave surface
  • the image side surface S7 is a convex surface.
  • the third lens E4 has negative refractive power
  • the object side surface S8 is a concave surface
  • the image side surface S9 is a concave surface.
  • the fourth lens E5 has a positive refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface.
  • the fifth lens E6 has a positive refractive power
  • the object side surface S12 is a concave surface
  • the image side surface S13 is a convex surface.
  • the sixth lens E7 has negative refractive power, and its object side surface S14 is a convex surface, and the image side surface S15 is a concave surface.
  • the filter E8 has an object side surface S16 and an image side surface S17.
  • the optical imaging lens of this embodiment has an imaging surface S18. The light from the object sequentially passes through each surface (S1 to S17) and is imaged on the imaging surface S18.
  • Table 5 shows the basic parameter table of the optical imaging lens of this embodiment, in which the units of the radius of curvature, thickness and focal length are all millimeters (mm), and Table 6 shows the various parameters that can be used in the optical imaging lens of this embodiment.
  • the coefficients of the higher-order term of the spherical surface, where each aspheric surface type can be defined by the aforementioned formula (1), as follows:
  • FIG. 6A shows the axial chromatic aberration curve of the optical imaging lens of this embodiment, which represents the deviation of the focusing point of light of different wavelengths after passing through the optical imaging lens.
  • FIG. 6B shows the chromatic aberration curve of magnification of the optical imaging lens of this embodiment, which represents the deviation of different image heights on the imaging surface after light passes through the optical imaging lens.
  • FIG. 6C shows the astigmatism curve of the optical imaging lens of this embodiment, which represents meridional field curvature and sagittal field curvature.
  • FIG. 6D shows a distortion curve of the optical imaging lens of this embodiment, which represents the distortion magnitude values corresponding to different image heights. It can be seen from FIGS. 6A to 6D that the optical imaging lens provided in this embodiment can achieve good imaging quality.
  • optical imaging lens according to the fourth embodiment of the present application will be described below with reference to FIGS. 7 to 8D.
  • the optical imaging lens of this embodiment includes in order from the object side to the image side along the optical axis: a prism E1, a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, and a fifth lens.
  • the lens E6, the sixth lens E7 and the filter E8 can be provided with a stop STO between the prism E1 and the first lens E2. There may be an air gap between any two adjacent lenses.
  • the reflection surface of the prism E1 forms an angle of 45° with the optical axis, so that the light incident perpendicular to the object side of the prism E1 is deflected by 90° and then passes through the prism E1.
  • the first lens E2 has a positive refractive power
  • the object side surface S4 is a convex surface
  • the image side surface S5 is a concave surface.
  • the second lens E3 has a positive refractive power
  • the object side surface S6 is a convex surface
  • the image side surface S7 is a concave surface.
  • the third lens E4 has negative refractive power
  • the object side surface S8 is convex
  • the image side surface S9 is concave.
  • the fourth lens E5 has a positive refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface.
  • the fifth lens E6 has a positive refractive power
  • the object side surface S12 is a concave surface
  • the image side surface S13 is a convex surface.
  • the sixth lens E7 has negative refractive power, and its object side surface S14 is a convex surface, and the image side surface S15 is a concave surface.
  • the filter E8 has an object side surface S16 and an image side surface S17.
  • the optical imaging lens of this embodiment has an imaging surface S18. The light from the object sequentially passes through each surface (S1 to S17) and is imaged on the imaging surface S18.
  • Table 7 shows the basic parameter table of the optical imaging lens of this embodiment, in which the units of the radius of curvature, thickness and focal length are all millimeters (mm), and Table 8 shows the various parameters that can be used in the optical imaging lens of this embodiment.
  • the coefficients of the higher-order term of the spherical surface, where each aspheric surface type can be defined by the aforementioned formula (1), as follows:
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens of this embodiment, which represents the deviation of the focal point of light rays of different wavelengths after passing through the optical imaging lens.
  • FIG. 8B shows the chromatic aberration curve of magnification of the optical imaging lens of this embodiment, which represents the deviation of different image heights on the imaging surface after light passes through the optical imaging lens.
  • FIG. 8C shows the astigmatism curve of the optical imaging lens of this embodiment, which represents meridional field curvature and sagittal field curvature.
  • FIG. 8D shows the distortion curve of the optical imaging lens of this embodiment, which represents the distortion magnitude values corresponding to different image heights. It can be seen from FIGS. 8A to 8D that the optical imaging lens provided by this embodiment can achieve good imaging quality.
  • Embodiment 1 to Embodiment 4 correspond to the relationship shown in Table 9 below.
  • the number of lenses constituting the optical imaging lens can be changed to obtain the various results and advantages described in this specification.
  • the optical imaging lens is not limited to include one prism and six lenses. If necessary, the optical imaging lens may also include other numbers of lenses.
  • the present application also provides an imaging device, which is provided with an electronic photosensitive element for imaging.
  • the electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • CMOS complementary metal oxide semiconductor element
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Abstract

一种光学成像镜头,光学成像镜头沿着光轴由物侧至像侧依序包括:棱镜,棱镜的反射面与光轴的夹角为45°;光阑;具有正光焦度的第一透镜,具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜,其物侧面为凸面;光学成像镜头的有效焦距f满足f>23.50mm。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2019年7月12日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910629069.3的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,具体地涉及一种包括棱镜和六片具有光焦度的透镜的光学成像镜头。
背景技术
目前对便携式电子设备的成像功能要求越来越高,而由于期望便携式电子设备具有较小的尺寸,因此其上设置的光学成像镜头的尺寸也受到了限制。
例如手机等电子设备由于安装尺寸的限制,通常配备的镜头焦距较短,镜头的光学特性受到限制,在拍摄远景时手机的成像不清晰,并使得手机的成像例如背景虚化、物体放大等效果受限。因此,如何实现一种光学特性好且能够满足小型化要求的长焦镜头是目前亟待解决的问题。
发明内容
本申请提供了可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头装置,例如,包括棱镜的光学成像镜头。本申请通过增加反射棱镜来偏折镜头组内的光传递路线,使得光线不再完全纵向传播。这样的设置可以将原本堆积在纵轴的模组体积转为横向,从而可以在满足手机轻薄化特性的情况下,实现20mm以上的焦距。
本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序可包括:棱镜,棱镜的反射面与光轴的夹角为45°;光阑;具有正光焦度的第一透镜;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜,其物侧面为凸面。
根据本申请的实施方式,光学成像镜头的有效焦距f可满足f>23.50mm。
根据本申请的实施方式,棱镜的反射面至光学成像镜头的成像面的轴上距离TTL与棱镜的像侧面至第一透镜的物侧面的轴上距离PL可满足1.00<100×PL/TTL<4.00。
根据本申请的实施方式,光学成像镜头的有效焦距f、第五透镜的有效焦距f5以及第六透镜的有效焦距f6可满足2.00<f/f5-f/f6<4.00。
根据本申请的实施方式,第三透镜的像侧面的曲率半径R6与第四透镜的物侧面的曲率半径R7可满足9.00<(R6+R7)/(R6-R7)<33.00。
根据本申请的实施方式,第五透镜的物侧面的曲率半径R9和第五透镜的像侧面的曲率半径R10可满足3.00<(R9+R10)/(R9-R10)<5.00。
根据本申请的实施方式,第五透镜在光轴上的中心厚度CT5与第六透镜在光轴上的中心厚度CT6可满足9.00<(CT5+CT6)/(CT5-CT6)<20.00。
根据本申请的实施方式,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31、第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有 效半径顶点的轴上距离SAG32、第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离SAG52可满足3.00<SAG32/SAG31+SAG52/SAG51<5.00。
根据本申请的实施方式,第四透镜和第五透镜在光轴上的间隔距离T45与第五透镜和第六透镜在光轴上的间隔距离T56可满足7.00<T45/T56<10.00。
根据本申请的实施方式,光学成像镜头的有效焦距f与第五透镜的物侧面的曲率半径R9可满足1.50<f/R9<3.00。
根据本申请的实施方式,第一透镜在光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足2.00<CT1/T12<4.00。
根据本申请的实施方式,光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足ImgH≥4.30mm。
根据本申请的实施方式,棱镜的反射面至光学成像镜头的成像面的轴上距离TTL与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足TTL/ImgH>6.00。
本申请提供了包括棱镜以及多片(例如,六片)透镜的光学成像镜头,通过设置棱镜,使得光线的入射方向与多片透镜的排列方向之间成90度夹角,从而使得光学成像镜头在光线入射方向上的尺寸减小。同时,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得光学成像镜头组具有小型化、高成像质量、长焦距的有益效果。
附图说明
通过参照以下附图进行的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1示出了根据本申请实施例一的光学成像镜头示意性结构图;
图2A至图2D依次示出了根据本申请实施例一的轴上色差曲线、倍率色差曲线、象散曲线及畸变曲线;
图3示出了根据本申请实施例二的光学成像镜头示意性结构图;
图4A至图4D依次示出了根据本申请实施例二的轴上色差曲线、倍率色差曲线、象散曲线及畸变曲线;
图5示出了根据本申请实施例三的光学成像镜头示意性结构图;
图6A至图6D依次示出了根据本申请实施例三的轴上色差曲线、倍率色差曲线、象散曲线及畸变曲线;
图7示出了根据本申请实施例四的光学成像镜头示意性结构图;以及
图8A至图8D依次示出了根据本申请实施例四的轴上色差曲线、倍率色差曲线、象散曲线及畸变曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的光学成像镜头的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括:棱镜、光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜,其中棱镜的反射面与光轴之间的夹角为45°。六片透镜沿着光轴从棱镜的像侧面至像侧依序排列,各相邻透镜之间以及棱镜和第一透镜之间均可具有空气间隔。
棱镜可以为三棱镜,其入射面和出射面垂直,用于将垂直入射至入射面的光线方向改变90°,光线垂直于出射面出射。棱镜使得光学成像镜头的入射光线的方向与前述多片透镜的排布方向垂直,从而利用手机的长度空间来匹配多片透镜的排列长度,避免了机身厚度对镜头焦距的限制。
在示例性实施方式中,第一透镜可具有正光焦度,第二透镜具有正光焦度或负光焦度,第三透镜具有负光焦度,第四透镜具有正光焦度或负光焦度,第五透镜具有正光焦度或负光焦度,其像侧面为凸面,第六透镜具有正光焦度或负光焦度,其物侧面为凸面。通过合理配置透镜的光焦度并合理布置透镜面型,有利于矫正光学成像镜头的轴外像差,提高成像质量。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式f>23.50mm,其中,f为光学成像镜头的有效焦距。通过控制光学成像镜头的有效焦距,可以使光学成像镜头在远景拍摄时具有较好的解像力。此外,当光学成像镜头为变焦镜头时,可以实现高倍数的变焦。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式1.00<100×PL/TTL <4.00,其中,TTL为棱镜的反射面至光学成像镜头的成像面的轴上距离(即,从棱镜的反射面与光轴的交点至光学成像镜头的成像面的轴上距离),PL为棱镜的像侧面至第一透镜的物侧面的轴上距离。在示例性实施方式中,TTL和PL可满足1.50<100×PL/TTL<3.50。控制棱镜的像侧面至第一透镜的物侧面的轴上距离占棱镜的反射面至光学成像镜头的成像面的轴上距离的比例,可以控制光束在棱镜处的发散角度,使光学成像镜头具有更高的成像质量,此外可以降低棱镜及透镜的组装难度。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式2.00<f/f5-f/f6<4.00,其中,f为光学成像镜头的有效焦距,f5为第五透镜的有效焦距,f6为第六透镜的有效焦距。在示例性实施方式中,f、f5和f6可满足2.50<f/f5-f/f6<3.50。通过分配第五透镜和第六透镜的有效焦距,使光学成像镜头更好的平衡像差,并提升光学成像镜头的解像力。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式9.00<(R6+R7)/(R6-R7)<33.00,其中,R6为第三透镜的像侧面的曲率半径,R7为第四透镜的物侧面的曲率半径R7。在示例性实施方式中,R6和R7可满足9.50<(R6+R7)/(R6-R7)<32.50。控制第三透镜的像侧面的曲率半径和第四透镜的物侧面的曲率半径,可以避免第三透镜的弯曲量及第四透镜的弯曲量过大,使第三透镜和第四透镜易于加工。同时使光学成像镜头具有较好的平衡色差及平衡畸变的能力。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式3.00<(R9+R10)/(R9-R10)<5.00,其中,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。在示例性实施方式中,R9和R10可满足3.10<(R9+R10)/(R9-R10)<4.90。控制第五透镜的物侧面及像侧面两个镜面的曲率半径,可以使第五透镜具有较低的弯曲量,使第五透镜易于加工得到。同时使光学成像镜头具有较好的平衡色差及平衡畸变的能力。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式9.00<(CT5+CT6)/(CT5-CT6)<20.00,其中,CT5为第五透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度。在示例性实施方式中,CT5和CT6可满足9.50<(CT5+CT6)/(CT5-CT6)≤19.72。控制第五透镜和第六透镜各自在光轴上的中心厚度,可以有效降低光学成像镜头的尺寸,实现较高的空间利用率,此外,还可以降低透镜的组装难度。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式3.00<SAG32/SAG31+SAG52/SAG51<5.00,其中,SAG31为第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离,SAG32为第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点的轴上距离,SAG51为第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离,SAG52为第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离。在示例性实施方式中,SAG31、SAG32、SAG51和SAG52可满足3.30<SAG32/SAG31+SAG52/SAG51<4.95。通过控制第三透镜两个镜面的矢高以及控制第五透镜两个镜面的矢高,可分别降低第三透镜和第五透镜的弯曲程度,使第三透镜和第五透镜易于加工得到,并且使光学成像镜头具有更高的组装稳定性。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式7.00<T45/T56<10.00,T45为第四透镜和第五透镜在光轴上的间隔距离,T56为第五透镜和第六透镜在 光轴上的间隔距离。在示例性实施方式中,T45和T56可满足7.40≤T45/T56<9.7。通过分配第五透镜两侧的间隔的厚度,可以使光学成像镜头具有更好的组装性能,可以防止组装过程中出现相邻透镜之间干涉;此外,还利于减缓光学成像透镜的光路内的光线偏析,可以调整光学成像镜头的场曲,降低光学成像镜头的敏感程度,提升光学成像镜头的成像质量。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式1.50<f/R9<3.00,其中,f为光学成像镜头的有效焦距,R9为第五透镜的物侧面的曲率半径。在示例性实施方式中,f和R9可满足1.90<f/R9<2.95。控制光学成像镜头的有效焦距与四五透镜的物侧面的曲率半径之间的比值,可以改善光学成像镜头的场曲和畸变,此外还降低了第五透镜的加工生产难度。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式2.00<CT1/T12<4.00,其中,CT1为第一透镜在光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离。在示例性实施方式中,CT1和T12可满足2.50<CT1/T12<3.90。控制第一透镜在光轴上的中心厚度与第一透镜和第二透镜在光轴上的间隔距离二者的比值,可以降低光学成像透镜的尺寸,提升光学成像镜头的空间利用率,此外还可以降低透镜的组装难度。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式ImgH≥4.30mm,其中,ImgH为光学成像镜头的成像面上有效像素区域的对角线长的一半。控制光学成像镜头的成像面上有效像素区域的对角线长的一半大于或等于4.30mm,可以使光学成像镜头具有大像面、高质量的成像,并且提升了光学成像镜头的解像力。
在示例性实施方式中,本申请提供的光学成像镜头可满足条件式TTL/ImgH>6.00,其中,TTL为棱镜的反射面至光学成像镜头的成像面的轴上距离,ImgH为光学成像镜头的成像面上有效像素区域的对角线长的一半。在示例性实施方式中,TTL/ImgH>6.20。通过控制棱镜的反射面至光学成像镜头的成像面的轴上距离与像高的比值,可以控制光学成像镜头的视场角,使第一透镜处光线的折射程度比较缓和,继而使光学成像镜头的成像的像差较小,成像的像质提高。
在示例性实施方式中,上述光学成像镜头还可包括光阑,光缆设置在棱镜和第一透镜之间。在示例性实施方式中,光阑设置于棱镜的朝向物侧的一侧。示例性的,光阑设置于任意的两个相邻透镜之间。光阑用于限制光束,可控制其对应位置的光束的截面面积。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面处的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,各透镜的镜面多采用非球面镜面。第一透镜的物侧面至第六透镜的像侧面中的至少一个镜面是非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透 镜的物侧面和像侧面中的至少一个可为非球面。例如第一透镜的物侧面及像侧面都为非球面,同时第二透镜的物侧面为非球面;例如第一透镜的像侧面为非球面,第二透镜的物侧面为非球面,第三透镜的像侧面及第四透镜的物侧面为非球面;例如第一透镜的像侧面及第三透镜的像侧面为非球面,同时第五透镜的物侧面及其像侧面为非球面。例如第五透镜的像侧面和第六透镜的物侧面为非球面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均可为非球面。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例一
参照图1至图2D,本实施例的光学成像镜头沿着光轴由物侧至像侧依序包括:棱镜E1、第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6、第六透镜E7和滤光片E8,可在棱镜E1和第一透镜E2之间设置光阑STO。任意两个相邻的透镜之间可具有空气间隔。
棱镜E1的反射面与光轴成45°夹角,使垂直于棱镜E1的物侧面S1入射的光线偏转90°后穿出棱镜E1。第一透镜E2具有正光焦度,其物侧面S4为凸面,像侧面S5为凹面。第二透镜E3具有正光焦度,其物侧面S6为凸面,像侧面S7为凸面。第三透镜E4具有负光焦度,其物侧面S8为凹面,像侧面S9为凹面。第四透镜E5具有负光焦度,其物侧面S10为凸面,像侧面S11为凹面。第五透镜E6具有正光焦度,其物侧面S12为凹面,像侧面S13为凸面。第六透镜E7具有负光焦度,其物侧面S14为凸面,像侧面S15为凹面。滤光片E8具有物侧面S16和像侧面S17。本实施例的光学成像镜头具有成像面S18。来自物体的光依序穿过各表面(S1至S17)并成像在成像面S18上。
表1示出了本实施例的光学成像镜头的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm),具体如下:
表1
Figure PCTCN2020091848-appb-000001
Figure PCTCN2020091848-appb-000002
其中,TTL为棱镜E1的反射面S2至光学成像镜头的成像面的轴上距离,ImgH为成像面上的有效像素区域的对角线的长度的一半,Semi-FOV为光学成像镜头的最大半视场角,Fno为光学成像镜头的光圈值,f为光学成像镜头的有效焦距。
光学成像镜头的第一透镜E2至第六透镜E7中任一透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020091848-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于根据实施例一中各非球面S4至S15的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
表2
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S4 -3.3441E-04 3.6952E-05 -1.0319E-05 5.2888E-07 1.0041E-07 -2.1527E-08 1.7726E-09 -7.2064E-11 1.1894E-12
S5 -4.1883E-04 4.3966E-04 -1.8875E-04 4.3841E-05 -6.2415E-06 5.5879E-07 -3.0749E-08 9.4856E-10 -1.2508E-11
S6 5.2604E-05 3.9206E-04 -3.1862E-04 1.1598E-04 -2.3405E-05 2.8234E-06 -2.0349E-07 8.1022E-09 -1.3707E-10
S7 -2.8836E-03 3.4795E-03 -1.6641E-03 5.0599E-04 -1.0039E-04 1.2936E-05 -1.0375E-06 4.6884E-08 -9.0899E-10
S8 -2.0632E-04 8.7408E-03 -4.8475E-03 1.4550E-03 -2.7533E-04 3.3955E-05 -2.6488E-06 1.1858E-07 -2.3206E-09
S9 1.3998E-03 9.7126E-03 -5.2002E-03 1.3636E-03 -1.8202E-04 7.3135E-06 1.1997E-06 -1.6662E-07 6.2789E-09
S10 -9.3994E-03 7.9829E-03 -3.6613E-03 9.6642E-04 -1.3467E-04 5.2873E-06 1.1396E-06 -1.6662E-07 6.9434E-09
S11 -8.4453E-03 4.6261E-03 -2.2268E-03 6.5716E-04 -1.1025E-04 7.8555E-06 4.0776E-07 -1.0862E-07 5.4203E-09
S12 1.3459E-03 -4.5887E-03 3.9772E-03 -2.1786E-03 6.6725E-04 -1.1488E-04 1.0427E-05 -3.9516E-07 4.6560E-10
S13 -5.8626E-03 2.5887E-03 1.7966E-03 -2.6598E-03 1.1805E-03 -2.6719E-04 3.3341E-05 -2.1817E-06 5.8259E-08
S14 -4.2730E-02 1.7213E-02 -3.8148E-03 -1.3442E-03 1.1222E-03 -3.1536E-04 4.5514E-05 -3.3815E-06 1.0271E-07
S15 -3.5721E-02 1.1518E-02 -3.9981E-03 9.9447E-04 -1.4853E-04 1.0249E-05 1.7767E-07 -7.0430E-08 3.0371E-09
图2A示出了实施例一的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点的偏离。图2B示出了实施例一的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图2C示出了实施例一的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2D示出了实施例一的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。根据图2A至图2D可知,实施例一所给出的光学成像镜头能够实现良好的成像品质。
实施例二
以下参照图3至图4D描述根据本申请实施例二的光学成像镜头,在本示例性实施例及以下实施例中,为简洁起见,将省略部分与实施例一的光学成像镜头相似的描述。
参照图3,本实施例的光学成像镜头沿着光轴由物侧至像侧依序包括:棱镜E1、第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6、第六透镜E7和滤光片E8,可在棱镜E1和第一透镜E2之间设置光阑STO。任意两个相邻的透镜之间可具有空气间隔。
棱镜E1的反射面与光轴成45°夹角,使垂直于棱镜E1的物侧面S1入射的光线偏转90°后穿出棱镜E1。第一透镜E2具有正光焦度,其物侧面S4为凸面,像侧面S5为凹面。第二透镜E3具有正光焦度,其物侧面S6为凸面,像侧面S7为凸面。第三透镜E4具有负光 焦度,其物侧面S8为凹面,像侧面S9为凹面。第四透镜E5具有正光焦度,其物侧面S10为凸面,像侧面S11为凹面。第五透镜E6具有正光焦度,其物侧面S12为凹面,像侧面S13为凸面。第六透镜E7具有负光焦度,其物侧面S14为凸面,像侧面S15为凹面。滤光片E8具有物侧面S16和像侧面S17。本实施例的光学成像镜头具有成像面S18。来自物体的光依序穿过各表面(S1至S17)并成像在成像面S18上。
表3示出了本实施例的光学成像镜头的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm),表4示出了可用于本实施例光学成像镜头的各个非球面的高次项系数,其中,各非球面面型可由前述公式(1)限定,具体如下:
表3
Figure PCTCN2020091848-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S4 -2.5504E-04 1.2190E-06 -5.6937E-07 -2.7927E-07 5.4529E-09 4.1813E-09 -4.3265E-10 1.5042E-11 -1.4635E-13
S5 -1.0366E-04 2.9643E-05 2.6110E-05 -1.4579E-05 2.8365E-06 -2.7973E-07 1.4677E-08 -3.8041E-10 3.6724E-12
S6 5.2007E-04 -6.2548E-04 3.1433E-04 -8.0305E-05 1.1425E-05 -8.6253E-07 2.5616E-08 4.0906E-10 -2.9656E-11
S7 -2.2447E-03 3.0874E-03 -1.6594E-03 5.8269E-04 -1.3228E-04 1.9095E-05 -1.6810E-06 8.2004E-08 -1.6941E-09
S8 -1.0408E-05 1.0273E-02 -6.4599E-03 2.2154E-03 -4.7417E-04 6.4700E-05 -5.4530E-06 2.5831E-07 -5.2585E-09
S9 7.3848E-04 1.1660E-02 -6.8356E-03 2.0082E-03 -3.0537E-04 1.5423E-05 2.0175E-06 -3.2422E-07 1.3172E-08
S10 -9.0396E-03 8.1330E-03 -4.0140E-03 1.1185E-03 -1.6063E-04 5.8679E-06 1.5284E-06 -2.1400E-07 8.6172E-09
S11 -7.6648E-03 4.0092E-03 -2.0821E-03 6.6056E-04 -1.2021E-04 1.0343E-05 1.0134E-07 -8.7922E-08 4.8083E-09
S12 1.4675E-03 -3.5778E-03 1.9905E-03 -7.4418E-04 1.0674E-04 1.4268E-05 -7.1167E-06 9.1104E-07 -4.0498E-08
S13 -5.3243E-04 -4.0023E-03 4.9747E-03 -3.0959E-03 9.9757E-04 -1.7786E-04 1.7246E-05 -8.0044E-07 1.1435E-08
S14 -3.3667E-02 4.5985E-03 4.0682E-03 -3.7544E-03 1.3928E-03 -2.7804E-04 3.0791E-05 -1.7485E-06 3.8326E-08
S15 -3.2832E-02 7.9632E-03 -1.5497E-03 2.8475E-05 8.0535E-05 -2.2691E-05 2.9504E-06 -1.9315E-07 5.1386E-09
图4A示出了本实施例的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点的偏离。图4B示出了本实施例的光学成像镜头的倍率色差曲 线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图4C示出了本实施例的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4D示出了本实施例的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。根据图4A至图4D可知,本实施例所提供的光学成像镜头能够实现良好的成像品质。
实施例三
以下参照图5至图6D描述根据本申请实施例三的光学成像镜头。
参照图5,本实施例的光学成像镜头沿着光轴由物侧至像侧依序包括:棱镜E1、第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6、第六透镜E7和滤光片E8,可在棱镜E1和第一透镜E2之间设置光阑STO。任意两个相邻的透镜之间可具有空气间隔。
棱镜E1的反射面与光轴成45°夹角,使垂直于棱镜E1的物侧面S1入射的光线偏转90°后穿出棱镜E1。第一透镜E2具有正光焦度,其物侧面S4为凸面,像侧面S5为凸面。第二透镜E3具有正光焦度,其物侧面S6为凹面,像侧面S7为凸面。第三透镜E4具有负光焦度,其物侧面S8为凹面,像侧面S9为凹面。第四透镜E5具有正光焦度,其物侧面S10为凸面,像侧面S11为凹面。第五透镜E6具有正光焦度,其物侧面S12为凹面,像侧面S13为凸面。第六透镜E7具有负光焦度,其物侧面S14为凸面,像侧面S15为凹面。滤光片E8具有物侧面S16和像侧面S17。本实施例的光学成像镜头具有成像面S18。来自物体的光依序穿过各表面(S1至S17)并成像在成像面S18上。
表5示出了本实施例的光学成像镜头的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm),表6示出了可用于本实施例光学成像镜头的各个非球面的高次项系数,其中,各非球面面型可由前述公式(1)限定,具体如下:
表5
Figure PCTCN2020091848-appb-000005
表6
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S4 -2.6181E-04 2.3270E-05 -9.5760E-06 1.8158E-06 -2.6801E-07 2.5473E-08 -1.4419E-09 4.2908E-11 -5.0704E-13
S5 -2.1747E-04 1.8603E-04 -6.8565E-05 1.3070E-05 -1.5872E-06 1.2919E-07 -7.0115E-09 2.2965E-10 -3.3689E-12
S6 5.3651E-06 9.3639E-05 -5.7226E-05 1.7652E-05 -2.9155E-06 2.9639E-07 -2.0019E-08 8.5702E-10 -1.7085E-11
S7 -3.4914E-03 4.6184E-03 -2.3494E-03 7.1102E-04 -1.3478E-04 1.6291E-05 -1.2282E-06 5.3062E-08 -1.0093E-09
S8 8.8358E-04 8.4720E-03 -4.9758E-03 1.5490E-03 -2.9774E-04 3.6553E-05 -2.8013E-06 1.2283E-07 -2.3706E-09
S9 3.5033E-03 7.1099E-03 -3.5489E-03 7.2160E-04 -1.7011E-05 -2.0456E-05 4.0550E-06 -3.2302E-07 9.5740E-09
S10 -7.3254E-03 4.2868E-03 -5.4165E-04 -5.7684E-04 3.4241E-04 -8.7800E-05 1.2255E-05 -9.0671E-07 2.7985E-08
S11 -7.2942E-03 1.8661E-03 1.3780E-04 -5.3411E-04 2.6916E-04 -6.8983E-05 9.9812E-06 -7.7688E-07 2.5435E-08
S12 1.2966E-03 -4.4228E-03 3.4433E-03 -1.8031E-03 5.3003E-04 -8.3508E-05 5.8119E-06 8.6696E-09 -1.5269E-08
S13 -1.6380E-03 -2.2619E-03 4.6565E-03 -3.9288E-03 1.6050E-03 -3.6321E-04 4.6630E-05 -3.1806E-06 8.9270E-08
S14 -3.5938E-02 1.0149E-02 8.1562E-04 -3.5777E-03 1.9056E-03 -5.0034E-04 7.2529E-05 -5.5596E-06 1.7651E-07
S15 -3.4786E-02 1.1022E-02 -3.8861E-03 1.0060E-03 -1.5740E-04 1.1049E-05 3.2488E-07 -1.0041E-07 4.4962E-09
图6A示出了本实施例的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点的偏离。图6B示出了本实施例的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图6C示出了本实施例的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6D示出了本实施例的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。根据图6A至图6D可知,本实施例所提供的光学成像镜头能够实现良好的成像品质。
实施例四
以下参照图7至图8D描述根据本申请实施例四的光学成像镜头。
参照图7,本实施例的光学成像镜头沿着光轴由物侧至像侧依序包括:棱镜E1、第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6、第六透镜E7和滤光片E8,可在棱镜E1和第一透镜E2之间设置光阑STO。任意两个相邻的透镜之间可具有空气间隔。
棱镜E1的反射面与光轴成45°夹角,使垂直于棱镜E1的物侧面入射的光线偏转90°后穿出棱镜E1。第一透镜E2具有正光焦度,其物侧面S4为凸面,像侧面S5为凹面。第二透镜E3具有正光焦度,其物侧面S6为凸面,像侧面S7为凹面。第三透镜E4具有负光焦度,其物侧面S8为凸面,像侧面S9为凹面。第四透镜E5具有正光焦度,其物侧面S10为凸面,像侧面S11为凹面。第五透镜E6具有正光焦度,其物侧面S12为凹面,像侧面S13为凸面。第六透镜E7具有负光焦度,其物侧面S14为凸面,像侧面S15为凹面。滤光片E8具有物侧面S16和像侧面S17。本实施例的光学成像镜头具有成像面S18。来自物体的光依序穿过各表面(S1至S17)并成像在成像面S18上。
表7示出了本实施例的光学成像镜头的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm),表8示出了可用于本实施例光学成像镜头的各个非球面的高次项系数,其中,各非球面面型可由前述公式(1)限定,具体如下:
表7
Figure PCTCN2020091848-appb-000006
Figure PCTCN2020091848-appb-000007
表8
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S4 -3.3435E-04 3.3406E-05 -6.8710E-06 -1.3221E-06 5.9828E-07 -9.2693E-08 7.2991E-09 -2.9233E-10 4.7178E-12
S5 -5.0497E-04 5.9171E-04 -2.8534E-04 7.3811E-05 -1.1472E-05 1.0956E-06 -6.2795E-08 1.9768E-09 -2.6202E-11
S6 9.3637E-05 3.8722E-04 -3.0656E-04 1.0969E-04 -2.1761E-05 2.5750E-06 -1.8175E-07 7.0813E-09 -1.1729E-10
S7 -5.8513E-03 7.2648E-03 -3.7714E-03 1.1254E-03 -2.0453E-04 2.3118E-05 -1.5926E-06 6.1600E-08 -1.0327E-09
S8 -3.0074E-03 1.2935E-02 -7.2464E-03 2.1597E-03 -3.8829E-04 4.3274E-05 -2.9103E-06 1.0772E-07 -1.6823E-09
S9 9.8362E-04 1.0273E-02 -5.4611E-03 1.3128E-03 -1.0400E-04 -1.9751E-05 5.7098E-06 -5.3985E-07 1.8519E-08
S10 -8.0369E-03 6.0949E-03 -2.2550E-03 3.0108E-04 7.5375E-05 -3.8538E-05 6.8811E-06 -5.8995E-07 2.0221E-08
S11 -7.5417E-03 3.1131E-03 -8.4888E-04 -1.0584E-04 1.5288E-04 -4.9316E-05 8.0071E-06 -6.7079E-07 2.3089E-08
S12 2.4723E-03 -7.0383E-03 6.0418E-03 -3.1372E-03 9.5061E-04 -1.7095E-04 1.7762E-05 -9.7427E-07 2.1265E-08
S13 -5.5028E-03 -1.2459E-03 5.5301E-03 -4.3395E-03 1.6106E-03 -3.3357E-04 3.9529E-05 -2.5122E-06 6.6504E-08
S14 -4.2502E-02 1.4401E-02 -1.0925E-03 -2.5351E-03 1.3862E-03 -3.4203E-04 4.5616E-05 -3.1859E-06 9.1549E-08
S15 -3.4526E-02 1.1221E-02 -4.1011E-03 1.0916E-03 -1.8616E-04 1.8926E-05 -1.0086E-06 1.7693E-08 3.0234E-10
图8A示出了本实施例的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点的偏离。图8B示出了本实施例的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的偏差。图8C示出了本实施例的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8D示出了本实施例的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。根据图8A至图8D可知,本实施例所提供的光学成像镜头能够实现良好的成像品质。
综上所述,实施例一至实施例四对应满足下表9中所示的关系。
表9
条件式\实施例 1 2 3 4
f 24.00 23.70 24.00 23.90
100×PL/TTL 3.20 2.95 2.48 1.64
f/f5-f/f6 2.93 2.75 3.15 2.63
(R6+R7)/(R6-R7) 30.79 16.25 9.84 32.26
(R9+R10)/(R9-R10) 3.87 4.84 3.12 4.45
(CT5+CT6)/(CT5-CT6) 18.84 9.66 15.50 19.72
SAG32/SAG31+SAG52/SAG51 4.01 4.94 4.93 3.32
T45/T56 9.41 7.40 8.94 9.68
f/R9 2.35 2.93 1.93 2.34
CT1/T12 2.56 3.89 3.74 3.01
ImgH(mm) 4.33 4.33 4.30 4.33
TTL/ImgH 6.37 6.38 6.37 6.27
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六片透镜为例进行了描述,但是该光学成像镜头不限于包括一个棱镜及六片透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
在示例性实施方式中,本申请还提供一种摄像装置,其设置有电子感光元件以成像,电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。该摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的光学成像镜头。
以上参照附图对本申请的示例性实施例进行了描述。本领域技术人员应该理解,上述实施例仅是为了说明的目的而所举的示例,而不是用来限制本申请的范围。凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。

Claims (24)

  1. 光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    棱镜,所述棱镜的反射面与所述光轴的夹角为45°;
    光阑;
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有负光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜,其像侧面为凸面;
    具有光焦度的第六透镜,其物侧面为凸面;
    所述光学成像镜头的有效焦距f满足f>23.50mm。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述棱镜的反射面至所述光学成像镜头的成像面的轴上距离TTL与所述棱镜的像侧面至所述第一透镜的物侧面的轴上距离PL满足1.00<100×PL/TTL<4.00。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f、所述第五透镜的有效焦距f5以及所述第六透镜的有效焦距f6满足2.00<f/f5-f/f6<4.00。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第四透镜的物侧面的曲率半径R7满足9.00<(R6+R7)/(R6-R7)<33.00。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9和所述第五透镜的像侧面的曲率半径R10满足3.00<(R9+R10)/(R9-R10)<5.00。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜在所述光轴上的中心厚度CT5与所述第六透镜在所述光轴上的中心厚度CT6满足9.00<(CT5+CT6)/(CT5-CT6)<20.00。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第三透镜的像侧面和所述光轴的交点至所述第三透镜的像侧面的有效半径顶点的轴上距离SAG32、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足3.00<SAG32/SAG31+SAG52/SAG51<5.00。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足7.00<T45/T56<10.00。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f与所述第五透镜的物侧面的曲率半径R9满足1.50<f/R9<3.00。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.00<CT1/T12<4.00。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足ImgH≥4.30mm。
  12. 根据权利要求1至11任一项所述的光学成像镜头,其特征在于,所述棱镜的反射面至所述光学成像镜头的成像面的轴上距离TTL与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足TTL/ImgH>6.00。
  13. 光学成像镜头,沿着光轴由物侧至像侧依序包括:
    棱镜,所述棱镜的反射面与所述光轴的夹角为45°;
    光阑;
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有负光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜,其像侧面为凸面;
    具有光焦度的第六透镜,其物侧面为凸面;
    所述棱镜的反射面至所述光学成像镜头的成像面的轴上距离TTL与所述棱镜的像侧面至所述第一透镜的物侧面的轴上距离PL满足1.00<100×PL/TTL<4.00。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f、所述第五透镜的有效焦距f5以及所述第六透镜的有效焦距f6满足2.00<f/f5-f/f6<4.00。
  15. 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f满足f>23.50mm。
  16. 根据权利要求13所述的光学成像镜头,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第四透镜的物侧面的曲率半径R7满足9.00<(R6+R7)/(R6-R7)<33.00。
  17. 根据权利要求13所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9和所述第五透镜的像侧面的曲率半径R10满足3.00<(R9+R10)/(R9-R10)<5.00。
  18. 根据权利要求13所述的光学成像镜头,其特征在于,所述第五透镜在所述光轴上的中心厚度CT5与所述第六透镜在所述光轴上的中心厚度CT6满足9.00<(CT5+CT6)/(CT5-CT6)<20.00。
  19. 根据权利要求13所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第三透镜的像侧面和所述光轴的交点至所述第三透镜的像侧面的有效半径顶点的轴上距离SAG32、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足3.00<SAG32/SAG31+SAG52/SAG51<5.00。
  20. 根据权利要求13所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足7.00<T45/T56<10.00。
  21. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的有效焦距f与所述第五透镜的物侧面的曲率半径R9满足1.50<f/R9<3.00。
  22. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.00<CT1/T12<4.00。
  23. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足ImgH≥4.30mm。
  24. 根据权利要求13至23任一项所述的光学成像镜头,其特征在于,所述棱镜的反射面至所述光学成像镜头的成像面的轴上距离TTL与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足TTL/ImgH>6.00。
PCT/CN2020/091848 2019-07-12 2020-05-22 光学成像镜头 WO2021008232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910629069.3A CN110208927B (zh) 2019-07-12 2019-07-12 光学成像镜头
CN201910629069.3 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021008232A1 true WO2021008232A1 (zh) 2021-01-21

Family

ID=67797248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091848 WO2021008232A1 (zh) 2019-07-12 2020-05-22 光学成像镜头

Country Status (2)

Country Link
CN (1) CN110208927B (zh)
WO (1) WO2021008232A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208927B (zh) * 2019-07-12 2024-04-23 浙江舜宇光学有限公司 光学成像镜头
WO2021026869A1 (zh) 2019-08-15 2021-02-18 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子装置
WO2021217504A1 (zh) * 2020-04-29 2021-11-04 江西晶超光学有限公司 光学系统、摄像模组及电子设备
CN117651906A (zh) * 2021-09-18 2024-03-05 Oppo广东移动通信有限公司 成像镜头组件、相机模块和成像设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483514A (zh) * 2009-09-09 2012-05-30 株式会社尼康 镜头系统、广角镜头、配备有镜头系统的光学设备,和用于制造镜头系统的方法
CN103424846A (zh) * 2012-05-18 2013-12-04 华晶科技股份有限公司 摄像用光学透镜组及其摄像装置
CN103676108A (zh) * 2012-09-05 2014-03-26 三星电机株式会社 光学系统
WO2015152462A1 (ko) * 2014-04-01 2015-10-08 엘지전자 주식회사 렌즈 조립체
CN207663135U (zh) * 2016-12-28 2018-07-27 三星电机株式会社 光学成像系统
CN109358410A (zh) * 2018-12-14 2019-02-19 浙江舜宇光学有限公司 光学成像镜片组
CN110208927A (zh) * 2019-07-12 2019-09-06 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818807A (en) * 1956-08-07 1959-08-26 Margarete Camilla Schneider A wide aperture tele-photo-lens
US5257135A (en) * 1990-10-02 1993-10-26 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JP3310319B2 (ja) * 1992-02-18 2002-08-05 オリンパス光学工業株式会社 2群ズームレンズ
JP2000330021A (ja) * 1999-05-20 2000-11-30 Canon Inc ズームレンズ
CN106226888B (zh) * 2016-04-21 2018-09-25 玉晶光电(厦门)有限公司 光学成像镜头
US10302911B2 (en) * 2016-09-12 2019-05-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR101912280B1 (ko) * 2016-09-12 2018-10-29 삼성전기 주식회사 촬상 광학계
KR101933422B1 (ko) * 2017-10-27 2018-12-28 삼성전기 주식회사 촬상 광학계
CN109471247B (zh) * 2019-01-16 2024-04-19 浙江舜宇光学有限公司 摄像镜头
CN210136354U (zh) * 2019-07-12 2020-03-10 浙江舜宇光学有限公司 光学成像镜头
CN210129059U (zh) * 2019-07-12 2020-03-06 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483514A (zh) * 2009-09-09 2012-05-30 株式会社尼康 镜头系统、广角镜头、配备有镜头系统的光学设备,和用于制造镜头系统的方法
CN103424846A (zh) * 2012-05-18 2013-12-04 华晶科技股份有限公司 摄像用光学透镜组及其摄像装置
CN103676108A (zh) * 2012-09-05 2014-03-26 三星电机株式会社 光学系统
WO2015152462A1 (ko) * 2014-04-01 2015-10-08 엘지전자 주식회사 렌즈 조립체
CN207663135U (zh) * 2016-12-28 2018-07-27 三星电机株式会社 光学成像系统
CN109358410A (zh) * 2018-12-14 2019-02-19 浙江舜宇光学有限公司 光学成像镜片组
CN110208927A (zh) * 2019-07-12 2019-09-06 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110208927A (zh) 2019-09-06
CN110208927B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
CN109164560B (zh) 成像镜头
CN108919464B (zh) 光学成像镜片组
WO2019192180A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2019223263A1 (zh) 摄像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019228064A1 (zh) 成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020010879A1 (zh) 光学成像系统
WO2020001119A1 (zh) 摄像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像系统
WO2021008232A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2020042765A1 (zh) 影像镜头
WO2020238495A1 (zh) 光学成像镜头
WO2019233143A1 (zh) 光学成像镜片组
WO2019233142A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2020007068A1 (zh) 光学成像系统
WO2020034788A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839822

Country of ref document: EP

Kind code of ref document: A1