WO2020034788A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020034788A1
WO2020034788A1 PCT/CN2019/095356 CN2019095356W WO2020034788A1 WO 2020034788 A1 WO2020034788 A1 WO 2020034788A1 CN 2019095356 W CN2019095356 W CN 2019095356W WO 2020034788 A1 WO2020034788 A1 WO 2020034788A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
object side
image side
satisfy
Prior art date
Application number
PCT/CN2019/095356
Other languages
English (en)
French (fr)
Inventor
高雪
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020034788A1 publication Critical patent/WO2020034788A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to a camera lens, and more particularly, the present application relates to a camera lens including seven lenses.
  • the photosensitive element of a general camera lens is nothing more than a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • CCD photosensitive coupling element
  • CMOS complementary metal oxide semiconductor element
  • the existing lens In order to meet the requirements of long-distance shooting, the existing lens is usually equipped with telephoto performance.
  • the existing lenses can no longer take into account the requirements of high pixelation, long focal length, and small size, especially for the shooting of distant objects, hand shake, etc., it is not possible to achieve good optical performance while achieving the telephoto function of the lens.
  • the present application provides a camera lens, such as a telephoto lens, which can be applied to portable electronic products and can at least solve or partially solve at least one of the above disadvantages in the prior art.
  • a camera lens such as a telephoto lens
  • the present application provides such a camera lens, which sequentially includes, from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, Sixth lens and seventh lens.
  • the first lens has optical power, and its object side may be concave and the image side may be convex; the second lens may have positive power; the third lens may have negative power; the fourth lens may have positive power
  • the fifth lens may have a negative power; the sixth lens may have a power; the seventh lens may have a power.
  • the maximum half field angle HFOV of the camera lens can satisfy HFOV ⁇ 35 °.
  • the effective focal length f4 of the fourth lens and the effective focal length f7 of the seventh lens may satisfy 0.1 ⁇
  • the effective focal length f2 of the second lens and the effective focal length f3 of the third lens may satisfy -1 ⁇ f2 / f3 ⁇ -0.5.
  • the center thickness CT7 can satisfy 1 ⁇ (CT2 + CT6) / (CT4 + CT7) ⁇ 3.
  • the axial distance from the intersection of the second lens object side and the optical axis to the effective half-aperture vertex of the second lens object side is the effective half of the intersection between SAG21 and the fifth lens object side and the optical axis to the fifth lens object side.
  • the on-axis distance SAG51 of the aperture apex can satisfy -2.5 ⁇ SAG21 / (SAG51 ⁇ 3) ⁇ -1.
  • the combined focal length f2345 of the second lens, the third lens, the fourth lens, and the fifth lens and the combined focal length f67 of the sixth lens and the seventh lens may satisfy -2.5 ⁇ f2345 / f67 ⁇ -1.
  • the maximum effective half-diameter DT21 on the object side of the second lens and the maximum effective half-diameter DT62 on the image side of the sixth lens may satisfy 0.8 ⁇ DT21 / DT62 ⁇ 1.
  • the edge thickness ET2 of the second lens and the center thickness CT2 of the second lens on the optical axis may satisfy 0.2 ⁇ ET2 / CT2 ⁇ 0.4.
  • the effective focal length f5 of the fifth lens and the curvature radius R2 of the image side of the first lens may satisfy 0.4 ⁇ f5 / R2 ⁇ 1.
  • the curvature radius R3 of the object side of the second lens and the curvature radius R6 of the image side of the third lens may satisfy 0.3 ⁇ R3 / R6 ⁇ 0.6.
  • the curvature radius R8 of the image side of the fourth lens and the curvature radius R11 of the object side of the sixth lens may satisfy 0.4 ⁇ R8 / R11 ⁇ 0.7.
  • the curvature radius R1 of the object side of the first lens and the curvature radius R9 of the object side of the fifth lens may satisfy -0.2 ⁇ (R1-R9) / (R1 + R9) ⁇ 0.6.
  • the object side surface of the fifth lens may be a concave surface
  • the object side surface of the sixth lens may be a concave surface
  • This application uses seven lenses. By reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, the above-mentioned camera lens has ultra-thin, telephoto, and excellent imaging. At least one beneficial effect such as quality, low sensitivity.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application
  • FIGS. 2A to 2D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 1;
  • FIG. 3 shows a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application
  • FIGS. 4A to 4D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application
  • FIGS. 6A to 6D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application
  • FIGS. 8A to 8D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application
  • FIGS. 10A to 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application
  • FIGS. 12A to 12D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application
  • FIGS. 14A to 14D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 7;
  • FIG. 15 shows a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application
  • FIGS. 16A to 16D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 8;
  • FIG. 17 shows a schematic structural diagram of an imaging lens according to Embodiment 9 of the present application
  • FIGS. 18A to 18D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens of Embodiment 9.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are only examples and are not drawn to scale.
  • the paraxial region refers to a region near the optical axis;
  • the far-axis region refers to a region other than the vicinity of the optical axis, that is, a region away from the optical axis.
  • the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging plane is called the image side of the lens.
  • the imaging lens according to the exemplary embodiment of the present application may include, for example, seven lenses having power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. lens.
  • the seven lenses are sequentially arranged along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens has positive power and negative power, and the object side may be concave and the image side may be convex; the second lens may have positive power; the third lens may have negative power The fourth lens may have a positive power; the fifth lens may have a negative power; the sixth lens has a positive power and a negative power; and the seventh lens has a positive power and a negative power.
  • Reasonable distribution of the power of each lens in the camera lens is conducive to achieving good optical performance.
  • the power of the second lens is positive and the light angle of the third lens is negative, it is beneficial to adjust the angle of the incident light and the outgoing light of the camera lens, and it is beneficial to correct the chromatic aberration of the camera lens to improve the imaging quality of the camera lens.
  • the power of the fourth lens is positive and the power of the fifth lens is negative, it is beneficial to slow down the light deflection ability of the camera lens and to improve the spherical aberration of the camera lens.
  • the object side of the second lens may be convex.
  • the image side of the third lens may be concave.
  • the image side of the fourth lens may be convex.
  • the object-side surface of the fifth lens may be a concave surface.
  • the object side of the sixth lens may be concave.
  • the imaging lens of the present application may satisfy a conditional expression HFOV ⁇ 35 °, where HFOV is a maximum half field angle of the imaging lens. More specifically, HFOV can further satisfy HFOV ⁇ 30 °, for example, 23.6 ° ⁇ HFOV ⁇ 27.9 °. Reasonably setting the maximum half-field of view of the telephoto camera lens can achieve the telephoto characteristics of the camera lens while ensuring that the camera lens has a large imaging area. In addition, for a telephoto camera lens, satisfying the conditional expression HFOV ⁇ 35 ° is conducive to improving the imaging quality of the camera lens.
  • the imaging lens of the present application can satisfy a conditional expression of 0.1 ⁇
  • the imaging lens of the present application can satisfy the conditional expression -1 ⁇ f2 / f3 ⁇ -0.5, where f2 is an effective focal length of the second lens and f3 is an effective focal length of the third lens. More specifically, f2 and f3 can further satisfy -0.86 ⁇ f2 / f3 ⁇ -0.62.
  • Reasonably setting the ratio of the effective focal length of the second lens to the effective focal length of the third lens can effectively reduce the bending degree of the second lens and the third lens at the maximum half-caliber, thereby reducing the incident angle of the edge light to effectively eliminate The risk of ghosting in the optical system.
  • the imaging lens of the present application can satisfy the conditional expression 0.4 ⁇ f5 / R2 ⁇ 1, where f5 is the effective focal length of the fifth lens and R2 is the radius of curvature of the image side of the first lens. More specifically, f5 and R2 can further satisfy 0.48 ⁇ f5 / R2 ⁇ 0.76.
  • Reasonably setting the ratio of the effective focal length of the fifth lens to the curvature radius of the image side of the first lens can make the camera lens have a larger aperture and help improve the overall brightness of the camera lens.
  • the imaging lens of the present application can satisfy the conditional expression 1 ⁇ (CT2 + CT6) / (CT4 + CT7) ⁇ 3, where CT2 is the center thickness of the second lens on the optical axis, and CT6 is the first The central thickness of the six lenses on the optical axis, CT4 is the central thickness of the fourth lens on the optical axis, and CT7 is the central thickness of the seventh lens on the optical axis. More specifically, CT2, CT6, CT4, and CT7 can further satisfy 1.22 ⁇ (CT2 + CT6) / (CT4 + CT7) ⁇ 3.00.
  • Reasonably setting the central thickness of the second lens, the fourth lens, the sixth lens, and the seventh lens on the optical axis can ensure the miniaturization characteristics of the imaging lens. At the same time, by properly distributing the center thickness of the lens, the deflection of the light can be eased, the sensitivity of the lens can be reduced, and the astigmatism, distortion and chromatic aberration of the lens can be reduced.
  • the imaging lens of the present application can satisfy the conditional expression -2.5 ⁇ SAG21 / (SAG51 ⁇ 3) ⁇ -1, where SAG21 is a point from the intersection of the second lens object side and the optical axis to the second lens object side.
  • the axial distance of the effective half-aperture vertex, SAG51 is the axial distance of the intersection point of the fifth lens object side and the optical axis to the effective half-aperture vertex of the fifth lens object side.
  • SAG21 and SAG51 can further satisfy -2.37 ⁇ SAG21 / (SAG51 ⁇ 3) ⁇ -1.05.
  • the principal ray angle of the lens can be reasonably adjusted, which can effectively improve the relative brightness of the lens and the image surface sharpness. At the same time, it is also conducive to adjusting the matching degree between the lens main light angle and the chip main light angle.
  • the imaging lens of the present application can satisfy the conditional expression -2.5 ⁇ f2345 / f67 ⁇ -1, where f2345 is a combined focal length of the second lens, the third lens, the fourth lens, and the fifth lens, f67 The combined focal length of the sixth lens and the seventh lens. More specifically, f2345 and f67 can further satisfy -2.19 ⁇ f2345 / f67 ⁇ -1.44. Reasonably setting the focal length of the last six lenses can reasonably control the field curvature contribution of each lens, so that the total field curvature of the camera lens is balanced under a reasonable state.
  • the imaging lens of the present application can satisfy the conditional expression 0.3 ⁇ R3 / R6 ⁇ 0.6, where R3 is the curvature radius of the object side of the second lens and R6 is the curvature radius of the image side of the third lens. More specifically, R3 and R6 can further satisfy 0.33 ⁇ R3 / R6 ⁇ 0.59.
  • the rational distribution of the ratio of the curvature radius of the image side of the third lens to the curvature radius of the object side of the third lens enables the camera lens to better match the main light angle of the chip, thereby improving the imaging quality of the camera lens.
  • the imaging lens of the present application can satisfy the conditional expression 0.4 ⁇ R8 / R11 ⁇ 0.7, where R8 is the curvature radius of the image side of the fourth lens and R11 is the curvature radius of the object side of the sixth lens. More specifically, R8 and R11 can further satisfy 0.40 ⁇ R8 / R11 ⁇ 0.64. Reasonably controlling the ratio of the curvature radius of the image side of the fourth lens to the curvature radius of the object side of the sixth lens can effectively improve the chromatic aberration and distortion of the camera lens.
  • the imaging lens of the present application can satisfy the conditional expression 0.8 ⁇ DT21 / DT62 ⁇ 1, where DT21 is the maximum effective half-diameter of the object side of the second lens, and DT62 is the maximum effective half-diameter of the image side of the sixth lens. caliber. More specifically, DT21 and DT62 can further satisfy 0.82 ⁇ DT21 / DT62 ⁇ 0.92. Reasonably controlling the ratio of the maximum effective half-aperture of the object side of the second lens to the maximum effective half-aperture of the image side of the sixth lens can effectively reduce the incident angle of the edge light and ensure good tolerance of the camera lens.
  • the imaging lens of the present application can satisfy the conditional expression 0.2 ⁇ ET2 / CT2 ⁇ 0.4, where ET2 is the edge thickness of the second lens and CT2 is the center thickness of the second lens on the optical axis. More specifically, ET2 and CT2 can further satisfy 0.28 ⁇ ET2 / CT2 ⁇ 0.36. Reasonably setting the ratio of the edge thickness and the center thickness of the second lens can make the second lens have better overall uniformity and make the imaging lens have better processability.
  • the imaging lens of the present application can satisfy the conditional expression -0.2 ⁇ (R1-R9) / (R1 + R9) ⁇ 0.6, where R1 is the radius of curvature of the object side of the first lens and R9 is the fifth The curvature radius of the lens object side. More specifically, R1 and R9 can further satisfy -0.16 ⁇ (R1-R9) / (R1 + R9) ⁇ 0.51. Reasonably setting the curvature radius of the object side of the first lens and the curvature radius of the object side of the fifth lens can make the camera lens have a larger aperture and improve the overall brightness of the lens imaging.
  • the imaging lens of the present application may further include a diaphragm to further improve imaging quality.
  • the diaphragm can be set at any position between the object side and the image side as needed.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the above-mentioned imaging lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiment of the present application may employ multiple lenses, such as the seven lenses described above.
  • the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the camera lens configured as described above can also have beneficial effects such as ultra-thin, telephoto, excellent imaging quality, and low sensitivity.
  • At least one of the mirror surfaces of each lens is an aspherical mirror surface.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • the number of lenses constituting the imaging lens may be changed to obtain various results and advantages described in this specification.
  • the imaging lens is not limited to including seven lenses. If necessary, the camera lens may include other numbers of lenses. Specific examples of the imaging lens applicable to the above-mentioned embodiments will be further described below with reference to the drawings.
  • FIG. 1 is a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • an imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens along the optical axis in order from the object side to the image side.
  • the lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a convex surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the imaging lens of Example 1.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 below gives the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18, and A 20 that can be used for each aspherical mirror surface S1-S14 in Example 1. .
  • Table 3 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, and the total optical length TTL (that is, from the object side S1 to the imaging plane S17 of the first lens E1 on the optical axis in Example 1 Distance), half the diagonal length of the effective pixel area on the imaging surface S17, ImgH, and the maximum half field of view angle, HFOV.
  • FIG. 2A shows an on-axis chromatic aberration curve of the imaging lens of Example 1, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 2B shows the astigmatism curve of the imaging lens of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 2C shows the distortion curve of the imaging lens of Example 1, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 2D shows a magnification chromatic aberration curve of the imaging lens of Example 1, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 2A to FIG. 2D, it can be known that the imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 2, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH of the diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view. Angular HFOV.
  • FIG. 4A shows an on-axis chromatic aberration curve of the imaging lens of Example 2, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 4B shows the astigmatism curve of the imaging lens of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4C illustrates a distortion curve of the imaging lens of Example 2, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 4D shows the magnification chromatic aberration curve of the imaging lens of Example 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens.
  • the imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 3.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 9 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view Angular HFOV.
  • FIG. 6A shows an on-axis chromatic aberration curve of the imaging lens of Example 3, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 6B shows an astigmatism curve of the imaging lens of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 6C shows the distortion curve of the imaging lens of Example 3, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 6D shows a magnification chromatic aberration curve of the imaging lens of Example 3, which represents deviations of different image heights on the imaging plane after light passes through the lens. According to FIG. 6A to FIG. 6D, it can be known that the imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, an aperture STO, a second lens E2, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 thereof is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 4, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 11 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH of the diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view. Angular HFOV.
  • FIG. 8A shows an on-axis chromatic aberration curve of the imaging lens of Example 4, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 8B shows the astigmatism curve of the imaging lens of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 8C shows the distortion curve of the imaging lens of Example 4, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 8D shows the magnification chromatic aberration curve of the imaging lens of Example 4, which represents the deviation of different image heights on the imaging plane after the light passes through the lens.
  • the imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth The lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 5, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view Angular HFOV.
  • FIG. 10A shows an on-axis chromatic aberration curve of the imaging lens of Example 5, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 10B shows the astigmatism curve of the imaging lens of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 10C shows the distortion curve of the imaging lens of Example 5, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 10D shows the magnification chromatic aberration curve of the imaging lens of Example 5, which represents the deviation of different image heights on the imaging surface after the light passes through the lens. It can be seen from FIGS. 10A to 10D that the imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • an imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens in order from the object side to the image side along the optical axis.
  • the lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a convex surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 17 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH of the diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view. Angular HFOV.
  • FIG. 12A shows an on-axis chromatic aberration curve of the imaging lens of Example 6, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 12B shows the astigmatism curve of the imaging lens of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 12C shows a distortion curve of the imaging lens of Example 6, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 12D shows a magnification chromatic aberration curve of the imaging lens of Example 6, which represents deviations of different image heights on the imaging plane after light passes through the lens.
  • the imaging lens provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth The lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 7, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 20 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 21 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view Angular HFOV.
  • FIG. 14A shows an on-axis chromatic aberration curve of the imaging lens of Example 7, which shows that the light beams of different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 14B shows the astigmatism curve of the imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C shows a distortion curve of the imaging lens of Example 7, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 14D shows the magnification chromatic aberration curve of the imaging lens of Example 7, which represents the deviation of different image heights on the imaging plane after light passes through the lens.
  • the imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 8, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH of the diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view. Angular HFOV.
  • FIG. 16A shows an on-axis chromatic aberration curve of the imaging lens of Example 8, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 16B shows the astigmatism curve of the imaging lens of Example 8, which shows the meridional image plane curvature and the sagittal image plane curvature.
  • FIG. 16C shows a distortion curve of the imaging lens of Example 8, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 16D shows a magnification chromatic aberration curve of the imaging lens of Example 8, which represents deviations of different image heights on the imaging plane after light passes through the lens.
  • the imaging lens provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a schematic structural diagram of an imaging lens according to Embodiment 9 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative power, and the object side surface S1 is a concave surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging lens of Example 9, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 27 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the camera lens, the total optical length TTL, half the ImgH diagonal length of the effective pixel area on the imaging surface S17, and the maximum half field of view Angular HFOV.
  • FIG. 18A shows an on-axis chromatic aberration curve of the imaging lens of Example 9, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 18B shows the astigmatism curve of the imaging lens of Example 9, which shows a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 18C shows a distortion curve of the imaging lens of Example 9, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 18D shows a magnification chromatic aberration curve of the imaging lens of Example 9, which represents deviations of different image heights on the imaging plane after light passes through the lens.
  • the imaging lens provided in Embodiment 9 can achieve good imaging quality.
  • Examples 1 to 9 satisfy the relationships shown in Table 28, respectively.
  • the present application also provides an imaging device, whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜具有光焦度,其物侧面为凹面,像侧面为凸面;第二透镜具有正光焦度;第三透镜具有负光焦度;第四透镜具有正光焦度;第五透镜具有负光焦度;第六透镜具有光焦度;第七透镜具有光焦度。摄像镜头的最大半视场角HFOV满足HFOV≤35°。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2018年08月13日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810916323.3的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,本申请涉及一种包括七片透镜的摄像镜头。
背景技术
近年来,随着便携式电子产品的逐步兴起,具有摄像功能的便携式电子产品得到人们越来越多的青睐。一般摄像镜头的感光元件不外乎是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)两种。而随着半导体制程技术的精进,这些感光元件趋向于高像素、小尺寸方向发展。芯片的像素尺寸减小,使得对相配套的摄像镜头的成像质量的要求变得更高。
为了满足长距离拍摄的要求,现有镜头通常配置长焦性能。但现有镜头已无法同时兼顾高像素化、长焦距和小尺寸等要求,特别是针对拍摄较远物体、手抖等情况,无法在实现镜头长焦功能的同时保证良好的光学性能。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头,例如,长焦镜头。
一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜具有光焦度,其物侧面可为凹面,像侧面可为凸面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜可具有正光焦度;第五透镜可具有负光焦度;第六透镜具有光焦度;第七透镜可具有光焦度。
在一个实施方式中,摄像镜头的最大半视场角HFOV可满足HFOV≤35°。
在一个实施方式中,第四透镜的有效焦距f4与第七透镜的有效焦距f7可满足0.1<|f4/f7|<0.5。
在一个实施方式中,第二透镜的有效焦距f2与第三透镜的有效焦距f3可满足-1<f2/f3<-0.5。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2、第四透镜在光轴上的中心厚度CT4、第六透镜在光轴上的中心厚度CT6以及第七透镜在光轴上的中心厚度CT7可满足1<(CT2+CT6)/(CT4+CT7)≤3。
在一个实施方式中,第二透镜物侧面和光轴的交点至第二透镜物侧面的有效半口径顶点的轴上距离SAG21与第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半口径顶点的轴上距离 SAG51可满足-2.5<SAG21/(SAG51×3)<-1。
在一个实施方式中,第二透镜、第三透镜、第四透镜和第五透镜的组合焦距f2345与第六透镜和第七透镜的组合焦距f67可满足-2.5<f2345/f67<-1。
在一个实施方式中,第二透镜物侧面的最大有效半口径DT21与第六透镜像侧面的最大有效半口径DT62可满足0.8<DT21/DT62<1。
在一个实施方式中,第二透镜的边缘厚度ET2与第二透镜在光轴上的中心厚度CT2可满足0.2<ET2/CT2<0.4。
在一个实施方式中,第五透镜的有效焦距f5与第一透镜像侧面的曲率半径R2可满足0.4≤f5/R2<1。
在一个实施方式中,第二透镜物侧面的曲率半径R3与第三透镜像侧面的曲率半径R6可满足0.3<R3/R6≤0.6。
在一个实施方式中,第四透镜像侧面的曲率半径R8与第六透镜物侧面的曲率半径R11可满足0.4≤R8/R11<0.7。
在一个实施方式中,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9可满足-0.2<(R1-R9)/(R1+R9)<0.6。
在一个实施方式中,第五透镜的物侧面可为凹面,第六透镜的物侧面可为凹面。
本申请采用了七片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有超薄、长焦、优良成像品质、低敏感性等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;图2A至图2D分别示出了实施例1的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;图4A至图4D分别示出了实施例2的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;图6A至图6D分别示出了实施例3的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;图8A至图8D分别示出了实施例4的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;图10A至图10D分别示出了实施例5的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;图12A至图12D分别示出了实施例6的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;图14A至图14D分别示出了实施例7的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;图16A至图16D分别示出了实施例8的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的摄像镜头的结构示意图;图18A至图18D分别示出了实施例9的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域;远轴区域是指光轴附近以外的区域,即离开光轴的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其他特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、 第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜具有正光焦度和负光焦度,其物侧面可为凹面,像侧面可为凸面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜可具有正光焦度;第五透镜可具有负光焦度;第六透镜具有正光焦度和负光焦度;以及第七透镜具有正光焦度和负光焦度。
合理分配摄像镜头中各透镜的光焦度,有利于实现良好的光学性能。当第二透镜的光焦度为正、第三透镜的光角度为负时,有利于调整摄像镜头的入射光线和出射光线的角度,并有利于校正摄像镜头的色差以提高摄像镜头的成像品质。当第四透镜的光焦度为正、第五透镜的光焦度为负时,有利于减缓摄像镜头的光线偏折能力,并有利于改善摄像镜头的轴上球差。
在示例性实施方式中,第二透镜的物侧面可为凸面。
在示例性实施方式中,第三透镜的像侧面可为凹面。
在示例性实施方式中,第四透镜的像侧面可为凸面。
在示例性实施方式中,第五透镜的物侧面可为凹面。
在示例性实施方式中,第六透镜的物侧面可为凹面。
在示例性实施方式中,本申请的摄像镜头可满足条件式HFOV≤35°,其中,HFOV为摄像镜头的最大半视场角。更具体地,HFOV进一步可满足HFOV≤30°,例如,23.6°≤HFOV≤27.9°。合理的设置长焦摄像镜头的最大半视场角,可以在实现摄像镜头的长焦特性的同时,保证摄像镜头具有较大的成像面积。另外,对于长焦摄像镜头,满足条件式HFOV≤35°有利于提升摄像镜头的成像品质。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.1<|f4/f7|<0.5,其中,f4为第四透镜的有效焦距,f7为第七透镜的有效焦距。更具体地,f4和f7进一步可满足0.13≤|f4/f7|≤0.38。合理控制第四透镜的有效焦距与第七透镜有效焦距的比值,能够合理调整光线位置,并可有效降低摄像镜头的敏感性。
在示例性实施方式中,本申请的摄像镜头可满足条件式-1<f2/f3<-0.5,其中,f2为第二透镜的有效焦距,f3为第三透镜的有效焦距。更具体地,f2和f3进一步可满足-0.86≤f2/f3≤-0.62。合理设置第二透镜的有效焦距与第三透镜的有效焦距的比值,可有效的减弱第二透镜和第三透镜在最大半口径处的弯曲程度,从而减小边缘光线的入射角,以有效消除光学系统产生鬼像的风险。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.4≤f5/R2<1,其中,f5为第五透镜的有效焦距,R2为第一透镜像侧面的曲率半径。更具体地,f5和R2进一步可满足0.48≤f5/R2≤0.76。合理设置第五透镜的有效焦距与第一透镜像侧面的曲率半径的比值,可使摄像镜头具备更大的光圈,并有利于提高摄像镜头的整体亮度。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<(CT2+CT6)/(CT4+CT7)≤3,其中,CT2为第二透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度,CT4为第四透镜在光轴上的中心厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,CT2、CT6、CT4和CT7进一步可满足1.22≤(CT2+CT6)/(CT4+CT7)≤3.00。合理的设置第二透镜、第四透镜、第六透镜、 第七透镜在光轴上中心厚度,可保证摄像镜头的小型化特性。同时,通过合理分布透镜的中心厚度,可使光线偏折趋于缓和,降低镜头的敏感性,并减小镜头的象散、畸变和色差。
在示例性实施方式中,本申请的摄像镜头可满足条件式-2.5<SAG21/(SAG51×3)<-1,其中,SAG21为第二透镜物侧面和光轴的交点至第二透镜物侧面的有效半口径顶点的轴上距离,SAG51为第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半口径顶点的轴上距离。更具体地,SAG21和SAG51进一步可满足-2.37≤SAG21/(SAG51×3)≤-1.05。满足条件式-2.5<SAG21/(SAG51×3)<-1,可以合理调整镜头的主光线角度,从而能有效提高镜头的相对亮度,提升像面清晰度。同时,还有利于调整镜头主光线角度与芯片主光线角度的匹配程度。
在示例性实施方式中,本申请的摄像镜头可满足条件式-2.5<f2345/f67<-1,其中,f2345为第二透镜、第三透镜、第四透镜和第五透镜的组合焦距,f67第六透镜和第七透镜的组合焦距。更具体地,f2345和f67进一步可满足-2.19≤f2345/f67≤-1.44。合理设置后六片透镜的焦距,能够合理地控制各个透镜的场曲贡献量,从而使得摄像镜头的总场曲量平衡在合理状态下。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.3<R3/R6≤0.6,其中,R3为第二透镜物侧面的曲率半径,R6为第三透镜像侧面的曲率半径。更具体地,R3和R6进一步可满足0.33≤R3/R6≤0.59。合理的分配第三透镜像侧面的曲率半径与第三透镜物侧面的曲率半径的比值,使摄像镜头能更好地匹配芯片的主光线角度,从而提高摄像镜头的成像品质。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.4≤R8/R11<0.7,其中,R8为第四透镜像侧面的曲率半径,R11为第六透镜物侧面的曲率半径。更具体地,R8和R11进一步可满足0.40≤R8/R11≤0.64。合理控制第四透镜像侧面的曲率半径与第六透镜物侧面的曲率半径的比值,可有效的改善摄像镜头的色差与畸变。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<DT21/DT62<1,其中,DT21为第二透镜物侧面的最大有效半口径,DT62为第六透镜像侧面的最大有效半口径。更具体地,DT21和DT62进一步可满足0.82≤DT21/DT62≤0.92。合理控制第二透镜物侧面的最大有效半口径与第六透镜像侧面最大有效半口径的比值,可有效地减小边缘光线的入射角度,保证摄像镜头的良好的公差性。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.2<ET2/CT2<0.4,其中,ET2为第二透镜的边缘厚度,CT2为第二透镜在光轴上的中心厚度。更具体地,ET2和CT2进一步可满足0.28≤ET2/CT2≤0.36。合理设置第二透镜的边缘厚度和中心厚度的比值,可使第二透镜具有更好的整体均匀性,使摄像镜头具备更好的加工性。
在示例性实施方式中,本申请的摄像镜头可满足条件式-0.2<(R1-R9)/(R1+R9)<0.6,其中,R1为第一透镜物侧面的曲率半径,R9为第五透镜物侧面的曲率半径。更具体地,R1和R9进一步可满足-0.16≤(R1-R9)/(R1+R9)≤0.51。合理设置第一透镜物侧面的曲率半径与第五透镜物侧面的曲率半径,可以使摄像镜头拥有更大的光圈,提高镜头成像的整体亮度。
在示例性实施方式中,本申请的摄像镜头还可包括光阑,以进一步提升成像质量。光阑可根据需要设置在物侧与像侧之间的任意位置处。可选地,光阑可设置在第一透镜与第二透镜之间。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的摄像镜头还可具有超薄、长焦、优良成像品质和低敏感性等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该摄像镜头不限于包括七个透镜。如果需要,该摄像镜头还可包括其他数量的透镜。下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凹面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095356-appb-000001
Figure PCTCN2019095356-appb-000002
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019095356-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -6.0238E-02 3.5190E-02 -1.8243E-02 6.8918E-03 -1.7652E-03 2.8779E-04 -2.7131E-05 1.1798E-06 -8.0536E-09
表2
表3给出了实施例1中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离)、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f1(mm) -381.71 f7(mm) 41.55
f2(mm) 2.34 f(mm) 5.78
f3(mm) -3.33 TTL(mm) 5.75
f4(mm) 5.83 ImgH(mm) 2.29
f5(mm) -3.99 HFOV(°) 27.9
f6(mm) -11.55    
表3
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图2D示出了实施例1的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000004
Figure PCTCN2019095356-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -5.9421E-02 3.4477E-02 -1.7751E-02 6.6605E-03 -1.6944E-03 2.7436E-04 -2.5688E-05 1.1095E-06 -7.5221E-09
表5
f1(mm) -381.71 f7(mm) -33.55
f2(mm) 2.33 f(mm) 5.78
f3(mm) -3.35 TTL(mm) 5.75
f4(mm) 6.00 ImgH(mm) 2.29
f5(mm) -3.72 HFOV(°) 27.8
f6(mm) -132.66    
表6
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图4D示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -6.9904E-02 4.3992E-02 -2.4567E-02 9.9982E-03 -2.7587E-03 4.8451E-04 -4.9204E-05 2.3049E-06 -1.6950E-08
表8
f1(mm) -381.71 f7(mm) 16.52
f2(mm) 2.34 f(mm) 5.77
f3(mm) -3.35 TTL(mm) 5.74
f4(mm) 5.08 ImgH(mm) 2.29
f5(mm) -3.88 HFOV(°) 27.9
f6(mm) -6.41    
表9
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图6D示出了实施例3的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数, 其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000007
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -6.9667E-02 4.3768E-02 -2.4401E-02 9.9135E-03 -2.7307E-03 4.7878E-04 -4.8539E-05 2.2699E-06 -1.6664E-08
表11
f1(mm) -381.71 f7(mm) 14.49
f2(mm) 2.35 f(mm) 5.77
f3(mm) -3.36 TTL(mm) 5.74
f4(mm) 5.25 ImgH(mm) 2.20
f5(mm) -4.05 HFOV(°) 23.6
f6(mm) -6.08    
表12
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图8D示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000008
Figure PCTCN2019095356-appb-000009
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 9.2521E-03 -1.1657E-02 3.9256E-02 -1.6437E-02 -8.7102E-02 1.8674E-01 -1.6535E-01 7.1041E-02 -1.2155E-02
S4 -1.0285E-01 3.6173E-01 -6.0425E-01 5.0440E-01 8.8308E-02 -6.8629E-01 7.0859E-01 -3.2900E-01 6.0064E-02
S5 -1.7076E-01 6.0960E-01 -1.2028E+00 1.5856E+00 -1.3119E+00 5.6436E-01 -1.0941E-03 -1.0454E-01 3.1131E-02
S6 2.1682E-02 2.2788E-01 -1.0003E+00 3.3401E+00 -8.3406E+00 1.4282E+01 -1.5452E+01 9.5138E+00 -2.5667E+00
S7 -7.2269E-02 -8.9515E-01 8.7667E+00 -5.2799E+01 1.9218E+02 -4.3964E+02 6.1623E+02 -4.8317E+02 1.6192E+02
S8 -5.3569E-01 2.4677E+00 -7.9652E+00 1.8296E+01 -3.8373E+01 7.1127E+01 -9.1641E+01 6.6452E+01 -2.0113E+01
S9 -4.0058E-01 7.3949E-01 3.3485E+00 -2.7368E+01 8.0988E+01 -1.2928E+02 1.1755E+02 -5.7397E+01 1.1670E+01
S10 -1.1970E-01 -2.1103E-01 2.4714E+00 -9.9768E+00 2.3014E+01 -3.1905E+01 2.6428E+01 -1.2136E+01 2.3891E+00
S11 -3.8905E-02 -9.3544E-02 1.8336E-02 -3.0365E-02 1.3364E-01 -1.2803E-01 5.4767E-02 -1.1311E-02 9.2116E-04
S12 1.7680E-01 -3.1468E-01 2.3308E-01 -9.8084E-02 2.0983E-02 1.0405E-03 -1.8409E-03 4.1468E-04 -3.1600E-05
S13 4.3453E-02 -7.7100E-02 7.9009E-02 -5.8808E-02 3.0287E-02 -1.0729E-02 2.5040E-03 -3.4141E-04 2.0254E-05
S14 -7.2756E-02 2.8596E-02 -1.7704E-02 1.4511E-02 -8.0308E-03 2.4633E-03 -4.1027E-04 3.4920E-05 -1.1897E-06
表14
f1(mm) -381.71 f7(mm) 17.38
f2(mm) 2.64 f(mm) 5.77
f3(mm) -4.26 TTL(mm) 5.74
f4(mm) 6.65 ImgH(mm) 2.29
f5(mm) -4.30 HFOV(°) 27.9
f6(mm) -8.68    
表15
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图10D示出了实施例5的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七 透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凹面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出了实施例6中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000010
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -7.2775E-02 4.6730E-02 -2.6627E-02 1.1057E-02 -3.1127E-03 5.5781E-04 -5.7799E-05 2.7626E-06 -2.0729E-08
表17
f1(mm) -381.71 f7(mm) 27.70
f2(mm) 2.41 f(mm) 5.77
f3(mm) -3.84 TTL(mm) 5.74
f4(mm) 8.92 ImgH(mm) 2.29
f5(mm) -4.93 HFOV(°) 27.7
f6(mm) -8.95    
表18
图12A示出了实施例6的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图12D示出了实施例6的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出了实施例7中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000011
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 1.4037E-02 -3.4158E-02 1.6768E-01 -4.1052E-01 6.1908E-01 -5.7635E-01 3.2464E-01 -1.0132E-01 1.3462E-02
S4 2.1645E-02 7.7121E-02 -1.2537E-01 6.1542E-03 2.6662E-01 -4.2645E-01 3.1197E-01 -1.1163E-01 1.5768E-02
S5 -1.3531E-01 4.9982E-01 -1.0202E+00 1.3562E+00 -9.8791E-01 1.2724E-01 3.7111E-01 -2.6440E-01 5.6532E-02
S6 6.0298E-02 -2.9053E-03 -3.5785E-01 2.7159E+00 -9.7725E+00 2.0563E+01 -2.5718E+01 1.7795E+01 -5.2752E+00
S7 -1.0862E-01 -5.8969E-01 4.5813E+00 -2.5228E+01 8.4971E+01 -1.8255E+02 2.4042E+02 -1.7597E+02 5.4434E+01
S8 -2.5862E-01 4.2798E-01 -8.2567E-01 2.6843E-01 -6.2543E-01 4.4697E+00 -7.4708E+00 5.1469E+00 -1.3611E+00
S9 -2.6086E-01 -1.2706E-01 2.7971E+00 -1.3341E+01 3.5699E+01 -5.9789E+01 6.5098E+01 -4.2360E+01 1.2263E+01
S10 -1.3186E-01 -1.6306E-01 1.6222E+00 -5.7919E+00 1.3171E+01 -1.8940E+01 1.6830E+01 -8.4752E+00 1.8483E+00
S11 3.0493E-02 -2.6409E-01 2.3026E-01 -2.2719E-01 2.9109E-01 -2.1675E-01 8.4651E-02 -1.6642E-02 1.3080E-03
S12 1.6905E-01 -3.0392E-01 1.5294E-01 3.1413E-02 -7.5191E-02 4.2559E-02 -1.3008E-02 2.1793E-03 -1.5608E-04
S13 8.7717E-03 7.5548E-03 -2.5212E-02 2.3478E-02 -1.1009E-02 2.9657E-03 -4.6839E-04 4.0390E-05 -1.4672E-06
S14 -6.8415E-02 3.8919E-02 -1.4675E-02 2.8034E-03 5.5529E-04 -4.5814E-04 1.0334E-04 -1.0319E-05 3.8998E-07
表20
f1(mm) -364.13 f7(mm) 29.25
f2(mm) 2.35 f(mm) 5.79
f3(mm) -2.74 TTL(mm) 5.75
f4(mm) 4.01 ImgH(mm) 2.07
f5(mm) -3.44 HFOV(°) 27.8
f6(mm) -12.36    
表21
图14A示出了实施例7的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会 聚焦点偏离。图14B示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图14D示出了实施例7的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出了实施例8中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000012
Figure PCTCN2019095356-appb-000013
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 8.2948E-03 4.1484E-03 -5.6179E-03 1.6726E-02 -1.9775E-02 1.1831E-02 -2.8811E-03 0.0000E+00 0.0000E+00
S4 -3.0053E-03 1.2975E-01 -1.9918E-01 1.5679E-01 -6.2859E-02 4.9313E-03 3.1234E-03 0.0000E+00 0.0000E+00
S5 -1.0107E-01 3.6352E-01 -6.1741E-01 6.2974E-01 -3.7504E-01 1.1554E-01 -1.1431E-02 0.0000E+00 0.0000E+00
S6 2.0446E-02 8.5194E-02 -8.1470E-02 -2.4986E-01 6.6525E-01 -6.0008E-01 1.9440E-01 0.0000E+00 0.0000E+00
S7 -1.4854E-01 -1.9104E-02 7.9712E-01 -5.6448E+00 1.8782E+01 -4.0569E+01 5.5723E+01 -4.3031E+01 1.3774E+01
S8 -5.9725E-01 3.2551E+00 -1.4880E+01 5.4157E+01 -1.4902E+02 2.7876E+02 -3.2751E+02 2.1725E+02 -6.2199E+01
S9 -4.6046E-01 1.8106E+00 -4.5956E+00 6.7290E+00 -7.3016E+00 6.1585E+00 -2.8038E+00 0.0000E+00 0.0000E+00
S10 -2.5376E-01 7.8356E-01 -1.5539E+00 1.9312E+00 -1.3828E+00 5.0621E-01 -7.0536E-02 0.0000E+00 0.0000E+00
S11 -2.0529E-01 2.9671E-01 -3.5643E-01 3.2706E-01 -2.0614E-01 8.5622E-02 -2.2310E-02 3.2913E-03 -2.0890E-04
S12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S14 -7.1980E-02 4.5966E-02 -2.6048E-02 1.0757E-02 -3.0118E-03 5.3677E-04 -5.5315E-05 2.6294E-06 -1.9621E-08
表23
f1(mm) 1999.31 f7(mm) -44.86
f2(mm) 2.35 f(mm) 5.79
f3(mm) -3.32 TTL(mm) 5.75
f4(mm) 5.63 ImgH(mm) 2.29
f5(mm) -3.50 HFOV(°) 27.8
f6(mm) -78.27    
表24
图16A示出了实施例8的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图16D示出了实施例8的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的摄像镜头。图17示出了根据本申请实施例9的摄像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透 镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表25示出了实施例9的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出了实施例9中各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、光学总长度TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019095356-appb-000014
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 1.1534E-02 -2.1386E-02 1.1802E-01 -2.9990E-01 4.6003E-01 -4.2976E-01 2.3991E-01 -7.3367E-02 9.3910E-03
S4 1.2327E-02 9.5110E-02 -1.5546E-01 -1.5255E-02 4.5576E-01 -7.7415E-01 6.2402E-01 -2.5360E-01 4.1869E-02
S5 -1.0090E-01 3.7341E-01 -7.5813E-01 9.5616E-01 -5.2331E-01 -2.5678E-01 5.7490E-01 -3.2558E-01 6.4654E-02
S6 1.3194E-02 2.5778E-01 -1.5596E+00 6.2941E+00 -1.6646E+01 2.8428E+01 -3.0111E+01 1.7986E+01 -4.6474E+00
S7 -7.0021E-02 -1.0734E+00 9.1698E+00 -5.0352E+01 1.7361E+02 -3.8315E+02 5.2210E+02 -3.9901E+02 1.3037E+02
S8 -5.1300E-01 2.0369E+00 -6.5979E+00 1.6923E+01 -3.7585E+01 6.2359E+01 -6.6614E+01 4.0041E+01 -1.0287E+01
S9 -3.0750E-01 3.4015E-01 2.2738E+00 -1.4622E+01 3.8299E+01 -5.8207E+01 5.4879E+01 -3.0169E+01 7.3586E+00
S10 -2.1855E-01 3.5298E-01 -2.2514E-03 -2.0202E+00 5.8017E+00 -8.2994E+00 6.8410E+00 -3.1217E+00 6.1284E-01
S11 -1.5413E-01 2.4263E-01 -3.9599E-01 2.6419E-01 2.3288E-03 -8.9406E-02 4.6837E-02 -1.0176E-02 8.3545E-04
S12 -4.0996E-02 3.3325E-01 -6.2689E-01 5.6430E-01 -2.8974E-01 8.9615E-02 -1.6546E-02 1.6812E-03 -7.2393E-05
S13 -4.9534E-02 1.9254E-01 -2.2623E-01 1.4532E-01 -5.8073E-02 1.4914E-02 -2.4188E-03 2.2804E-04 -9.6242E-06
S14 -1.0755E-01 7.2282E-02 -1.3569E-02 -1.7107E-02 1.4526E-02 -5.3263E-03 1.0616E-03 -1.1120E-04 4.7821E-06
表26
f1(mm) -381.71 f7(mm) -27.99
f2(mm) 2.34 f(mm) 5.79
f3(mm) -3.17 TTL(mm) 5.75
f4(mm) 4.43 ImgH(mm) 2.29
f5(mm) -3.08 HFOV(°) 27.8
f6(mm) 1049.82    
表27
图18A示出了实施例9的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的摄像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图18D示出了实施例9的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9
HFOV(°) 27.9 27.8 27.9 23.6 27.9 27.7 27.8 27.8 27.8
|f4/f7| 0.14 0.18 0.31 0.36 0.38 0.32 0.14 0.13 0.16
f2/f3 -0.70 -0.70 -0.70 -0.70 -0.62 -0.63 -0.86 -0.71 -0.74
f5/R2 0.62 0.58 0.60 0.63 0.66 0.76 0.53 0.56 0.48
(CT2+CT6)/(CT4+CT7) 1.61 3.00 1.36 1.31 1.22 1.32 1.49 2.22 1.79
SAG21/(SAG51×3) -1.32 -1.05 -1.24 -1.17 -2.37 -1.24 -1.63 -1.24 -1.30
f2345/f67 -1.81 -1.44 -2.19 -2.17 -1.92 -1.69 -2.07 -1.64 -1.73
R3/R6 0.33 0.36 0.34 0.38 0.43 0.59 0.48 0.33 0.36
R8/R11 0.55 0.45 0.54 0.54 0.64 0.58 0.61 0.42 0.40
DT21/DT62 0.84 0.82 0.82 0.92 0.89 0.83 0.88 0.82 0.85
ET2/CT2 0.35 0.35 0.34 0.32 0.28 0.29 0.32 0.36 0.33
(R1-R9)/(R1+R9) 0.39 0.51 0.46 0.47 -0.16 0.40 0.20 0.44 0.39
表28
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其他技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有光焦度,其物侧面为凹面,像侧面为凸面;所述第二透镜具有正光焦度;所述第三透镜具有负光焦度;所述第四透镜具有正光焦度;所述第五透镜具有负光焦度;所述第六透镜具有光焦度;所述第七透镜具有光焦度;以及
    所述摄像镜头的最大半视场角HFOV满足HFOV≤35°。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第七透镜的有效焦距f7满足0.1<|f4/f7|<0.5。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第三透镜的有效焦距f3满足-1<f2/f3<-0.5。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第四透镜在所述光轴上的中心厚度CT4、所述第六透镜在所述光轴上的中心厚度CT6以及所述第七透镜在所述光轴上的中心厚度CT7满足1<(CT2+CT6)/(CT4+CT7)≤3。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜物侧面和所述光轴的交点至所述第二透镜物侧面的有效半口径顶点的轴上距离SAG21与所述第五透镜物侧面和所述光轴的交点至所述第五透镜物侧面的有效半口径顶点的轴上距离SAG51满足-2.5<SAG21/(SAG51×3)<-1。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的组合焦距f2345与所述第六透镜和所述第七透镜的组合焦距f67满足-2.5<f2345/f67<-1。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜物侧面的最大有效半口径DT21与所述第六透镜像侧面的最大有效半口径DT62满足0.8<DT21/DT62<1。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的边缘厚度ET2与所述第二透镜在所述光轴上的中心厚度CT2满足0.2<ET2/CT2<0.4。
  9. 根据权利要求1至8中任一项所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第一透镜像侧面的曲率半径R2满足0.4≤f5/R2<1。
  10. 根据权利要求1至8中任一项所述的摄像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第三透镜像侧面的曲率半径R6满足0.3<R3/R6≤0.6。
  11. 根据权利要求1至8中任一项所述的摄像镜头,其特征在于,所述第四透镜像侧面的曲率半径R8与所述第六透镜物侧面的曲率半径R11满足0.4≤R8/R11<0.7。
  12. 根据权利要求1至8中任一项所述的摄像镜头,其特征在于,所述第一透镜物侧面的曲率半径R1与所述第五透镜物侧面的曲率半径R9满足-0.2<(R1-R9)/(R1+R9)<0.6。
  13. 摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透 镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有光焦度,其物侧面为凹面,像侧面为凸面;所述第二透镜具有正光焦度;所述第三透镜具有负光焦度;所述第四透镜具有正光焦度;所述第五透镜具有负光焦度,其物侧面为凹面;所述第六透镜具有光焦度,其物侧面为凹面;所述第七透镜具有光焦度。
  14. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第三透镜的有效焦距f3满足-1<f2/f3<-0.5。
  15. 根据权利要求14所述的摄像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第三透镜像侧面的曲率半径R6满足0.3<R3/R6≤0.6。
  16. 根据权利要求13所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第一透镜像侧面的曲率半径R2满足0.4≤f5/R2<1。
  17. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜物侧面的曲率半径R1与所述第五透镜物侧面的曲率半径R9满足-0.2<(R1-R9)/(R1+R9)<0.6。
  18. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第四透镜在所述光轴上的中心厚度CT4、所述第六透镜在所述光轴上的中心厚度CT6以及所述第七透镜在所述光轴上的中心厚度CT7满足1<(CT2+CT6)/(CT4+CT7)≤3。
  19. 根据权利要求18所述的摄像镜头,其特征在于,所述第二透镜的边缘厚度ET2与所述第二透镜在所述光轴上的中心厚度CT2满足0.2<ET2/CT2<0.4。
  20. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的组合焦距f2345与所述第六透镜和所述第七透镜的组合焦距f67满足-2.5<f2345/f67<-1。
  21. 根据权利要求20所述的摄像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第七透镜的有效焦距f7满足0.1<|f4/f7|<0.5。
  22. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜物侧面和所述光轴的交点至所述第二透镜物侧面的有效半口径顶点的轴上距离SAG21与所述第五透镜物侧面和所述光轴的交点至所述第五透镜物侧面的有效半口径顶点的轴上距离SAG51满足-2.5<SAG21/(SAG51×3)<-1。
  23. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜物侧面的最大有效半口径DT21与所述第六透镜像侧面的最大有效半口径DT62满足0.8<DT21/DT62<1。
  24. 根据权利要求13所述的摄像镜头,其特征在于,所述第四透镜像侧面的曲率半径R8与所述第六透镜物侧面的曲率半径R11满足0.4≤R8/R11<0.7。
  25. 根据权利要求13至24中任一项所述的摄像镜头,其特征在于,所述摄像镜头的最大半视场角HFOV满足HFOV≤35°。
PCT/CN2019/095356 2018-08-13 2019-07-10 摄像镜头 WO2020034788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810916323.3 2018-08-13
CN201810916323.3A CN108663782B (zh) 2018-08-13 2018-08-13 摄像镜头

Publications (1)

Publication Number Publication Date
WO2020034788A1 true WO2020034788A1 (zh) 2020-02-20

Family

ID=63789247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095356 WO2020034788A1 (zh) 2018-08-13 2019-07-10 摄像镜头

Country Status (2)

Country Link
CN (1) CN108663782B (zh)
WO (1) WO2020034788A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694147A (zh) * 2020-06-24 2020-09-22 深圳珑璟光电技术有限公司 一种目镜镜头及目镜光学系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663782B (zh) * 2018-08-13 2023-06-06 浙江舜宇光学有限公司 摄像镜头
CN112346204B (zh) * 2019-08-06 2022-06-17 信泰光学(深圳)有限公司 光学镜头
CN112578532B (zh) * 2019-09-30 2022-04-22 华为技术有限公司 光学镜头、摄像头模组和终端
CN113514933B (zh) * 2021-04-21 2023-05-02 浙江舜宇光学有限公司 摄像镜头
CN117310945B (zh) * 2023-11-30 2024-03-08 江西联创电子有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248310A (ja) * 1995-03-13 1996-09-27 Minolta Co Ltd 収差可変レンズ
JP2015072404A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN107807436A (zh) * 2017-11-18 2018-03-16 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108663782A (zh) * 2018-08-13 2018-10-16 浙江舜宇光学有限公司 摄像镜头
CN108761730A (zh) * 2018-06-26 2018-11-06 浙江舜宇光学有限公司 摄像镜头
CN109307921A (zh) * 2017-07-28 2019-02-05 宁波舜宇车载光学技术有限公司 光学镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098265A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 接眼レンズ
TWI586998B (zh) * 2015-08-11 2017-06-11 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
TWI614517B (zh) * 2017-01-04 2018-02-11 大立光電股份有限公司 影像擷取系統、取像裝置及電子裝置
CN208636556U (zh) * 2018-08-13 2019-03-22 浙江舜宇光学有限公司 摄像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248310A (ja) * 1995-03-13 1996-09-27 Minolta Co Ltd 収差可変レンズ
JP2015072404A (ja) * 2013-10-04 2015-04-16 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN109307921A (zh) * 2017-07-28 2019-02-05 宁波舜宇车载光学技术有限公司 光学镜头
CN107807436A (zh) * 2017-11-18 2018-03-16 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108761730A (zh) * 2018-06-26 2018-11-06 浙江舜宇光学有限公司 摄像镜头
CN108663782A (zh) * 2018-08-13 2018-10-16 浙江舜宇光学有限公司 摄像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694147A (zh) * 2020-06-24 2020-09-22 深圳珑璟光电技术有限公司 一种目镜镜头及目镜光学系统
CN111694147B (zh) * 2020-06-24 2023-12-08 深圳珑璟光电科技有限公司 一种目镜镜头及目镜光学系统

Also Published As

Publication number Publication date
CN108663782B (zh) 2023-06-06
CN108663782A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2020007080A1 (zh) 摄像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020093725A1 (zh) 摄像光学系统
WO2020024633A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2020038134A1 (zh) 光学成像系统
WO2020010879A1 (zh) 光学成像系统
WO2020107935A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020007069A1 (zh) 光学成像镜片组
WO2020073702A1 (zh) 光学成像镜片组
WO2020186759A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020119146A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像系统
WO2020151251A1 (zh) 光学透镜组
WO2020164236A1 (zh) 光学成像镜头
WO2020034788A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849874

Country of ref document: EP

Kind code of ref document: A1