WO2021012717A1 - 一种用作axl抑制剂的抗肿瘤化合物及其用途 - Google Patents

一种用作axl抑制剂的抗肿瘤化合物及其用途 Download PDF

Info

Publication number
WO2021012717A1
WO2021012717A1 PCT/CN2020/084081 CN2020084081W WO2021012717A1 WO 2021012717 A1 WO2021012717 A1 WO 2021012717A1 CN 2020084081 W CN2020084081 W CN 2020084081W WO 2021012717 A1 WO2021012717 A1 WO 2021012717A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
add
reaction
pharmaceutically acceptable
acceptable salt
Prior art date
Application number
PCT/CN2020/084081
Other languages
English (en)
French (fr)
Inventor
张孝清
宋志春
包金远
何东伟
Original Assignee
南京华威医药科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京华威医药科技集团有限公司 filed Critical 南京华威医药科技集团有限公司
Publication of WO2021012717A1 publication Critical patent/WO2021012717A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the invention belongs to the field of medicinal chemistry, and specifically relates to an AXL inhibitor and a preparation method and application thereof.
  • Molecular targeted therapy of a variety of malignant tumors has received extensive attention and great attention.
  • Molecular targeted drugs are highly selective, broad-spectrum effective, and their safety is better than cytotoxic chemotherapeutic drugs. They are currently a new direction in the field of tumor treatment.
  • Axl (also known as: UFO, ARK, Tyro7) is a receptor tyrosine kinase cloned from tumor cells.
  • Gas6 growth arrest specific protein 6
  • Axl activated by binding to Gas6 transmits signals through phosphorylation. Since this signal activates the Erk1/2 pathway or the PI3K/Akt pathway, compounds that inhibit Axl activation are used to treat various types of cancer, immune system diseases and circulatory system diseases.
  • MET protein also known as c-Met receptor tyrosine kinase, is a transmembrane receptor necessary for embryonic development and wound healing.
  • the MET receptor is usually activated by interaction with its specific ligand (hepatocyte growth factor (HGF)) and is the only high-affinity cell surface receptor for HGF.
  • HGF hepatocyte growth factor
  • MET receptors are deregulated in many types of human malignancies, including kidney cancer, liver cancer, gastric cancer, lung cancer, breast cancer, and brain cancer.
  • Abnormal activation of the HGF/c-Met axis in tumors triggers tumor growth, promotes tumor angiogenesis, and induces tumor metastasis.
  • abnormal MET activation is associated with drug resistance and is associated with poor prognosis. Inhibiting the c-Met signaling pathway has become a hot spot in the search for potential new therapies for cancer driven by c-Met activation.
  • TyRo3 protein tyrosine kinase is highly expressed in the nervous system. Only recent studies have confirmed that Tyro3 is involved in tumorigenesis, revealing that Tyro3 is a potential oncogene in melanoma. It can give melanoma cells an advantage in survival. Patients with melanoma are associated with worse outcomes, regardless of BRAF or NRAS status. Through phosphoproteome screening, it was also identified as one of the kinases up-regulated in lung cancer. High levels of Tyro3 expression are also associated with thyroid cancer.
  • Axl, Tyro3, and c-Met receptor tyrosine kinases show their respective tissue-specific expression patterns.
  • AXL kinase inhibitors have very good application prospects, and there are still many major challenges in the development of this species.
  • we are committed to the drug design and research and development of a series of tyrosine kinase inhibitors, looking for high-efficiency and low-toxicity Compounds with clinical application prospects are of great significance to the medical field.
  • the present invention provides a compound and/or a pharmaceutically acceptable salt thereof that can be used as a pharmaceutically active agent, particularly a pharmaceutically active agent for the treatment of cell proliferative diseases such as cancer, and contains at least one
  • the composition of the compound and/or its pharmaceutically acceptable salt as a pharmaceutically active agent, and the pharmaceutical application of the compound, its pharmaceutically acceptable salt, and the composition is not limited to a pharmaceutically active agent, particularly a pharmaceutically active agent for the treatment of cell proliferative diseases such as cancer.
  • the present invention discloses a compound represented by formula (I) or a pharmaceutically acceptable salt thereof:
  • W is a C or N atom
  • R 1 is arbitrarily selected from H, C 1-10 alkyl, C 3-8 cycloalkyl, substituted or unsubstituted C 5-12 aryl, and substituted or unsubstituted C 5 ⁇ 12 heteroaryl, C 7 ⁇ 12 benzoheterocyclic group, wherein the substituents are optionally selected from halogen, cyano, cyclopropyl
  • R 2 is selected from H, C 1-6 alkyl, halogen, C 3-8 cycloalkyl, C 2-6 alkenyl, A substituted or unsubstituted C 5-12 aryl group, a substituted or unsubstituted C 5-8 heteroaryl group, wherein m is an arbitrary integer of 0 to 3, n is an arbitrary integer of 1 to 4, and the substituents are arbitrarily selected from C 1 ⁇ 3 alkyl group or a nitrogen-containing heterocyclic group having 5 to C 6; R 3 is Any one of them
  • the aryl group of the R 1 group is phenyl, and the heteroaryl group is pyridyl.
  • R 1 is arbitrarily selected from: One of them.
  • R 2 is selected from One of them.
  • R 3 is selected from One of them.
  • A represents
  • R 1 represents phenyl or halogen-substituted phenyl
  • R 2 represents halogen or nitrogen-containing C 5 heteroaryl
  • R 3 represents The R 5 is single or multiple non-positionally substituted methoxy groups.
  • the present invention also provides methods for preparing compounds of general formula (I) and salts thereof, but not limited to the methods described below. All raw materials are prepared according to the group characteristics of the target molecule in accordance with the general formula, and are prepared through the schemes in these routes and methods well known to those of ordinary skill in the organic chemistry field or directly purchased.
  • the compounds of the present invention can be synthesized by combining the following methods with synthetic methods known in the field of synthetic organic chemistry or related modification methods recognized by those skilled in the art. Specifically, the compounds of the present invention can be produced according to the schemes described in the following synthetic routes 1 to 4, or by the synthetic procedures described in this text and in the examples.
  • the reaction for synthesizing the compound of formula I is an amidation reaction, that is, compound VI and compound VII react under the action of a basic reagent and an amide reagent to produce a compound of formula I, where R 1 , R 2 , R 3
  • the amide reagent can be HBTU, HATU, EDC*HCl, Hobt, SOCl 2 , oxalyl chloride, etc.
  • the alkaline reagent can be triethylamine , DIEA, potassium carbonate, sodium bicarbonate, etc.
  • the reaction solvent can be dichloromethane, DMF, etc., and the reaction temperature can be 0 to 50°C.
  • the compound M and R 3 -X are selected to react in an organic solvent such as DMSO or DMAC in the presence of a base such as sodium hydride or sodium tert-butoxide to prepare the desired compound, wherein the A and W groups
  • a base such as sodium hydride or sodium tert-butoxide
  • X can be any one of chlorine, bromine and iodine.
  • the R 3 -X compound is a type of compound formed by the R 3 group and halogen that can exist stably or is commercially available.
  • R 1 when R 1 is alkyl or cycloalkyl, compound III reacts with R 1 -X in a basic reagent to form compound IV, X can be chlorine, bromine or iodine, R 1 -X compound It is a kind of compound formed by R 1 group and halogen which can exist stably or is commercially available.
  • the alkaline reagent can be arbitrarily selected from sodium hydride, sodium tert-butoxide, sodium carbonate, etc.
  • the reaction solvent can be arbitrarily selected from DMF, acetonitrile, etc.
  • the reaction temperature can be selected from 0 to 80°C.
  • R 1 is an aromatic group
  • the compound and compound III undergo a CN coupling reaction under the action of a copper-based catalyst such as copper acetate to generate compound IV.
  • the reaction solvent can be any one or more selected from DMF, acetonitrile, tetrahydrofuran, and dichloromethane;
  • reaction solvent can be selected from one or more of tert-butanol, DMF, 1,4-dioxane, and toluene.
  • reaction solvent can be DMF, acetonitrile or methanol.
  • the base can be selected from one of sodium hydroxide, potassium hydroxide, and lithium hydroxide. Several kinds.
  • acetylacetaldehyde dimethyl acetal, malononitrile and piperidinium acetate are reacted in an organic solvent such as toluene to obtain propylene malononitrile and propenylene propylene Dinitrile mixture (1).
  • the mixture is treated with concentrated sulfuric acid to close the ring to obtain pyridone nitrile (2).
  • the pyridone nitrile (2) is treated and hydrolyzed with 50% sulfuric acid to obtain pyridone carboxylic acid (3).
  • Pyridone carboxylic acid (3) is mixed in methanol and two Under the action of thionyl chloride, methyl pyridone formate (4) is produced.
  • halogenating reagents such as liquid bromine, NBS, NIS, NCS, etc.
  • methyl pyridone formate (4) produces compound III.
  • the reaction solvent can be selected One or more of DMF, ACN, DCM and water, the reaction temperature can be selected from 0-50°C.
  • X- represents halogens such as chlorine, bromine and iodine.
  • the compound described in this application is selected from compounds I-1 to I-54, and the specific structure and preparation method thereof are described in the Examples.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier and/or excipient.
  • the present invention also provides the use of the above-mentioned compound or its pharmaceutically acceptable salt or the above-mentioned composition in the preparation of AXL inhibitor drugs.
  • the above-mentioned AXL inhibitor drugs are tumor treatment drugs.
  • the tumors include acute lymphoid myeloma, non-small cell lung cancer, gastric cancer, breast cancer and the like.
  • the above-mentioned AXL inhibitor drugs are drugs for treating kidney disease, immune system disease drugs, or circulatory system disease drugs.
  • the present invention also provides the use of the above-mentioned compound or its pharmaceutically acceptable salt or the above-mentioned composition in the preparation of c-MET inhibitor or TyRo3 inhibitor medicine.
  • alkyl means a saturated aliphatic hydrocarbon group of 1-20 carbon atoms, including straight-chain and branched-chain groups (the numerical range mentioned in this application, such as “1-20", refers to the group, In this case, it is an alkyl group, which can contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to 20 carbon atoms).
  • the alkyl group in the present invention includes "alkylene".
  • An alkyl group containing 1 to 6 carbon atoms is called a lower alkyl group. When a lower alkyl group has no substituent, it is called an unsubstituted lower alkyl group.
  • the alkyl group is a medium-sized alkyl group having 1-10 carbon atoms, such as methyl, ethyl, ethylene, propyl, propylene, 2-propyl, n-butyl, isopropyl Butyl, butylene, tert-butyl, pentyl, etc.
  • the alkyl group is a lower alkyl group having 1 to 5 carbon atoms, such as methyl, ethyl, propyl, 2-propyl, n-butyl, butylene, isobutyl or tert-butyl.
  • Alkyl groups can be substituted or unsubstituted.
  • aryl means an all-carbon monocyclic or condensed polycyclic group of 5 to 12 carbon atoms, with a fully conjugated ⁇ -electron system.
  • Non-limiting examples of aryl groups are phenyl, naphthyl and anthracenyl.
  • the aryl ring may be fused to a heteroaryl, heterocyclic or cycloalkyl ring, wherein the ring connected to the parent structure is an aryl ring.
  • Aryl groups can be substituted or unsubstituted.
  • the substituent is preferably one or more, more preferably one, two or three, and even more preferably one or two, independently selected from lower alkyl, trihaloalkyl, halogen, and hydroxyl , Lower alkoxy, mercapto, (lower alkyl)thio, cyano, acyl, thioacyl, O-carbamoyl, N-carbamoyl, O-thiocarbamoyl, N-thioamino Formyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido.
  • the aryl group is a 5-membered monocyclic aryl group or a 6-membered monocyclic aryl group.
  • heteroaryl means a monocyclic or condensed ring group of 5 to 12 ring atoms, containing one, two, three or four ring heteroatoms selected from N, O or S, and the remaining ring atoms are C, in addition has a fully conjugated ⁇ electron system.
  • the heteroaryl ring may be fused to an aryl, heterocyclic or cycloalkyl ring, and the ring connected to the parent structure is a heteroaryl ring.
  • Heteroaryl groups can be substituted or unsubstituted. When substituted, the substituent is preferably one or more, more preferably one, two or three, and still more preferably one or two.
  • Non-limiting examples of unsubstituted heteroaromatic bases are pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyrimidine, quinoline, isoquinoline, purine, tetrazole, triazine and carbazole; preferably, Heteroaryl groups are nitrogen-containing 5-membered monocyclic heteroaryl groups and nitrogen-containing 6-membered monocyclic heteroaryl groups.
  • alkoxy refers to -O- (unsubstituted alkyl) and -O- (unsubstituted cycloalkyl), wherein the definition of alkyl is the same as defined above in the specification.
  • Alkoxy preferably includes an alkoxy group of 1 to 10 carbon atoms, more preferably an alkoxy group of 1 to 6 carbon atoms; representative examples include but are not limited to methoxy, ethoxy, propoxy, Butoxy, cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, etc.
  • benzoheterocyclyl means a stable monocyclic ring containing carbon atoms and 1, 2, 3, or 4 ring heteroatoms independently selected from N, O and S fused to a benzene ring to form a bicyclic ring.
  • Nitrogen and sulfur heteroatoms can optionally be oxidized (ie NO and S(O)p, p is 1 or 2).
  • the nitrogen atom may be substituted or unsubstituted (ie, N or NR, where R is H or other substituents already defined herein).
  • a preferred solution is that when the total number of S or O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other. Another preferred solution is that the total number of O atoms in the heterocycle does not exceed 2.
  • halogen means fluorine, chlorine, bromine or iodine.
  • cycloalkyl means a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent, which includes 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably a cycloalkyl ring containing 3 to 8 carbon atoms, most preferably the cycloalkyl ring contains 3 to 6 carbon atoms, most preferably cyclopropyl.
  • Non-limiting examples of monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, cycloheptyl, cycloheptyl Alkenyl, cyclooctyl, etc., preferably cyclopropyl and cyclohexenyl.
  • alkenyl refers to an alkyl group with one or more carbon-carbon double bonds at any point in the chain, which can be mono- or multi-substituted, and can be monovalent, divalent or multivalent.
  • alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl group, piperylene based, inter-hexadiene groups and the like, preferably C 2 ⁇ 6 alkenyl group.
  • hydroxy means -OH.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • the base addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods.
  • such a salt is prepared by reacting a compound in the form of a free acid or base with a stoichiometric amount of an appropriate base or acid in water or an organic solvent or a mixture of both.
  • “Pharmaceutical composition” refers to one or more of the compounds described herein or their pharmaceutically acceptable salts, isomers and prodrugs and other chemical components, such as pharmaceutically acceptable carriers and Mixture of excipients.
  • the purpose of the pharmaceutical composition is to facilitate the administration of the compound to the organism.
  • “Pharmaceutically acceptable carrier” refers to a carrier or diluent that does not cause significant irritation to organisms and does not interfere with the biological activity and properties of the administered compound.
  • Excipient refers to an inert substance that is added to a pharmaceutical composition to further facilitate the administration of a compound.
  • the pharmaceutical composition may also contain: lubricants, wetting agents, emulsifiers, suspending agents, preservatives, sweeteners or flavoring agents.
  • lubricants wetting agents, emulsifiers, suspending agents, preservatives, sweeteners or flavoring agents.
  • the composition of the present invention can be formulated by using methods known in the art to provide immediate release, sustained release, or delayed release of the active ingredient after administration to the patient.
  • DMAC N,N-dimethylacetamide
  • DIEA N,N-diisopropylethylamine
  • DMF N,N-dimethylformamide
  • HBTU benzotriazole-N,N,N ',N'-tetramethylurea hexafluorophosphate
  • HATU 2-(7-azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate
  • EDC *HCl 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride
  • Hobt 1-hydroxybenzotriazole
  • SOCl 2 thionyl chloride
  • DMSO dimethyl Sulfoxide
  • DMAC N,N-dimethylacetamide
  • NBS N-bromosuccinimide
  • NIS N-iodosuccinimide
  • NCS N-chlorosuccinimide
  • AXL AXL-associated neoplasm originating from tumor metastasis, tumor stem cell phenotype, tumor cell drug resistance and immune suppression, etc.
  • the compounds of the present invention are used as AXL inhibitors in acute lymphoid myeloma and non-small cell lung cancer. , Gastric cancer, breast cancer and other therapeutic fields have great application prospects.
  • Preliminary drug activity research results show that the compound of the present invention has good selectivity to AXL kinase, has significant AXL inhibitory activity, and can be used to prepare preventive and/or therapeutic tumor drugs, kidney disease drugs, immune system disease drugs or circulatory system Disease drugs.
  • the inhibitory activity of the compound of the present invention is equivalent or even better than that of the positive control drug, and the inhibitory activity of some compounds on AXL kinase is 50 times that of BGB324.
  • the pharmacokinetic test also showed that the compound of the present invention has a more significant pharmacokinetic absorption effect. Compared with the positive control drug, the compound of the present invention has a better absorption effect in the body when the activity is equivalent or even higher.
  • the in vivo AUC of 1 mg/KG of some compounds is about 100 times that of the positive control drug BGB324.
  • the compound of the present invention also has potential c-MET inhibitory activity and TyRo3 inhibitory activity.
  • the compounds of the present invention have greater medicinal value and broad market prospects, and are expected to become new drugs with better therapeutic effects than similar anti-tumor products.
  • Synthesis of Compound 2 Take a 250ml three-necked flask, add 70ml of concentrated sulfuric acid, place it at 0°C and stir, slowly add compound 1 dropwise. After the addition is complete, heat up to 50°C and react for 5.0h. After the reaction is over, drop to 0°C and add dropwise to Solids precipitated out in 200 ml of 0°C water, filtered with suction, the filter cake was rinsed with 50 ml of water and sucked dry, and dried to obtain 51.0 g of compound 2.
  • Synthesis of compound 4 Take a 500ml reaction flask, add 20.0g compound 3, 100ml methanol, 62.2g thionyl chloride, heat up to 65°C and react for 3.0h. After the reaction, cool to room temperature, spin off the solvent under reduced pressure, add 100ml water and Separate 150 ml of dichloromethane and keep the organic phase. The organic phase was washed with 50 ml of saturated sodium bicarbonate and 50 ml of sodium chloride, dried, and concentrated under reduced pressure to obtain 15.0 g of compound 4.
  • Synthesis of compound 5 take a 250ml reaction flask, add 15.0g compound 4, 100ml dichloromethane, slowly drop 28.7g liquid bromine at 25°C, continue the reaction at 25°C for 12.0h, after the reaction is over, add saturated thiosulfide dropwise under ice bath The reaction was quenched with sodium sulfate aqueous solution until the solution was pale yellow, separated, and the organic phase was retained. The organic phase was was washed with 50 ml of water and 50 ml of sodium chloride, dried, and concentrated under reduced pressure to obtain 15.0 g of compound 5.
  • I-1-1 Synthesis: Take a 100ml three-necked flask, add 2.23g 4-chloro-6,7-dimethoxyquinoline, 1.63g p-aminophenol, 1.44g sodium tert-butoxide, 10ml DMAC, and react at 105°C At 12.0 h, the raw material was basically reacted completely, poured into 100 ml of water, and filtered with suction to obtain a brown-black solid, and 2.05 g of compound I-1-1 was obtained by column chromatography.
  • Synthesis of compound I-3 Take a 100ml single-necked flask and add 250mg compound I-3-2, 300mg compound I-1-1, 570mg HBTU, 390mg DIEA, and 10ml DMF in sequence at 25°C for 3.0 hours. The raw materials are basically reacted completely.
  • Synthesis of compound I-4-3 add 0.40g compound I-4-2, 0.11g NaOH, 10ml methanol and 2ml water to a 100ml single-necked flask, react at 50°C for 5.0h, after the reaction is complete, remove the solvent under reduced pressure. Add 10 ml of water, adjust the pH to 3.0-4.0 with 2N dilute HCl, solids are precipitated out, filtered with suction, and the filter cake is dried to obtain 300 mg of compound I-4-3.
  • Synthesis of compound I-4 Take a 100ml single-mouth bottle and add 270mg compound I-4-3, 310mg compound I-2-1, 570mg HBTU, 390mg DIEA, and 10ml DMF in sequence at 25°C for 3.0 hours.
  • Synthesis of compound I-5 Take a 100ml single-necked flask and add 250mg compound I-3-2, 310mg compound I-2-1, 570mg HATU, 390mg DIEA, and 10ml DMF in sequence at 25°C for 3.0h.
  • Synthesis of compound I-6-1 Add 0.34g compound I-4-1, 0.10g NaOH, 10ml methanol and 2ml water to a 100ml single-necked flask, and react at 50°C for 5.0h. After the reaction is complete, spin off under reduced pressure. Part of the solvent was dissolved in 10ml of water, adjusted to pH 3.0-4.0 with 2N dilute HCl, solids were precipitated, filtered with suction, and the filter cake was dried to obtain 0.25g of compound I-6-1.
  • Synthesis of compound I-7-2 Take a 100ml single-mouth bottle and add 0.34g compound I-4-1, 0.13g cyclopropylboronic acid, 0.10g Pd(dppf)Cl 2 , 0.41g K 2 CO 3 , 10ml tert-butyl in sequence. Alcohol and 10ml water were reacted at 100°C for 8.0h under nitrogen protection. After the reaction, 10ml water and 25ml ethyl acetate were added to separate the liquids. The organic phase was retained. The aqueous phase was back-extracted once with 25ml ethyl acetate. The organic phases were combined and depressurized. It was concentrated to dryness and purified by column chromatography to obtain 0.20 g of compound I-7-2.
  • Synthesis of compound I-7-2 Add 0.20g compound I-7-2, 53mg NaOH, 10ml methanol and 2ml water into a 100ml single-necked flask, and react at 50°C for 5.0h. After the reaction is complete, remove most of the solvent under reduced pressure. Then add 10 ml of water to dissolve the clear water, adjust the pH to 3.0-4.0 with 2N HCl, and solid precipitate, filter with suction, and dry the filter cake to obtain 0.15 g of compound I-7-3.
  • Synthesis of compound I-7 Take a 100ml single-mouth bottle and add 150mg compound I-7-3, 160mg compound I-2-1, 300mg HBTU, 200mg DIEA, 10ml DMF, and react at 25°C for 3.0 hours.
  • Synthesis of compound I-8-1 Take a 100ml single-necked flask, add 550mg compound I-4-2, 10ml methanol, 55mg Pd/C, and react at 50°C for 2.0 hours under the protection of hydrogen. After the reaction, the reaction solution is filtered with diatomaceous earth. After removing insoluble matter, the filtrate was concentrated to dryness under reduced pressure and purified by column chromatography to obtain 450 mg of compound I-8-1.
  • Synthesis of compound I-8-2 Add 450mg compound I-8-1, 80mg NaOH, 10ml methanol and 2ml water to a 100ml single-necked flask, react at 50°C for 5.0h, after the reaction, spin off most of the solvent under reduced pressure, and then Add 10ml of water to dissolve the clear water, adjust the pH to 3.0-4.0 with 2N HCl, and solid precipitate, filter with suction, and dry the filter cake to obtain 208mg of compound I-8-2.
  • Synthesis of compound I-8 Take a 100ml single-mouth bottle and add 140mg compound I-7-3, 160mg compound I-2-1, 300mg HBTU, 200mg DIEA, 10ml DMF, and react at 25°C for 3.0 hours.
  • Synthesis of compound I-9-1 Take a 100ml single-mouth bottle and add 340mg compound I-4-1, 470mg N-Boc-piperidine-4-boronic acid pinacol ester, 100mg Pd(dppf)Cl 2 , 41mg K 2 in sequence CO 3 , 10ml tert-butanol and 10ml water, react at 100°C for 8.0h under nitrogen protection. After the reaction is over, add 10ml water and 25ml ethyl acetate, separate the liquids, keep the organic phase, and back-extract the aqueous phase with 25ml ethyl acetate once. The organic phases were combined, concentrated to dryness under reduced pressure, and purified by column chromatography to obtain 300 mg of compound I-9-1.
  • Synthesis of compound I-9-2 Add 300mg I-9-1, 50mg NaOH, 10ml methanol and 2ml water to a 100ml single-necked flask, and react at 50°C for 5.0h. After the reaction is complete, remove most of the solvent under reduced pressure, and then add 10ml of water was solubilized and the pH was adjusted to 3.0-4.0 with 2N HCl. A solid precipitated out. The filter cake was dried to obtain 250mg of compound I-9-2.
  • Synthesis of compound I-9-3 Take a 100ml single-mouth bottle and add 250mg compound I-9-2, 180mg compound I-2-1, 330mg HBTU, 230mg DIEA and 10ml DMF in sequence, and react at 25°C for 3.0 hours. After the reaction is over, Add 100ml of water, there will be solid precipitation, suction filtration, filter cake, directly into the next step, do not purify.
  • Synthesis of compound I-10-1 Take a 100ml single-mouth bottle, add 450mg of compound I-9-1, 25ml of dichloromethane, add 5ml of trifluoroacetic acid dropwise, and react at 25°C for 1.0h. After the reaction, the solvent is removed under reduced pressure. Add 50ml of water, adjust the pH to 8.0-9.0 with saturated sodium carbonate, extract with 50ml*2 ethyl acetate, dry, and concentrate under reduced pressure to obtain 250mg of compound I-10-1.
  • Synthesis of compound I-10-2 Take a 100ml single-mouth bottle and add 250mg compound I-10-1, 206mg methyl iodide, 300mg potassium carbonate, 20ml DMF, and react at 80°C for 3.0 hours. After the reaction is over, add 100ml water, there is solid After precipitation, suction filtration, and purification by filter cake column chromatography, 200 mg of compound I-10-2 was obtained.
  • Synthesis of compound I-10-3 Add 200mg I-10-2, 45mg NaOH, 10ml methanol and 2ml water to a 100ml single-necked flask, and react at 50°C for 5.0h. After the reaction is complete, remove most of the solvent under reduced pressure, and then add 10ml of water was dissolved and the pH was adjusted to 3.0-4.0 with 2N HCl. A solid was precipitated, filtered with suction, and the filter cake was dried to obtain 120mg of compound I-10-3.
  • Synthesis of compound I-10 Take a 100ml single-mouth bottle and add 120mg compound I-10-3, 100mg compound I-2-1, 198mg HBTU, 90mg DIEA and 10ml DMF in sequence, and react at 25°C for 3.0h.
  • the synthetic route of compound I-12-3 is prepared by referring to the synthetic method of compound I-9, replacing N-Boc-piperidine-4-boronic acid pinacol ester with 1-(1-ethoxyethyl)-4- Pyrazolboronic acid pinacol ester, 150 mg of compound I-12-3 was obtained.
  • the synthesis method of compound I-13 refers to the synthesis method of compound I-7.
  • Synthesis of compound I-14-1 Take a 100ml single-mouth bottle, add 1.67g compound 3, 0.60g NaOH, 2.54g elemental iodine, and 30ml DMF, react at 50°C for 12.0h, after the reaction is over, pour the reaction solution into 150ml water. The solid precipitated, filtered with suction, and purified by column chromatography on the filter cake to obtain 1.82 g of compound I-14-1.
  • the synthetic method of compound I-15 was prepared by referring to the synthetic method of compound I-4.
  • Synthesis of compound I-16 Take a 100ml single-mouth bottle and add 290mg compound I-16-2, 314mg compound I-2-1, 330mg HBTU, 230mg DIEA and 10ml DMF in sequence, and react at 25°C for 3.0h.
  • Synthesis of compound I-17 Take a 100ml reaction flask, add 240mg compound I-16, 10ml 1,4-dioxane, stir at 20°C, add 240mg tetrabutylammonium tribromide/2ml 1,4-dioxane The six rings and 0.5ml methanol solution were reacted for 2.0h. After the reaction, 20ml water and 20ml ethyl acetate were added to separate the liquids. The aqueous phase was back extracted with 20ml*2 ethyl acetate, the organic phases were combined, dried, and concentrated under reduced pressure.
  • Synthesis of compound I-18 Take a 100ml reaction flask, take 200mg of compound I-16 and dissolve it with 20ml of methanol, place it in an ice bath at 0°C, slowly add 100mg of sodium borohydride, raise the temperature to 25°C, and react for 2.0h.
  • Synthesis of compound I-19-1 Take a 100ml single-mouth bottle and add 340mg compound I-14-2, 470mg 1-methyl-1-H-imidazole-5-boronic acid pinacol ester, 100mg Pd(dppf)Cl 2 , 41mg K 2 CO 3 , 10ml 1,4-dioxane and 2ml water, react at 100°C for 8.0h under nitrogen protection.
  • Synthesis of compound I-20-1 Take a 100ml reaction flask, add 500mg compound I-15-1, 50mg tetracarbonyl ferric acid disodium salt-dioxane, 100mg cuprous chloride and 10ml tetrahydrofuran, under N 2 protection at 25°C The reaction was carried out for 12.0 hours. After the reaction was completed, it was concentrated to dryness under reduced pressure and purified by column chromatography to obtain 100 mg of compound I-20-1.
  • Synthesis of compound I-21-1 Take a 100ml reaction flask, add 600mg compound I-20-1, 30ml DCM, stir to dissolve, add 534mg NBS, react at 25°C for 3.0h, after the reaction, add 20ml water, separate and keep The organic phase was dried, concentrated under reduced pressure to dryness, and purified by column chromatography to obtain 250 mg of compound I-21-1.
  • Synthesis of compound I-21-2 Take a 100ml reaction flask, add 250mg compound I-21-1, 20ml acetonitrile, 100mg triethylamine, 100mg dimethylamine hydrochloride, react at 25°C for 3.0h, after the reaction, reduce pressure It was concentrated to dryness and purified by column chromatography to obtain 120 mg of compound I-21-2.
  • Synthesis of compound I-23-1 Take a 100ml reaction flask, add 1.0g compound I-15-1, 50ml dichloromethane, cool down to -78°C, and continuously introduce ozone until the reaction solution turns light blue, and then Add nitrogen until the solution becomes clear. Dimethyl sulfide was added and the reaction was stirred at room temperature for 12.0 h. After the reaction was completed, it was concentrated to dryness under reduced pressure and purified by column chromatography to obtain 300 mg of compound I-23-1.
  • Synthesis of compound I-23-2 Take a 100ml reaction flask, add 200mg compound I-23-1, 100mg dimethylamine hydrochloride, 5ml DMF, stir at 25°C, slowly add 100mg sodium cyanoborohydride, react for 8.0h, react After the completion, add 20ml water, 25ml*2 ethyl acetate extraction, combine the organic phases, dry, concentrate under reduced pressure to dryness, and purify by column chromatography to obtain 140mg of compound I-23-2.
  • Synthesis of compound I-24 Take a 100ml reaction flask, add 200mg compound I-15, 10ml methanol, 10ml dichloromethane, and continuously pass ozone at -78°C. The reaction solution turns blue. The temperature is raised to -30°C and 100mg borohydride is added.
  • Synthesis of compound I-27-2 Take a 100ml reaction flask, add 200mg compound I-27-1, 10ml dichloromethane, 100mg triethylamine, add 30mg acetyl chloride dropwise under ice bath at 0°C, continue to react at 0°C for 2.0h After the reaction is over, add 10 ml of water, separate the liquids, keep the organic phase, back-extract the aqueous phase with 10 ml of dichloromethane once, combine the organic phases, dry, and concentrate under reduced pressure to obtain compound I-27-2.
  • the synthetic method of compound I-28-1 and compound I-28 was prepared by referring to the synthetic method of compound I-27-2 and I-27.
  • Synthesis of compound I-29-1 Take a 100ml reaction flask, add 1.0g compound I-15, 20ml dichloromethane, place in an ice bath and stir, slowly add 0.52g m-chloroperoxybenzoic acid, react for 5.0h, the reaction is over Afterwards, 10ml of water was added to separate the liquids, the organic phase was retained, dried, concentrated under reduced pressure to dryness, and purified by column chromatography to obtain 200mg of compound I-29-1.
  • the synthesis method of compound I-30 is prepared by referring to the synthesis method of compound I-6.
  • Synthesis of compound I-32-1 Take a 100ml reaction flask, add 1.5g compound 5, 1.38g cesium fluoride, 50ml DMF, stir for 1.0h at 25°C, add 1.0g bromocyclopentane, react at 25°C for 12.0h, the reaction is over Afterwards, 100ml of water was added, extracted with 50ml*2 ethyl acetate, the organic phases were combined, concentrated under reduced pressure to dryness, and liquid phase purification was prepared to obtain 180mg of compound I-32-1.
  • the synthesis method of compound I-33 is prepared by referring to the synthesis method of compound I-6.
  • the synthetic method of compound I-34 is prepared by referring to the synthetic method of compound I-6.
  • the synthesis method of compound I-35 is prepared by referring to the synthesis method of compound I-29.
  • the synthesis method of compound I-36 is prepared by referring to the synthesis method of compound I-29.
  • the synthetic method of compound I-37-1 was prepared by referring to the synthetic method of compound I-4-1, and 4-cyclopropylphenylboronic acid was replaced with p-fluorophenylboronic acid to obtain 3.80g of compound I-37-1.
  • Synthesis of compound I-37-2 Take a 100ml three-necked bottle, add 3.60g compound I-37-1, 3.0g butyl vinyl ether, 3.10g DIEA, 20ml n-butanol, replace with nitrogen 3 times and protect with nitrogen, add 236mg of acetic acid Palladium, 548mg of bis(2-diphenylphosphinophenyl) ether, reacted at 50°C for 2.0h, after the reaction is over, filter, save the filtrate, add 20ml of water, stir to crystallize, filter with suction, retain the filter cake, and directly cast one step;
  • Synthesis of compound I-37-3 Take a 100ml reaction flask, add 750mg compound I-37-2, 20ml 1,4-dioxane, stir at 20°C, add 964mg tetrabutylammonium tribromide/4ml 1, 4-dioxane and 1ml methanol solution were reacted for 2.0h. After the reaction, 20ml water and 20ml ethyl acetate were added to separate the liquids. The aqueous phase was back-extracted with 20ml*2 ethyl acetate. The organic phases were combined, dried, and subtracted. It was concentrated to dryness and purified by column chromatography to obtain 450 mg of compound 1-37-3.
  • Synthesis of compound I-37-5 Take 10ml reaction flask, add 150mg compound I-37-4, 1ml isopropanol, 80mg dimethylamine hydrochloride, 100mg triethylamine, microwave reaction at 100°C for 10.0h, after the reaction is over , And purified by column chromatography to obtain 86 mg of compound 1-37-5.
  • Synthesis of compound I-39-2 Take a 100ml reaction flask, add 1.50g compound I-39-1, 5.12g (Boc) 2 O, 2ml pyridine, 1.85g amine bicarbonate, and 20ml 1,4 dioxane, React at 30°C for 12.0 hours. After the reaction is complete, spin off most of the solvent under reduced pressure, add 50ml of water, extract with 50ml*2 ethyl acetate, combine the organic phases, dry, concentrate under reduced pressure to dryness, and purify by column chromatography to obtain 1.05g of compound I-39-2.
  • Synthesis of compound I-42-2 Take a 100ml reaction flask, add 780mg of compound I-42-1, 10ml of dichloromethane, 2ml of trifluoroacetic acid, and react at room temperature for 2.0h. After the reaction is complete, remove the solvent under reduced pressure and add 10ml of water. Adjust the pH to 8.0-9.0 with saturated sodium bicarbonate, extract with 15ml*2 ethyl acetate, combine the organic phases, dry, concentrate to dryness under reduced pressure, and purify by column chromatography to obtain 200mg of compound I-42-2.
  • Synthesis of compound I-42 Take a 100ml single-necked bottle, add 160mg compound I-42-2, 160mg compound I-23-3, 230mg HBTU, 80mg DIEA, and 10ml DMF in sequence at 25°C for 3.0h.
  • the main reagents included in the HTRF kinEASE TK kit (Cat#62TKOPEC, Cisbio)
  • AXL 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L DTT, 2uL 2500nM Supplement Enzymatic Buffer, 792 ⁇ L ddH 2 O.
  • AXL Use 200 ⁇ L 5 ⁇ enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L DTT, 2uL 2500nM supplement enzyme buffer and 792 ⁇ L ddH 2 O
  • Enzyme concentration optimization has been completed in the previous work, and the concentration of reagents used in screening is shown in Table 1.
  • the HTRF kinEASE TK kit was used to detect the half inhibitory concentration IC 50 of the compound of the present invention on AXL, and the results are shown below.
  • the main reagents included in the HTRF kinEASE TK kit (Cat#62TKOPEC, Cisbio)
  • EGFR T790M/L858R: Use 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 1 ⁇ L 1M DTT, 793 ⁇ L ddH 2 O
  • FLT3 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 1 ⁇ L 1M DTT, 793 ⁇ L ddH 2 O.
  • FLT3 Prepared with 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 1 ⁇ L 1M DTT, and 793 ⁇ L ddH 2 O.
  • C-MET 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 794 ⁇ L ddH 2 O.
  • C-met Prepared with 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 794 ⁇ L ddH 2 O
  • Tyro3 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 1 ⁇ L 1M DTT, 12.5ul SEB, 793 ⁇ L ddH 2 O.
  • Tyro3 Use 200 ⁇ L 5 ⁇ Enzyme buffer, 5 ⁇ L 1M MgCl 2 , 1 ⁇ L 1M MnCl 2 , 1 ⁇ L 1M DTT, 12.5ul SEB, 793 ⁇ L ddH 2 O.
  • Enzyme concentration optimization has been completed in the previous work, and the concentration of reagents used in screening is shown in Table 1.
  • a) First use the configured 1X kinase buffer to prepare a 2.5% DMSO solution (excessive DMSO concentration will affect the reaction, control the final concentration of DMSO to 1%), and then dilute the test compound with a 2.5% DMSO solution.
  • the screening concentration starts from 10uM with a 4-fold dilution with 10 concentrations.
  • 4 microliters of the diluted test compound solution was added to the reaction wells used, and 4 microliters of the previously prepared 2.5% DMSO solution was added to the control wells.
  • Emission Ratio(ER) 665nm Emission signal/615nm Emission signal
  • Inhibition rate (ER positive ⁇ ER sample )/(ER positive ⁇ ER negative )*100%
  • HTRF kinEASE TKkit was used to detect the half-inhibitory concentration IC50 (nm) of 3 test compounds against 4 kinases. The results are shown in the following table.
  • NCI-H1299 human lung cancer cell line comes from the Institute of Cell Research, Chinese Academy of Sciences
  • NCI-H1975 human lung adenocarcinoma cell line is derived from ATCC
  • MDA-MB-231 human breast cancer cell line is derived from ATCC
  • Hep3B human liver cancer cell line is derived from the Institute of Cell Research, Chinese Academy of Sciences
  • MV-4-11 human myeloid monocytic leukemia cell line from ATCC
  • the compound was dissolved to 10mM in DMSO and stored at -20°C for later use.
  • a) Collect the logarithmic growth phase cells, count them, resuspend the cells in complete medium, adjust the cell concentration to a suitable concentration, inoculate a 96-well plate, and add 100 ⁇ l cell suspension to each well. The cells were incubated in an incubator at 37°C, 100% relative humidity, and 5% CO 2 for 24 hours.
  • the cells are placed in a 37°C, 100% relative humidity, 5% CO 2 incubator and incubated for 72 hours.
  • tumor cell growth inhibition rate % [(A c -A s )/(A c -A b )] ⁇ 100%
  • a c OA of negative control (cell+CCK-8+DMSO)
  • a b OA of the positive control (medium + CCK-8 + DMSO)
  • mice Twenty-four SD rats were randomly divided into 3 groups according to their body weight, with 8 rats in each group, half male and half female. After fasting for about 12 hours, each group was given 1 mg/kg drug solution by gavage, and the administration volume was 10 mL/kg.
  • Mass spectrometry conditions AB SCIEX 5500 triple quadrupole tandem mass spectrometry system, ion source is ESI source, curtain gas pressure: 35psi, collision gas: 8psi, ionization voltage: 5500psi, ion source temperature: 550°C, spray gas: 55psi, Auxiliary heater: 55psi, multiple reaction monitoring (MRM) mode.
  • Sample processing Take 20 ⁇ L of plasma sample into a 1.5mL centrifuge tube, add 180 ⁇ L of internal standard acetonitrile solution (TBTM 20ng/mL), vortex for 2min, centrifuge at 12000rpm (8°C) for 10min, take the supernatant, and inject 2 ⁇ L for detection.
  • TTM 20ng/mL internal standard acetonitrile solution
  • the compound of the present invention has strong Axl inhibitory activity, and therefore, is used for the treatment of Axl-related diseases, such as cancer, kidney disease, immune system disease, and circulatory system disease.

Abstract

本发明公开了一种通式(I)所示的化合物或其药学上可接受的盐,以及其制备方法。本发明还公开了包含该化合物的药物组合物,以及该化合物、药物组合物在制备AXL抑制药物中的应用,其中AXL抑制药物用于治疗肿瘤、肾病、免疫系统疾病或者循环系统疾病。

Description

一种用作AXL抑制剂的抗肿瘤化合物及其用途 技术领域
本发明属于医药化学领域,具体涉及一种AXL抑制剂及其制备方法和用途。
背景技术
分子靶向治疗多种恶性肿瘤受到了广泛的关注和高度重视。分子靶向药物具有选择性高、广谱有效,其安全性优于细胞毒性化疗药物,是目前肿瘤治疗领域发展的新方向。
Axl(又名:UFO、ARK、Tyro7)是属于从肿瘤细胞中克隆的受体酪氨酸激酶。作为在细胞增殖停止(cell proliferation arrest)时特异性表达的基因而进行克隆的Gas6(生长停止特异性蛋白6)已知是Axl的配体。结合Gas6得以激活的Axl通过磷酸化作用传输信号。由于该信号激活Erk1/2通路或PI3K/Akt通路,因此,抑制Axl激活的化合物用于治疗各种类型的癌症、免疫系统疾病和循环系统疾病。
文献[Clinical Science,Vol.122,p.361-368,2012]公开了通式(A)表示的Axl抑制剂类化合物,其中各个取代基定义如其文献所示:
Figure PCTCN2020084081-appb-000001
发明专利WO2013/074633公开了如下通式的Axl抑制剂类化合物,其中各个取代基定义如其专利说明书定义所示:
Figure PCTCN2020084081-appb-000002
挪威卑尔根的生物制药公司BerGenBio开发了选择性AXL激酶抑制剂Bemcentinib,临床试验评估了bemcentinib与厄洛替尼(erlotinib)联用,治疗晚期非小细胞肺癌(NSCLC)患者的药效和安全性,该药物是一种同类首创,高度选择性,生物可用的口服AXL小分子抑制剂,其结构如下所示:
Figure PCTCN2020084081-appb-000003
R428(BGB324|Bemcentinib)
MET蛋白质也称为c-Met受体酪氨酸激酶,是胚胎发育和伤口愈合所必需的跨膜受体。MET受体通常通过与其特异性配体(肝细胞生长因子(HGF))的相互作用而活化,并且是HGF的唯一的高亲和力细胞表面受体。MET受体在许多类型的人类恶性肿瘤(包括肾癌、肝癌、胃癌、肺癌、乳腺癌和脑癌)中脱调节(deregulate)。肿瘤中HGF/c-Met轴的异常活化触发肿瘤生长、促进肿瘤血管生成、并诱导肿 瘤转移。此外,MET活化异常与耐药性相关,并且与预后不良有关。抑制c-Met信号传导通路已经成为搜寻由c-Met活化而驱动的癌症的潜在新疗法的热点区域。
TyRo3蛋白酪氨酸激酶在神经系统中高表达,仅最近通过近来研究证实了Tyro3参与肿瘤发生,揭示了Tyro3是黑素瘤中的潜在癌基因,其通过赋予黑素瘤细胞存活优势,与患有黑素瘤的患者的较差的后果关联,而与BRAF或NRAS状态无关。通过磷酸蛋白质组筛选,还鉴定其为在肺癌中上调的激酶之一。高水平的Tyro3表达还与甲状腺癌相关。
Axl、Tyro3和c-Met受体酪氨酸激酶表现出它们各自的组织特异性表达模式,尤其是AXL激酶抑制剂具有非常好的应用前景,该品种的开发仍旧存在较多重大挑战。为了满足目前临床上对治疗癌症、免疫系统疾病和循环系统疾病的药物需要,达到更好的治疗效果,我们致力于一系列酪氨酸激酶抑制剂的药物设计与研究开发,寻找高效低毒的具有临床应用前景的化合物,这对于医药领域具有重大的意义。
发明内容
发明目的:本发明提供了一种能够用作药物活性药剂,特别是用于治疗如癌症的细胞增殖性疾病的药物活性药剂的化合物和/或其药学上可接受的盐,以及包含至少一种作为药物活性药剂的所述化合物和/或其药学上可接受的盐的组合物,以及上述化合物、其药学上可接受的盐、组合物的制药应用。
技术方案:本发明公开了一种式(I)所示的化合物或其药学上可接受的盐:
Figure PCTCN2020084081-appb-000004
其中,W为C或N原子;R 1任意选自H、C 1-10烷基、C 3-8环烷基、取代或非取代的C 5~12芳基、取代或非取代的C 5~12杂芳基、C 7~12苯并杂环基,其中所述的取代基任意选自卤素、氰基、环丙烷基、
Figure PCTCN2020084081-appb-000005
中的一种;R 2选自H、C 1-6烷基、卤素、C 3-8环烷基、C 2-6烯基、
Figure PCTCN2020084081-appb-000006
Figure PCTCN2020084081-appb-000007
取代或非取代的C 5~12芳基、取代或非取代的C 5~8杂芳基,其中m为0~3任意整数,n为1~4任意整数,所述的取代基任意选自C 1~3烷基或C 5~ 6的含氮杂环烷基;R 3
Figure PCTCN2020084081-appb-000008
中的任意一种,其中R 5代表单个或多个不定位取代基,任意选自卤素、C 1-6烷氧基、羟基、
Figure PCTCN2020084081-appb-000009
Figure PCTCN2020084081-appb-000010
的一种或者几种;A代表氢原子或者任意选自卤素、C 1-6烷氧基、C 1-6烷基、-CF 3或C 2~8叔胺基中的一个或多个取代基。
在一种方案中,R 1基团所述的芳基为苯基,所述的杂芳基为吡啶基。
在一种方案中,R 1任意选自:
Figure PCTCN2020084081-appb-000011
中的一种。
在一种方案中,R 2选自
Figure PCTCN2020084081-appb-000012
Figure PCTCN2020084081-appb-000013
Figure PCTCN2020084081-appb-000014
中的一种。
在一种方案中,R 3选自
Figure PCTCN2020084081-appb-000015
Figure PCTCN2020084081-appb-000016
中的一种。
在一种方案中,A代表
Figure PCTCN2020084081-appb-000017
在一种优选方案中,R 1代表苯基或者卤素取代的苯基、R 2代表卤素或者含氮的C 5杂芳基,R 3代表
Figure PCTCN2020084081-appb-000018
所述的R 5为单个或多个不定位取代的甲氧基。
本发明还提供通式(I)化合物及其盐的制备方法,但不仅限于以下描述的方法。所有的原料都是根据符合通式规律的目标分子的基团特征,并通过这些路线中的方案、有机化学领域普通技术人员熟知的方法制备或者直接购买的。可将用下述方法和合成有机化学领域中已知的合成方法或本领域技术人员意识到的有关改变方法结合在一起,合成本发明化合物。具体而言,本发明的化合物可以按照下述的合成路线一至四中所描述的方案进行,或通过本文中和实施例中描述的合成程序来生产。
Figure PCTCN2020084081-appb-000019
如合成路线一所示,合成式I化合物的反应为酰胺化反应,即化合物VI与化合物VII在碱性试剂和酰胺试剂的作用下反应生成式I化合物,其中,R 1、R 2、 R 3、A和W基团的定义与说明书上文定义相同;所述的酰胺试剂可以选择HBTU、HATU、EDC*HCl、Hobt、SOCl 2、草酰氯等,所述的碱性试剂可以选择三乙胺、DIEA、碳酸钾、碳酸氢钠等,反应溶剂可以选择二氯甲烷、DMF等,反应温度可以0至50℃。
其中,化合物VII的制备可以采用合成路线二的方案进行:
Figure PCTCN2020084081-appb-000020
在合成路线二中,选取化合物M与R 3-X化合物在有机溶剂例如DMSO或DMAC中,在碱例如氢化钠或叔丁醇钠存在下进行反应,制备得到所需化合物,其中A和W基团的定义与说明书上文定义相同,X可以选择氯、溴、碘中的任意一种,R 3-X化合物为R 3基团与卤素构成的可以稳定存在或者市售的一类化合物。
化合物VI的制备可以采用合成路线三的方案进行:
Figure PCTCN2020084081-appb-000021
如合成路线三所示,当R 1为烷基或环烷基时,化合物III与R 1-X在碱性试剂下反应生成化合物IV,X可以选择氯、溴或碘,R 1-X化合物为R 1基团与卤素构成的可以稳定存在或者市售的一类化合物。所述的碱性试剂可以任意选自氢化钠、叔丁醇钠、碳酸钠等,反应溶剂可以任意选自DMF、乙腈等,反应温度可以选择0-80℃。
当R 1为芳香基团时,可选取
Figure PCTCN2020084081-appb-000022
化合物与化合物III在铜系催化剂例如是醋酸铜的作用下,发生C-N偶联反应,生成化合物IV,反应溶剂可以任意选自DMF、乙腈、四氢呋喃、二氯甲烷的一种或几种;
化合物IV与化合物
Figure PCTCN2020084081-appb-000023
在钯催化下例如四三苯基膦钯等发生C-C偶联反应,生成化合物V,反应溶剂可以任意选自叔丁醇、DMF、1,4-二氧六环、甲苯中的一种或几种;
最后,化合物V在碱的作用下,皂化生成中间体VI,反应溶剂可以选择DMF、乙腈或者甲醇,所述的碱可以任意选自氢氧化钠、氢氧化钾、氢氧化锂中的一种或几种。
其中,化合物III的制备可以采用合成路线四的方案进行:
Figure PCTCN2020084081-appb-000024
如合成路线四所示,乙酰基乙醛二甲基缩醛、丙二腈和乙酸哌啶鎓(或乙酸铵)在有机溶剂例如甲苯中反应,得到亚丙基丙二腈和亚丙烯基丙二腈混合物(1)。该混合物用浓硫酸处理关环,得到吡啶酮腈(2),该吡啶酮腈(2)用50%的硫酸处理水解,得到吡啶酮甲酸(3),吡啶酮甲酸(3)在甲醇和二氯亚砜的作用下,生成吡啶酮甲酸甲酯(4),吡啶酮甲酸甲酯(4)在卤代试剂例如液溴、NBS、NIS、NCS等作用下,生成化合物III,反应溶剂可以选择DMF、ACN、DCM、水中的一种或几种,反应温度可以选择0-50℃。X-代表氯、溴、碘等卤素。
本发明提到的上述特征,或实施例提到的特征可以在符合药学规律基础上任意组合,说明书中所揭示的各个特征,可以被任何提供相同、均等或相似目的的替代性特征取代。除有特别说明,所揭示的特征仅为相同或形似特征的一般性例子。
优选的,本申请所述化合物选自化合物I-1至I-54,其具体结构以及制备方法详见实施例记载。
本发明还提供一种药物组合物,包含治疗有效量的式(I)化合物或其药学上可接受的盐,以及药学上可接受的载体和/或赋型剂。
本发明还提供上述化合物或其药学上可接受的盐或者上述组合物在制备AXL抑制剂药物中的应用。
在本发明的一些方案中,上述AXL抑制剂药物是治疗肿瘤药物。所述肿瘤包括急性淋巴性骨髓瘤、非小细胞肺癌、胃癌、乳腺癌等。
在本发明的一些方案中,上述AXL抑制剂药物是治疗肾病药物、免疫系统疾病药物或者循环系统疾病药物。
另一方面,本发明还提供上述化合物或其药学上可接受的盐或者上述组合物在制备c-MET抑制剂或者TyRo3抑制剂药物中的应用。
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。
术语“烷基”表示1-20个碳原子的饱和的脂烃基,包括直链和支链基团(本申请书中提到的数字范围,例如“1-20”,是指该基团,此时为烷基,可以含1个碳原子、2个碳原子、3个碳原子等,直至包括20个碳原子)。本发明中的烷基包含“亚烷基”。含1-6个碳原子的烷基称为低级烷基。当低级烷基没有取代基时,称其为未取代的低级烷基。更优选的是,烷基是有1-10个碳原子的中等大小的烷基,例如甲基、乙基、亚乙基、丙基、亚丙基、2-丙基、正丁基、异丁基、亚丁基、叔丁基、戊基等。最好是,烷基为有1-5个碳原子的低级烷基,例如甲基、乙基、丙基、2-丙基、正丁基、亚丁基、异丁基或叔丁基等。烷基可以是取代的或未取代的。
术语“芳基”表示5至12个碳原子的全碳单环或稠合多环基团,具有完全共 轭的π电子系统。芳基的非限制性实例有苯基、萘基和蒽基。所述芳基环可以稠合于杂芳基、杂环基或环烷基环上,其中与母体结构连接在一起的环为芳基环。芳基可以是取代的或未取代的。当被取代时,取代基优选为一个或多个,更优选为一个、两个或三个,进而更优选为一个或两个,独立地选自由低级烷基、三卤烷基、卤素、羟基、低级烷氧基、巯基、(低级烷基)硫基、氰基、酰基、硫代酰基、O-氨基甲酰基、N-氨基甲酰基、O-硫代氨基甲酰基、N-硫代氨基甲酰基、C-酰氨基、N-酰氨基、硝基、N-磺酰氨基、S-磺酰氨基。优选地,芳基为5元单环芳基、6元单环芳基。
术语“杂芳基”表示5至12个环原子的单环或稠合环基团,含有一个、两个、三个或四个选自N、O或S的环杂原子,其余环原子是C,另外具有完全共轭的π电子系统。所述杂芳基环可以稠合于芳基、杂环基或环烷基环上,其中与母体结构连接在一起的环为杂芳基环。杂芳基可以是取代的或未取代的。当被取代时,取代基优选为一个或多个,更为优选为一个、两个或三个,进而更为优选一个或两个。未取代的杂芳基地非限制性实例有吡咯、呋喃、噻吩、咪唑、噁唑、噻唑、吡唑、嘧啶、喹啉、异喹啉、嘌呤、四唑、三嗪和咔唑;优选地,杂芳基为含氮5元单环杂芳基、含氮6元单环杂芳基。
术语“烷氧基”表示-O-(未取代的烷基)和-O-(未取代的环烷基),其中烷基的定义与说明书上文定义相同。“烷氧基”优选包括1至10个碳原子的烷氧基,更优选1至6个碳原子的烷氧基;代表性实例包括但不限于甲氧基、乙氧基、丙氧基、丁氧基、环丙氧基、环丁氧基、环戊氧基、环己氧基等。
术语“苯并杂环基”意指稳定的包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子的单环稠合到一个苯环上形成双环。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。一个优选方案是,当杂环中S或者O原子的总数超过1时,这些杂原子彼此不相邻。另一个优选方案是,杂环中O原子的总数不超过2。
术语“卤素”表示氟、氯、溴或碘。
术语“环烷基”表示饱和或部分不饱和单环或多环环状烃取代基,其包括3至20个碳原子,优选包括3至12个碳原子,更优选环烷基环包含3至8个碳原子,最优选环烷基环包含3至6个碳原子,最佳为环丙基。单环环烷基的非限制性实施例包含环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基、环庚基、环庚三烯基、环辛基等,优选环丙基、环己烯基。
术语“烯基”指在链的任何位点上具有一个或多个碳碳双键的烷基,可以是单取代或多取代的,可以是一价、二价或者多价。烯基的例子包括乙烯基,丙烯基,丁烯基,戊烯基,己烯基,丁间二烯基,戊间二烯基,己间二烯基等,优选C 2~6烯基。
术语“羟基”表示-OH。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的化合物与化学计量的适当的碱或酸反应来制备。
“药用组合物”指的是在此描述的一种或多种化合物或者它们的药学上可接受的盐、异构体和前药等与其它的化学成分,例如药学上可接受的载体和赋形剂的混合物。药用组合物的目的是促进化合物对生物体的给药。
“药学上可接受的载体”指的是对有机体不引起明显的刺激性和不干扰所给予化合物的生物活性和性质的载体或稀释剂。
“赋形剂”指加入到药用组合物中以进一步便利于给予化合物的惰性物质。
药物组合物还可含有:润滑剂、湿润剂、乳化剂、悬浮剂、防腐剂、甜味剂或矫味剂等。可通过使用本领域中已知的方法配制本发明组合物,以便在给予患者后提供速释、缓释或延迟释放活性成分的作用。
本发明所涉及的试剂简称具有如下定义:
DMAC:N,N-二甲基乙酰胺;DIEA:N,N-二异丙基乙胺;DMF:N,N-二甲基甲酰胺;HBTU:苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸盐;HATU:2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯;EDC*HCl:1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐;Hobt:1-羟基苯并三唑;SOCl 2:氯化亚砜;DMSO:二甲基亚砜;DMAC:N,N-二甲基乙酰胺;NBS:N-溴代琥珀酰亚胺;NIS:N-碘代丁二酰亚胺;NCS:N-氯代丁二酰亚胺;ACN:乙腈;DCM:二氯甲烷。
有益效果:AXL过度激活后会涉及到肿瘤的转移、肿瘤干细胞的表型、肿瘤细胞耐药性的产生以及抑制免疫等,本发明化合物作为AXL抑制剂在急性淋巴性骨髓瘤、非小细胞肺癌、胃癌、乳腺癌等治疗领域有较大的应用前景。
初步药物活性研究结果表明本发明的化合物对AXL激酶具有很好的选择性,具有显著的AXL抑制活性,可以用于制备预防和/或治疗治疗肿瘤药物\肾病药物、免疫系统疾病药物或者循环系统疾病药物。本发明的化合物的抑制活性与阳性对照药相当甚至更优,部分化合物对AXL激酶的抑制活性是BGB324抑制活性的50倍。
药代动力学试验还显示,本发明的化合物具有更加显著的药代吸收效果,与阳性对照药相比,本发明化合物在活性相当甚至更高的情况下,具有更好的体内吸收效果,甚至部分化合物的1mg/KG的剂量体内吸收AUC是阳性对照药BGB324的体内AUC的约100倍。
本发明的化合物还具有潜在的c-MET抑制活性和TyRo3抑制活性。
综上所述,本发明化合物有较大的药用价值和广阔的市场化前景,有望成为比同类抗肿瘤产品治疗效果更好的新药。
具体实施方式
以下实施例进一步描述本发明,但是,这些实施例仅是用于说明本发明,而不是对本发明范围的限制。
实施例1化合物5合成
Figure PCTCN2020084081-appb-000025
化合物1合成:取1.0L三口瓶,加入100.0g乙酰基乙醛二甲基缩醛,11.0g乙酸 哌啶鎓及400ml甲苯,再缓慢加入50.0g丙二腈,在35℃下反应16.0h,反应结束后,加入200ml水洗涤,分液,保留有机相,用无水硫酸钠干燥,减压浓缩至干,得到130.0g化合物1,为亚丙基丙二腈和亚丙烯基丙二腈(10:1)混合物。化合物2合成:取250ml三口瓶,加入70ml浓硫酸,置于0℃搅拌,缓慢滴加化合物1,滴加完毕,升温至50℃反应5.0h,反应结束后,降至0℃,滴加到200ml的0℃水中,有固体析出,抽滤,滤饼用50ml水淋洗并抽干,烘干得到51.0g化合物2。
化合物3合成:取2.0L三口瓶,加入50.0g化合物3,250ml50%的硫酸溶液,升温至110℃反应20h,反应结束后,加入500ml水,有固体析出,抽滤,滤饼用100ml水淋洗并抽干,烘干得到25.0g化合物3。
化合物4合成:取500ml反应瓶,加入20.0g化合物3,100ml甲醇,62.2g二氯亚砜,升温至65℃反应3.0h,反应结束后,降至室温,减压旋除溶剂,加入100ml水和150ml二氯甲烷,分液,保留有机相,有机相分别用50ml饱和碳酸氢钠,50ml氯化钠洗涤,干燥,减压浓缩干,得到15.0g化合物4。
化合物5合成:取250ml反应瓶,加入15.0g化合物4,100ml二氯甲烷,25℃下缓慢滴加28.7g液溴,继续25℃反应12.0h,反应结束后,冰浴下滴加饱和硫代硫酸钠水溶液淬灭反应,至溶液淡黄色,分液,保留有机相,有机相分别用50ml水,50ml氯化钠洗涤,干燥,减压浓缩干,得到15.0g化合物5。
实施例2化合物I-1的制备
Figure PCTCN2020084081-appb-000026
I-1-1合成:取100ml三口瓶,加入2.23g 4-氯-6,7-二甲氧基喹啉,1.63g对氨基苯酚,1.44g叔丁醇钠,10ml DMAC,于105℃反应12.0h,原料基本反应完全,倒入100ml水中,抽滤,得到棕黑色固体,柱层析得到2.05g化合物I-1-1。
I-1合成:取100ml三口瓶,依次加入300mg I-1-1,150mg化合物3,570mg HBTU,390mg DIEA以及10ml DMF,25℃反应3.0h,原料基本反应完全,将反应液加入100ml水中,抽滤,滤饼柱层析得到15mg化合物I-1,MS m/z=432.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.49-8.48(m,1H),8.21-8.18(m,1H),7.99-7.98(m,1H),7.55-7.53(m,1H),7.45-7.41(m,4H),7.22-7.15(m,1H),6.90-6.88(m,2H),3.64(s,6H),2.35(s,3H)ppm。
实施例3化合物I-2的制备
Figure PCTCN2020084081-appb-000027
I-2-1合成:取100ml三口瓶,加入2.23g 4-氯-6,7-二甲氧基喹啉,1.91g 4-氨基-2- 氟苯酚,1.44g叔丁醇钠,10ml DMAC,于105℃反应12h,原料基本反应完全,倒入100ml水中,抽滤,得到棕黑色固体,柱层析得到1.50g化合物I-2-1。
I-2合成:取100ml三口瓶,依次加入315mg化合物I-2-1,150mg化合物3,570mg HBTU,390mg DIEA,以及10ml DMF,,25℃反应3.0h,原料基本反应完全,将反应液加入100ml水中,有大量固体析出,抽滤,滤饼柱层析得到20mg化合物I-2,MS m/z=450.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.52-8.50(m,1H),8.03-8.02(m,1H),7.94-7.92(m,1H),7.57-7.56(m,1H),7.46-7.43(m,4H),7.27-7.22(m,1H),6.95-6.91(m,1H),3.64(s,6H),2.37(s,3H)ppm。
实施例4化合物I-3的制备
Figure PCTCN2020084081-appb-000028
化合物1-3-1合成:取250ml单口瓶,依次加入1.67g化合物4,5.56g 4-氟苯硼酸,0.50g 4A碎分子筛,3.3ml吡啶,3.12g TEMPO,0.40g醋酸铜,以及100mlDCM,氧气保护下30℃反应12h,原料基本反应完全,硅藻土辅助过虑,除去不溶物,保留有机相,用100ml*2水洗涤,减压浓缩干,柱层析得到1.82g化合物I-3-1。化合物1-3-2合成:向100ml单口瓶中依次加入1.80g化合物I-3-1,0.55g NaOH,20ml甲醇和4ml水,50℃反应5.0h,原料基本反应完全,减压旋除溶液,加入20ml水搅拌溶清,用2N稀HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干,得到1.34g化合物I-3-2。
化合物I-3合成:取100ml单口瓶,依次加入250mg化合物I-3-2,300mg化合物I-1-1,570mg HBTU,390mg DIEA,以及10ml DMF,25℃反应3.0h,原料基本反应完全,将反应液加入100ml水中,有大量固体析出,抽滤,滤饼柱层析得到31mg化合物I-3,MS m/z=526.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.48-8.47(m,1H),8.05-7.99(m,3H),7.74(s,1H),7.55-7.52(m,5H),7.41-7.35(m,2H),6.82-6.80(m,2H),3.79(s,6H),2.27(s,3H)ppm。
实施例5化合物I-4的制备
Figure PCTCN2020084081-appb-000029
化合物I-4-1合成:向1.0L单口瓶中依次加入24.60g化合物5,55.6g 4-氟苯硼酸,5.00g 4A碎分子筛,33ml吡啶,31.2g TEMPO,4.00g醋酸铜,以及500mlDCM,氧气保护下30℃反应12.0h,反应结束,反应液硅藻土辅助过虑,除去不溶物,保留有机相,用500ml*2水洗涤,减压浓缩干,柱层析纯化得到23.20g化合物I-4-1。
化合物I-4-2合成:向100ml单口瓶中依次加入0.68g化合物I-4-1,0.23g乙烯基硼酸频哪醇酯,0.15g Pd(dppf)Cl 2,0.83g K 2CO 3,以及10ml叔丁醇和10ml水,氮气保护下100℃反应8.0h,反应结束,加入10ml水和25ml乙酸乙酯,分液,保留有机相,水相用25ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到0.41g化合物I-4-2。
化合物I-4-3合成:向100ml单口瓶中加入0.40g化合物I-4-2,0.11g NaOH,以及10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除溶剂,加入10ml水,用2N稀HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干,得到300mg化合物I-4-3。
化合物I-4合成:取100ml单口瓶,依次加入270mg化合物I-4-3,310mg化合物I-2-1,570mg HBTU,390mg DIEA,以及10ml DMF,25℃反应3.0h,反应结束,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到22mg化合物I-4,MS m/z=570.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.77(s,1H),8.50-8.47(m,1H),7.99-7.96(m,1H),7.58-7.48(m,6H),7.49-7.38(m,3H)6.50-6.48(m,1H),5.93-5.91(m,1H),5.17-5.15(m,2H),3.98(s,6H),2.23(s,3H)ppm。
实施例6化合物I-5的制备
Figure PCTCN2020084081-appb-000030
化合物I-5合成:取100ml单口瓶,依次加入250mg化合物I-3-2,310mg化合物I-2-1,570mg HATU,390mg DIEA,以及10ml DMF,25℃反应3.0h,反应结束,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到26mg化合物I-5,MS m/z=544.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.87(s,1H),8.52-8.50(m,1H),8.11-8.05(m,3H),7.78(s,1H),7.58-7.55(m,4H),7.40-7.37(m,2H),6.73-6.71(m,2H),3.80(s,6H),2.23(s,3H)ppm。
实施例7化合物I-6的制备
Figure PCTCN2020084081-appb-000031
化合物I-6-1合成:向100ml单口瓶中依次加入0.34g化合物I-4-1,0.10g NaOH,及10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,加 入10ml水溶清,用2N稀HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干,得到0.25g化合物I-6-1。
化合物I-6合成:取100ml单口瓶,依次加入250mg化合物I-6-1,240mg化合物I-2-1,440mg HATU,300mg DIEA,及10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到25mg化合物I-6,MS m/z=623.1(M+1)。 1H NMR(400MHz,d6-DMSO)δ:10.89(s,1H),8.77-8.74(m,1H),8.25(s,1H),8.05-7.98(m,1H),7.67(s,1H),7.51-7.48(m,5H),7.38-7.36(m,2H),6.93-6.87(m,1H),4.06(s,6H),2.33(s,3H)ppm。
实施例8化合物I-7的制备
Figure PCTCN2020084081-appb-000032
化合物I-7-2合成:取100ml单口瓶,依次加入0.34g化合物I-4-1,0.13g环丙基硼酸,0.10g Pd(dppf)Cl 2,0.41g K 2CO 3,10ml叔丁醇和10ml水,氮气保护下100℃反应8.0h,反应结束后,加入10ml水和25ml乙酸乙酯,分液,保留有机相,水相用25ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到0.20g化合物I-7-2。
化合物I-7-2合成:向100ml单口瓶中加入0.20g化合物I-7-2,53mg NaOH,10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,再加入10ml水溶清,用2N HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干得到0.15g化合物I-7-3。
化合物I-7合成:取100ml单口瓶,依次加入150mg化合物I-7-3,160mg化合物I-2-1,300mg HBTU,200mg DIEA,10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到50mg化合物I-7,MS m/z=584.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.77(s,1H),8.48-8.47(m,1H),7.99-7.95(m,1H),7.55-7.46(m,5H),7.44-7.35(m,4H),6.49-6.48(m,1H),3.96(s,6H),2.37(s,3H),0.95-0.94(m,1H),0.84-0.82(m,2H),0.62-0.61(m,2H)ppm。
实施例9化合物I-8的制备
Figure PCTCN2020084081-appb-000033
化合物I-8-1合成:取100ml单口瓶,加入550mg化合物I-4-2,10ml甲醇,55mg Pd/C,氢气保护下50℃反应2.0h,反应结束后,反应液硅藻土辅助过虑,除去不溶物,滤液减压浓缩干,柱层析纯化,得到450mg化合物I-8-1。
化合物I-8-2合成:向100ml单口瓶中加入450mg化合物I-8-1,80mg NaOH,10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,再加入10ml水溶清,用2N HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干得到208mg化合物I-8-2。
化合物I-8合成:取100ml单口瓶,依次加入140mg化合物I-7-3,160mg化合物I-2-1,300mg HBTU,200mg DIEA,10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到35mg化合物I-8,MS m/z=572.6(M+1), 1HNMR(400MHz,d6-DMSO)δ:10.78(s,1H),8.52-8.49(m,1H),7.97-7.96(m,1H),7.55-7.49(m,6H),7.42-7.39(m,3H),6.53-6.48(m,1H),3.98(s,6H),2.53-2.51(m,2H),2.25(s,3H),1.05-1.02(m,3H)ppm。
实施例10化合物I-9的制备
Figure PCTCN2020084081-appb-000034
化合物I-9-1合成:取100ml单口瓶,依次加入340mg化合物I-4-1,470mg N-Boc-哌啶-4-硼酸频哪醇酯,100mg Pd(dppf)Cl 2,41mg K 2CO 3,10ml叔丁醇和10ml水,氮气保护下100℃反应8.0h,反应结束后,加入10ml水和25ml乙酸乙酯,分液,保留有机相,水相用25ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到300mg化合物I-9-1。
化合物I-9-2合成:向100ml单口瓶中加入300mg I-9-1,50mg NaOH,10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,再加入10ml水溶清,用2N HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干得到250mg化合物I-9-2。
化合物I-9-3合成:取100ml单口瓶,依次加入250mg化合物I-9-2,180mg化合物I-2-1,330mg HBTU,230mg DIEA及10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼,直接投下一步,不要纯化。
化合物I-9合成:将上述化合物I-9-3粗品加入15ml 1mol/L的盐酸乙醇溶液,50℃反应3.0h,反应结束后,减压旋除溶剂,加入15ml水,稀氨水调PH至8.0-9.0,乙酸乙酯萃取,有机相减压旋干,柱层析纯化,得到13mg化合物I-9,MS m/z=627.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.80(s,1H),8.48-8.47(m,1H),7.98-7.95(m,1H),7.95-7.36(m,9H),6.49-6.48(m,1H),5.75(s,1H),3.96(s,6H),2.92-2.91(m,2H),2.21-2.18(m,4H),1.99-1.93(m,2H),1.24-1.22(m,2H),1.11-1.09(m,2H)ppm。
实施例11化合物I-10的制备
Figure PCTCN2020084081-appb-000035
化合物I-10-1合成:取100ml单口瓶,加入450mg化合物I-9-1,25ml二氯甲烷,滴加5ml三氟乙酸,25℃反应1.0h,反应结束后,减压旋除溶剂,加入50ml水,用饱和碳酸钠调节PH至8.0-9.0,用50ml*2乙酸乙酯萃取,干燥,减压浓缩干,得到250mg化合物I-10-1。
化合物I-10-2合成:取100ml单口瓶,依次加入250mg化合物I-10-1,206mg碘甲烷,300mg碳酸钾,20ml DMF,80℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到200mg化合物I-10-2。
化合物I-10-3合成:向100ml单口瓶中加入200mg I-10-2,45mg NaOH,10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,再加入10ml水溶清,用2N HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干得到120mg化合物I-10-3。
化合物I-10合成:取100ml单口瓶,依次加入120mg化合物I-10-3,100mg化合物I-2-1,198mg HBTU,90mg DIEA及10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到13mg化合物I-10,MS m/z=641.8(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.48-8.47(m,1H),7.96-7.94(m,1H),7.92-7.42(m,9H),6.43-6.41(m,1H),3.96(s,6H),2.83-2.81(m,2H),2.25-2.20(m,7H),1.92-1.90(m,2H),1.21-1.19(m,2H),1.10-1.05(m,2H)ppm。
实施例12化合物I-11的制备
Figure PCTCN2020084081-appb-000036
化合物I-11的合成路线参考化合物I-9合成合成方法制备,将N-Boc-哌啶-4-硼酸频哪醇酯替换成1-(N-BOC-4-哌啶)-4-吡唑硼酸频哪醇酯,得到15mg化合物I-11,MS m/z=693.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.48-8.47(m,1H),8.03-7.96(m,2H),7.72-7.68(m,2H),7.59-7.53(m,4H),7.49-7.37(m,4H),6.50-6.49(s,1H),4.29-4.21(m,1H),3.96(s,6H),3.18-3.08(m,3H),2.71-2.65(m,2H),2.28(s,3H),2.04-2.01(m,2H),1.91-1.82(m,2H)ppm。
实施例13化合物I-12的制备
Figure PCTCN2020084081-appb-000037
化合物I-12-3的合成路线参考化合物I-9合成合成方法制备,将N-Boc-哌啶-4-硼酸频哪醇酯替换成1-(1-乙氧基乙基)-4-吡唑硼酸频哪醇酯,得到150mg化合物I-12-3。
化合物I-12合成:取150mg化合物I-12-3,加入5ml四氢呋喃,2ml 4N HCl 25℃反应3.0h,反应结束,加入10ml水和15ml乙酸乙酯,分液,保留有机相,水相用15ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到12mg化合物I-12,MS m/z=610.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:13.02(s,1H),10.83(s,1H),8.48-8.47(m,1H),8.00-7.99(m,2H),7.97-7.96(m,1H),7.71-7.53(m,4H),7.49-7.37(m,4H),6.50-6.49(m,1H),5.76(s,1H),3.96(s,6H),2.27(s,3H)ppm。
实施例14化合物I-13的制备
Figure PCTCN2020084081-appb-000038
化合物I-13的合成方法参考化合物I-7合成方法制备,将环丙基硼酸替换成苯硼酸,得到35mg化合物I-13,MS m/z=620.6(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.46-8.45(m,1H),8.05-8.01(m,2H),7.98-7.97(m,1H),7.73-7.63(m,4H),7.48-7.39(m,5H),7.27-7.17(m,4H),3.63(s,6H),2.28(s,3H)ppm。
实施例15化合物I-14的制备
Figure PCTCN2020084081-appb-000039
化合物I-14-1合成:取100ml单口瓶,依次加入1.67g化合物3,0.60g NaOH,2.54g单质碘,及30mlDMF,50℃反应12.0h,反应结束,将反应液倒入150ml水中,有固体析出,抽滤,滤饼柱层析纯化,得到1.82g化合物I-14-1。
I-14-2,I-14-3,及I-14合成方法参考I-4-1,I-6-1,及I-6合成方法制备,得到20mg化合物I-14,MS m/z=670.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.87(s,1H),8.74-8.73(m,1H),8.21(s,1H),8.02-7.99(m,1H),7.72(s,1H),7.57-7.50(m,5H),7.41-7.37(m,2H),6.90-6.89(m,1H),4.03(s,6H),2.31(s,3H)ppm。
实施例16化合物I-15的制备
Figure PCTCN2020084081-appb-000040
化合物I-15的合成方法参考化合物I-4合成方法制备,将乙烯基硼酸频哪醇酯替换成丙烯基硼酸频哪醇酯,得到200mg化合物I-15,MS m/z=584.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.75(s,1H),8.48-8.47(m,1H),7.98-7.94(m,1H),7.57-7.48(m,6H),7.46-7.37(m,3H)6.49-6.48(m,1H),5.99-5.91(m,1H),5.16-5.12(m,2H),3.96(s,6H),3.27-3.26(m,2H),2.21(s,3H)ppm。
实施例17化合物I-16的制备
Figure PCTCN2020084081-appb-000041
化合物I-16-1合成:取100ml三口瓶,加入3.40g化合物I-4-1,3.0g丁基乙烯醚,3.10g DIEA,20ml正丁醇,氮气置换3次并氮气保护,加入236mg醋酸钯,548mg双(2-二苯基膦基苯基)醚,50℃反应2.0h,反应结束,过滤,保留滤液,加入20ml水,搅拌析晶,抽滤,保留滤饼,直接投一步;
向上述固体中加入15ml丙酮/15ml水混合溶剂,升温至50℃,滴加2.15g甲酸/6ml丙酮/6ml水的混合物,继续50℃反应12.0h,反应结束后,用5%的氢氧化钠调节PH至9.0,有固体析出,抽滤,滤饼柱层析纯化,得到1.02g化合物I-16-1。化合物I-16-2合成:向100ml单口瓶中加入900mg I-16-1,140mg NaOH,10ml甲醇和2ml水,50℃反应5.0h,反应结束后,减压旋除大部分溶剂,再加入10ml水溶清,用2N HCl调PH至3.0-4.0,有固体析出,抽滤,滤饼烘干得到300mg化合物I-16-2。
化合物I-16合成:取100ml单口瓶,依次加入290mg化合物I-16-2,314mg化合物I-2-1,330mg HBTU,230mg DIEA及10ml DMF,25℃反应3.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼,柱层析纯化,得到23mg化合物I-16,MS m/z=586.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.77(s,1H),8.49-8.47(m,1H),7.99-7.98(m,1H),7.52-7.49(m,6H),7.39-7.37(m,3H),6.51-6.48(m,1H),3.83(s,6H),2.63(s,3H),2.27(s,3H)ppm。
实施例18化合物I-17的制备
Figure PCTCN2020084081-appb-000042
化合物I-17合成:取100ml反应瓶,加入240mg化合物I-16,10ml 1,4-二氧六环,20℃下搅拌,加入240mg四丁基三溴化铵/2ml 1,4-二氧六环和0.5ml甲醇溶液,反应2.0h,反应结束后,加入20ml水和20ml乙酸乙酯,分液,水相用20ml*2 乙酸乙酯反萃,合并有机相,干燥,减压浓缩干,柱层析纯化,得到15mg化合物I-17,MS m/z=647.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.42-8.40(m,1H),7.97-7.93(m,1H),7.60-7.55(m,5H),7.38-7.35(m,3H),6.58-6.55(m,2H),4.48-4.40(m,2H),3.82(s,6H),2.23(s,3H)ppm。
实施例19化合物I-18的制备
Figure PCTCN2020084081-appb-000043
化合物I-18合成:取100ml反应瓶,取200mg化合物I-16用20ml甲醇溶清,置于0℃冰浴下,缓慢加入100mg硼氢化钠,升温至25℃反应2.0h,反应结束后,加入1ml水,减压旋除大部分溶剂,加入10ml水和15ml乙酸乙酯,分液,保留有机相,水相用15ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到14mg化合物I-18,MS m/z=588.1(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.78(s,1H),8.62-8.51(m,1H),7.83-7.80(m,1H),7.55-7.51(m,6H),7.33-7.31(m,3H),6.66-6.62(m,1H),4.21-4.19(m,1H),3.86(s,6H),2.65-2.61(m,3H),2.02(s,1H),2.29(s,3H)ppm。
实施例20化合物I-19的制备
Figure PCTCN2020084081-appb-000044
化合物I-19-1合成:取100ml单口瓶,依次加入340mg化合物I-14-2,470mg 1-甲基-1-H-咪唑-5-硼酸频那醇酯,100mg Pd(dppf)Cl 2,41mg K 2CO 3,10ml1,4-二氧六环和2ml水,氮气保护下100℃反应8.0h,反应结束后,加入10ml水和25ml乙酸乙酯,分液,保留有机相,水相用25ml乙酸乙酯反萃一次,合并有机相,减压浓缩干,柱层析纯化,得到300mg化合物I-19-1。
化合物I-19-2和化合物I-19合成参考化合物I-13-2和I-13合成方法制备,得到34mg化合物I-19,MS m/z=624.6(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.49-8.46(m,1H),8.05-7.98(m,2H),7.98-7.95(m,2H),7.74-7.63(m,4H),7.48-7.39(m,4H),6.62-6.55(m,1H),3.96(s,6H),3.75(s,3H),2.26(s,3H)ppm。
实施例21化合物I-20的制备
Figure PCTCN2020084081-appb-000045
化合物I-20-1合成:取100ml反应瓶,加入500mg化合物I-15-1,50mg四羰基铁酸二钠盐-二恶烷,100mg氯化亚铜及10ml四氢呋喃,N 2保护下25℃反应12.0h,反应结束后,减压浓缩干,柱层析纯化,得到100mg化合物I-20-1。
化合物I-20-2和化合物I-20合成方法参考化合物I-13-2和I-13合成方法制备,得到21mg化合物I-20,MS m/z=584.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.78(s,1H),8.49-8.46(m,1H),7.99-7.97(m,1H),7.52-7.46(m,6H),7.43-7.36(m,3H),6.43-6.41(m,1H),6.05-5.99(m,1H),5.22-5.18(m,1H),3.97(s,6H),2.21(s,3H),1.99-1.94(m,3H)ppm。
实施例22化合物I-21的制备
Figure PCTCN2020084081-appb-000046
化合物I-21-1合成:取100ml反应瓶,加入600mg化合物I-20-1,30mlDCM,搅拌溶清,加入534mg NBS,25℃反应3.0h,反应结束后,加入20ml水,分液,保留有机相,干燥,减压浓缩干,柱层析纯化,得250mg化合物I-21-1。
化合物I-21-2合成:取100ml反应瓶,加入250mg化合物I-21-1,20ml乙腈,100mg三乙胺,100mg二甲胺盐酸盐,25℃反应3.0h,反应结束后,减压浓缩干,柱层析纯化,得到120mg化合物I-21-2。
化合物I-21-3和化合物I-21合成方法参考化合物I-13-2和I-13合成方法制备,得到17mg化合物I-21,MS m/z=627.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.51-8.49(m,1H),7.98-7.96(m,1H),7.54-7.44(m,6H),7.46-7.33(m,3H)6.46-6.45(m,1H),6.08-5.97(m,1H),5.27-5.19(m,1H),3.83(s,6H),3.13-3.06(m,2H),2.83(s,6H),2.25(s,3H)ppm。
实施例23化合物I-22的制备
Figure PCTCN2020084081-appb-000047
化合物I-22的合成方法参考化合物I-8合成方法制备,得到12mg化合物I-22,MS m/z=586.4(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.89(s,1H),8.63-8.60(m,1H),7.58-7.43(m,2H),7.27-7.22(m,2H),7.15-7.09(m,4H),6.92-6.88(m,3H),3.93(s,6H),2.45-2.21(m,5H),1.43-1.40(m,2H),0.98-0.92(m,3H)ppm。
实施例24化合物I-23的制备
Figure PCTCN2020084081-appb-000048
化合物I-23-1合成:取100ml反应瓶,加入1.0g化合物I-15-1,50ml二氯甲烷,降温冷却至-78℃,连续通入臭氧,至反应液成浅蓝色,随后通入氮气至溶液变成澄清。加入二甲硫并室温搅拌反应12.0h,反应结束后,减压浓缩干,柱层析纯化,得到300mg化合物I-23-1。
化合物I-23-2合成:取100ml反应瓶,加入200mg化合物I-23-1,100mg二甲胺盐酸盐,5mlDMF,25℃搅拌,缓慢加入100mg氰基硼氢化钠,反应8.0h,反应结束后,加入20ml水,25ml*2乙酸乙酯萃取,合并有机相,干燥,减压浓缩干,柱层析纯化,得到140mg化合物I-23-2。
化合物I-23-3和I-23的合成方法参考化合物I-13-2和I-13合成方法制备,得到12mg化合物I-23,MS m/z=615.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.93(s,1H),8.48-8.47(m,2H),7.87-7.85(m,2H),7.63-7.54(m,4H),7.42-7.38(m,3H),6.68-6.59(m,1H),3.63(s,6H),3.58-3.55(m,4H),2.78(s,6H),2.25(s,3H)ppm。
实施例25化合物I-24的制备
Figure PCTCN2020084081-appb-000049
化合物I-24合成:取100ml反应瓶,加入200mg化合物I-15,10ml甲醇,10ml 二氯甲烷,-78℃连续通入臭氧,反应液成蓝色,升温至-30℃,加入100mg硼氢化钠,反应3.0h,柱层析纯化,得到8mg化合物I-24,MS m/z=588.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.69(s,1H),8.55-8.51(m,1H),7.99-7.96(m,1H),7.56-7.47(m,5H),7.44-7.35(m,4H),6.57-6.49(m,1H),3.82(s,6H),3.77(s,1H),3.12-3.08(m,2H),2.25-2.21(m,5H)ppm。
实施例26化合物I-25的制备
Figure PCTCN2020084081-appb-000050
化合物I-25的合成方法参考化合物I-23的合成方法制备,将二甲胺盐酸盐换成四氢吡咯,得到18mg化合物I-25,MS m/z=641.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.92(s,1H),8.49-8.48(m,1H),7.88-7.86(m,1H),7.69-7.53(m,4H),7.47-7.39(m,5H),6.65-6.57(m,1H),3.67(s,6H),3.46-3.41(m,2H),2.62-2.43(m,6H),2.28(s,3H),1.32-1.22(m,4H)ppm。
实施例27化合物I-26的制备
Figure PCTCN2020084081-appb-000051
化合物I-26的合成方法参考化合物I-23或I-25的合成方法制备,将二甲胺盐酸盐或四氢吡咯换成N,N,N'-三甲基乙二胺,得到12mg化合物I-26,MS m/z=672.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.45-8.42(m,1H),7.99-7.97(m,2H),7.72-7.61(m,5H),7.45-7.38(m,3H),6.67-6.59(m,1H),3.69(s,6H),3.55-3.54(m,2H),2.55-2.53(m,6H),2.23(s,3H),2.06-2.01(m,9H)ppm。
实施例28化合物I-27的制备
Figure PCTCN2020084081-appb-000052
化合物I-27-1合成:取100ml反应瓶,加入1.0g化合物I-23-1,20mlDMF,室温搅拌,加入0.65g盐酸羟胺,反应2.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼烘干,直接投下一步;
取100ml反应瓶,加入上述固体,10mlDMF溶清,加入200mg硼氢化钠,25℃反应6.0h,反应结束后,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到300mg化合物I-27-1。
化合物I-27-2合成:取100ml反应瓶,加入200mg化合物I-27-1,10ml二氯甲烷,100mg三乙胺,0℃冰浴下滴加30mg乙酰氯,继续0℃下反应2.0h,反应结束后,加入10ml水,分液,保留有机相,水相用10ml二氯甲烷反萃一次,合并有机相,干燥,减压浓缩干,得到化合物I-27-2。
化合物I-27-3和化合物I-27合成方法参考化合物I-13-2和I-13合成方法制备,得到12mg化合物I-27,MS m/z=629.6(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.50-8.48(m,1H),7.90-7.88(m,2H),7.72-7.68(m,4H),7.47-7.31(m,4H),6.91-6.89(m,1H),5.77(s,1H),3.63(s,6H),3.4-3.42(m,2H),2.21(s,3H),2.14-2.08(m,2H),1.76(s,3H)ppm。
实施例29化合物I-28的制备
Figure PCTCN2020084081-appb-000053
化合物I-28-1和化合物I-28合成方法参考化合物I-27-2和I-27合成方法制备,将乙酰氯换成丙烯酰氯,得到12mg化合物I-28,MS m/z=641.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.72(s,1H),8.49-8.48(m,1H),7.88-7.82(m,3H),7.62-7.58(m,4H),7.37-7.21(m,3H),6.88-6.87(m,1H),6.23-6.21(m,1H),5.98-5.95(m,1H),5.32-5.29(m,1H),5.89(s,1H),3.69(s,6H),3.5-3.50(m,2H),2.21-2.18(m,5H)ppm。
实施例30化合物I-29的制备
Figure PCTCN2020084081-appb-000054
化合物I-29-1合成:取100ml反应瓶,加入1.0g化合物I-15,20ml二氯甲烷,置于冰浴下搅拌,缓慢加入0.52g间氯过氧苯甲酸,反应5.0h,反应结束后,加入10ml水,分液,保留有机相,干燥,减压浓缩干,柱层析纯化,得到200mg化合物I-29-1。
化合物I-29合成:取10ml反应瓶,加入100mg化合物I-29-1,1ml异丙醇,100mg N-甲基哌嗪,100℃微波反应10.0h,反应结束后,柱层析纯化,得到6mg化合物I-29,MS m/z=700.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.48-8.47(m,1H),7.96-7.95(m,1H),7.74-7.63(m,6H),7.48-7.33(m,3H),6.69-6.58(m,1H),5.75(s,1H),3.82(s,6H),3.51-3.49(m,1H),2.82-2.61(m,6H),2.38-2.35(m,4H),2.28-2.05(m,6H),2.00-1.97(m,2H)ppm。
实施例31化合物I-30的制备
Figure PCTCN2020084081-appb-000055
化合物I-30合成方法参考化合物I-6合成方法制备,将对氟苯硼酸换成对氰基苯硼酸,得到10mg化合物I-30,MS m/z=630.1(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.75-8.73(m,1H),8.28(s,1H),7.99-7.96(m,1H),7.67-7.62(m,2H),7.45-7.41(m,4H),7.24-7.18(m,2H),6.99-6.92(m,1H),3.83(s,6H),2.21(s,3H)ppm。
实施例32化合物I-31的制备
Figure PCTCN2020084081-appb-000056
化合物I-31合成方法参考化合物I-6,将对氟苯硼酸换成苯硼酸,得到12mg化合物I-31,MS m/z=605.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.75-8.73(m,1H),8.28(s,1H),7.99-7.96(m,1H),7.67-7.62(m,2H),7.45-7.41(m,5H),7.24-7.18(m,2H),6.99-6.92(m,1H),3.83(s,6H),2.21(s,3H)ppm。
实施例33化合物I-32的制备
Figure PCTCN2020084081-appb-000057
化合物I-32-1合成:取100ml反应瓶,加入1.5g化合物5,1.38g氟化铯,50mlDMF,25℃搅拌1.0h,加入1.0g溴代环戊烷,25℃反应12.0h,反应结束后,加入100ml水,用50ml*2乙酸乙酯萃取,合并有机相,减压浓缩干,制备液相纯化,得到180mg化合物I-32-1。
化合物I-32-2和化合物I-32参考化合物I-13-2和I-13合成方法制备,得到14mg化合物I-32,MS m/z=597.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.82(s,1H),8.03-8.02(m,1H),7.94-7.92(m,1H),7.57-7.56(m,1H),7.46-7.43(m,3H),7.27-7.22(m,1H),6.95-6.91(m,1H),3.64(s,6H),2.37(s,3H)2.15-2.13(m,1H),1.58-1.56(m,4H),1.26-1.24(m,4H)ppm。
实施例34化合物I-33的制备
Figure PCTCN2020084081-appb-000058
化合物I-33合成方法参考化合物I-6合成方法制备,将对氟苯硼酸换成苯并-1,4-二氧六环-6-硼酸,得到22mg化合物I-33,MS m/z=663.4(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.76-8.75(m,1H),8.25(s,1H),8.08-7.99(m,1H),7.67-7.62(m,1H),7.53-7.47(m,3H),7.38-7.36(m,1H),6.93-6.84(m,3H),4.38-4.24(m,4H),3.82(s,6H),2.21(s,3H)ppm。
实施例35化合物I-34的制备
Figure PCTCN2020084081-appb-000059
化合物I-34合成方法参考化合物I-6合成方法制备,将对氟苯硼酸换成3,4-亚甲基苯硼酸,得到12mg化合物I-34,MS m/z=649.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.70-8.68(m,1H),8.26(s,1H),8.09-7.97(m,1H),7.68-7.65(m,1H),7.52-7.48(m,3H),7.37-7.33(m,1H),6.95-6.86(m,3H),6.07(s,2H),3.83(s,6H),2.23(s,3H)ppm。
实施例36化合物I-35的制备
Figure PCTCN2020084081-appb-000060
化合物I-35合成方法参考化合物I-29合成方法制备,将对氟苯硼酸换成4-二甲基氨基苯硼酸盐,N-甲基哌嗪换成二甲胺,得到10mg化合物I-35,MS m/z=670.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.84(s,1H),8.52-8.50(m,1H),7.93-7.91(m,1H),7.62-7.51(m,1H),7.43-7.21(m,3H),7.15-7.06(m,3H),6.92-6.91(m,1H),6.89-6.86(m,2H),3.82(s,6H),3.53-3.49(m,2H),3.08(s,6H),2.68-2.63(m,2H),2.28(s,6H),2.23-2.21(m,4H),2.00-1.97(m,1H)ppm。
实施例37化合物I-36的制备
Figure PCTCN2020084081-appb-000061
化合物I-36合成方法参考化合物I-29合成方法制备,将对氟苯硼酸换成4-二甲基氨基苯硼酸盐,得到10mg化合物I-36,MS m/z=725.6(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.84(s,1H),8.51-8.49(m,1H),7.99-7.97(m,1H),7.65-7.54(m,1H),7.45-7.20(m,3H),7.18-7.03(m,3H),6.95-6.93(m,1H),6.88-6.84(m,2H),3.85(s,6H),3.58-3.49(m,2H),3.07(s,6H),2.75-2.63(m,6H),2.38-2.28(m,6H),2.26-2.21(m,6H)ppm。
实施例38化合物I-37的制备
Figure PCTCN2020084081-appb-000062
化合物I-37-1合成方法参考化合物I-4-1合成方法制备,将对氟苯硼酸替换成4-环丙基苯硼酸,得到3.80g化合物I-37-1。
化合物I-37-2合成:取100ml三口瓶,加入3.60g化合物I-37-1,3.0g丁基乙烯醚,3.10g DIEA,20ml正丁醇,氮气置换3次并氮气保护,加入236mg醋酸钯,548mg双(2-二苯基膦基苯基)醚,50℃反应2.0h,反应结束,过滤,保留滤液,加入20ml水,搅拌析晶,抽滤,保留滤饼,直接投一步;
向上述固体中加入15ml丙酮/15ml水混合溶剂,升温至50℃,滴加2.15g甲酸/6ml丙酮/6ml水的混合物,继续50℃反应12.0h,反应结束后,用5%的氢氧化钠调节PH至9.0,有固体析出,抽滤,滤饼柱层析纯化,得到0.82g化合物I-37-2。化合物I-37-3合成:取100ml反应瓶,加入750mg化合物I-37-2,20ml 1,4-二氧六环,20℃下搅拌,加入964mg四丁基三溴化铵/4ml 1,4-二氧六环和1ml甲醇溶液,反应2.0h,反应结束后,加入20ml水和20ml乙酸乙酯,分液,水相用20ml*2乙酸乙酯反萃,合并有机相,干燥,减压浓缩干,柱层析纯化,得到450mg化合物I-37-3。
化合物I-37-4合成:取100ml单口瓶,加入385mg I-37-3,18ml四氢呋喃,降温至-30℃,滴加1.89g(-)-DIP溴化物/己烷65%。滴加完毕,升温至0℃反应1.0h,加入50%的氢氧化钠水溶液调节PH=13.0,于20℃搅拌1.0h,用30%的稀盐酸调节PH=8.0-9.0,加入50ml*2乙酸乙酯萃取,合并有机相,减压浓缩干,柱层析纯化,得到158mg化合物I-37-4。
化合物I-37-5合成:取10ml反应瓶,加入150mg化合物I-37-4,1ml异丙醇,80mg二甲胺盐酸盐,100mg三乙胺,100℃微波反应10.0h,反应结束后,柱层析纯化,得到86mg化合物I-37-5。
化合物I-37-6和化合物I-37合成方法参考化合物I-6-1和化合物I-6合成方法制备,得到8mg化合物I-37,MS m/z=635.7(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.49-8.48(m,1H),7.63-7.52(m,1H),7.44-7.33(m,3H),7.30-7.23(m,6H),6.89-6.86(m,2H),4.23-4.21(m,1H),3.85(s,6H),2.82-2.80(m,1H),2.68-2.41(m,2H),2.28(s,6H),2.21(s,3H),1.55–1.52(m,1H),1.28-1.22(m,2H),1.05-0.98(m,2H)ppm。
实施例39化合物I-38的制备
Figure PCTCN2020084081-appb-000063
化合物I-38的合成方法参考化合物I-12合成方法制备,将对氟苯硼酸替换成4-吡啶硼酸,得到23mg化合物I-38,MS m/z=593.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:13.05(s,1H),10.84(s,1H),8.49-8.46(m,3H),8.01-7.98(m,2H),7.72-7.55(m,3H),7.51-7.38(m,3H),7.2-7.18(m,1H),6.89-6.87(m,2H),3.98(s,6H),2.26(s,3H)ppm。
实施例40化合物I-39的制备
Figure PCTCN2020084081-appb-000064
化合物I-39-1合成:取250ml反应瓶,加入8.84ml 2,2,6,6-四甲基哌啶,50ml乙醚,降温至0℃,滴加33ml 1.6M的正丁基锂正己烷溶液,搅拌反应30min,继续降温至-78℃,滴加7.0g 3,4-二氯吡啶/5ml乙醚溶液,保温反应2.0h,连续向反应液中通入二氧化碳气体,反应0.5h,在二氧化碳气氛下自然升温至室温,反应结束后,加入50ml饱和氯化铵淬灭反应,加入150ml水,75ml*2乙酸乙酯萃取除杂,保留水相,用1N的稀盐酸调节PH为1.0-2.0,用100ml*2乙酸乙酯萃取,合并有机相,干燥,减压浓缩干,得到2.90g化合物I-39-1。
化合物I-39-2合成:取100ml反应瓶,加入1.50g化合物I-39-1,5.12g(Boc) 2O,2ml吡啶,1.85g碳酸氢胺,及20ml 1,4二氧六环,30℃反应12.0h,反应结束后,减压旋除大部分溶剂,加入50ml水,50ml*2乙酸乙酯萃取,合并有机相,干燥,减压浓缩干,柱层析纯化,得到1.05g化合物I-39-2。
化合物I-39-3合成:取100ml反应瓶,加入0.93g 4-氨基-2-氟苯酚,0.88g叔丁醇钾及10mlDMF,室温下搅拌0.5h,加入1.0g化合物I-39-2,升温至50℃反应6.0h,反应结束后,加入100ml水和100ml乙酸乙酯,分液,保留有机相,水相用100ml乙酸乙酯反萃一次,合并有机相,干燥,减压浓缩干,柱层析纯化,得到300mg化合物I-39-3。
化合物I-39的合成方法参考化合物I-6合成方法制备,将化合物I-2-1替换成化合物I-39-3,得到15mg化合物I-39,MS m/z=590.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.47(s,2H),7.95-7.93(m,1H),7.91-7.88(m,2H),7.76-7.73(m,3H),7.54-7.31(m,3H),6.89-6.88(m,1H),2.32(s,3H)ppm。
实施例41化合物I-40的制备
Figure PCTCN2020084081-appb-000065
化合物I-40的合成方法参考化合物I-6合成方法制备,将化合物I-2-1替换成化合物I-40-1,得到14mg化合物I-40,MS m/z=609.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.88(s,1H),8.76-8.73(m,1H),8.23(s,1H),8.06-7.99(m,1H),7.68(s,1H),7.53-7.46(m,5H),7.39-7.32(m,2H),6.90-6.87(m,1H),4.06(s,1H),3.85(s,3H),2.33(s,3H)ppm。
实施例42化合物I-41的制备
Figure PCTCN2020084081-appb-000066
化合物I-41合成:取10ml反应瓶,加入238mg化合物I-39,3ml乙酸乙酯,3ml乙腈和1.5ml水,降温至0℃,加入126mg二乙酸碘代苯,室温下反应3.0h,反应结束后,加入20ml乙酸乙酯,干燥,减压浓缩干,柱层析纯化,得到8mg化合物I-41,MS m/z=562.1(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.87(s,1H),7.93-7.92(m,1H),7.90-7.89(m,2H),7.75-7.73(m,3H),7.52-7.30(m,3H),6.43-6.37(m,3H),2.30(s,3H)ppm。
实施例43化合物I-42的制备
Figure PCTCN2020084081-appb-000067
化合物I-42-1合成:取100ml反应瓶,加入1.02g 4-(叔丁氧羰基氨基)-2-氟苯酚, 0.50g叔丁醇钾及10mlDMF,室温下搅拌0.5h,加入0.98g 1-BOC-4-氯-3-苯基-7-氮杂吲哚,升温至50℃反应6.0h,反应结束后,加入100ml水和100ml乙酸乙酯,分液,保留有机相,水相用100ml乙酸乙酯反萃一次,合并有机相,干燥,减压浓缩干,柱层析纯化,得到930mg化合物I-42-1。
化合物I-42-2合成:取100ml反应瓶,加入780mg化合物I-42-1,10ml二氯甲烷,2ml三氟乙酸,室温反应2.0h,反应结束后,减压旋除溶剂,加入10ml水,用饱和碳酸氢钠调节PH至8.0-9.0,用15ml*2乙酸乙酯萃取,合并有机相,干燥,减压浓缩干,柱层析纯化,得到200mg化合物I-42-2。
化合物I-42合成:取100ml单口瓶,依次加入160mg化合物I-42-2,160mg化合物I-23-3,230mg HBTU,80mg DIEA,以及10ml DMF,25℃反应3.0h,反应结束,加入100ml水,有固体析出,抽滤,滤饼柱层析纯化,得到21mg化合物I-42,MS m/z=620.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),10.22(s,1H),8.62-8.61(m,2H),7.99-7.97(m,1H),7.87-7.85(m,1H),7.63-7.51(m,5H),7.42-7.36(m,2H),7.18-7.02(m,4H),6.99-6.94(m,1H),3.44-3.38(m,2H),2.85(s,6H),2.25(s,3H),2.06-1.99(m,2H)ppm。
实施例44化合物I-43的制备
Figure PCTCN2020084081-appb-000068
化合物I-43的合成方法参考化合物I-6合成方法制备,将化合物I-2-1替换成化合物I-43-1,得到17mg化合物I-43,MS m/z=651.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.88(s,1H),8.88-8.85(m,1H),8.55-8.52(m,2H),8.08-7.96(m,1H),7.73-7.58(m,4H),7.43-7.41(m,1H),7.38-7.31(m,2H),7.28-7.22(m,1H),6.92-6.88(m,1H),4.08-4.01(m,2H),3.55(s,1H),2.23(s,3H),1.25-1.18(m,6H)ppm。
实施例45化合物I-44的制备
Figure PCTCN2020084081-appb-000069
化合物I-44合成方法参考化合物I-42合成方法制备,将化合物I-42-2替换成化合物I-43-1,得到10mg化合物I-44,MS m/z=643.1(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.86-8.82(m,1H),8.56-8.50(m,2H),8.01-7.98(m,1H),7.75-7.59(m,4H),7.45-7.43(m,1H),7.39-7.33(m,2H),7.27-7.21(m,1H),6.93-6.85(m,1H),4.11-4.07(m,2H),3.57(s,1H),3.44-3.41(m,2H),2.79(s,6H),2.23(s,3H),2.00-1.97(m,2H),1.28-1.22(m,6H)ppm。
实施例46化合物I-45的制备
Figure PCTCN2020084081-appb-000070
化合物I-45合成方法参考化合物I-42合成方法制备,将化合物I-42-2替换成化合物I-45-1,得到12mg化合物I-45,MS m/z=628.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.92-8.89(m,2H),7.99-7.97(m,2H),7.66-7.57(m,3H),7.53-7.52(m,1H),7.45-7.39(m,1H),7.25-7.05(m,2H)6.89-6.85(m,1H),6.68(s,2H),3.83(s,3H),3.52-3.45(m,2H),2.88(s,6H),2.26(s,3H),2.00-1.98(m,2H)ppm。
实施例47化合物I-46的制备
Figure PCTCN2020084081-appb-000071
化合物I-46的合成方法参考化合物I-6合成方法制备,将化合物I-2-1替换成化合物I-42-2,得到14mg化合物I-46,MS m/z=628.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),10.25(s,1H),8.63-8.61(m,2H),7.97-7.93(m,1H),7.83-7.80(m,1H),7.67-7.55(m,5H),7.45-7.38(m,2H)7.19-7.07(m,4H),6.98-6.95(m,1H),2.26(s,3H)ppm。
实施例48化合物I-47的制备
Figure PCTCN2020084081-appb-000072
化合物I-47的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2-异丙基苯酚,即合成化合物I-47-1,最终得到9mg化合物I-47,MS m/z=647.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.76-8.74(m,1H),8.25-8.21(m,2H),7.78-7.63(m,4H),7.53-7.49(m,1H),7.39-7.37(m,1H),7.28-7.25(m,2H),6.92-6.85(m,1H),4.01(s,6H),3.22-3.18(m,1H),2.31(s,3H),1.11-1.09(m,6H)ppm。
实施例49化合物I-48的制备
Figure PCTCN2020084081-appb-000073
化合物I-48的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2-三氟甲基苯酚,即合成化合物I-48-1,最终得到20mg化合物I-48,MS m/z=673.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.87(s,1H),8.77-8.76(m,1H),8.01-7.99(m,2H),7.80-7.75(m,2H),7.63-7.50(m,3H),7.49-7.40(m,2H),7.28-7.25(m,1H),6.92-6.85(m,1H),3.98(s,6H),2.21(s,3H)ppm。
实施例50化合物I-49的制备
Figure PCTCN2020084081-appb-000074
化合物I-49的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2-氯苯酚,即合成化合物I-49-1,最终得到18mg化合物I-49,MS m/z=639.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.70-8.68(m,1H),8.03-7.98(m,2H),7.79-7.76(m,2H),7.65-7.52(m,3H),7.47-7.41(m,2H),7.26-7.23(m,1H),6.95-6.89(m,1H),3.99(s,6H),2.23(s,3H)ppm。
实施例51化合物I-50的制备
Figure PCTCN2020084081-appb-000075
化合物I-50的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2-(二甲胺)苯酚,即合成化合物I-50-1,最终得到16mg化合物I-50,MS m/z=648.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.84(s,1H),8.73-8.70(m,1H),8.16-8.11(m,2H),7.77-7.65(m,4H),7.55-7.48(m,1H),7.38-7.36(m,1H),7.29-7.24(m,2H),6.90-6.88(m,1H),3.85(s,6H),3.22(s,6H),2.30(s,3H)ppm。
实施例52化合物I-51的制备
Figure PCTCN2020084081-appb-000076
化合物I-51的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2,3-二甲苯酚,即合成化合物I-51-1,最终得到16mg化合物I-51,MS m/z=633.5(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.85(s,1H),8.77-8.73(m,1H),8.05-8.02(m,2H),7.79-7.76(m,3H),7.55-7.48(m,1H),7.38-7.35(m,1H),7.26-7.22(m,2H),6.99-6.89(m,1H),3.98(s,6H),2.32(s,3H),2.22(s,3H),1.99(s,3H)ppm。
实施例53化合物I-52的制备
Figure PCTCN2020084081-appb-000077
化成4合-物氨I基--522,3-的二合氟成苯方酚法,参即考合化成合化物合I物-6I-合52成-1,方最法终制得备,到2将34m-g氨化基合-2-物氟I-苯52酚,替M换S m/z=641.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.88(s,1H),8.75-8.72(m,1H),8.11-8.08(m,2H),7.83-7.76(m,2H),7.63-7.50(m,2H),7.44-7.40(m,2H),7.26-7.22(m,1H),6.90-6.87(m,1H),3.97(s,6H),2.25(s,3H)ppm。
实施例54化合物I-53的制备
Figure PCTCN2020084081-appb-000078
化合物I-53的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成4-氨基-2-甲氧基苯酚,即合成化合物I-53-1,最终得到17mg化合物I-53,MS m/z=635.2(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.84(s,1H),8.77-8.75(m,1H),8.15-8.10(m,2H),7.78-7.66(m,4H),7.56-7.49(m,1H),7.39-7.37(m,1H),7.28-7.25(m,2H),6.94-6.89(m,1H),3.95-3.83(m,9H),2.30(s,3H)ppm。
实施例55化合物I-54的制备
Figure PCTCN2020084081-appb-000079
化合物I-54的合成方法参考化合物I-6合成方法制备,将4-氨基-2-氟苯酚替换成2-羟基-5-氨基吡啶,即合成化合物I-54-1,最终得到26mg化合物I-54,MS m/z=606.3(M+1), 1H NMR(400MHz,d6-DMSO)δ:10.83(s,1H),8.47-8.46(m,1H),8.04-7.98(m,2H),7.73(s,1H),7.55-7.51(m,4H),7.42-7.33(m,2H),6.82-6.81(m,2H),3.78(s,6H),2.26(s,3H)ppm。
生物学评价
实施例56本发明化合物的AXL激酶测试
1、材料和试剂
SpectraMax i3x Multi-Mode Reader(Molecular Devices)
White 384-well MicroPlate(Cat#264706,Nunc)
HTRF kinEASE TK试剂盒包含的主要试剂(Cat#62TKOPEC,Cisbio)
AXL(Cat#08-107,Carna)
ATP 10mM(Cat#PV3227,Invitrogen)
DTT 1M(Cat#D5545,Sigma)
MgCl 2 1M(Cat#M8266,Sigma)
本发明待测化合物
阳性对照化合物BGB324(上海沃见生物)
2、试剂配制
表1激酶的反应体系各组分及浓度表
Figure PCTCN2020084081-appb-000080
1×Enzymatic Buffer:
1×酶缓冲液
AXL:200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL DTT,2uL 2500nM Supplement Enzymatic Buffer,792μL ddH 2O.
AXL:采用200μL 5×酶缓冲液、5μL 1M MgCl 2、1μL DTT、2uL 2500nM补充酶缓冲液和792μL ddH 2O配制
5×Substrate(底物)-TK和ATP工作液
Substrate-TK和ATP的具体浓度见表1。
用1×Kinase Buffer稀释Substrate-TK和ATP至反应浓度的5倍。
5×Enzyme工作液
酶的浓度优化已在之前的工作中完成,筛选时所用试剂的浓度见表1。用1×kinase buffer配制酶的5×酶工作液。
4×Streptavidin-XL665工作液
Sa-XL665在反应中的浓度参见表1。用Detection Buffer(检测缓冲液)配制4×Streptavidin(链霉亲和素)-XL665工作液。
4×TK-Antibody-cryptate工作液
用Detection Buffer将TK-Antibody-Cryptate(TK-抗体穴合物)稀释100倍作为工作液。
3、实验步骤
所有试剂按照上述方法配好后,除酶外,平衡到室温以后,开始进行加样。a)首先使用配置好的1X kinase buffer配制2.5%的DMSO溶液(DMSO浓度过高会对反应产生影响,控制DMSO的终浓度为1%),然后用2.5%的DMSO溶液稀释待测化合物,化合物的筛选浓度从10uM开始4倍倍比梯度稀释,10个浓度。除对照孔外,向所用反应孔中加入4微升的稀释好的待测化合物溶液,向对照孔中加入4微升先前配制的2.5%的DMSO溶液。
b)向所有反应孔中加入2微升先前配制好的TK-biotin substrate(生物素底物)溶液(酶筛选时底物的用量见表1)。
c)向除阴性孔外的所有反应孔中加入2微升先前配制好的酶溶液(酶的用量见表1),阴性孔用2微升酶对应1X kinase buffer补足体积。
d)向所有反应孔中加入2微升的ATP溶液来启动激酶反应(酶筛选时的ATP浓度和反应时间见表1)。
e)在激酶反应结束前5分钟开始配制检测液。使用试剂盒中的detection buffer(检测缓冲液)配制Streptavidin-XL665和TK antibody europium cryptate(抗体铕穴合物)(1:100)检测液(酶筛选时检测试剂浓度见表1)。
f)待激酶反应结束后,向所有反应孔中加入5微升稀释好的的Streptavidin-XL665,混匀后立即加入稀释好的TK antibody europium cryptate检测液。
g)封板混匀,室温反应1h后,用SpectraMax i3x Multi-Mode Reader(Molecular Devices)仪器检测荧光信号(340nm刺激,665nm,615nm发射)。通过全活性孔和背景信号孔计算出每个孔的抑制率,复孔取平均值,同时用专业的画图分析软件Graphpad prism 6.0对每个待测化合物进行半数抑制活性(IC50)的拟合。
4、数据分析
Emission Ratio(发射率)(ER)=665nm Emission signal/615nm Emission signal抑制率=(ER positive―ER  sample)/(ER positive―ER negative)*100%
5、实验结果
应用HTRF kinEASE TK kit检测本发明化合物对AXL的半数抑制浓度IC 50,结果如下所示。
编号 IC 50(nm) 编号 IC 50(nm)
I-1 >1000 I-2 >1000
I-3 27.7 I-4 14.1
I-5 26.5 I-6 5.5
I-7 11.2 I-8 65.2
I-9 17.4 I-10 24.7
I-11 20.9 I-12 0.24
I-13 16.4 I-14 8.5
I-15 11.6 I-16 24.8
I-17 18.9 I-18 35.6
I-19 0.56 I-20 16.3
I-21 19.2 I-22 39.3
I-23 46.0 I-24 29.5
I-25 36.9 I-26 32.1
I-27 42.2 I-28 48.3
I-29 32.3 I-30 23.3
I-31 27.4 I-32 45.4
I-33 23.1 I-34 27.3
I-35 34.9 I-36 42.5
I-37 33.1 I-38 0.85
I-39 30.4 I-40 14.6
I-41 32.9 I-42 28.5
I-43 14.2 I-44 11.9
I-45 39.4 I-46 45.9
I-47 13.8 I-48 11.5
I-49 15.7 I-50 17.6
I-51 12.5 I-52 16.7
I-53 11.9 I-54 14.8
BGB324 25.3    
实施例57本发明化合物的激酶选择性评估
1、材料和试剂
SpectraMax i3x Multi-Mode Reader(Molecular Devices)
White 384-well MicroPlate(Cat#264706,Nunc)
HTRF kinEASE TK试剂盒包含的主要试剂(Cat#62TKOPEC,Cisbio)
TK-biotin substrate
Streptavidin-XL665
TK Antibody-Cryptate
5x Enzymatic buffer
SEB
HTRF Detection buffer
EGFR(T790M/L858R)(Cat#PV4879,Invitrogen)
FLT3(Cat#PV3182,Invitrogen)
cMET(Cat#08-151,Carna)
Tyro3(Cat#08-109,Carna)
ATP 10mM(Cat#PV3227,Invitrogen)
DTT 1M(Cat#D5545,Sigma)
MgCl2 1M(Cat#M8266,Sigma)
待测化合物BGB324,I-6,I-12。
2、试剂配制
表2激酶的反应体系各组分及浓度表
Figure PCTCN2020084081-appb-000081
1×Enzymatic Buffer:
EGFR(T790M/L858R):200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,793μL ddH 2O.
EGFR(T790M/L858R):采用200μL 5×Enzyme buffer(酶缓冲液),5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,793μL ddH 2O配制
FLT3:200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,793μL ddH 2O.
FLT3:采用200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,793μL ddH 2O配制。
C-MET:200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,794μL ddH 2O.
C-met:采用200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,794μL ddH 2O配制
Tyro3:200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,12.5ul SEB,793μL ddH 2O.
Tyro3:采用200μL 5×Enzyme buffer,5μL 1M MgCl 2,1μL 1M MnCl 2,1μL 1M DTT,12.5ul SEB,793μL ddH 2O配制。
5×Substrate-TK和ATP工作液
Substrate-TK和ATP的具体浓度见表2。
用1×Kinase Buffer稀释Substrate-TK和ATP至反应浓度的5倍。
5×Enzyme工作液
酶的浓度优化已在之前的工作中完成,筛选时所用试剂的浓度见表1。用1×kinase buffer配制酶的5×酶工作液。
4×Streptavidin-XL665工作液
Sa-XL665在反应中的浓度参见表2。用Detection Buffer配制4×Streptavidin-XL665工作液。
4×TK-Antibody-cryptate工作液
用Detection Buffer将TK-Antibody-Cryptate稀释100倍作为工作液。
3、实验流程
所有试剂按照上述方法配好后,除酶外,平衡到室温以后,开始进行加样。
a)首先使用配置好的1X kinase buffer配制2.5%的DMSO溶液(DMSO浓度过高会对反应产生影响,控制DMSO的终浓度为1%),然后用2.5%的DMSO 溶液稀释待测化合物,化合物的筛选浓度从10uM开始4倍倍比梯度稀释,10个浓度。除对照孔外,向所用反应孔中加入4微升的稀释好的待测化合物溶液,向对照孔中加入4微升先前配制的2.5%的DMSO溶液。
b)向所有反应孔中加入2微升先前配制好的TK-biotin substrate溶液(酶筛选时底物的用量见表1)。
c)向除阴性孔外的所有反应孔中加入2微升先前配制好的酶溶液(酶的用量见表1),阴性孔用2微升酶对应1Xkinase buffer补足体积。
d)向所有反应孔中加入2微升的ATP溶液来启动激酶反应(酶筛选时的ATP浓度和反应时间见表2)。
e)在激酶反应结束前5分钟开始配制检测液。使用试剂盒中的detection buffer配制Streptavidin-XL665和TK antibody europium cryptate(1:100)检测液(酶筛选时检测试剂浓度见表2)。
f)待激酶反应结束后,向所有反应孔中加入5微升稀释好的的Streptavidin-XL665,混匀后立即加入稀释好的TK antibody europium cryptate检测液。
g)封板混匀,室温反应1h后,用SpectraMax i3x Multi-Mode Reader(Molecular Devices)仪器检测荧光信号(340nm刺激,665nm,615nm发射)。通过全活性孔和背景信号孔计算出每个孔的抑制率,复孔取平均值,同时用专业的画图分析软件Graphpad prism 6.0对每个待测化合物进行半数抑制活性(IC50)的拟合。
3.3数据分析
Emission Ratio(ER)=665nm Emission signal/615nm Emission signal
抑制率=(ER positive―ER  sample)/(ER positive―ER negative)*100%
4、实验结果
应用HTRF kinEASE TKkit检测3个待测化合物对4种激酶的半数抑制浓度IC50(nm),结果如下表所示。
Figure PCTCN2020084081-appb-000082
实施例58本发明化合物的体外细胞测试
1、材料和方法
细胞株:
NCI-H1299人肺癌细胞株来源于中科院细胞研究所
NCI-H1975人肺腺癌细胞株来源于ATCC
MDA-MB-231人乳腺癌细胞株来源于ATCC
Hep3B人肝癌细胞株来源于中科院细胞研究所
MV-4-11人髓性单核细胞白血病细胞株,来源于ATCC
试剂和耗材:
Cell Counting Kit-8(Cat#D3100L4057,上海李记生物科技有限公司)
96孔培养板(Cat#3599,Corning Costar)
胎牛血清(Cat#10099-141,GIBCO)
培养基(Invitrogen)
测试样品:
实验样品BGB324,I-6,I-`12。
2、试剂配制
培养基的配制
细胞株 培养基
NCI-H1975 RPMI1640+10%FBS
MDA-MB-231 RPMI1640+10%FBS
Hep3B MEM+10%FBS
NCI-H1299 RPMI1640+10%FBS
MV-4-11 DMEM+10%FBS
测试样品的制备:
化合物用DMSO溶解至10mM,储存于-20度备用。
3、IC50实验-CCK-8检测
a)收集对数生长期细胞,计数,用完全培养基重新悬浮细胞,调整细胞浓度至合适浓度,接种96孔板,每孔加100μl细胞悬液。细胞在37℃,100%相对湿度,5%CO 2培养箱中孵育24小时。
b)用培养基将待测化合物稀释至所设置的相应作用浓度,按25μl/孔加入细胞。化合物作用终浓度从100μM开始,4倍梯度稀释,共10个浓度点,每个浓度两重复
c)细胞置于37℃,100%相对湿度,5%CO 2培养箱中孵育72hr。
d)悬浮细胞直接加入10μl的CCK-8于细胞培养基中,贴壁细胞更换为新鲜配制的含有10%CCK-8的细胞培养基,置于37℃培养箱中孵育2-4小时。
e)轻轻震荡后在SpectraMax M5 Microplate Reader上测定450nm波长处的吸光度,以650nm处吸光度作为参比,计算抑制率。
4、数据处理
按下式计算药物对肿瘤细胞生长的抑制率:肿瘤细胞生长抑制率%=[(A c-A s)/(A c-A b)]×100%
A s:样品的OA(细胞+CCK-8+待测化合物)
A c:阴性对照的OA(细胞+CCK-8+DMSO)
A b:阳性对照的OA(培养基+CCK-8+DMSO)
运用软件Graphpad Prism 6并采用计算公式log(inhibitor)vs.normalized response进行IC50曲线拟合并计算出IC50值.
5、实验结果
本实验测试了3个化合物对5个细胞株的细胞毒作用。化合物终浓度从100uM至0uM,四倍梯度稀释,共10个点。结果:下表所示为各化合物分别在不同细胞株的IC50(um)值。
Figure PCTCN2020084081-appb-000083
Figure PCTCN2020084081-appb-000084
实施例59本发明化合物的体内药代动力学测试
1、生物样本的采集与处理
24只SD大鼠按体重随机分成3组,每组8只,雌雄各半。禁食约12h后,各组分别灌胃给予1mg/kg药物溶液,给药体积10mL/kg。
各组于给药后0.083、0.5、1、2、4、6、8、12、24、30h各时间点颈静脉采血约0.3mL,血液样本采集后置于冰上,并于1h之内离心分离血浆(离心条件:8000rpm,10min,2-86)。收集的血浆分析前存放于-20℃冰箱内。
2、生物样本测试方法
色谱条件:色谱柱:Accucore C18(2.1×50mm 2.6μm),流动相:0.1%甲酸水(A):甲醇(B),梯度洗脱,柱温:40℃,进样体积:2μL。
质谱条件:AB SCIEX 5500三重四级杆串联质谱系统,离子源为ESI源,气帘气压力:35psi,喷撞气:8psi,离子化电压:5500psi,离子源温度:550℃,喷雾气:55psi,辅助加热器:55psi,多重反应监测(MRM)模式。样本处理:取20μL血浆样品置于1.5mL离心管中,加入180μL内标乙腈溶液(TBTM 20ng/mL),涡旋2min,12000rpm(8℃)离心10min,取上清液,进样2μL检测。
3、数据的统计与处理
根据各组血药浓度-时间数据,利用Phoenix WinNonlin 8.1计算t 1/2、T max、C max、Vd、CL、AUC (0-t)、AUC (0-∞)、MRT等。
4、试验结果
Figure PCTCN2020084081-appb-000085
[工业应用]
本发明化合物具有强的Axl抑制活性,并因此,用于治疗Axl相关疾病,例如,癌症、肾病、免疫系统疾病和循环系统疾病。

Claims (10)

  1. 一种式(I)所示的化合物或其药学上可接受的盐,
    Figure PCTCN2020084081-appb-100001
    其中,W为C或N原子;R 1选自H、C 1-10烷基、C 3-8环烷基、取代或非取代的C 5~12芳基、取代或非取代的C 5~12杂芳基、或C 7~12苯并杂环基,其中所述的取代基选自卤素、氰基、环丙烷基、
    Figure PCTCN2020084081-appb-100002
    中的一种;R 2选自H、C 1-6烷基、卤素、C 3-8环烷基、C 2-6烯基、
    Figure PCTCN2020084081-appb-100003
    取代或非取代的C 5~12芳基、取代或非取代的C 5~8杂芳基,其中m为0~3任意整数,n为1~4任意整数,所述的取代基任意选自C 1~3烷基或C 5~6的含氮杂环烷基;R 3
    Figure PCTCN2020084081-appb-100004
    或者
    Figure PCTCN2020084081-appb-100005
    中的任意一种,其中R 5代表单个或多个不定位取代基,选自卤素、C 1-6烷氧基、羟基、
    Figure PCTCN2020084081-appb-100006
    的一种或者几种;A代表氢原子或者选自卤素、C 1-6烷氧基、C 1-6烷基、-CF 3或C 2~8叔胺基中的一个或多个取代基。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于,R 1选自:
    Figure PCTCN2020084081-appb-100007
    中的一种。
  3. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于,R 2选自
    Figure PCTCN2020084081-appb-100008
    Figure PCTCN2020084081-appb-100009
    中的一种。
  4. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于,R 3选自
    Figure PCTCN2020084081-appb-100010
    Figure PCTCN2020084081-appb-100011
    中的一种。
  5. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于R 1基团中所述的芳基为苯基,所述的杂芳基为吡啶基。
  6. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于R 1代表苯基或者卤素取代的苯基、R 2代表卤素或者含氮的C 5杂芳基,R 3代表
    Figure PCTCN2020084081-appb-100012
    所述的R 5为单个或多个不定位取代的甲氧基。
  7. 根据权利要求1所述的化合物或其药学上可接受的盐,其特征在于,所述化合物选自:
    Figure PCTCN2020084081-appb-100013
    Figure PCTCN2020084081-appb-100014
    或其药学上可接受的盐。
  8. 一种药物组合物,其特征在于,包含权利要求1~7任意一项所示的化合物或其药学上可接受的盐,以及药学上可接受的载体。
  9. 权利要求1~7任意一项所示的化合物或其药学上可接受的盐在制备AXL抑制剂药物、c-Met抑制剂或者TyRo3抑制剂药物中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述药物是用于治疗肿瘤、肾病、免疫系统疾病或者循环系统疾病的药物。
PCT/CN2020/084081 2019-07-19 2020-04-10 一种用作axl抑制剂的抗肿瘤化合物及其用途 WO2021012717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910659959.9 2019-07-19
CN201910659959.9A CN110330479A (zh) 2019-07-19 2019-07-19 一种用作axl抑制剂的抗肿瘤化合物及其用途

Publications (1)

Publication Number Publication Date
WO2021012717A1 true WO2021012717A1 (zh) 2021-01-28

Family

ID=68146936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084081 WO2021012717A1 (zh) 2019-07-19 2020-04-10 一种用作axl抑制剂的抗肿瘤化合物及其用途

Country Status (2)

Country Link
CN (1) CN110330479A (zh)
WO (1) WO2021012717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315579A1 (en) * 2019-09-26 2022-10-06 Exelixis, Inc. Pyridone compounds and methods of use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330479A (zh) * 2019-07-19 2019-10-15 南京华威医药科技集团有限公司 一种用作axl抑制剂的抗肿瘤化合物及其用途
EP4110779A1 (en) * 2020-02-24 2023-01-04 Exelixis, Inc. Compounds and methods of use
MX2022012239A (es) * 2020-03-30 2022-10-27 Hutchison Medipharma Ltd Compuestos de amida y usos de los mismos.
CN115073367A (zh) * 2021-03-16 2022-09-20 南京科默生物医药有限公司 一种用作axl抑制剂的抗肿瘤化合物及其用途
CN114517226B (zh) * 2021-12-24 2023-10-10 南京鼓楼医院 Axl作为宫腔粘连诊断和治疗靶点的应用
CN117486860A (zh) * 2022-07-25 2024-02-02 上海博悦生物科技有限公司 Axl&c-Met双重抑制剂、制备方法以及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027305A (zh) * 2004-06-28 2007-08-29 布里斯托尔-迈尔斯·斯奎布公司 稠合杂环型激酶抑制剂
KR101505783B1 (ko) * 2014-08-01 2015-03-25 씨제이헬스케어 주식회사 신규한 피롤로피리디닐옥시페닐아미드 유도체 및 이의 용도
CN106029661A (zh) * 2013-12-26 2016-10-12 亚尼塔公司 吡唑并[1,5-a]吡啶衍生物及其使用方法
EP3239147A1 (en) * 2014-12-25 2017-11-01 Ono Pharmaceutical Co., Ltd. Quinoline derivative
CN110330479A (zh) * 2019-07-19 2019-10-15 南京华威医药科技集团有限公司 一种用作axl抑制剂的抗肿瘤化合物及其用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033196A1 (en) * 2005-09-14 2007-03-22 Bristol-Myers Squibb Company Met kinase inhibitors
WO2008048375A1 (en) * 2006-05-19 2008-04-24 Bayer Healthcare Ag Pyridonecarboxamide derivatives useful in treating hyper-proliferative and angiogenesis disorders
CN101977905B (zh) * 2008-01-23 2014-07-02 百时美施贵宝公司 4-吡啶酮化合物及其对于癌症的用途
EP2563773A1 (en) * 2010-04-29 2013-03-06 Deciphera Pharmaceuticals, LLC Pyridone amides and analogs exhibiting anti-cancer and anti-proliferative activites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027305A (zh) * 2004-06-28 2007-08-29 布里斯托尔-迈尔斯·斯奎布公司 稠合杂环型激酶抑制剂
CN106029661A (zh) * 2013-12-26 2016-10-12 亚尼塔公司 吡唑并[1,5-a]吡啶衍生物及其使用方法
KR101505783B1 (ko) * 2014-08-01 2015-03-25 씨제이헬스케어 주식회사 신규한 피롤로피리디닐옥시페닐아미드 유도체 및 이의 용도
EP3239147A1 (en) * 2014-12-25 2017-11-01 Ono Pharmaceutical Co., Ltd. Quinoline derivative
CN110330479A (zh) * 2019-07-19 2019-10-15 南京华威医药科技集团有限公司 一种用作axl抑制剂的抗肿瘤化合物及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MYERS, SAMUEL H. ET AL.: "AXL Inhibitors in Cancer: A Medicinal Chemistry Perspective", JOURNAL OF MEDICINAL CHEMISTRY, vol. 59, no. 8, 10 November 2015 (2015-11-10), XP055585089, ISSN: 0022-2623, DOI: 20200518173136X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315579A1 (en) * 2019-09-26 2022-10-06 Exelixis, Inc. Pyridone compounds and methods of use

Also Published As

Publication number Publication date
CN110330479A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2021012717A1 (zh) 一种用作axl抑制剂的抗肿瘤化合物及其用途
JP6911031B2 (ja) 免疫調節剤としての複素環化合物
TWI659021B (zh) Kras g12c之抑制劑
CN109983016B (zh) 嘧啶并[5,4-b]吲嗪或嘧啶并[5,4-b]吡呤化合物、其制备方法及用途
TWI530499B (zh) 作為溴結構域(bromodomain)抑制劑之苯並咪唑酮衍生物類
CN110582491B (zh) Rho相关蛋白激酶抑制剂、包含其的药物组合物及其制备方法和用途
JP2005521698A (ja) 新規な三環式化合物
CN113880843B (zh) 一种杂环化合物及其应用
CN114728926A (zh) 一种rock抑制剂及其制备方法和用途
WO2017088723A1 (zh) 一类取代三唑并哌嗪类parp抑制剂及其制备方法和用途
CN111714628A (zh) 小分子pd-1/pd-l1抑制剂、其与pd-l1抗体的药物组合物及其应用
CN111440161B (zh) 一种具有par4拮抗活性的二环杂芳基类化合物及其应用
TW201917129A (zh) 含吡唑基的三并環類衍生物、其製備方法和應用
CN114957248B (zh) 一种吡咯并嘧啶化合物及其制备方法、药物组合物和应用
TW202237600A (zh) 雙環衍生物
CN111440146B (zh) 一种具有par4拮抗活性的苯并三嗪类化合物及其应用
CN109897036B (zh) 三唑并吡啶类化合物及其制备方法和用途
CN113979999B (zh) 靶向泛素化降解bcr-abl激酶的化合物及其制备方法、组合物和用途
CN109081818B (zh) 新型吲哚胺2,3-双加氧化酶抑制剂
CN115427407B (zh) 一种新型n-杂环bet溴结构域抑制剂、其制备方法及医药用途
CN112574183B (zh) 一种pd-1抑制剂及其制备方法和用途
CN108341774B (zh) 取代的喹啉酮类抑制剂
JP2007277241A (ja) (2R,Z)−2−アミノ−2−シクロヘキシル−N−(5−(1−メチル−1H−ピラゾール−4−イル)−1−オキソ−2,6−ジヒドロ−1H−[1,2]ジアゼピノ[4,5,6−cd]インドール−8−イル)アセトアミドの多形体
CN112424185B (zh) 含苯环的化合物、其制备方法及应用
CN111454328A (zh) Iap抑制剂及其在药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843692

Country of ref document: EP

Kind code of ref document: A1