WO2021012441A1 - 空调自学习方法、空调自动控制方法及空调器 - Google Patents

空调自学习方法、空调自动控制方法及空调器 Download PDF

Info

Publication number
WO2021012441A1
WO2021012441A1 PCT/CN2019/113201 CN2019113201W WO2021012441A1 WO 2021012441 A1 WO2021012441 A1 WO 2021012441A1 CN 2019113201 W CN2019113201 W CN 2019113201W WO 2021012441 A1 WO2021012441 A1 WO 2021012441A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
air conditioner
air
parameter
user
Prior art date
Application number
PCT/CN2019/113201
Other languages
English (en)
French (fr)
Inventor
段晓华
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021012441A1 publication Critical patent/WO2021012441A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users

Definitions

  • This application relates to the field of air conditioning technology, in particular to an air conditioning self-learning method, an air conditioning automatic control method, and an air conditioner.
  • the user's preference is generally learned through the self-learning analysis of the air conditioner, and the air conditioner is controlled based on the user's preference to improve the comfort of the user.
  • the traditional air-conditioning self-learning method generally defaults to only one user, and the user’s preference parameters are analyzed and learned by recording the historical operation of the air-conditioning within a period of time.
  • this self-learning method does not take into account the different parameter setting preferences of multiple users, resulting in inaccurate control rules of the air-conditioning self-learning, making the air-conditioner unable to accurately adjust the parameters according to the preferences of different users, and affecting user comfort.
  • the main purpose of this application is to provide an air conditioner self-learning method, which aims to improve the accuracy and applicability of the automatic control rules of the air conditioner self-learning, so that the air conditioner can be adjusted accurately to adapt to the preferences of different users and improve user comfort.
  • this application provides an air conditioner self-learning method, which includes the following steps:
  • an air-conditioning control rule is generated.
  • the usage probability includes usage duration, and according to the first parameter obtained at each of the preset moments and the corresponding first identity feature information, it is determined that a plurality of preset users set a plurality of different presets respectively
  • the steps of using probability of parameters include:
  • the usage time of the multiple preset users for multiple different preset setting parameters is counted.
  • the usage probability includes usage frequency
  • the multiple preset users are determined to set multiple different presets respectively according to the first parameter obtained at each preset time and the corresponding first identity characteristic information
  • the steps of using probability of parameters include:
  • the frequency of use of a plurality of different preset setting parameters by a plurality of preset users is counted.
  • the step of determining the usage probability of a plurality of preset users for a plurality of different preset setting parameters respectively according to the first parameter obtained at each preset time and the corresponding first identity characteristic information includes:
  • each of the preset users is used as the target user, and each of the preset setting parameters is used as the target parameter.
  • the step of determining the weighted usage count of the target user at the target moment includes:
  • the step of determining the number of preset users in the space where the air conditioner is located at the target time includes:
  • the determined number is used as the preset number of users in the space where the air conditioner is located at the target time.
  • the step of determining the presence time of the target user in a plurality of preset moments includes:
  • the moment when the preset identity characteristic information of the target user exists in the first identity characteristic information is determined as the presence moment.
  • the method before the step of generating an air-conditioning control rule according to the identity feature information of each preset user and the corresponding air-conditioning preference parameter, the method further includes:
  • the person change characteristics of the preset user in the space where the air conditioner is located are determined according to the first identity feature information acquired successively, and the air conditioner is determined according to the first parameter acquired successively The parameter change characteristics of the setting parameters of the device;
  • the identity feature information of each preset user is associated with its corresponding priority.
  • the step of adjusting the priority of each of the preset users according to the personnel change characteristics and the parameter change characteristics includes:
  • the parameter change feature is determined to be the preset setting parameter change, according to the first identity feature information obtained sequentially Determine the new default user;
  • the air conditioner self-learning method further includes:
  • the acquired air-conditioning control rules are associated with the corresponding preset control periods in a one-to-one correspondence.
  • the step of determining an air conditioning preference parameter corresponding to each of the preset users in the preset setting parameters according to the usage probability includes:
  • the air conditioning preference parameter corresponding to each preset user determines the air conditioning preference parameter corresponding to each preset user.
  • the step of determining the air conditioning preference parameter corresponding to each preset user includes:
  • the preset setting parameter with the highest usage probability of each preset user is used as the air conditioning preference parameter of each preset user.
  • the step of obtaining the identity characteristic information of the user in the space where the air conditioner is located as the first identity characteristic information includes:
  • the image information and/or infrared information are analyzed, and the identity characteristic information of the user in the space where the air conditioner is located is extracted as the first identity characteristic information.
  • the air conditioner self-learning method further includes the following steps:
  • the preset setting parameter is determined according to the first parameter.
  • the step of determining the preset setting parameter according to the first parameter includes:
  • the multiple different preset setting parameters are respectively extracted according to the numerical difference.
  • the air conditioner self-learning method further includes the following steps:
  • an air conditioner automatic control method which includes:
  • the operation of the air conditioner is controlled according to the target parameter.
  • the step of obtaining air conditioning control rules includes:
  • this application also proposes an air conditioner, the air conditioner includes an air conditioner control device, wherein the air conditioner control device includes: a memory, a processor, and stored in the memory and can be used in the processing
  • the air-conditioning control program running on the processor when the air-conditioning control program is executed by the processor, realizes the steps of the air-conditioning self-learning method described below:
  • an air-conditioning control rule is generated.
  • the operation of the air conditioner is controlled according to the target parameter.
  • An air conditioner self-learning method proposed in the present application.
  • the method obtains the current setting parameters of the air conditioner at multiple preset moments as the first parameter and obtains the identity feature information of the user in the space where the air conditioner is located as the first identity feature Information; according to the acquired multiple first parameters and corresponding first identity feature information, determine the use probability of multiple preset users for multiple different preset setting parameters respectively; determine the corresponding to each preset user according to the use probability Air-conditioning preference parameters; generating air-conditioning control rules according to the identity feature information of each preset user and the corresponding air-conditioning preference parameters.
  • the air-conditioning control rules no longer generate preference parameters for a single user, but include multiple different preset user-corresponding air-conditioning preference parameters at the same time, which can adapt to the preference needs of multiple users and improve the accuracy of air-conditioning self-learning air-conditioning control rules Therefore, when the air-conditioning control rules are applied to control the air-conditioning, the air-conditioning can automatically adapt to the preferences of different users and adjust accurately to improve user comfort.
  • FIG. 1 is a schematic diagram of the hardware structure of an embodiment of an air conditioning control device of the present application
  • FIG. 2 is a schematic flowchart of the first embodiment of the air conditioner self-learning method according to this application;
  • FIG. 3 is a schematic flowchart of a second embodiment of the air conditioner self-learning method according to this application.
  • FIG. 4 is a schematic flowchart of a third embodiment of a self-learning method for an air conditioner according to this application.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of an air conditioner self-learning method according to this application.
  • FIG. 6 is a schematic flowchart of an embodiment of an automatic control method for an air conditioner according to this application.
  • the main solution of the embodiment of the present application is to obtain the current setting parameters of the air conditioner at multiple preset moments as the first parameter, and obtain the identity characteristic information of the user in the space where the air conditioner is located as the first identity characteristic information;
  • the obtained multiple first parameters and the corresponding first identity feature information determine the use probabilities of multiple preset users for multiple different preset setting parameters respectively; according to the use probability, it is determined that each preset user corresponds to Air-conditioning preference parameters; generating air-conditioning control rules according to the identity characteristic information of each preset user and the corresponding air-conditioning preference parameters.
  • the present application provides the above-mentioned solution, which aims to improve the accuracy and applicability of the automatic control rules of the air conditioner self-learning, so as to realize that the air conditioner can be accurately adjusted to adapt to the preferences of different users and improve user comfort.
  • This application proposes an air conditioner control device, which can be applied to all types of air conditioners such as split air conditioners, cabinet air conditioners, window air conditioners, etc.
  • the air conditioning control device includes a processor 1001, such as a CPU, a memory 1002, an identity recognition module 1003, and the like.
  • the memory 1002 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory.
  • the memory 1002 may also be a storage device independent of the foregoing processor 1001.
  • the identity recognition module 1003 is specifically installed in the space where the air conditioner is located, such as installed on the indoor unit of the air conditioner, and is used to detect the identity feature information of the user in the space where the air conditioner is located.
  • the identity feature information may specifically include human body biological feature information such as face information and gait information.
  • the side recognition module 1003 may specifically include a camera, a pressure sensor, and/or an infrared sensor.
  • the memory 1002 may be used to store data related to the operation of the air conditioner, such as the identity feature information of the user in the space where the air conditioner is detected by the identity recognition module, setting parameters, and air conditioner control rules.
  • the processor 1001 is respectively connected to the memory 1002 and the identity recognition module 1003, obtains required data or generates control data and stores them in the memory 1002.
  • FIG. 1 does not constitute a limitation on the device, and may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the memory 1002 which is a readable storage medium, may include an air conditioning control program.
  • the processor 1001 may be used to call the air-conditioning control program stored in the memory 1002, and execute the relevant steps of the air-conditioning self-learning method and/or the air-conditioning automatic control method in the following embodiments.
  • the application also provides a self-learning method for air conditioners.
  • the air-conditioning self-learning method includes:
  • Step S10 at a plurality of preset moments, obtain the current setting parameters of the air conditioner as the first parameter, and obtain the identity characteristic information of the user in the space where the air conditioner is located, as the first identity characteristic information;
  • the preset time can be selected according to actual needs, and multiple preset users use the air conditioner in a time period formed by multiple preset moments.
  • multiple preset moments can be selected at intervals of a preset time period, or multiple time intervals in the preset time period can be selected as preset moments.
  • multiple preset moments can also be continuous time.
  • the identity feature information may specifically include biometric information such as face information and gait information to distinguish the identities of different users, and different users correspond to different identity feature information.
  • the identification feature information can be specifically obtained by acquiring image information and/infrared information in the space where the air conditioner is located at multiple preset moments within a preset time period, and analyzing the acquired image information and/or infrared information, and extracting each The first identity feature information of the user in the space where the air conditioner is located at the preset time, etc.
  • the first identity characteristic information acquired at each preset time may include one identity characteristic information or multiple identity characteristic information, which is determined according to the number of users in the space where the air conditioner is located at each preset time.
  • the first parameter may specifically include air conditioning operating parameters generated based on user settings, such as temperature, wind speed, and/or wind direction.
  • Step S20 according to the first parameter obtained at each preset time and the corresponding first identity feature information, determine the use probability of multiple preset users for multiple different preset setting parameters;
  • the preset setting parameters specifically include air-conditioning operating parameters generated based on user settings, such as temperature, wind speed, and/or wind direction.
  • the preset setting parameters can have multiple parameter types, and each type can have multiple preset setting parameters with different values.
  • the preset setting parameters can be determined according to the first parameter. First, the first parameters obtained at different preset moments can be classified by type (such as temperature, wind speed, wind direction, etc.), and then the value of each type of first parameter Difference, extract multiple different preset setting parameters.
  • the first parameters acquired at multiple preset moments include temperature type parameters 24, 24, 26, 26, 27, 26, 25, and wind speed type parameters 40, 40, 60, 60, 80, 60.
  • the preset setting parameters have two types (air conditioning setting temperature and air conditioning setting wind speed).
  • the air conditioning setting temperature can be extracted according to the numerical difference as 24, 25, 26, 27;
  • the air conditioning setting wind speeds that can be extracted according to the numerical difference are 20, 40, 60, and 80.
  • the preset setting parameters may also be a plurality of preset setting parameters with different values.
  • the data corresponding to the preset setting parameters are extracted from the data obtained at multiple preset moments, and the usage probability is calculated according to the extracted data.
  • a plurality of the preset setting parameters are extracted from the first parameter.
  • the multiple preset users may specifically be all users who use the air conditioner within a preset time period, or may determine multiple users with air conditioning control authority as the preset users according to the setting information input by the user.
  • all members in the family may have air-conditioning control authority and can be used as preset users; members outside the family do not have air-conditioning control authority, and they do not belong to the preset users.
  • Usage probability can include usage duration, usage frequency, etc. Specifically, according to the first parameter obtained at each preset time and the corresponding first identity feature information, the usage time of the multiple preset users for multiple different preset setting parameters can be counted to characterize the usage probability; According to the first parameter obtained at each preset time and the corresponding first identity feature information, the usage frequency of multiple preset users for multiple different preset setting parameters can be counted to characterize the usage probability.
  • the first identity feature information can be compared with the preset identity feature information of each preset user, and then the preset time for each preset user to use the air conditioner can be determined based on the determined preset time.
  • Setting the corresponding relationship between the time and the first parameter can determine the frequency or total duration of each preset user using the first parameter with different values in the preset time period.
  • the frequency or total duration of each preset user using different preset setting parameters can be used as each preset user to set multiple different preset parameters Probability of use.
  • the preset time corresponding to a preset user using a preset setting parameter can be determined among multiple preset moments, and the number of determined preset moments can be calculated or calculated according to the determined preset moment
  • the cumulative duration of, the total number of times or total duration of the preset user using the preset setting parameter in the preset time period can be obtained as the probability of the preset user using the preset setting parameter.
  • Step S30 determining an air-conditioning preference parameter corresponding to each preset user among the preset setting parameters according to the usage probability
  • the air-conditioning preference parameter corresponding to each preset user may be determined in the preset setting parameters whose usage probability is greater than or equal to the preset threshold.
  • the preset setting parameter with the highest usage probability of each preset user is used as the air conditioning preference parameter of each preset user.
  • Step S40 Generate an air-conditioning control rule according to the identity feature information of each preset user and the corresponding air-conditioning preference parameter.
  • Each preset user has its own corresponding preset identity feature information, and biometric information such as face information or gait information of the preset user can be obtained in advance as the preset identity feature information corresponding to the preset user.
  • biometric information such as face information or gait information of the preset user
  • Associating the preset identity feature information with the corresponding air conditioning preference parameters can be used as air conditioning control rules.
  • An air conditioner self-learning method proposed in an embodiment of the present application.
  • the method obtains the current setting parameters of the air conditioner at multiple preset moments as the first parameter, and obtains the identity characteristic information of the user in the space where the air conditioner is located, as the first parameter.
  • Identity feature information according to the acquired multiple first parameters and corresponding first identity feature information, determine the use probability of multiple preset users for multiple different preset setting parameters respectively; determine each preset user according to the use probability
  • Corresponding air-conditioning preference parameters generating air-conditioning control rules according to the identity feature information of each preset user and the corresponding air-conditioning preference parameters.
  • the air-conditioning control rules no longer generate preference parameters for a single user, but include multiple different preset user-corresponding air-conditioning preference parameters at the same time, which can adapt to the preference needs of multiple users and improve the accuracy of air-conditioning self-learning air-conditioning control rules Therefore, when the air-conditioning control rules are applied to control the air-conditioning, the air-conditioning can automatically adapt to the preferences of different users and adjust accurately to improve user comfort.
  • the step S20 includes:
  • Step S21 Determine the presence time of the target user among multiple preset moments according to the first identity characteristic information corresponding to each of the preset moments and the preset identity characteristic information of the target user;
  • Each of the preset users is used as a target user, and each of the preset setting parameters is used as a target parameter.
  • the preset identity feature information of the target user exists in the first identity feature information corresponding to the preset moment, it indicates that the target user is located in the space where the air conditioner is located at the preset moment, and the preset time can be used as the target user’s Present moment;
  • the preset identity feature information of the target user does not exist in the first identity feature information corresponding to the preset moment, it indicates that the target user is not in the space where the air conditioner is located at the preset moment, and the preset time is not The moment of presence as the target user.
  • the number of present moments can be one or more depending on the above-mentioned discrimination result.
  • Step S22 in the present moment, determine the moment when the acquired first parameter is the target parameter as the target moment;
  • the presence time is one, if the first parameter corresponding to the presence time is the target parameter, the presence time is the target time.
  • the moment of presence is regarded as the target moment; if the first parameter corresponding to any moment of presence is not the target parameter, then This moment of presence is not regarded as the target moment.
  • the number of target moments can be one or more depending on the above-mentioned discrimination result.
  • Step S23 Determine the weighted usage count of the target user at the target moment
  • the weighted usage times is specifically the number of times the target user uses the first parameter corresponding to the target moment in combination with the weight of the target user.
  • the weighted use times can be a preset value, and different preset users can set different weighted use times, and the corresponding preset times can be obtained as the weighted use times according to the identity characteristic information of the target user.
  • the weighted use times may also be specifically determined according to the number and/or identity of users in the space where the air conditioner is located at the target time. Specifically, the number of preset users in the space where the air conditioner is located at the target time is determined according to the first identity feature information corresponding to the target time; and the target user is determined to be in the target time according to the number. The weighted number of uses at the moment.
  • the first identity characteristic information corresponding to the target moment is compared with the identity characteristic information of each of the preset users; the method of determining the identity characteristic information of the preset user contained in the first identity characteristic information Quantity; the determined quantity is used as the preset number of users in the space where the air conditioner is located at the target moment. For example, when the preset identity feature information of two preset users exists in the first identity feature information acquired corresponding to the target time, it can be determined that the number of preset users in the space where the air conditioner is located at the target time is two. The weight corresponding to each preset user in the space where the air conditioner is located at the target time is determined according to the determined number.
  • the actual number of times each preset user uses the first parameter corresponding to the target time in the space where the air conditioner is located at the target time is 1, then the actual number of times the target user uses the first parameter corresponding to the target time is the same as the above
  • the product of the determined weights of the target user can be used as the weighted number of times the target user uses the first parameter corresponding to the target moment at the target moment. For example, when the number is 2, the weight corresponding to the target user is 1/2, and the weighted usage times corresponding to the target user is 1/2.
  • the weighted use times of the target user at the target moment are determined; when the target moment is more than one, the weighted times of the target user at each target moment are determined.
  • Step S24 Determine the usage probability of the target parameter by the target user according to the weighted usage times.
  • the corresponding weighted use times are used as the use frequency of the target user for the current target parameter, and the use frequency is used as the use probability; when the target time is more than one, the determined weighted use times are more If one is less than one, the sum of all weighted usage times is taken as the usage frequency of the target user for the current target parameter, and the usage frequency is taken as the usage probability.
  • the following table records the first parameters (including temperature, wind speed and wind direction) acquired at different times within a preset time period, and each forecast Set whether the user is present and the preset number of users in the space where the air conditioner is located.
  • time t represents the above-mentioned preset time
  • temperature, wind speed, and wind direction respectively represent the setting parameters of different types of air conditioners
  • the corresponding values of temperature, wind speed and wind direction in the same column are obtained at the corresponding time t in this column
  • the first parameter obtained at t 1 includes temperature 24, wind speed 80, and wind direction 1
  • member A, member B, and member C represent different preset users
  • means that the preset user is in the air conditioner at a certain time
  • x means that the preset user is not located in the space where the air conditioner is located at a certain time
  • the number of people n represents the number of preset users in the space where the air conditioner is located at a certain time.
  • member A determines the frequency of use of temperature parameter 24 by member A.
  • member A uses temperature parameters 24 at t 1 , t 2 and t 3 respectively, and member A uses other temperature parameters at other times.
  • the frequency of use of temperature parameter 26 by member A use member A as the target user and temperature parameter 26 as the target parameter. It can be determined that member A is located in the space of the air conditioner at six times from t 1 to t 6 . Not in the space where the air conditioner is located.
  • member A uses temperature parameters 26 at t 4 and t 5 respectively, and member A uses other temperature parameters at other times.
  • the use frequency of each preset user in different preset setting parameters is determined in combination with the corresponding weighted use times of preset users at different times, which is beneficial to the determined use frequency to accurately reflect the space where the air conditioner is located.
  • a third embodiment of the air-conditioning self-learning method is proposed.
  • the method before the step of generating an air-conditioning control rule based on the identity characteristic information of each of the preset users and the corresponding air-conditioning preference parameters, the method further includes:
  • Step S01 acquiring the current priority of each of the preset users
  • the priority here can be a preset priority based on the different identities, different ages and other comfort needs of the preset users, or it can be based on the initial priority set corresponding to each preset user, combined with the preset The priority determined by the user's air conditioning usage in a preset time period.
  • Step S02 Associate the identity feature information of each preset user with its corresponding priority.
  • an air conditioning control rule can be generated according to the identity feature information of each preset user associated with the priority and the corresponding air conditioning preference parameter.
  • the method before the step of obtaining the current priority of each of the preset users, that is, before step S40, the method further includes:
  • Step S20a at any two adjacent preset moments, determine the person change characteristics of the preset user in the space where the air conditioner is located according to the first identity feature information obtained successively, and determine according to the first parameter obtained successively The parameter change characteristics of the setting parameters of the air conditioner;
  • Personnel change characteristics are specifically the change characteristics of the preset users in the space where the air conditioner is located at the next moment compared to the previous moment, which can include the number, identity, type, etc. of the preset users decrease or increase, and the space after the above-mentioned parameter changes Preset user characteristics (number, identity, type), etc. Specifically, the number, identity, and type of the preset users in the space where the air conditioner is located at the two preset moments can be determined by comparing the first identity feature information obtained successively with the preset identity information of multiple preset users. Wait.
  • the personnel change feature When the identity of the preset user is less at the next moment than the previous moment, the personnel change feature includes a reduction in the identity of the preset user, and/or the number of preset users at the next moment can be used as the preset user in the personnel change feature
  • the personnel change feature When the identity of the preset user is more than that of the previous moment, the personnel change feature includes the increase of the identity of the default user, and/or the number of the preset user at the next moment can be used as the personnel change feature
  • the number of preset users; when there are more identities in the next moment than the preset users in the previous moment, the personnel change feature is that the identities of the preset users increase; when the identities of the preset users in the next moment are less than those of the previous moment, Then the personnel change is characterized by the reduction of the identity of the preset user.
  • the parameter change feature includes a change or no change in the setting parameter of the air conditioner. By comparing the values of the first parameters obtained successively, it can be determined whether the setting parameters of the air conditioner have changed. If the values of the first parameters are different twice, the parameter change feature is that the setting parameters of the air conditioner have changed; The value of is the same, and the parameter change characteristic is that the setting parameters of the air conditioner have not changed.
  • Step S20b Adjust the priority of each of the preset users according to the personnel change characteristics and the parameter change characteristics.
  • the adjustment method may specifically include increasing the preset user's priority, reducing the preset user's priority and maintaining The priority of the preset user remains unchanged.
  • the parameter change feature is a set parameter change
  • the personnel change feature is an increase in the identity of the preset user
  • the priority of the preset user who is in the air conditioner at both times can be reduced;
  • the change and the personnel change feature is that the identity of the preset user is increased, the priority of the preset user can remain unchanged.
  • the change of the preset user in the space where the air conditioner is located and the change of the setting parameters used can be determined, and the changes are made according to different situations.
  • Preset user priorities for adaptive adjustments can make automatic control rules more accurate, so that the air conditioner applies automatic control rules to automatically set operating parameters when multiple users use the air conditioner at the same time, which is beneficial to the operation of the air conditioner. It is suitable for the complex flow of people in the space, and can ensure the comfort of each user who uses the air conditioner.
  • step S20b further includes: when the person change feature is an increase in the identity of a preset user and the number of preset users is more than two, and the parameter change feature is a preset setting parameter change, according to the sequentially acquired first
  • the identity feature information determines a newly added preset user; and the priority of the newly added preset user is increased.
  • the air conditioner can clearly recognize that there are multiple users using the air conditioner in the space where the air conditioner is located, and one of the users has just entered the space and has different comfort requirements than other users in the space, so change the air conditioner
  • the setting parameters of other users in the space all give priority to the user’s comfort needs, so as to accurately identify the priority of multiple users when using the air conditioner at the same time, and further improve the accuracy of the determined automatic control rules It realizes that when multiple users use the air conditioner at the same time, the air conditioner applies automatic control rules to automatically adjust the parameters, which can meet the comfort requirements of all users in the space.
  • the air conditioner self-learning method further includes:
  • Step S001 Obtain at least two preset control periods
  • Multiple preset control periods can be set according to the instructions input by the user, and can also be set by default according to the characteristics of the user using the air conditioner at different times. For example, one day can be divided into two different preset control periods during the day (0:00-11:59) and evening (12:00-23:59); it can also be divided into two different preset control periods: working days and weekends. The preset control period and so on.
  • Step S002 Determine the multiple preset moments in each of the preset control periods
  • the preset control period includes a first preset control period and a second preset control period
  • the first preset control period is divided into a plurality of preset moments
  • the second preset control period is divided into a plurality of preset moments.
  • Step S003 Acquire air-conditioning control rules generated in each preset control period
  • the corresponding air-conditioning control rules are generated according to the air-conditioning self-learning steps in any of the above embodiments. For example, at multiple preset moments in the first preset control period, the first air-conditioning control rule is determined according to the above steps S10, S20, S30, and S40; multiple presets in the second preset control period Assuming the time, the second air conditioning control rule is determined according to the above step S10, step S20, step S30 and step S40.
  • Step S004 Associate the acquired air-conditioning control rules with corresponding preset control periods in a one-to-one correspondence.
  • multiple preset moments are divided into different control periods to learn the preference setting parameters of multiple users, which can realize that when the air conditioner is controlled according to the automatic control rules, it can be adapted to the different parameters of user preference habits in different time periods Settings to better improve user comfort.
  • this application also proposes an air-conditioning automatic control method. Based on the air-conditioning self-learning method described in the above embodiment, the first embodiment of the air-conditioning automatic control method of this application is proposed. Referring to FIG. 6, the air-conditioning automatic control method includes:
  • Step S100 obtaining the identity feature information of the user in the space where the air conditioner is located, and obtaining the air conditioning control rules
  • the type and acquisition method of the identity characteristic information here are specifically corresponding to the type and acquisition method of the identity characteristic information in the air-conditioning self-learning method, and will not be repeated here.
  • the air-conditioning control rule is the air-conditioning control rule generated in any of the foregoing embodiments.
  • Step S200 Determine a target parameter of the air conditioner according to the air conditioner control rule and the identity characteristic information
  • the air-conditioning preference parameter corresponding to the identity feature information is determined as the target parameter.
  • Step S300 controlling the operation of the air conditioner according to the target parameter.
  • the user’s identity feature information is automatically recognized, and the user’s preference parameters are used as the operating parameters of the air conditioner according to the air conditioning control rules, so that no user operation is required. Any combination of users in the space where the air conditioner is located can make the operation of the air conditioner possible. Adapt to the user's preference in the space where the air conditioner is located, and improve user comfort.
  • the step S200 includes: judging whether the number of preset users in the space where the air conditioner is located is more than one according to the identity feature information; when the number of preset users is more than In one case, in the air conditioning control rule, determine the priority corresponding to each of the identity feature information; obtain the air conditioning preference parameter corresponding to the identity feature information with the highest priority as the target parameter; when the preset number of users is In one case, in the air conditioning control rule, it is determined that the air conditioning preference parameter corresponding to the identity feature information is the target parameter.
  • the number of preset identity feature information contained in the obtained identity feature information is taken as the preset number of users.
  • the preset number of users when the preset number of users is more than one, it indicates that multiple users in the space where the air conditioner is located are using the air conditioner, and the operating parameters of the air conditioner are determined according to the priority of the identity feature information to ensure the operation of the air conditioner It can meet the comfort needs of multiple users at the same time; when the preset number of users is one, it is guaranteed that the air conditioner can meet the comfort of the current user best.
  • the step of obtaining air conditioning control rules includes:
  • Step S400 obtaining the current time
  • Step S500 determining the control period at the current moment
  • Step S600 Acquire the air conditioning control rule according to the control period.
  • different air conditioning control rules are acquired based on different control periods to control the operation of the air conditioner, which can be adapted to different user preferences and habits in different time periods for parameter setting, thereby better improving user comfort.
  • an embodiment of the present application also proposes an air conditioner.
  • the above air conditioner control device can be installed in the air conditioner, so that the air conditioner can implement the relevant steps of any embodiment of the air conditioner self-learning method and/or the air conditioner automatic control method. And achieve the technical effect mentioned in any of the above embodiments.
  • an embodiment of the present application also proposes a readable storage medium having an air conditioning control program stored on the readable storage medium, and when the air conditioning control program is executed by a processor, the above air conditioning self-learning method and/or automatic air conditioning control are implemented. Relevant steps of any embodiment of the method.

Abstract

一种空调自学习方法和空调器,该方法包括:在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息(S10);根据各预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率(S20);根据使用概率在预设设置参数中确定每个预设用户对应的空调偏好参数(S30);根据各预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则(S40)。

Description

空调自学习方法、空调自动控制方法及空调器
相关申请的交叉引用
本申请要求于2019年07月25日申请的,申请号为201910677868.8,申请名称为“空调器、自学习和自动控制方法、控制装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及空调自学习方法、空调自动控制方法和空调器。
背景技术
目前,为了提高空调器的智能程度,一般通过空调器自学习分析学习用户的使用偏好,基于用户偏好对空调进行控制,以提高用户舒适性。
然而,传统的空调自学习方法一般默认只存在一个用户,通过记录一段时间内空调的历史操作,以分析学习该用户的偏好参数。然后这样自学习方式并没有考虑到多个用户存在不同的参数设置偏好,导致空调自学习的控制规则不准确,使空调器不能适应于不同用户的偏好准确地进行参数调整,影响用户舒适性。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种空调自学习方法,旨在提高空调器自学习的自动控制规则的准确性和适用性,从而实现空调可适应于不同用户的偏好准确调整,提高用户舒适性。
为实现上述目的,本申请提供一种空调自学习方法,所述空调自学习方法包括以下步骤:
在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;
根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;
根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的 空调偏好参数;以及
根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
可选地,所述使用概率包括使用时长,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用时长。
可选地,所述使用概率包括使用频次,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用频次。
可选地,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
依据各所述预设时刻对应的第一身份特征信息和目标用户的预设身份特征信息,确定多个预设时刻中所述目标用户的在场时刻;
在所述在场时刻中,确定获取的第一参数为目标参数的时刻,作为目标时刻;
确定所述目标用户在所述目标时刻的加权使用次数;以及
根据所述加权使用次数,确定所述目标用户对所述目标参数的使用概率;
其中,分别将各所述预设用户作为所述目标用户,分别将各所述预设设置参数作为所述目标参数。
可选地,所述确定所述目标用户在所述目标时刻的加权使用次数的步骤包括:
根据所述目标时刻对应的第一身份特征信息,确定所述目标时刻内所述空调器所在空间内预设用户的个数;以及
根据所述个数确定所述目标用户在所述目标时刻的加权使用次数。
可选地,所述确定所述目标时刻内所述空调器所在空间内预设用户的个数的步骤包括:
将所述目标时刻对应的第一身份特征信息,分别与各所述预设用户的身份特征信息比对;
确定所述第一身份特征信息中包含的预设用户的身份特征信息的数量;以及
将所确定的数量作为所述目标时刻内所述空调器所在空间内预设用户的个数。
可选地,所述确定多个预设时刻中所述目标用户的在场时刻的步骤包括:
在多个预设时刻中,确定第一身份特征信息中存在所述目标用户的预设身份特征信息的时刻,作为所述在场时刻。
可选地,所述根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则的步骤之前,还包括:
在任意相邻的两个所述预设时刻中,根据先后获取的第一身份特征信息确定所述空调器所在空间内预设用户的人员变化特征,根据先后获取的第一参数确定所述空调器的设置参数的参数变化特征;
根据所述人员变化特征和所述参数变化特征,调整各所述预设用户的优先级;以及
将各所述预设用户的身份特征信息与其对应的优先级关联。
可选地,所述根据所述人员变化特征和所述参数变化特征,调整各所述预设用户的优先级的步骤包括:
确定所述人员变化特征为预设用户的身份增加且预设用户的数量多于两个,以及确定所述参数变化特征为预设设置参数改变的情况下,根据先后获取的第一身份特征信息确定新增的预设用户;以及
提高所述新增的预设用户的优先级。
可选地,所述空调自学习方法还包括:
获取至少两个预设控制时段;
分别在各所述预设控制时段内,确定所述多个预设时刻;
获取每个所述预设控制时段内生成的空调控制规则;以及
将获取的空调控制规则与对应的预设控制时段一一对应关联。
可选地,所述根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数的步骤包括:
在使用概率大于或等于预设阈值的预设设置参数中,确定每个预设用户 对应的空调偏好参数。
可选地,所述在使用概率大于或等于预设阈值的预设设置参数中,确定每个预设用户对应的空调偏好参数的步骤包括:
分别将各所述预设用户使用概率最高的预设设置参数,作为各所述预设用户的空调偏好参数。
可选地,所述获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息的步骤包括:
获取空调器所在空间内的图像信息和/或红外信息;
分析所述图像信息和/或红外信息,提取所述空调器所在空间内用户的身份特征信息,作为所述第一身份特征信息。
可选地,所述空调自学习方法还包括以下步骤:
根据所述第一参数确定所述预设设置参数。
可选地,所述根据所述第一参数确定所述预设设置参数的步骤包括:
对不同所述预设时刻获取的第一参数按照类型进行分类;
在得到的每一类型的第一参数中,按照数值差异分别提取得到所述多个不同的预设设置参数。
可选地,所述空调自学习方法还包括以下步骤:
获取所述预设用户的人脸信息或步态信息作为所述预设用户的身份特征信息。
此外,为了实现上述目的,本申请还提出一种空调自动控制方法,所述空调自动控制方法包括:
获取空调器所在空间内用户的身份特征信息,获取空调控制规则;
根据所述身份特征信息,确定所述空调器所在空间内预设用户的数量多于一个;
在所述空调控制规则中,确定各所述身份特征信息对应的优先级;
获取优先级最高的身份特征信息对应的空调偏好参数,作为目标参数;以及
根据所述目标参数控制所述空调器运行。
可选地,所述获取空调控制规则的步骤包括:
获取当前时刻;
确定当前时刻所处的控制时段;以及
根据所述控制时段获取所述空调控制规则。
此外,为了实现上述目的,本申请还提出一种空调器,所述空调器包括空调控制装置其中,所述空调控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调控制程序,所述空调控制程序被所述处理器执行时实现以下所述的空调自学习方法的步骤:
在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;
根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;
根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数;以及
根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
可选地,所述空调控制程序被所述处理器执行时还实现以下所述的空调自动控制方法的步骤:
获取空调器所在空间内用户的身份特征信息,获取空调控制规则;
根据所述身份特征信息,确定所述空调器所在空间内预设用户的数量多于一个;
在所述空调控制规则中,确定各所述身份特征信息对应的优先级;
获取优先级最高的身份特征信息对应的空调偏好参数,作为目标参数;
根据所述目标参数控制所述空调器运行。
本申请提出的一种空调自学习方法,该方法在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;根据获取的多个第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;根据使用概率确定每个预设用户对应的空调偏好参数;根据各预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。由于空调控制规则中不再针对单一用户生成偏好参数,而是同时包括多个不同的预设用户对应的空调偏好参数,可适应于多用户的偏好需求,提高空调器自学习空调控制规则的准确性和适用性,从而在应用空调控制规则对空调进行控制时,空调可自动适应于不同用户的偏好准确调整,提高用户舒适性。
附图说明
图1是本申请空调控制装置一实施例的硬件结构示意图;
图2为本申请空调自学习方法第一实施例的流程示意图;
图3为本申请空调自学习方法第二实施例的流程示意图;
图4为本申请空调自学习方法第三实施例的流程示意图;
图5为本申请空调自学习方法第四实施例的流程示意图;
图6为本申请空调自动控制方法一实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;根据获取的多个第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;根据所述使用概率确定每个所述预设用户对应的空调偏好参数;根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
由于现有技术中,传统的空调自学习用户偏好参数的结果仅局限于单一的用户,导致自学习的空调控制规则局限性较大,准确性不高,适用性不强,导致空调器不能适应于不同用户的偏好准确地进行参数调整,影响用户舒适性。
本申请提供上述的解决方案,旨在提高空调器自学习的自动控制规则的准确性和适用性,从而实现空调可适应于不同用户的偏好准确调整,提高用户舒适性。
本申请提出一种空调控制装置,可应用于分体式空调、柜式空调、窗式空调等所有类型的空调器。
在本申请实施例中,参照图1,空调控制装置包括:处理器1001,例如CPU,存储器1002,身份识别模块1003等。存储器1002可以是高速RAM存储器,也可以是稳定的存储器(non-volatilememory),例如磁盘存储器。存储器1002可选的还可以是独立于前述处理器1001的存储装置。
身份识别模块1003具体安装于空调器所在空间内,如安装于空调器的室内机上,用于检测空调器所在空间内用户的身份特征信息。其中,身份特征信息可具体包括人脸信息和步态信息等人体的生物特征信息。身边识别模块1003可具体包括摄像头、压力传感器和/或红外传感器等。
存储器1002可用于存储身份识别模块检测空调器所在空间内用户的身份特征信息、设置参数和空调控制规则等与空调器运行相关的数据。
处理器1001分别与存储器1002和身份识别模块1003连接,获取所需的数据或生成控制数据存储于存储器1002中。
本领域技术人员可以理解,图1中示出的装置结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种可读存储介质的存储器1002中可以包括空调控制程序。在图1所示的装置中,处理器1001可以用于调用存储器1002中存储的空调控制程序,并执行以下实施例中空调自学习方法和/或空调自动控制方法的相关步骤操作。
本申请还提供一种空调自学习方法。
参照图2,提出本申请空调自学习方法第一实施例,所述空调自学习方法包括:
步骤S10,在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;
预设时刻可以根据实际需求进行选取,在多个预设时刻所形成的时间段内多个预设用户对空调器进行使用。在预设时间段内可间隔预设时长选取多个预设时刻,也可在预设时间段内任意选取多个间隔的时刻作为预设时刻,此外,多个预设时刻也可以为连续的时刻。
身份特征信息可具体包括人脸信息、步态信息等生物特征信息,用以区分不同用户的身份,不同的用户对应不同的身份特征信息。身份特征信息识别可具体通过在预设时间段内的多个预设时刻,获取空调器所在空间内的图像信息和/红外信息等,分析所获取的图像信息和/红外信息,可提取每个预设时刻空调器所在空间内用户的第一身份特征信息等。在每个预设时刻获取的第一身份特征信息可包括一个身份特征信息,也可包括多个身份特征信息,依据各个预设时刻空调器所在空间内用户的人数确定。
第一参数可具体包括基于用户设置生成的空调运行参数,如温度、风速和/或风向等类型。
步骤S20,根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;
预设设置参数具体包括基于用户设置生成的空调运行参数,如可包括温度、风速和/或风向等类型。预设设置参数可有多种参数类型,每一类型可设有多个数值不同的预设设置参数。具体的,预设设置参数可依据第一参数确定,首先可对不同预设时刻获取的第一参数按类型(如温度、风速、风向等)进行分类,每一类型第一参数中再按数值差异,提取多个不同的预设设置参数。例如,在多个预设时刻获取的第一参数中包括温度类型的参数24,24,26,26,27,26,25时,包括风速类型的参数40,40,60,60,80,60,20时,依据类型差异可确定预设设置参数具有两个类型(空调设置温度和空调设置风速),在温度类型的第一参数中依据数值差异可提取得到的空调设置温度为24、25、26、27;在风速类型的第一参数中依据数值差异可提取得到的空调设置风速为20、40、60、80。此外,预设设置参数也可以为预先设置的多个数值不同的预设设置参数,在多个预设时刻获取的数据中提取预设设置参数对应的数据,依据提取的数据统计使用概率。依据各所述预设时刻获取的第一参数的数值差异和类型差异,在所述第一参数中提取多个所述预设设置参数。
多个预设用户可具体为在预设时间段内使用空调器的所有用户,也可以依据用户输入的设置信息,确定具有空调控制权限的多个用户作为预设用户。例如,家庭内的所有成员可具有空调控制权限,可作为预设用户;家庭外部的成员不具有空调控制权限,则不属于预设用户等。
使用概率可以包括使用时长、使用频次等。具体的,可根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用时长,以表征使用概率;可根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用频次,以表征使用概率。
预设时间段内,随着空调器所在空间内人员的流动和冷热需求的变化,不同预设时刻对应的第一参数和用户会发生变化。因此,在各个预设时刻可依据第一身份特征信息和每个预设用户的预设身份特征信息比对,则可确定 每个预设用户使用空调器的预设时刻,依据所确定的预设时刻与第一参数的对应关系,便可确定预设时间段内每个预设用户使用数值不同的第一参数的频次或总时长。将不同的第一参数分别作为预设设置参数,便可将每个预设用户使用不同的预设设置参数时频次或总时长,作为每个预设用户分别对多个不同的预设设置参数的使用概率。例如,可在多个预设时刻中确定某一预设用户使用某一预设设置参数所对应的预设时刻,将所确定的预设时刻的个数或根据所确定的预设时刻计算得到的累计时长,便可得到预设时间段内该预设用户使用该预设设置参数的总次数或总时长,作为该预设用户对该预设设置参数的使用概率。
步骤S30,根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数;
具体的,可在使用概率大于或等于预设阈值的预设设置参数中,确定每个预设用户对应的空调偏好参数。例如,分别将各所述预设用户使用概率最高的预设设置参数,作为各所述预设用户的空调偏好参数。
步骤S40,根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
每个预设用户具有各自对应的预设身份特征信息,可预先获取预设用户的人脸信息或步态信息等生物特征信息作为预设用户所对应的预设身份特征信息。将预设身份特征信息与对应的空调偏好参数关联,便可作为空调控制规则。
本申请实施例提出的一种空调自学习方法,该方法在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;根据获取的多个第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;根据使用概率确定每个预设用户对应的空调偏好参数;根据各预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。由于空调控制规则中不再针对单一用户生成偏好参数,而是同时包括多个不同的预设用户对应的空调偏好参数,可适应于多用户的偏好需求,提高空调器自学习空调控制规则的准确性和适用性,从而在应用空调控制规则对空调进行控制时,空调可自动适应于不同用户的偏好准确调整,提高用户舒适性。
基于上述第一实施例,提出本申请空调自学习方法的第二实施例。在第 二实施例中。参照图3,所述步骤S20包括:
步骤S21,依据各所述预设时刻对应的第一身份特征信息和目标用户的预设身份特征信息,确定多个预设时刻中所述目标用户的在场时刻;
分别将各所述预设用户作为目标用户,分别将各所述预设设置参数作为目标参数。当预设时刻对应的第一身份特征信息中存在目标用户的预设身份特征信息时,表明在该预设时刻目标用户位于空调器所在的空间内,则可将该预设时间作为目标用户的在场时刻;当预设时刻对应的第一身份特征信息中不存在目标用户的预设身份特征信息时,表明在该预设时刻目标用户不在空调器所在的空间内,则不将该预设时间作为目标用户的在场时刻。
在场时刻的数量依据上述的判别结果的不同可有一个或多个。
步骤S22,在所述在场时刻中,确定获取的第一参数为目标参数的时刻,作为目标时刻;
当在场时刻为一个时,若在场时刻对应的第一参数为目标参数,则在场时刻为目标时刻。
当在场时刻多于一个时,若任一在场时刻对应的第一参数为目标参数的,则将该在场时刻作为目标时刻;若任一在场时刻对应的第一参数不为目标参数的,则将该在场时刻不作为目标时刻。
目标时刻的数量依据上述的判别结果的不同可有一个或多个。
步骤S23,确定所述目标用户在所述目标时刻的加权使用次数;
加权使用次数具体为结合目标用户的权重,所确定的目标用户使用目标时刻所对应的第一参数的次数值。加权使用次数可为预先设置的数值,不同的预设用户可对应设置不同的加权使用次数,依据目标用户的身份特征信息可获取对应的预设次数作为加权使用次数。
此外,为了使所确定的加权使用次数更为准确,加权使用次数还可根据目标时刻内空调器所在空间的用户的数量和/或身份等具体确定。具体的,依据所述目标时刻对应的第一身份特征信息,判断所述目标时刻内所述空调器所在空间内预设用户的个数;根据所述个数确定所述目标用户在所述目标时刻的加权使用次数。具体的,将所述目标时刻对应的第一身份特征信息,分别与各所述预设用户的身份特征信息比对;确定所述第一身份特征信息中包含的预设用户的身份特征信息的数量;将所确定的数量作为所述目标时刻内所述空调器所在空间内预设用户的个数。例如,目标时刻对应获取的第一身 份特征信息中存在两个预设用户的预设身份特征信息时,可确定目标时刻内所述空调器所在空间内预设用户的个数为2。根据所确定的个数确定目标时刻内所述空调器所在空间内每个预设用户对应的权值。定义所有预设用户对应的权值之和为1,各预设用户对应的权值相等,则各预设用户对应的权值=1/个数,由此便可得到目标用户对应的权值。可以理解,在目标时刻内空调器所在空间内每个预设用户使用目标时刻所对应的第一参数的实际次数为1次,则目标用户使用目标时刻所对应的第一参数的实际次数和上述确定的目标用户的权值的乘积便可作为目标用户在目标时刻使用目标时刻对应的第一参数的加权使用次数。例如,个数为2时,目标用户对应的权值为1/2,则目标用户对应的加权使用次数为1/2次。
其中,当目标时刻为一个时,确定目标用户在该目标时刻的加权使用次数;当目标时刻多于一个时,确定目标用户在每个目标时刻的加权时刻次数。
步骤S24,根据所述加权使用次数,确定所述目标用户对所述目标参数的使用概率。
当目标时刻为一个时,则将对应的加权使用次数作为目标用户对当前的目标参数的使用频次,并将使用频次作为使用概率;当目标时刻为多于一个时,所确定的加权使用次数多于一个,则将所有加权使用次数之和作为目标用户对当前的目标参数的使用频次,并将使用频次作为使用概率。
具体的,参照下表,结合实际记录数据详细说明本实施例的技术方案,下表记录的是在预设时间段内不同时刻所获取的第一参数(包括温度、风速和风向)、各预设用户是否在场的情况以及空调器所在空间内预设用户的数量。其中,时刻t表示上述的预设时刻;温度、风速、风向分别代表不同类型的空调器的设置参数,位于同一列的温度、风速和风向对应的数值即为该列对应的时刻t内所获取的第一参数,如t 1时刻获取的第一参数包括温度24、风速80和风向1;成员A、成员B和成员C分别代表不同的预设用户,√表示某一时刻预设用户位于空调器所在的空间内,ⅹ表示某一时刻预设用户不位于空调器所在的空间内;人数n表示某一时刻空调器所在空间内预设用户的数量。
时刻t t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ……
温度 24 24 24 26 26 25 25 25 26 26 26 25 ……
风速 80 80 80 20 20 40 40 40 20 20 20 40 ……
风向 1 1 1 2 2 3 3 3 3 2 2 3 ……
成员A ……
成员B ……
成员C ……
人数n 1 1 1 2 2 3 1 1 2 1 1 1 ……
基于上述表格,要确定成员A对温度参数24的使用频次时,将成员A作为目标用户,将温度参数24作为目标参数,可确定成员A在t 1至t 6六个时刻位于空调器的所在空间内,其他不在空调器所在空间内。在上述确定的六个时刻中成员A分别在t 1、t 2和t 3使用温度参数24,在其他时刻成员A使用的是其他温度参数。并且t 1、t 2和t 3内空调器所在空间内只有成员A一个预设用户,则预设用户的个数为1,因此可确定成员A在每个t 1、t 2和t 3中每个时刻对应的加权使用次数为1,则可得到成员A对温度参数24的使用频次=1+1+1=3。要确定成员A对温度参数26的使用频次时,将成员A作为目标用户,将温度参数26作为目标参数,可确定成员A在t 1至t 6六个时刻位于空调器的所在空间内,其他不在空调器所在空间内。在上述确定的六个时刻中成员A分别在t 4和t 5使用温度参数26,在其他时刻成员A使用的是其他温度参数。并且t 4和t 5内空调器所在空间内有成员A和成员b两个预设用户,则预设用户的个数为2,因此可确定成员A分别t 4和t 5中每个时刻对应的加权使用次数为1/2,则可得到成员A对温度参数26的使用频次=1/2+1/2=1。
在本实施例中,结合预设用户在不同时刻对应的加权使用次数,确定各预设用户在不同预设设置参数中的使用频次,有利于所确定的使用频次可准确地反映空调器所在空间内存在多个预设用户使用空调器时每个预设用户的偏好情况,从而使所确定的偏好参数更为准确,有利于应用自动控制规则对空调器进行控制时,保证不同空调用户的舒适性。
进一步的,基于上述任一实施例,提出空调自学习方法的第三实施例。在第三实施例中,参照图4,所述根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则的步骤之前,还包括:
步骤S01,获取各所述预设用户当前的优先级;
这里的优先级可以是基于预设用户的不同身份、不同年龄等舒适需求的高低不同预先设置的优先级,还可以是在每个预设用户对应设置的初始优先级的基础上,结合预设用户在预设时间段内的空调使用情况所确定的优先级。
步骤S02,将各所述预设用户的身份特征信息与其对应的优先级关联。
每个预设用户的身份特征信息与其对应的优先级关联后,可根据关联有优先级的每个预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
在本实施例中,通过将优先级与预设用户的身份特征信息关联,从而使应用自动控制规则对空调器进行控制时,即使空调器所在空间内同时存在多个用户,也可准确评估每个用户的舒适需求,以使空调器的设置参数可满足用户的舒适需求。
具体的,在第三实施例中,所述获取各所述预设用户当前的优先级的步骤之前,也就是步骤S40之前,还包括:
步骤S20a,在任意相邻的两个所述预设时刻中,根据先后获取的第一身份特征信息确定所述空调器所在空间内预设用户的人员变化特征,根据先后获取的第一参数确定所述空调器的设置参数的参数变化特征;
人员变化特征具体为后一时刻相较于前一时刻空调器所在空间内预设用户的变化特征,可包括预设用户的个数、身份、类型等减少或增多,上数参数变化后空间内预设用户的特征(数量、身份、类型)等。具体可通过分别将先后获取的第一身份特征信息与多个预设用户的预设身份信息做比对,从而确定两个预设时刻空调器所在空间内预设用户的个数、身份、类型等。当预设用户的身份在后一时刻比前一时刻少时,人员变化特征包括预设用户的身份减少,且/或可将后一时刻的预设用户的个数作为人员变化特征中预设用户的数量;当预设用户的身份在后一时刻比前一时刻多时,人员变化特征包括预设用户的身份增加,且/或可将后一时刻的预设用户的个数作为人员变化特征中预设用户的数量;当后一时刻比前一时刻的预设用户的身份多时,则人员变化特征为预设用户的身份增加;当后一时刻比前一时刻的预设用户的身份少时,则人员变化特征为预设用户的身份减少。
参数变化特征包括空调器的设置参数的改变或未改变。通过比较先后获取的第一参数的数值,便可确定空调器的设置参数是否发生变化,若两次第一参数的数值不同,参数变化特征为空调器的设置参数改变;若两次第一参数的数值相同,参数变化特征为空调器的设置参数未改变。
步骤S20b,根据所述人员变化特征和所述参数变化特征,调整各所述预设用户的优先级。
不同的人员变化特征和参数变化特征的组合可对应不同的预设用户的优 先级的调整方式,具体的,调整方式可具体包括提高预设用户的优先级、降低预设用户的优先级和维持预设用户的优先级不变。例如,在参数变化特征为设置参数改变,且人员变化特征为预设用户的身份增加时,可降低在两个时刻均位于空调器的预设用户的优先级;在参数变化特征为设置参数未改变,且人员变化特征为预设用户的身份增加时,预设用户的优先级可维持不变。
在本实施例中,依据相邻两时刻的第一参数和第一身份特征信息,可以确定空调器所在空间内预设用户的变化情况及其使用的设置参数的变化情况,依据不同的情况对预设用户的优先级进行适应性调整,可以使自动控制规则制定更为准确,从而使空调器在多个用户同时使用空调时应用自动控制规则对运行参数自动设置,有利于空调器的运行可适应于空间内复杂的人员流动情况,且可保证每个使用空调器的用户的舒适性。
此外,步骤S20b还包括:当所述人员变化特征为预设用户的身份增加且预设用户的数量多于两个,以及所述参数变化特征为预设设置参数改变时,根据先后获取的第一身份特征信息确定新增的预设用户;提高所述新增的预设用户的优先级。通过此方式,空调器可清楚的识别到在空调器所在空间内有多个用户使用空调器,并且其中一用户刚进入空间内其舒适性需求相较于空间内其他用户不同,因此改变空调器的设置参数,空间内其他用户均以该用户舒适性需求为优先的情况,从而准确的识别到多个用户同时使用空调时彼此之间的优先级大小,进一步提高所确定的自动控制规则的准确性,实现多个用户同时使用空调器时,空调应用自动控制规则自动对参数进行调控,可满足空间内所有用户的舒适性需求。
基于上述任一实施例,提出本申请空调自学习方法的第四实施例。在第四实施例中,参照图5,所述空调自学习方法还包括:
步骤S001,获取至少两个预设控制时段;
多个预设控制时段可依据用户输入的指令设置,也可依据用户在不同时段使用空调的特点系统默认设置。例如,可将一天分为白天(0:00-11:59)和晚上(12:00-23:59)两个不同的预设控制时段;也可将一周分为工作日和周末两个不同的预设控制时段等。
步骤S002,分别在各所述预设控制时段内,确定所述多个预设时刻;
例如,预设控制时段包括第一预设控制时段和第二预设控制时段时,在第一预设控制时段划分多个预设时刻,在第二预设控制时段划分多个预设时 刻。
步骤S003,获取每个所述预设控制时段内生成的空调控制规则;
每个预设控制时段内按照上述任一实施例中的空调自学习的步骤,生成对应的空调控制规则。例如,在第一预设控制时段内的多个预设时刻,按照上述步骤S10、步骤S20、步骤S30和步骤S40,确定第一空调控制规则;在第二预设控制时段内的多个预设时刻,按照上述步骤S10、步骤S20、步骤S30和步骤S40,确定第二空调控制规则。
步骤S004,将获取的空调控制规则与对应的预设控制时段一一对应关联。
通过上述方式,在不同控制时段内划分多个预设时刻学习多个用户的偏好设置参数,可实现空调器依据自动控制规则进行控制时,可适应于不同的时间段用户偏好习惯的不同进行参数设置,从而更好的提高用户的舒适性。
此外,本申请还提出一种空调自动控制方法,基于如上实施例所述的空调自学习方法,提出本申请空调自动控制方法第一实施例,参照图6,所述空调自动控制方法包括:
步骤S100,获取空调器所在空间内用户的身份特征信息,获取空调控制规则;
这里身份特征信息的类型和获取方式具体与空调自学习方法中的身份特征信息的类型和获取方式对应一致,在此不作赘述。空调控制规则为上述任一实施例中所生成的空调控制规则。
步骤S200,根据所述空调控制规则和所述身份特征信息,确定空调的目标参数;
在空调控制规则中,确定身份特征信息对应的空调偏好参数,作为目标参数。
步骤S300,根据所述目标参数控制所述空调器运行。
在本实施例中,通过自动识别用户的身份特征信息,依据空调控制规则该用户的偏好参数作为空调的运行参数,从而无需用户操作,空调器所在空间内用户任意组合均可使空调的运行可适应于空调器所在空间内用户的偏好,提高用户舒适性。
具体的,在上述第一实施例中,所述步骤S200包括:根据所述身份特征信息,判断所述空调器所在空间内预设用户的数量是否多于一个;当预设用户的数量多于一个时,在所述空调控制规则中,确定各所述身份特征信息对 应的优先级;获取优先级最高的身份特征信息对应的空调偏好参数,作为所述目标参数;当预设用户的数量为一个时,在所述空调控制规则中,确定所述身份特征信息对应的空调偏好参数为所述目标参数。
通过将获取的身份特征信息与预设身份特征信息进行比对,将获取的身份特征信息中所包含的预设身份特征信息的数量作为预设用户的数量。
在本实施例中,当预设用户的数量为多于一个时,表明空调器所在空间内多个用户在使用空调,依据身份特征信息的优先级确定空调器的运行参数,从而保证空调的运行可同时满足多个用户的舒适需求;预设用户的数量为一个时,则保证空调可满足当前用户的舒适性最好。
基于上述第一实施例,提出本申请空调自动控制方法的第二实施例。在第二实施例中,所述获取空调控制规则的步骤包括:
步骤S400,获取当前时刻;
步骤S500,确定当前时刻所处的控制时段;
步骤S600,根据所述控制时段获取所述空调控制规则。
在本实施例中,基于不同的控制时段获取不同的空调控制规则对空调器运行进行控制,可适应于不同的时间段用户偏好习惯的不同进行参数设置,从而更好的提高用户的舒适性。
此外,本申请实施例还提出一种空调器,上述的空调控制装置可安装于空调器内,使空调器可实现如上空调自学习方法和/或空调自动控制方法任一实施例的相关步骤,并达到上述任一实施例所提到的技术效果。
此外,本申请实施例还提出一种可读存储介质,所述可读存储介质上存储有空调控制程序,所述空调控制程序被处理器执行时实现如上空调自学习方法和/或空调自动控制方法任一实施例的相关步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种空调自学习方法,其中,所述空调自学习方法包括以下步骤:
    在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;
    根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;
    根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数;以及
    根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
  2. 如权利要求1所述的空调自学习方法,其中,所述使用概率包括使用时长,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
    根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用时长。
  3. 如权利要求1所述的空调自学习方法,其中,所述使用概率包括使用频次,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
    根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,统计多个预设用户分别对多个不同的预设设置参数的使用频次。
  4. 如权利要求1所述的空调自学习方法,其中,所述根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率的步骤包括:
    依据各所述预设时刻对应的第一身份特征信息和目标用户的预设身份特征信息,确定多个预设时刻中所述目标用户的在场时刻;
    在所述在场时刻中,确定获取的第一参数为目标参数的时刻,作为目标时刻;
    确定所述目标用户在所述目标时刻的加权使用次数;以及
    根据所述加权使用次数,确定所述目标用户对所述目标参数的使用概率;
    其中,分别将各所述预设用户作为所述目标用户,分别将各所述预设设 置参数作为所述目标参数。
  5. 如权利要求4所述的空调自学习方法,其中,所述确定所述目标用户在所述目标时刻的加权使用次数的步骤包括:
    根据所述目标时刻对应的第一身份特征信息,确定所述目标时刻内所述空调器所在空间内预设用户的个数;以及
    根据所述个数确定所述目标用户在所述目标时刻的加权使用次数。
  6. 如权利要求5所述的空调自学习方法,其中,所述确定所述目标时刻内所述空调器所在空间内预设用户的个数的步骤包括:
    将所述目标时刻对应的第一身份特征信息,分别与各所述预设用户的身份特征信息比对;
    确定所述第一身份特征信息中包含的预设用户的身份特征信息的数量;以及
    将所确定的数量作为所述目标时刻内所述空调器所在空间内预设用户的个数。
  7. 如权利要求4所述的空调自学习方法,其中,所述确定多个预设时刻中所述目标用户的在场时刻的步骤包括:
    在多个预设时刻中,确定第一身份特征信息中存在所述目标用户的预设身份特征信息的时刻,作为所述在场时刻。
  8. 如权利要求1所述的空调自学习方法,其中,所述根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则的步骤之前,还包括:
    在任意相邻的两个所述预设时刻中,根据先后获取的第一身份特征信息确定所述空调器所在空间内预设用户的人员变化特征,根据先后获取的第一参数确定所述空调器的设置参数的参数变化特征;
    根据所述人员变化特征和所述参数变化特征,调整各所述预设用户的优先级;以及
    将各所述预设用户的身份特征信息与其对应的优先级关联。
  9. 如权利要求8所述的空调自学习方法,其中,所述根据所述人员变化特征和所述参数变化特征,调整各所述预设用户的优先级的步骤包括:
    确定所述人员变化特征为预设用户的身份增加且预设用户的数量多于两 个,以及确定所述参数变化特征为预设设置参数改变的情况下,根据先后获取的第一身份特征信息确定新增的预设用户;以及
    提高所述新增的预设用户的优先级。
  10. 如权利要求1所述的空调自学习方法,其中,所述空调自学习方法还包括:
    获取至少两个预设控制时段;
    分别在各所述预设控制时段内,确定所述多个预设时刻;
    获取每个所述预设控制时段内生成的空调控制规则;以及
    将获取的空调控制规则与对应的预设控制时段一一对应关联。
  11. 如权利要求1所述的空调自学习方法,其中,所述根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数的步骤包括:
    在使用概率大于或等于预设阈值的预设设置参数中,确定每个预设用户对应的空调偏好参数。
  12. 如权利要求11所述的空调自学习方法,其中,所述在使用概率大于或等于预设阈值的预设设置参数中,确定每个预设用户对应的空调偏好参数的步骤包括:
    分别将各所述预设用户使用概率最高的预设设置参数,作为各所述预设用户的空调偏好参数。
  13. 如权利要求1所述的空调自学习方法,其中,所述获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息的步骤包括:
    获取空调器所在空间内的图像信息和/或红外信息;以及
    分析所述图像信息和/或红外信息,提取所述空调器所在空间内用户的身份特征信息,作为所述第一身份特征信息。
  14. 如权利要求1所述的空调自学习方法,其中,所述空调自学习方法还包括以下步骤:
    根据所述第一参数确定所述预设设置参数。
  15. 如权利要求14所述的空调自学习方法,其中,所述根据所述第一参数确定所述预设设置参数的步骤包括:
    对不同所述预设时刻获取的第一参数按照类型进行分类;以及
    在得到的每一类型的第一参数中,按照数值差异分别提取得到所述多个 不同的预设设置参数。
  16. 如权利要求1所述的空调自学习方法,其中,所述空调自学习方法还包括以下步骤:
    获取所述预设用户的人脸信息或步态信息作为所述预设用户的身份特征信息。
  17. 一种空调自动控制方法,其中,所述空调自动控制方法包括:
    获取空调器所在空间内用户的身份特征信息,获取空调控制规则;
    根据所述身份特征信息,确定所述空调器所在空间内预设用户的数量多于一个;
    在所述空调控制规则中,确定各所述身份特征信息对应的优先级;
    获取优先级最高的身份特征信息对应的空调偏好参数,作为目标参数;以及
    根据所述目标参数控制所述空调器运行。
  18. 如权利要求17所述的空调自动控制方法,其中,所述获取空调控制规则的步骤包括:
    获取当前时刻;
    确定当前时刻所处的控制时段;以及
    根据所述控制时段获取所述空调控制规则。
  19. 一种空调器,其中,所述空调器包括空调控制装置其中,所述空调控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调控制程序,所述空调控制程序被所述处理器执行时实现以下所述的空调自学习方法的步骤:
    在多个预设时刻,获取空调器当前的设置参数,作为第一参数,获取空调器所在空间内用户的身份特征信息,作为第一身份特征信息;
    根据各所述预设时刻获取的第一参数及对应的第一身份特征信息,确定多个预设用户分别对多个不同的预设设置参数的使用概率;
    根据所述使用概率在所述预设设置参数中确定每个所述预设用户对应的空调偏好参数;以及
    根据各所述预设用户的身份特征信息及其对应的空调偏好参数,生成空调控制规则。
  20. 如权利要求19所述的空调器,其中,所述空调控制程序被所述处理器执行时还实现以下所述的空调自动控制方法的步骤:
    获取空调器所在空间内用户的身份特征信息,获取空调控制规则;
    根据所述身份特征信息,确定所述空调器所在空间内预设用户的数量多于一个;
    在所述空调控制规则中,确定各所述身份特征信息对应的优先级;
    获取优先级最高的身份特征信息对应的空调偏好参数,作为目标参数;以及
    根据所述目标参数控制所述空调器运行。
PCT/CN2019/113201 2019-07-25 2019-10-25 空调自学习方法、空调自动控制方法及空调器 WO2021012441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910677868.8A CN112283894B (zh) 2019-07-25 2019-07-25 空调器、自学习和自动控制方法、控制装置和存储介质
CN201910677868.8 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021012441A1 true WO2021012441A1 (zh) 2021-01-28

Family

ID=74192820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113201 WO2021012441A1 (zh) 2019-07-25 2019-10-25 空调自学习方法、空调自动控制方法及空调器

Country Status (2)

Country Link
CN (1) CN112283894B (zh)
WO (1) WO2021012441A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963456A (zh) * 2022-06-27 2022-08-30 宁波奥克斯电气股份有限公司 空调参数设置方法、方法、装置、空调内机和存储介质
WO2024016831A1 (zh) * 2022-07-20 2024-01-25 青岛海尔空调器有限总公司 用于控制空调的方法、装置及空调

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234397B (zh) * 2021-11-25 2023-08-15 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器
CN114537080B (zh) * 2022-02-16 2023-06-30 一汽解放汽车有限公司 汽车空调自学习控制方法、装置、设备以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111157A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 統合コントローラ、機器制御方法及び機器制御プログラム
CN103900196A (zh) * 2014-03-25 2014-07-02 四川长虹电器股份有限公司 一种空调工作模式调整方法及一种空调
CN104990213A (zh) * 2015-06-29 2015-10-21 广东美的制冷设备有限公司 一种多人环境下协同控制空调的方法及系统
CN105371425A (zh) * 2015-10-12 2016-03-02 美的集团股份有限公司 空调器
CN105892427A (zh) * 2016-04-15 2016-08-24 谷振宇 基于用户感知的物联网智能控制方法及系统
CN107388478A (zh) * 2017-06-23 2017-11-24 深圳市盛路物联通讯技术有限公司 一种智能空调控制方法和装置
CN109945421A (zh) * 2019-02-28 2019-06-28 广东美的制冷设备有限公司 运行控制方法、运行控制装置和家电设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868188A (zh) * 2012-12-07 2014-06-18 广东美的制冷设备有限公司 通过人脸识别实现空调控制的方法及系统
CN105318499B (zh) * 2015-09-30 2018-06-01 广东美的制冷设备有限公司 用户行为自学习空调系统及其控制方法
CN107860101A (zh) * 2017-09-30 2018-03-30 珠海格力电器股份有限公司 空调设备的参数调整方法及装置、空调设备
CN108592347B (zh) * 2018-04-23 2020-11-27 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和可读存储介质
CN108758996B (zh) * 2018-04-23 2021-08-31 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和可读存储介质
CN109059180B (zh) * 2018-07-27 2021-01-26 广东美的制冷设备有限公司 空调器的控制方法、装置、空调器及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111157A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 統合コントローラ、機器制御方法及び機器制御プログラム
CN103900196A (zh) * 2014-03-25 2014-07-02 四川长虹电器股份有限公司 一种空调工作模式调整方法及一种空调
CN104990213A (zh) * 2015-06-29 2015-10-21 广东美的制冷设备有限公司 一种多人环境下协同控制空调的方法及系统
CN105371425A (zh) * 2015-10-12 2016-03-02 美的集团股份有限公司 空调器
CN105892427A (zh) * 2016-04-15 2016-08-24 谷振宇 基于用户感知的物联网智能控制方法及系统
CN107388478A (zh) * 2017-06-23 2017-11-24 深圳市盛路物联通讯技术有限公司 一种智能空调控制方法和装置
CN109945421A (zh) * 2019-02-28 2019-06-28 广东美的制冷设备有限公司 运行控制方法、运行控制装置和家电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963456A (zh) * 2022-06-27 2022-08-30 宁波奥克斯电气股份有限公司 空调参数设置方法、方法、装置、空调内机和存储介质
WO2024016831A1 (zh) * 2022-07-20 2024-01-25 青岛海尔空调器有限总公司 用于控制空调的方法、装置及空调

Also Published As

Publication number Publication date
CN112283894B (zh) 2022-09-09
CN112283894A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2021012441A1 (zh) 空调自学习方法、空调自动控制方法及空调器
JP6925536B2 (ja) 動作を制御するシステム及び方法
US7089087B2 (en) Limited access comfort control
CN105571048B (zh) 群动态环境控制
US9580274B2 (en) Information exchange between elevator systems and building systems
EP3604958A1 (en) Wind-senseless control method and device, readable storage medium, and air conditioner
Pazhoohesh et al. A satisfaction-range approach for achieving thermal comfort level in a shared office
CN110726222B (zh) 空调控制方法、装置、存储介质以及处理器
CN112146250B (zh) 温度的调节方法、装置、电子设备、存储介质
JP6258439B1 (ja) エレベータ用空調制御装置およびエレベータ用空調制御システム
EP2172876A2 (en) Parameter controlling apparatus and multistage collation apparatus
CN112443954A (zh) 空调器的控制方法、空调器及计算机可读存储介质
JP2018165600A (ja) 空調制御システム
CN107023951A (zh) 通过人脸识别控制空调的方法和系统
CN112543852A (zh) 用于使用基于聚类的规则挖掘方法来优化结构的能量使用的系统和方法
Flessner et al. Perception based method for indoor air quality control
US20230017242A1 (en) Heating, ventilation, and air-conditioning, system, method of controlling a heating, ventilation, and air-conditioning system and method of training a comfort model to be used for controlling a heating, ventilation, and air-conditioning system
WO2022269903A1 (ja) 空調制御装置および空気調和機
CN114281192B (zh) 家居设备控制方法、装置、电子设备及存储介质
CN112212481A (zh) 利用深度强化学习控制环境舒适度的系统及其方法
US20240135396A1 (en) System and method for evaluating residential satisfaction based on resident's personal tendency and sensing data
US20030139853A1 (en) Comfort control system
CN116839172A (zh) 基于室内外环境参数的空调控制方法、装置和智能空调
CN117908416A (zh) 家用电器的控制方法、设备及介质
KR20220118836A (ko) 에너지 비용을 최적화한 외기조화기 운영방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19938632

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19938632

Country of ref document: EP

Kind code of ref document: A1