WO2021012434A1 - 一种复合式液压双缸同步控制方法 - Google Patents

一种复合式液压双缸同步控制方法 Download PDF

Info

Publication number
WO2021012434A1
WO2021012434A1 PCT/CN2019/112858 CN2019112858W WO2021012434A1 WO 2021012434 A1 WO2021012434 A1 WO 2021012434A1 CN 2019112858 W CN2019112858 W CN 2019112858W WO 2021012434 A1 WO2021012434 A1 WO 2021012434A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
cylinder
hydraulic cylinder
synchronization
nominal
Prior art date
Application number
PCT/CN2019/112858
Other languages
English (en)
French (fr)
Inventor
冒建亮
宋春桃
宿维玉
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2021012434A1 publication Critical patent/WO2021012434A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/22Synchronisation of the movement of two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Definitions

  • the invention relates to a hydraulic double-cylinder synchronous control method, in particular to a composite hydraulic double-cylinder synchronous control method.
  • the hydraulic servo system has been widely used in industrial control due to its unique advantages such as fast response speed, strong load rigidity, and large control power.
  • engineering equipment using hydraulic technology tends to be large-scale.
  • a single actuator can no longer meet the working conditions of large-scale engineering equipment. In this way, multiple actuators need to be synchronized to solve this problem.
  • there are many factors that affect the performance of hydraulic servo systems in actual industrial systems such as oil pressure fluctuations, load interference, model parameter uncertainty, etc., these nonlinear disturbances will reduce the positioning accuracy of the system. Therefore, in a dual-cylinder or multi-cylinder synchronous operation system, a specific control strategy must be designed to suppress the above-mentioned interference factors to ensure the synchronization between different hydraulic cylinders, otherwise it will cause damage to the mechanical equipment.
  • the existing hydraulic dual-cylinder synchronization control strategy is still mainly based on PID control. Under the influence of load changes and oil pressure fluctuations, the synchronization accuracy will be seriously affected. In recent years, many studies have combined intelligent control strategies to suppress the above-mentioned interference and improve synchronization accuracy.
  • the Chinese invention patent "A coordinated high-precision hydraulic dual-cylinder synchronization system and its control method" uses a fuzzy control strategy to achieve coordinated speed control of hydraulic cylinders.
  • the technical problem to be solved by the present invention is to overcome the defects existing in the prior art and propose a composite hydraulic double cylinder synchronous control method.
  • the synchronous interference sliding mode estimator is constructed to accurately estimate and compensate the uncertainty of the factors affecting the synchronization tracking accuracy, thereby improving the estimation performance; at the same time introducing interference feedforward
  • the compensation item and the synchronization error compensation item improve the synchronization tracking accuracy of the hydraulic double cylinder.
  • the basic idea of the present invention is to first establish the third-order mathematical reference model of the hydraulic double-cylinder system in an offline state, and to make the closed-loop system stable by constructing a linear feedback controller; in order to suppress oil pressure and load fluctuations and unknown system dynamics to synchronize
  • the effect of accuracy is to use hydraulic cylinder acceleration information and proportional valve spool displacement information to construct a synchronous interference sliding mode estimator; at the same time, in order to further suppress the tracking error of the two-cylinder synchronization, the synchronization error proportional feedforward term is introduced; finally, A composite hydraulic double-cylinder synchronization control method is obtained.
  • a composite hydraulic double cylinder synchronization control method the steps are as follows:
  • V n represents the total oil into the return side of the nominal volume of the cylinder
  • m n denotes the nominal mass of the load of the hydraulic cylinder
  • ⁇ n denotes an effective elastic modulus of the oil hydraulic cylinder nominal
  • a n denotes the nominal cylinder
  • the effective area of the piston C n represents the nominal port flow coefficient of the proportional valve
  • W n represents the nominal port area gradient of the proportional valve
  • P n represents the nominal hydraulic oil pressure
  • ⁇ n represents the nominal hydraulic oil Density
  • u i is the spool displacement of the proportional valve
  • x i (t), T i (t)) represent the unknown dynamics of the hydraulic system
  • [k 1i ,k 2i ,k 3i ] T represents the feedback proportional gain matrix
  • ⁇ c represents the bandwidth gain of the feedback controller
  • Step 3 Get the actual acceleration of the hydraulic cylinder according to the actual position x i of the hydraulic cylinder Combined with the mathematical reference model established in step 1, construct a synchronous interference sliding mode estimator ⁇ o ,
  • Step 4 According to the unknown dynamic estimation value obtained in step 3 Construct a nonlinear feedforward controller u fi ,
  • k si represents the synchronization error feedforward gain, Indicates the desired acceleration information of the hydraulic cylinder
  • the actual position information x i of the hydraulic cylinder in step 1 is obtained by two displacement sensors installed on the hydraulic cylinder;
  • the spool displacement set in step 5 is finally converted into analog current signal output.
  • the estimator gain matrix [a 0i , a 1i , a 2i ] T is selected to satisfy that all elements in the matrix are greater than zero.
  • the position tracking error convergence speed of a single hydraulic cylinder can be improved; by increasing the bandwidth gain L of the estimator, the estimation accuracy of the unknown dynamics of the hydraulic system can be improved; by increasing the synchronization error feedforward
  • the gain k si can reduce the synchronization tracking error of the hydraulic double cylinder.
  • the invention uses the acceleration information of the hydraulic cylinder and the spool displacement information of the proportional valve to construct a synchronous interference sliding mode estimator, which can accurately determine the factors that affect the synchronization tracking accuracy, such as oil pressure and load fluctuations and unknown system dynamics.
  • Estimation and compensation compared with the traditional extended state observer (ESO) and disturbance observer (DOB), improve the performance of uncertainty estimation; the present invention also introduces disturbance feedforward compensation term and synchronization error compensation term, essentially Improve the synchronization tracking accuracy of the hydraulic double cylinder.
  • Figure 1 is a block diagram of the design of the composite hydraulic double cylinder synchronization control method of the present invention.
  • Figure 2 is a schematic diagram of the structure of the hydraulic double cylinder system.
  • Figure 3 is the implementation block diagram of the linear feedback controller u ni .
  • Figure 4 is a block diagram of the realization of the nonlinear feedforward controller u fi .
  • FIG. 5 Position tracking curve of hydraulic double cylinder.
  • Fig. 5a is the position tracking curve of the dual hydraulic cylinder of the PID controller
  • Fig. 5b is the position tracking curve of the dual hydraulic cylinder of the controller of the present invention.
  • Figure 6 is the spool displacement curve of the proportional valve.
  • Fig. 6a is the spool displacement curve of the proportional valve of the PID controller
  • Fig. 6b is the spool displacement curve of the proportional valve of the controller of the present invention.
  • Figure 7 is the double-cylinder synchronization tracking error curve.
  • Vn Total volume of oil inlet and return side 1.16 ⁇ 10-4m3 mn Load quality 100kg ⁇ n Effective elastic modulus of oil 7 ⁇ 108Pa An Piston effective area 1.5 ⁇ 10-3m2 Cn Valve port flow coefficient 0.8 Wn Valve port area gradient 0.0628cm Pn Hydraulic oil pressure 5 ⁇ 107Pa ⁇ n Hydraulic oil density 900kg/m3 Bn Viscous damping coefficient 90N ⁇ m ⁇ s/rad Cln Leakage factor 1 ⁇ 10-12m3/s/Pa kn Load elastic stiffness 2.1 ⁇ 10-6N/m .
  • FIG. 2 shows the structure diagram of the hydraulic dual-cylinder system. To design a synchronous controller for the above hydraulic system, the specific steps are as follows:
  • V n represents the total oil into the return side of the nominal volume of the cylinder
  • m n denotes the nominal mass of the load of the hydraulic cylinder
  • ⁇ n denotes an effective elastic modulus of the oil hydraulic cylinder nominal
  • a n denotes the nominal cylinder
  • the effective area of the piston C n represents the nominal port flow coefficient of the proportional valve
  • W n represents the nominal port area gradient of the proportional valve
  • P n represents the nominal hydraulic oil pressure
  • ⁇ n represents the nominal hydraulic oil Density
  • u i is the spool displacement of the proportional valve
  • x i (t), T i (t)) represent the unknown dynamics of the hydraulic system.
  • [k 1i , k 2i , k 3i ] T represents the feedback proportional gain matrix
  • ⁇ c represents the bandwidth gain of the feedback controller
  • Step 3 Obtain the actual acceleration information of the hydraulic cylinder according to the actual position information x i of the hydraulic cylinder Combined with the mathematical reference model established in step 1, construct a synchronous interference sliding mode estimator ⁇ o ,
  • Step 4 According to the unknown dynamic estimation value obtained in step 3 Construct a nonlinear feedforward controller u fi ,
  • k si represents the synchronization error feedforward gain, Indicates the desired jerk information of the hydraulic cylinder.
  • Figures 3 and 4 respectively show the specific implementation block diagrams of the linear feedback controller u ni and the nonlinear feedforward controller u fi .
  • the actual position information x i of the hydraulic cylinder in step 1 is obtained by two displacement sensors mounted on the hydraulic cylinder; the actual acceleration information of the hydraulic cylinder in step 3 Realized by the differentiator; the spool displacement set in step 5 is finally converted into analog current signal output.
  • the estimator gain matrix [a 0i , a 1i , a 2i ] T is selected to satisfy that all elements in the matrix are greater than zero.
  • controller parameter adjustment rules designed by the present invention are as follows: by increasing the feedback controller bandwidth gain ⁇ c , the position tracking error convergence speed of a single hydraulic cylinder can be increased; by increasing the bandwidth gain L of the estimator, the hydraulic pressure can be increased. The estimation accuracy of the unknown dynamics of the system; by increasing the synchronization error feedforward gain k si , the synchronization tracking error of the hydraulic double cylinder can be reduced.
  • the external load interference is set to That is, there is a sudden load change at 2s.
  • control parameter settings of the present invention are shown in Table 2.
  • the PID controller is designed as:
  • T i 10k p T s , Where T s is the control period, which is set to 1 ms in the present invention.
  • Figure 5 and Figure 6 respectively show the position tracking curve of the hydraulic double cylinder and the displacement curve of the valve core.
  • Figure 6 shows the double cylinder synchronization tracking error curve under the two methods. It can be seen from the test results that the high-precision composite hydraulic dual-cylinder synchronous controller design method provided by the present invention can well suppress the influence of oil pressure and load fluctuations on the synchronization tracking accuracy, and can improve the dynamics of the hydraulic servo system Responsive performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Feedback Control In General (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种复合式液压双缸同步控制方法,首先在离线状态下建立液压双缸系统的三阶数学参考模型,通过构造线性反馈控制器,使得闭环系统保持稳定;为了抑制油压和负载波动以及未知的系统动态对同步精度带来的影响,利用液压缸加速度信息和比例阀的阀芯位移信息,构造同步干扰滑模估计器;同时,为了进一步抑制双缸同步的跟踪误差,引入同步误差比例前馈项。该方法提高了液压双缸的同步跟踪精度,通过增大反馈控制器带宽增益,可提高单个液压缸的位置跟踪误差收敛速度;通过增大估计器的带宽增益,可提高液压系统未知动态的估计精度;通过增大同步误差前馈增益,可降低液压双缸的同步跟踪误差。

Description

一种复合式液压双缸同步控制方法 技术领域
本发明涉及一种液压双缸同步控制方法,具体说是一种复合式液压双缸同步控制方法。
背景技术
液压伺服系统由于其响应速度快、负载刚度强、控制功率大等独特的优点,在工业控制中得到了广泛的应用。随着科技的进步,采用液压技术的工程装备趋向大型化发展,单一的执行元件已满足不了大型工程装备的工况要求,这样就需要多执行元件同步动作解决这一问题。由于实际工业系统中存在着很多影响液压伺服系统性能的因素,如油压波动、负载干扰、模型参数不确定性等,这些非线性扰动将会降低系统的定位精度。因此,在双缸或多缸同步运行系统中,必须设计特定的控制策略来抑制上述干扰因素,以保证不同液压缸之间的同步性,否则会对机械装备造成损坏。
目前,现有的液压双缸同步控制策略仍主要以PID控制为主,在负载变化和油压波动的影响下,同步精度将受到严重影响。近些年,不少研究通过结合智能控制策略来抑制上述干扰,提高同步精度。如中国发明专利《一种协同式高精度液压双缸同步系统及其控制方法》(授权公告号CN 103388602B),通过采用模糊控制策略对液压缸实现协同速度控制,文献《基于模糊理论的双缸液压系统同步控制研究》(刘爱玲等,液压与气动,2016,4:44-47),公开了基于模糊控制理论建立对称双缸液压系统的模糊前馈控制器。虽然这类方法的实现不依赖系统的数学模型,但由于其没有有效利用模型的先验知识,其控制精度往往不能达到理想的效果。另外,由于仅采用了反馈控制的设计思想,上述相关策略在系统的动态响应性能上也受到一定的影响。
发明内容
本发明所要解决的技术问题在于,克服现有技术存在的缺陷,提出了一种复合式液压双缸同步控制方法。利用液压缸的加速度信息和比例阀的阀芯位移信息,构造同步干扰滑模估计器,对影响同步跟踪精度的因素的不确定性进行精确估计与补偿,提高了估计性能;同时引入干扰前馈补偿项和同步误差补偿项,提高了液压双缸的同步跟踪精度。
本发明基本思路是,首先在离线状态下建立液压双缸系统的三阶数学参考模型,通过构造线性反馈控制器,使得闭环系统保持稳定;为了抑制油压和负载波动以及未知的系统动态对同步精度带来的影响,利用液压缸加速度信息和比例阀的阀芯位移信息,构造同步干扰滑 模估计器;同时,为了进一步抑制双缸同步的跟踪误差,引入同步误差比例前馈项;最终,得到一种复合式液压双缸同步控制方法。
本发明实现为实现发明目的所提出的技术方案是:
一种复合式液压双缸同步控制方法,其步骤如下:
步骤1,选定液压缸实际的位置x i(i=1,2)为系统状态,其中,下标i=1,2分别表示液压缸一和液压缸二下的参数信息,在离线状态下建立液压系统的数学参考模型∑ n
Figure PCTCN2019112858-appb-000001
其中,V n表示液压缸标称的进回油侧总容积,m n表示液压缸标称的负载质量,β n表示液压缸标称的油液有效弹性模量,A n表示液压缸标称的活塞有效面积,C n表示比例阀标称的阀口流量系数,W n表示比例阀标称的阀口面积梯度,P n表示液压油的标称油压,ρ n表示液压油的标称密度,u i为比例阀的阀芯位移,
Figure PCTCN2019112858-appb-000002
x i(t),T i(t))表示液压系统未知的动态;
步骤2,根据液压缸期望的位置信息x r,得到位置偏差信号e xi=x r-x i,构造线性反馈控制器u ni
Figure PCTCN2019112858-appb-000003
其中,[k 1i,k 2i,k 3i] T表示反馈比例增益矩阵,ω c表示反馈控制器的带宽增益;
步骤3,根据液压缸实际的位置x i,得到液压缸实际的加速度
Figure PCTCN2019112858-appb-000004
结合步骤1中建立的数学参考模型,构造同步干扰滑模估计器∑ o
Figure PCTCN2019112858-appb-000005
其中,
Figure PCTCN2019112858-appb-000006
表示液压缸实际加速度信息的估计值,
Figure PCTCN2019112858-appb-000007
表示液压系统未知动态的估计值,[a 0i,a 1i,a 2i] T表示估计器的增益矩阵,L表示估计器的带宽增益;
步骤4,根据步骤3中得到的未知动态估计值
Figure PCTCN2019112858-appb-000008
构造非线性前馈控制器u fi
Figure PCTCN2019112858-appb-000009
其中,k si表示同步误差前馈增益,
Figure PCTCN2019112858-appb-000010
表示液压缸期望的加加速信息;
步骤5,根据步骤2中得到的线性反馈控制器u ni和步骤4中得到的非线性前馈控制器u fi,计算得到设定的阀芯位移u i=u ni+u fi
步骤1中所述液压缸实际的位置信息x i由安装在液压缸上的两个位移传感器获得;
步骤3中所述液压缸实际的加速度
Figure PCTCN2019112858-appb-000011
由微分器实现;
步骤5中所述设定的阀芯位移最终转化为模拟量电流信号输出。
进一步优化方案:为保证闭环系统的稳定性,步骤2中反馈比例增益矩阵[k 1i,k 2i,k 3i] T的选取需使得特征方程λ 3+k 3iλ 2+k 2iλ+k 1i=0的根均在复平面的左半平面内,步骤3中估计器增益矩阵[a 0i,a 1i,a 2i] T的选取需满足矩阵中的各元素均大于零。
通过增大反馈控制器带宽增益ω c,可以提高单个液压缸的位置跟踪误差收敛速度;通过增大估计器的带宽增益L,可以提高液压系统未知动态的估计精度;通过增大同步误差前馈增益k si,可以降低液压双缸的同步跟踪误差。
与现有技术相比,本技术的有益效果如下:
本发明利用液压缸的加速度信息和比例阀的阀芯位移信息,构造同步干扰滑模估计器,对影响同步跟踪精度的因素,如油压和负载波动以及未知的系统动态等不确定性进行精确估计与补偿,与传统的扩张状态观测器(ESO)和扰动观测器(DOB)相比,提高了不确定性估计性能;本发明同时引入干扰前馈补偿项和同步误差补偿项,从本质上提高了液压双缸的同步跟踪精度。
附图说明
图1是本发明复合式液压双缸同步控制方法设计框图。
图2是液压双缸系统的结构示意图。
图3是线性反馈控制器u ni的实现框图。
图4是非线性前馈控制器u fi的实现框图。
图5液压双缸的位置跟踪曲线。其中,图5a是PID控制器液压双缸的位置跟踪曲线;图5b是本发明控制器液压双缸的位置跟踪曲线。
图6是比例阀的阀芯位移曲线。其中,图6a是PID控制器比例阀的阀芯位移曲线;图6b是本发明控制器比例阀的阀芯位移曲线。
图7是双缸同步跟踪误差曲线。
具体实施方式
下面结合实施例和附图,对本发明作进步详细说明。
实施例:本实施例所研究的液压系统标称参数见表1(其中,下标n表示相应参数的标称信息)。
表1
符号 含义 数值
Vn 进回油侧总容积 1.16×10-4m3
mn 负载质量 100kg
β n 油液有效弹性模量 7×108Pa
An 活塞有效面积 1.5×10-3m2
Cn 阀口流量系数 0.8
Wn 阀口面积梯度 0.0628cm
Pn 液压油油压 5×107Pa
ρ n 液压油密度 900kg/m3
Bn 粘性阻尼系数 90N·m·s/rad
Cln 泄漏系数 1×10-12m3/s/Pa
kn 负载弹性刚度 2.1×10-6N/m
图2给出了液压双缸系统的结构示意图。针对上述液压系统设计同步控制器,具体步骤如下:
步骤1,选定液压缸实际的位置x i为系统状态,其中,下标i=1,2分别表示液压缸一和液压缸二下的参数信息,在离线状态下建立液压系统的数学参考模型∑ n
Figure PCTCN2019112858-appb-000012
其中,V n表示液压缸标称的进回油侧总容积,m n表示液压缸标称的负载质量,β n表示液压缸标称的油液有效弹性模量,A n表示液压缸标称的活塞有效面积,C n表示比例阀标称的阀口流量系数,W n表示比例阀标称的阀口面积梯度,P n表示液压油的标称油压,ρ n表示液 压油的标称密度,u i为比例阀的阀芯位移,
Figure PCTCN2019112858-appb-000013
x i(t),T i(t))表示液压系统未知的动态。
步骤2,根据液压缸期望的位置信息x r,得到位置偏差信号e xi=x r-x i,构造线性反馈控制器u ni
Figure PCTCN2019112858-appb-000014
其中,[k 1i,k 2i,k 3i] T表示反馈比例增益矩阵,ω c表示反馈控制器的带宽增益。
步骤3,根据液压缸实际的位置信息x i,得到液压缸实际的加速度信息
Figure PCTCN2019112858-appb-000015
结合步骤1中建立的数学参考模型,构造同步干扰滑模估计器∑ o
Figure PCTCN2019112858-appb-000016
其中,
Figure PCTCN2019112858-appb-000017
表示液压缸实际加速度信息的估计值,
Figure PCTCN2019112858-appb-000018
表示液压系统未知动态的估计值,[a 0i,a 1i,a 2i] T表示估计器的增益矩阵,L表示估计器的带宽增益。
步骤4,根据步骤3中得到的未知动态估计值
Figure PCTCN2019112858-appb-000019
构造非线性前馈控制器u fi
Figure PCTCN2019112858-appb-000020
其中,k si表示同步误差前馈增益,
Figure PCTCN2019112858-appb-000021
表示液压缸期望的加加速信息。
步骤5,根据步骤2中得到的线性反馈控制器u ni和步骤4中得到的非线性前馈控制器u fi,计算得到设定的阀芯位移u i=u ni+u fi
图3和图4分别给出了线性反馈控制器u ni和非线性前馈控制器u fi的具体实现框图。
对上述各步骤,步骤1中液压缸实际的位置信息x i由安装在液压缸上的两个位移传感器获得;步骤3中液压缸实际的加速度信息
Figure PCTCN2019112858-appb-000022
由微分器实现;步骤5中设定的阀芯位移最终转化为模拟量电流信号输出。
为保证闭环系统的稳定性,步骤2中反馈比例增益矩阵[k 1i,k 2i,k 3i] T的选取需使得特征方程λ 3+k 3iλ 2+k 2iλ+k 1i=0的根均在复平面的左半平面内,步骤3中估计器增益矩阵[a 0i,a 1i,a 2i] T的选取需满足矩阵中的各元素均大于零。
另外,本发明所设计的控制器参数调节规则如下:通过增大反馈控制器带宽增益ω c,可以提高单个液压缸的位置跟踪误差收敛速度;通过增大估计器的带宽增益L,可以提高液压系统未知动态的估计精度;通过增大同步误差前馈增益k si,可以降低液压双缸的同步跟踪误差。
为了进一步说明本发明的有效性,设置以下液压双缸系统运行工况:
给定液压缸期望的位置信息x r=5cm;
模型的标称信息存在10%的参数摄动;
油压设定为P=1.1P n+0.1P nsin(4πt),存在小幅的正弦波动;
外部负载干扰设定为
Figure PCTCN2019112858-appb-000023
即在2s时存在负载突变。
根据参数选取原则,结合本实例中液压系统的模型参数,本发明控制参数设置见表2
表2
Figure PCTCN2019112858-appb-000024
同时,为了比较控制方案的有效性,与基于普通的PID控制器方案进行了比较,PID控制器设计为:
Figure PCTCN2019112858-appb-000025
参数选取为:
Figure PCTCN2019112858-appb-000026
k i=10k pT s
Figure PCTCN2019112858-appb-000027
其中T s为控制周期,本发明中设置为1ms。
图5和图6分别给出了液压双缸的位置跟踪曲线和阀芯的位移曲线,图6给出了两种方法下的双缸同步跟踪误差曲线。从试验结果可以看出,本发明提供的高精度复合式液压双缸 同步控制器设计方法可以很好地抑制油压和负载波动对同步跟踪精度带来的影响,并且可以提高液压伺服系统的动态响应性能。

Claims (6)

  1. 一种复合式液压双缸同步控制方法,其步骤如下:
    步骤1,选定液压缸实际的位置x i(i=1,2)为系统状态,其中,下标i=1,2分别表示液压缸一和液压缸二下的参数信息,在离线状态下建立液压系统的数学参考模型∑ n
    Figure PCTCN2019112858-appb-100001
    其中,V n表示液压缸标称的进回油侧总容积,m n表示液压缸标称的负载质量,β n表示液压缸标称的油液有效弹性模量,A n表示液压缸标称的活塞有效面积,C n表示比例阀标称的阀口流量系数,W n表示比例阀标称的阀口面积梯度,P n表示液压油的标称油压,ρ n表示液压油的标称密度,u i为比例阀的阀芯位移,
    Figure PCTCN2019112858-appb-100002
    表示液压系统未知的动态;
    步骤2,根据液压缸期望的位置x r,得到位置偏差信号e xi=x r-x i,构造线性反馈控制器u ni
    Figure PCTCN2019112858-appb-100003
    其中,[k 1i,k 2i,k 3i] T表示反馈比例增益矩阵,ω c表示反馈控制器的带宽增益;
    步骤3,根据液压缸实际的位置x i,得到液压缸实际的加速度
    Figure PCTCN2019112858-appb-100004
    结合步骤1中建立的数学参考模型,构造同步干扰滑模估计器∑ o
    Figure PCTCN2019112858-appb-100005
    其中,
    Figure PCTCN2019112858-appb-100006
    表示液压缸实际加速度信息的估计值,
    Figure PCTCN2019112858-appb-100007
    表示液压系统未知动态的估计值,[a 0i,a 1i,a 2i] T表示估计器的增益矩阵,L表示估计器的带宽增益;
    步骤4,根据步骤3中得到的未知动态估计值
    Figure PCTCN2019112858-appb-100008
    构造非线性前馈控制器u fi
    Figure PCTCN2019112858-appb-100009
    其中,k si表示同步误差前馈增益,
    Figure PCTCN2019112858-appb-100010
    表示液压缸期望的加加速信息;
    步骤5,根据步骤2中得到的线性反馈控制器u ni和步骤4中得到的非线性前馈控制器u fi,计算得到设定的阀芯位移u i=u ni+u fi
  2. 根据权利要求1所述的一种复合式液压双缸同步控制方法,其特征是:步骤1中所述液压缸实际的位置信息x i由安装在液压缸上的位移传感器获得。
  3. 根据权利要求1所述的复合式液压双缸同步控制方法,其特征是:步骤3中所述液压缸实际的加速度
    Figure PCTCN2019112858-appb-100011
    由微分器实现。
  4. 根据权利要求1所述的一种复合式液压双缸同步控制方法,其特征是:步骤5中所述设定的阀芯位移最终转化为模拟量电流信号输出。
  5. 根据权利要求1所述的一种复合式液压双缸同步控制方法,其特征是:步骤2中反馈比例增益矩阵[k 1i,k 2i,k 3i] T的选取条件是,使得特征方程λ 3+k 3iλ 2+k 2iλ+k 1i=0的根均在复平面的左半平面内。
  6. 根据权利要求1所述的一种复合式液压双缸同步控制方法,其特征是:步骤3中估计器增益矩阵[a 0i,a 1i,a 2i] T的选取条件是,满足矩阵中的各元素均大于零。
PCT/CN2019/112858 2019-07-24 2019-10-23 一种复合式液压双缸同步控制方法 WO2021012434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910670327.2A CN110345137B (zh) 2019-07-24 2019-07-24 一种复合式液压双缸同步控制方法
CN201910670327.2 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021012434A1 true WO2021012434A1 (zh) 2021-01-28

Family

ID=68180128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112858 WO2021012434A1 (zh) 2019-07-24 2019-10-23 一种复合式液压双缸同步控制方法

Country Status (2)

Country Link
CN (1) CN110345137B (zh)
WO (1) WO2021012434A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345137B (zh) * 2019-07-24 2020-06-12 南京埃斯顿自动化股份有限公司 一种复合式液压双缸同步控制方法
CN110985457B (zh) * 2019-12-11 2022-04-05 南京工程学院 基于LabVIEW的液压控制系统及其控制方法
CN114294277B (zh) * 2021-12-31 2023-12-19 长江勘测规划设计研究有限责任公司 基于油压调节泄洪闸门启闭用双缸液压启闭机的同步方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040194832A1 (en) * 2001-05-08 2004-10-07 Bendix Commercial Vehicle Systems Llc Dash control valve with two step function for park release
CN101672311A (zh) * 2009-09-24 2010-03-17 中冶赛迪工程技术股份有限公司 一种多液压缸同步控制方法
CN107246418A (zh) * 2017-06-07 2017-10-13 哈尔滨理工大学 间隙联接双缸同步协同运动装置及其互扰解耦补偿控制方法
CN108050116A (zh) * 2017-11-13 2018-05-18 哈尔滨理工大学 并联双非对称缸协同运动位置同步控制及补偿方法
CN108180180A (zh) * 2017-12-13 2018-06-19 哈尔滨理工大学 双液压缸流量补偿同步起竖装置及其控制方法
CN110345137A (zh) * 2019-07-24 2019-10-18 南京埃斯顿自动化股份有限公司 一种复合式液压双缸同步控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454942B2 (ja) * 1994-09-20 2003-10-06 株式会社リコー 位置制御装置
JP3653387B2 (ja) * 1998-03-02 2005-05-25 カヤバ工業株式会社 アクチュエータの制御システム
CN1916787A (zh) * 2005-08-16 2007-02-21 比亚迪股份有限公司 一种用于汽车道路模拟的电液伺服控制系统及方法
CN105005311B (zh) * 2015-07-29 2018-01-30 中国人民解放军海军航空工程学院 一种飞行器俯仰通道攻角同步跟踪控制方法
EP3335082A1 (en) * 2015-08-14 2018-06-20 King Abdullah University Of Science And Technology Robust lyapunov controller for uncertain systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040194832A1 (en) * 2001-05-08 2004-10-07 Bendix Commercial Vehicle Systems Llc Dash control valve with two step function for park release
CN101672311A (zh) * 2009-09-24 2010-03-17 中冶赛迪工程技术股份有限公司 一种多液压缸同步控制方法
CN107246418A (zh) * 2017-06-07 2017-10-13 哈尔滨理工大学 间隙联接双缸同步协同运动装置及其互扰解耦补偿控制方法
CN108050116A (zh) * 2017-11-13 2018-05-18 哈尔滨理工大学 并联双非对称缸协同运动位置同步控制及补偿方法
CN108180180A (zh) * 2017-12-13 2018-06-19 哈尔滨理工大学 双液压缸流量补偿同步起竖装置及其控制方法
CN110345137A (zh) * 2019-07-24 2019-10-18 南京埃斯顿自动化股份有限公司 一种复合式液压双缸同步控制方法

Also Published As

Publication number Publication date
CN110345137B (zh) 2020-06-12
CN110345137A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2021012434A1 (zh) 一种复合式液压双缸同步控制方法
Yang et al. Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection
CN104345638A (zh) 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN111736454B (zh) 双伺服阀电液位置系统的自动控制方法
CN115016261A (zh) 一种柴油机转速串级自抗扰控制系统、柴油机及机车
CN112576562A (zh) 多液压缸交叉耦合同步控制系统及同步控制方法
Liu et al. Angle and force hybrid control method for electrohydraulic leveling system with independent metering
CN113775585A (zh) 一种进出油口独立控制阀及系统
Zhang et al. Synchronous control of double hydraulic cylinders of scissors aerial work platform based on fuzzy PID
CN112476439A (zh) 机器人阀控缸驱动器自适应反馈线性化控制方法及系统
CN115808876A (zh) 发动机尾喷管执行机构自适应控制方法及装置
CN113431816B (zh) 对称不均等的负叠合比例阀控非对称缸系统的控制方法
CN112068447A (zh) 大型装备电液系统高精度鲁棒位置控制方法
CN115236974A (zh) 一种复合抗扰控制器及其控制参数优化方法
Changgao et al. PID Control and Simulation of the Automatic Correcting System for Lorry-mounted Crane Telescopic Boom
CN108723098B (zh) 一种轧机两侧液压伺服系统的位置同步控制方法
CN112949180B (zh) 一种基于hgdob与rbf神经网络的盾构风电回转支承试验台液压加载控制方法
CN202207713U (zh) 用于实现工作辊的弯辊和平衡的双阀联动闭环控制装置
Liu et al. Flow match and precision motion control of asymmetric electro-hydrostatic actuators with complex external force in four-quadrants
Bahrami et al. An energy-saving robust motion control of redundant electro-hydraulic servo systems
CN115111227B (zh) 基于速度和压力反馈的负载口独立解耦控制系统
CN215257047U (zh) 多液压缸耦合同步控制系统
CN109695607A (zh) 一种用于预应力智能张拉设备的泵阀协同控制方法
Chen et al. Synchronism control system of heavy hydraulic press
Liang et al. Frequency analysis and PID controller design for a pump-controlled electrical hydraulic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938712

Country of ref document: EP

Kind code of ref document: A1