WO2021012329A1 - 一种连接线缆和连接器的方法及与连接器连接的线缆 - Google Patents

一种连接线缆和连接器的方法及与连接器连接的线缆 Download PDF

Info

Publication number
WO2021012329A1
WO2021012329A1 PCT/CN2019/100686 CN2019100686W WO2021012329A1 WO 2021012329 A1 WO2021012329 A1 WO 2021012329A1 CN 2019100686 W CN2019100686 W CN 2019100686W WO 2021012329 A1 WO2021012329 A1 WO 2021012329A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
shielding film
electromagnetic shielding
connector
core conductor
Prior art date
Application number
PCT/CN2019/100686
Other languages
English (en)
French (fr)
Inventor
杨天纬
Original Assignee
南昌联能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌联能科技有限公司 filed Critical 南昌联能科技有限公司
Priority to US17/627,813 priority Critical patent/US20220337003A1/en
Priority to EP19938619.4A priority patent/EP4006923A4/en
Publication of WO2021012329A1 publication Critical patent/WO2021012329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6585Shielding material individually surrounding or interposed between mutually spaced contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6592Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6461Means for preventing cross-talk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6598Shield material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/28Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for wire processing before connecting to contact members, not provided for in groups H01R43/02 - H01R43/26

Definitions

  • the present invention relates to the technical field of cable connection, in particular to a method for connecting a cable and a connector to a cable connected to the connector.
  • the core conductor is generally connected to the connector, and then the exposed core is covered by metal braiding, thereby forming the core conductor
  • the electromagnetic shielding layer can only be enhanced by multi-layer braiding. This will increase the diameter of the wrapped cable on the one hand and make the flexibility of the cable worse. On the other hand, it will increase the production cost.
  • the embodiment of the present invention provides a method for connecting a cable and a connector and a cable connected to the connector, which are used to increase the anti-interference force between the core conductors at the connection point of the cable and the connector, thereby improving the belt connector Transmission speed and transmission power of the cable.
  • the first aspect of the embodiments of the present application provides a method for connecting a cable and a connector, and the method includes:
  • the electromagnetic shielding film is used to coat the bare core conductors that perform the connection to effectively reduce signal crosstalk between the cores, the electromagnetic shielding film includes at least a first metal layer, a conductive layer and a protective film;
  • the first metal layer is used to shield electromagnetic interference
  • the conductive layer is disposed on the first metal layer for shielding electromagnetic interference
  • the protective film is arranged on the conductive layer and is used to protect the electromagnetic shielding film.
  • an electromagnetic shielding film to coat the core conductors for connection includes:
  • an electromagnetic shielding film to coat the core conductors for connection includes:
  • the electromagnetic shielding film is used to wrap the core conductor.
  • an electromagnetic shielding film to coat the core conductors for connection includes:
  • the electromagnetic shielding film is wrapped on the outer side of each core conductor in the cable.
  • the method further includes:
  • the electromagnetic shielding film is fixed by a fixing device.
  • the fixing device is tinplate.
  • the second aspect of the embodiments of the present application provides a cable connected to a connector.
  • the cable includes:
  • a connector a bare core conductor connected to the connector
  • the electromagnetic shielding film is used for coating the bare core conductor.
  • the electromagnetic shielding film is wound and covered to the connection between the core conductor and the connector.
  • the electromagnetic shielding film is placed between the paired core conductors in the cable, and the core conductor is wrapped.
  • the electromagnetic shielding film is coated on the outside of each core conductor in the cable.
  • the cable further includes a fixing device for fixing the electromagnetic shielding film.
  • the fixing device is tinplate.
  • the electromagnetic shielding film includes at least a first metal layer, a conductive layer, and a protective film; wherein, the first metal layer is used for shielding electromagnetic interference; the conductive layer is disposed on the first metal layer The upper part is used to shield electromagnetic interference; the protective film is arranged on the conductive layer and is used to protect the electromagnetic shielding film.
  • the connection between the core conductor and the connector is covered by the electromagnetic shielding film, and the first metal layer and the conductive layer in this electromagnetic shielding film serve as the first conductive layer and
  • the second conductive layer not only uses the longitudinal derivation of electromagnetic waves, that is, the longitudinal attenuation of electromagnetic waves, but also the lateral conduction between the first metal layer and the conductive layer forms a loop to guide the electromagnetic waves out, which is also conducive to the lateral attenuation of electromagnetic waves. Thereby improving the anti-interference ability between the cores.
  • FIG. 1 is a schematic diagram of an embodiment of a method for connecting a cable and a connector in an embodiment of the application;
  • FIG. 2 is a detailed step of step 103 in the embodiment of FIG. 1 in the embodiment of this application;
  • FIG. 3A is a schematic diagram of the coating method in the embodiment of FIG. 2;
  • FIG. 3B is a schematic diagram showing a comparison of electromagnetic shielding effects between the cable in the embodiment of FIG. 2 and the cable in the prior art;
  • FIG. 4 is another detailed step of step 103 in the embodiment of FIG. 1 in the embodiment of this application;
  • 5A is a schematic diagram of the coating method in the embodiment of FIG. 4;
  • FIG. 5B is a schematic diagram showing the comparison of electromagnetic shielding effects of the cable in the embodiment of FIG. 4 and the cable in the embodiment of FIG. 2;
  • FIG. 6 is another detailed step of step 103 in the embodiment of FIG. 1 in the embodiment of this application;
  • Fig. 7A is a schematic diagram of the coating method in the embodiment of Fig. 6;
  • FIG. 7B is a schematic diagram showing the comparison of electromagnetic shielding effects of the cable in the embodiment of FIG. 6 and the cable in the embodiment of FIG. 4;
  • FIG. 8 is a schematic diagram of another embodiment of a method for connecting a cable and a connector in an embodiment of the application.
  • FIG. 9 is a schematic diagram of the structure of an electromagnetic shielding film in an embodiment of the application.
  • Figure 10 is a schematic diagram of a cable connected to a connector in an embodiment of the application.
  • 11A is a schematic diagram of the anti-jamming capability comparison between the 24-core industrial control data line using the connection method in this embodiment and the 24-core industrial control data line in the prior art;
  • 11B is a schematic diagram of the anti-interference capability comparison between the HDMI data transmission line using the connection method in this embodiment and the HDMI data transmission line in the prior art;
  • 11C is a schematic diagram of the anti-interference capability of the USB 3.1 data and power transmission line using the connection method in this embodiment and the prior art USB 3.1 data and power transmission line.
  • the embodiment of the present invention provides a method for connecting a cable and a connector and a cable connected to the connector, which are used to increase the anti-interference force between the core conductors at the connection point of the cable and the connector, thereby improving the belt connector Transmission speed and transmission power of the cable.
  • An embodiment of the method for connecting cables and connectors in the embodiments of this application includes:
  • connection method of the core conductor and the connector depends on the connection requirements of the connector. There are no specific restrictions on the connection method.
  • the electromagnetic shielding film at least includes a first metal layer, a conductive layer, and a protective film, wherein the The first metal layer is used for shielding electromagnetic interference; the conductive layer is provided on the first metal layer for shielding electromagnetic interference; the protective film is provided on the conductive layer for shielding the electromagnetic shielding film Provide protection.
  • the bare core is covered by a metal braiding method, because the braided mesh has a low shielding rate, which cannot meet the requirements of high speed and high speed.
  • the electromagnetic shielding film is used to coat the bare core conductors that perform the connection, which effectively reduces the signal crosstalk between the cores, and improves the signal transmission rate and transmission power between the cores. .
  • the electromagnetic shielding film in the embodiment of the present application at least includes a first metal layer A, a conductive layer B and a protective film C.
  • the first metal layer A is composed of at least one of gold, silver, copper, nickel, or aluminum. Because the first metal layer A serves as the first shielding layer, the conductivity requirements are relatively high, so it can be more conductive. Choose from strong metals, such as choosing at least one of gold, silver, copper, nickel, or aluminum, and an alloy of at least two of these metals can also be used.
  • the thickness of the first metal layer A is 3 to 50 microns, and the thickness of the first metal layer is selected according to different wires.
  • the larger the diameter of the wire the thicker the first metal layer is selected.
  • the smaller the wire diameter is, the smaller the thickness of the first metal layer is selected. According to the actual wire diameter, the thickness of the first metal layer can be customized.
  • the conductive layer B is arranged on the first metal layer A and is also used for shielding electromagnetic interference.
  • the conductive layer B includes metal particles and polyurethane.
  • the metal particles play a conductive role
  • the polyurethane serves as a carrier for the metal particles to fix the metal. particle. Because of the positional relationship between the conductive layer B and the first metal layer A, electromagnetic waves can propagate rapidly along the axial direction of the core conductor on the one hand, that is, to achieve longitudinal attenuation of electromagnetic waves, and on the other hand, it can also make electromagnetic waves along the core conductor Radial fast propagation, that is, realize the lateral attenuation of electromagnetic waves, thereby improving the anti-interference ability of the core.
  • the protective film C as the last layer of the electromagnetic shielding film, is arranged on the outer side of the conductive layer B to protect the electromagnetic shielding film.
  • the protective film is generally a wear-resistant, waterproof, and electrical insulation engineering film, such as polyimide PI film, or polypropylene PP film, or polyethylene PE film, or polyethylene terephthalate Ester PET film, the composition of the protective film is not specifically limited here.
  • the electromagnetic shielding film includes at least a first metal layer, a conductive layer, and a protective film; wherein, the first metal layer is used for shielding electromagnetic interference; the conductive layer is disposed on the first metal layer The upper part is used to shield electromagnetic interference; the protective film is arranged on the conductive layer and is used to protect the electromagnetic shielding film.
  • the connection between the core conductor and the connector is covered by the electromagnetic shielding film, and the first metal layer and the conductive layer in this electromagnetic shielding film serve as the first conductive layer and
  • the second conductive layer not only uses the longitudinal derivation of electromagnetic waves, that is, the longitudinal attenuation of electromagnetic waves, but also the lateral conduction between the first metal layer and the conductive layer forms a loop to guide the electromagnetic waves out, which is also conducive to the lateral attenuation of electromagnetic waves. Thereby improving the anti-interference ability between the cores.
  • FIG. 2 is a detailed description of step 103 in the embodiment of FIG. Steps:
  • FIG. 3A shows a schematic diagram of the covering method in the embodiment of FIG. 2. Specifically, when the exposed core conductor is connected to the connector by welding , Then as shown in Figure 3, the electromagnetic shielding film is directly wrapped to the connection between the bare core conductor and the connector, that is, the electromagnetic shielding film is wrapped to the welding point of the core conductor and the connector.
  • the electromagnetic shielding film is respectively covered at the clamping, crimping or plugging position between the core conductor and the connector, so that the electromagnetic The shielding film fully covers the bare core conductors to minimize electromagnetic interference between the cores.
  • FIG. 3B shows the anti-interference ability of the cable in the embodiment of this application and the current situation.
  • a comparative schematic diagram of the anti-interference ability of technical cables where Figure (a) is the anti-interference ability of the cable in the prior art, and Figure (b) is the anti-interference ability of the cable in the embodiment of Figure 2.
  • FIG. 4 is another step 103 in the embodiment of FIG. A detailed step:
  • the electromagnetic shielding film can also be placed in the bare core of the cable. Between the conductors, the specific placement diagram can be seen in Figure 5A, because when the core conductor is connected to the connector, the two sides of the connector are generally symmetrical. In order to more effectively accelerate the attenuation of electromagnetic waves, the electromagnetic shielding film can be placed Between the bare core conductors of the pair in the cable, the core conductors on the same side of the connector accelerate the attenuation of electromagnetic waves in the radial direction and the axial direction, and improve the anti-interference ability of the core.
  • electromagnetic shielding film Place the electromagnetic shielding film between the bare core conductors of the pair of wires in the cable, and then use the electromagnetic shielding film to wrap the core conductors of the two layers of the pair to make the core conductors on the same side of the connector. It is covered by electromagnetic shielding film for one week, which accelerates the radial attenuation and axial attenuation of electromagnetic waves around the core conductor on the same side, and further improves the anti-interference ability of the core conductor.
  • the electromagnetic shielding film in this embodiment may use a film with a thickness thinner than that in the embodiment of FIG. 2 to reduce the diameter of the cable after the furnishing and improve the flexibility of the cable. degree.
  • FIG. 5B shows a comparison diagram of the anti-interference ability of the cable in the embodiment of FIG. 4 and that in the embodiment of FIG. 2 ,
  • Figure (a) is the anti-interference ability of the cable in the embodiment of Figure 2
  • Figure (b) is the anti-interference ability of the cable in the embodiment of Figure 4.
  • FIG. 6 is another step 103 in the embodiment of FIG. A detailed step:
  • the electromagnetic shielding film can also be wrapped on the outside of each core conductor in the cable.
  • the specific coating diagram please refer to Figure 7A. Wrap the outside of each core conductor. Covering the electromagnetic shielding film is equivalent to speeding up the axial attenuation and radial attenuation of electromagnetic waves around each core, thereby further improving the anti-interference ability of the core conductor.
  • the electromagnetic shielding film in this embodiment may use a thinner film than that in the embodiment of FIG. 4, so as to reduce the diameter of the cable after the furnishing and improve the flexibility of the cable. degree.
  • FIG. 7B shows a comparison diagram of the anti-interference ability of the cable in the embodiment of FIG. 6 and that in the embodiment of FIG. 4 ,
  • Figure (a) is the anti-interference ability of the cable in the embodiment of Figure 4
  • Figure (b) is the anti-interference ability of the cable in the embodiment of Figure 6.
  • the method further includes the following steps.
  • the connecting wire in the embodiment of the present application Another embodiment of the cable and connector method includes:
  • the electromagnetic shielding film can also be fixed by a fixing device to ensure the adhesion between the core conductor and the electromagnetic shielding film, so that electromagnetic waves can pass through the electromagnetic shielding
  • the membrane performs fast decay and export.
  • the tinplate fix the electromagnetic shielding film and the core conductor.
  • the tinplate can also be filled with glue and shaped, To increase the reliability of the connection between the tinplate and the electromagnetic shielding film.
  • the fixing method and the fixing device of the electromagnetic shielding film are described in detail, which improves the reliability of the connection between the core conductor and the connector in the embodiment of the present application.
  • a second layer can also be provided between the conductive layer B and the protective film C of the electromagnetic shielding film.
  • the metal layer D is used to assist the conductive layer B to perform shielding. Because the second metal layer D is set between the conductive layer B and the protective film C, it can accelerate the guiding speed of electromagnetic waves and quickly bring the electromagnetic waves out of the cable. Avoid the interference of electromagnetic waves on the core conductor. Therefore, when cables with connectors require higher signal transmission speed or higher transmission power, a second metal layer D can be arranged between the conductive layer B and the protective film C to increase the effect of the second metal layer on electromagnetic waves. Grooming effect, improve the anti-interference ability of the wire core conductor, Figure 9 shows the structure diagram of the electromagnetic shielding film, where A is the first metal layer, B is the conductive layer, D is the second metal layer, and C is the protective film .
  • the thickness of the second metal layer D is from 5 microns to 50 microns. Since the thickness of the second metal layer directly affects the effect of spreading electromagnetic waves, the thickness of the second metal layer can be used according to the anti-interference ability of the cable conductor. Two metal layers.
  • a glue layer E such as water-based hot melt glue, or silk-screen hot melt glue, can also be provided on the outside of the protective film C.
  • a glue layer such as water-based hot melt glue, or silk-screen hot melt glue
  • the glue layer, the glue layer is mainly set according to actual needs, and there is no specific restriction here.
  • the conductive layer of the electromagnetic shielding film in the present application includes metal particles and polyurethane supporting the metal particles, and also includes a certain proportion of curing agent.
  • the curing agent is used to cure the liquid product.
  • the curing agent cures the polyurethane, and the content in the conductive layer is generally 5%-15%.
  • the conductivity of the metal particles in the conductive layer directly affects the derivation and attenuation of electromagnetic waves, so the conductive particles in the conductive layer generally select metal particles with strong conductivity, such as metal particles such as gold, silver, copper, nickel, and aluminum.
  • the mass proportion of metal particles also directly affects the conductive performance of the conductive layer. The larger the mass proportion of metal particles, that is, the denser the metal particles, the stronger the ability to channel electromagnetic waves, and the mass of metal particles The smaller the ratio, the sparser the metal particles, and the weaker the ability to diffuse electromagnetic waves. Therefore, the mass ratio of the metal particles in the conductive layer can be adjusted according to the anti-interference ability required by the core conductor.
  • the metal particles occupy The mass ratio of the conductive layer is 1%-80%, and when the thickness and composition of each layer of the electromagnetic shielding film are the same, the anti-interference ability of the core conductor can reach 40dB-100dB, and the maximum can reach 103dB.
  • An embodiment of the cables in the embodiments of the present application includes:
  • the electromagnetic shielding film is wound and covered to the connection between the core conductor and the connector.
  • the electromagnetic shielding film is placed between the paired core conductors in the cable, and the core conductor is wrapped.
  • the electromagnetic shielding film is coated on the outside of each core conductor in the cable.
  • the cable further includes a fixing device 1004 for fixing the electromagnetic shielding film.
  • the fixing device is tinplate.
  • the cable connected to the connector in the application embodiment is made based on the method described in the embodiments of FIGS. 1 to 8, and the functions of each part and the anti-interference ability of the cable are both Reference can be made to the embodiments in FIG. 1 to FIG. 8, which will not be repeated here.
  • the following is a schematic diagram of the test results of the anti-interference ability of the cable after the cable and the connector are connected using the connection method in this embodiment.
  • Fig. 11A, Fig. 11B and Fig. 11C are the 24-core industrial control data cable, HDMI data transmission cable and USB 3.1 data and power transmission cable connected with the connector, electromagnetic shielding using the connection method in this embodiment. The effect is compared with the shielding effect without the connection method in this embodiment.
  • Figure 11A (a) is the shielding effect diagram of the 24-core industrial control data line without the connection method in this embodiment, and (b) is The shielding effect diagram of the 24-core industrial control data line using the connection method in this embodiment, in which the test data in (a) shows that the line type of the entire test band has obvious jumps, and multiple areas exceed the first standard line (shown by the solid line) ), and the band beyond the second standard line (shown by the dashed line), which is a substandard product, and the test data in (b) shows that the linear jump of the entire test band is obviously stable, and each band is in the first standard line ( Under the solid line), the band that does not exceed the second standard line is a qualified product.
  • FIG. 11B is a shielding effect diagram of an HDMI data transmission line that does not use the connection method in this embodiment
  • (b) is a shielding effect diagram of an HDMI data transmission line that uses the connection method in this embodiment
  • ( a) The test data in the figure shows that the linear jump of the entire test band is obvious, and many areas exceed the standard line, which is a substandard product
  • (b) the test data in the figure shows that the linear jump of the entire test band is stable and does not exceed the standard line. , Is a qualified product.
  • Figure 11C (a) shows the shielding effect of the USB 3.1 data and power transmission line without the connection method in this embodiment, and (b) shows the shielding effect of the USB 3.1 data and power transmission line using the connection method in this embodiment Figure, and (a) the test data in the figure shows that the entire test waveband has obvious linear jumps, and many areas exceed the standard line, which are unqualified products, and (b) the test data in the figure shows that the entire test waveband has stable linear jumps. It is a qualified product if it does not exceed the standard line.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种连接线缆和连接器(1001)的方法及与连接器(1001)连接的线缆,用于提升线缆与连接器(1001)连接处,线芯导体(1002)间的抗干扰力,从而提升带连接器线缆的传输速度及传输功率。实施例方法包括:裸露线缆中预设长度的线芯导体(1002);将所述线芯导体(1002)与连接器(1001)执行连接;利用电磁屏蔽膜(1003)对执行连接的裸露线芯导体(1002)执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜(1003)至少包括第一金属层(A)、导电层(B)及保护膜(C),其中,所述第一金属层(A)用于屏蔽电磁干扰;所述导电层(B)设置于所述第一金属层(A)上,用于屏蔽电磁干扰;所述保护膜(C)设置于所述导电层(B)上,用于对所述电磁屏蔽膜(1003)提供保护。

Description

一种连接线缆和连接器的方法及与连接器连接的线缆
本申请要求于2019年7月22日提交中国专利局、申请号为201910663072.7、发明名称为“一种连接线缆和连接器的方法及与连接器连接的线缆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及线缆连接技术领域,尤其涉及一种连接线缆和连接器的方法与连接器连接的线缆。
背景技术
现有技术中,在对线缆和连接器执行连接时,一般是将线芯导体与连接器执行连接,然后通过金属编织的方式,对裸露的线芯导致执行包覆,从而形成线芯导体的电磁屏蔽层。而这种屏蔽的方式,只能通过多层编织的方式来增强屏蔽,这样一方面会增加包裹后线缆的直径,使得线缆的柔性变差,另一方面还会增加生产成本。
随着5G通信的到来,讯号传输线不仅需要满足高速传输(10Gpbs)的要求,而且在实现终端的快速充电时,还要求充电功率大于100W,而这种高速度和大功率,对线芯之前信号传输的抗干扰力要求较强,而目前这种通过多层编制来实现线芯导体与连接器之间的屏蔽方式,根本满足不了高速及大功率传输的抗干扰要求。
发明内容
本发明实施例提供了一种连接线缆和连接器的方法及与连接器连接的线缆,用于提升线缆与连接器连接处,线芯导体间的抗干扰力,从而提升带连接器线缆的传输速度及传输功率。
本申请实施例第一方面提供了一种连接线缆和连接器的方法,所述方法包括:
裸露线缆中预设长度的线芯导体;
将所述线芯导体与连接器执行连接;
利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜;
其中,所述第一金属层用于屏蔽电磁干扰;
所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;
所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。
优选的,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述电磁屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
优选的,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述电磁屏蔽膜置于所述线缆中对线的线芯导体之间;
利用所述电磁屏蔽膜对所述线芯导体执行缠绕包覆。
优选的,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述电磁屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
优选的,所述方法还包括:
利用固定装置对所述电磁屏蔽膜执行固定。
优选的,所述固定装置为马口铁。
本申请实施例第二方面提供了一种与连接器连接的线缆,采用本申请
实施例第一方面所述的方法制成,所述线缆包括:
连接器,与所述连接器连接的裸露线芯导体;
及电磁屏蔽膜,所述电磁屏蔽膜用于对所述裸露线芯导体执行包覆。
优选的,所述电磁屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
优选的,所述电磁屏蔽膜置于所述线缆中对线的线芯导体之间,对所述线芯导体执行缠绕包覆。
优选的,所述电磁屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
优选的,所述线缆还包括固定装置,用于对所述电磁屏蔽膜执行固定。
优选的,所述固定装置为马口铁。
从以上技术方案可以看出,本发明实施例具有以下优点:
本申请实施例中,裸露线缆中预设长度的线芯导体;将所述线芯导体与连接器执行连接;利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜;其中,所述第一金属层用于屏蔽电磁干扰;所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。因为本申请实施例中,通过电磁屏蔽膜对线芯导体与连接器之间的连接处执行包覆,而这种电磁屏蔽膜中的第一金属层及导电层,分别作为第一导电层及第二导电层,不仅有利用电磁波的纵向导出,即有利用电磁波的纵向衰减,而且第一金属层与导电层之间横向导通,形成回路将电磁波引导出去,也有利于电磁波的横向衰减,从而提升线芯间的抗干扰能力。
附图说明
图1为本申请实施例中连接线缆和连接器的方法的一个实施例示意图;
图2为本申请实施例中图1实施例步骤103步骤的细化步骤;
图3A是图2实施例中包覆方式的示意图;
图3B为图2实施例中的线缆与现有技术中线缆电磁屏蔽效果对比示意图;
图4为本申请实施例中图1实施例步骤103步骤的另一细化步骤;
图5A为图4实施例中包覆方式的示意图;
图5B为图4实施例中的线缆与图2实施例中的线缆电磁屏蔽效果的对比示意图;
图6为本申请实施例中图1实施例步骤103步骤的另一个细化步骤;
图7A为图6实施例中包覆方式的示意图;
图7B为图6实施例中的线缆与图4实施例中的线缆电磁屏蔽效果的对比示意图;
图8为本申请实施例中连接线缆和连接器的方法的另一个实施例示意图;
图9为本申请实施例中电磁屏蔽膜的结构示意图;
图10为本申请实施例中与连接器连接的线缆的示意图;
图11A为采用本实施例中连接方法的24芯工业控制用数据线与现有技术中24芯工业控制用数据线的抗干扰能力对比示意图;
图11B为采用本实施例中连接方法的HDMI数据传输线与现有技术中HDMI数据传输线的抗干扰能力对比示意图;
图11C为采用本实施例中连接方法的USB 3.1数据与电源传输线与现有技术中USB 3.1数据与电源传输线的抗干扰能力对比示意图。
具体实施方式
本发明实施例提供了一种连接线缆和连接器的方法及与连接器连接的线缆,用于提升线缆与连接器连接处,线芯导体间的抗干扰力,从而提升带连接器线缆的传输速度及传输功率。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为方便理解,下面对本申请中的连接线缆及连接器的方法进行描述,请查阅图1,本申请实施例中连接线缆及连接器的方法的一个实施例,包括:
101、裸露线缆中预设长度的线芯导体;
为了实现线缆与连接器之间的电连接,需要裸露出线缆中线芯的导体部分,以将线芯导体与连接器执行连接。
102、将所述线芯导体与连接器执行连接;
在将线芯导体与连接器执行连接时,可以是通过焊接、压合、卡接或插接的方式等,一般线芯导体与连接器的连接方式,取决于连接器的连接要求,此处对连接方式不做具体限制。
103、利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜,其中,所述第一金属层用于屏蔽电磁干扰;所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。
区别于现有技术中,在将线芯导体连接至连接器后,通过金属编织的方式,对裸露的线芯执行包覆,因为编织有网眼,从而导致屏蔽率较低,不能满足高速及高功率传输要求的问题,本申请实施例中利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,有效的降低了线芯间的信号串扰,提升了线芯间的信号传输速率及传输功率。
具体的,本申请实施例中的电磁屏蔽膜至少包括第一金属层A,导电层B及保护膜C。优选的,第一金属层A由金、银、铜、镍或铝中的至少一种构成,因为第一金属层A作为第一层屏蔽层,导电性能要求较高,故可以从导电性能较强的金属中选取,如选择金、银、铜、镍或铝中的至少一种,也可以采用这几种金属中至少两种的合金。
可选的,第一金属层A的厚度为3微米到50微米,且第一金属层的厚度根据不同的线材之间进行选取,线材直径越大,则选取厚度较大的第一金属层,线材直径越小,则选取厚度越小的第一金属层,根据实际线材直径的不同,第一金属层的厚度可以自定义进行设置。
导电层B设置于第一金属层A上,也用于屏蔽电磁干扰,其中,导电层B包括金属粒子和聚氨酯,金属粒子起导电的作用,而聚氨酯作为承载金属粒子的载体,用于固定金属粒子。因为导电层B和第一金属层A的位置关系,使得电磁波一方面可以沿着线芯导体的轴向快速传播,即实现电磁波 的纵向衰减,另一方面还可以使得电磁波沿着线芯导体的径向快速传播,即实现电磁波的横向衰减,从而提升线芯的抗干扰能力。
而保护膜C作为电磁屏蔽膜的最后一层,设置于导电层B的外侧,以用于对电磁屏蔽膜执行保护。优选的,保护膜一般选用耐磨、防水、具有一定电气绝缘性能的工程膜,如聚酰亚胺PI薄膜,或聚丙烯PP薄膜,或聚乙烯PE薄膜,或聚对笨二甲酸乙二醇酯PET薄膜,此处对保护膜的成分不做具体限制。
本申请实施例中,裸露线缆中预设长度的线芯导体;将所述线芯导体与连接器执行连接;利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜;其中,所述第一金属层用于屏蔽电磁干扰;所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。因为本申请实施例中,通过电磁屏蔽膜对线芯导体与连接器之间的连接处执行包覆,而这种电磁屏蔽膜中的第一金属层及导电层,分别作为第一导电层及第二导电层,不仅有利用电磁波的纵向导出,即有利用电磁波的纵向衰减,而且第一金属层与导电层之间横向导通,形成回路将电磁波引导出去,也有利于电磁波的横向衰减,从而提升线芯间的抗干扰能力。
基于图1所述的实施例,下面对利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图2,图2为图1实施例中步骤103的细化步骤:
201、将所述电磁屏蔽膜缠绕包覆至所述裸露线芯导体与所述连接器执行连接的连接处。
为了明示电磁屏蔽膜对裸露线芯导体的包覆方式,图3A给出了图2实施例中包覆方式的示意图,具体的,当裸露的线芯导体通过焊接的方式与连接器执行连接时,则如图3所述,将电磁屏蔽膜直接包覆至裸露线芯导体与所述连接器执行连接的连接处,即将电磁屏蔽膜包覆至线芯导体与连接器的焊接处。
若线芯通过卡接、压合或插接的方式与连接器连接时,则分别将电磁 屏蔽膜包覆至线芯导体与连接器的卡接处、压合处或插接处,使得电磁屏蔽膜对裸露的线芯导体执行充分完全的包覆,以最大化的减少线芯之间的电磁干扰。
为了说明本申请实施例中利用电磁屏蔽膜包覆线芯导体与连接器的连接处,所带来的抗干扰能力的提升,图3B给出了本申请实施例中线缆抗干扰能力与现有技术线缆抗干扰能力的对比示意图,其中,图(a)为现有技术中线缆的抗干扰力,图(b)为图2实施例中的线缆抗干扰力。
基于图1所述的实施例,下面对利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图4,图4为图1实施例中步骤103的另一细化步骤:
401、将所述电磁屏蔽膜置于所述线缆中对线的裸露线芯导体之间;
为了更有效地加速每个线芯周围电磁波的衰减,同时考虑包覆后的线芯直径及生产成本问题,本申请实施例中还可以将电磁屏蔽膜置于线缆中对线的裸露线芯导体之间,具体的,放置示意图可以参阅图5A所示,因为线芯导体在于连接器连接时,一般连接器两边是对称的,而为了更有效的加速电磁波的衰减,可以将电磁屏蔽膜置于线缆中对线的裸露线芯导体之间,从而使得位于连接器同一侧的线芯导体在径向方向上和轴向方向上都加快电磁波的衰减,提升线芯的抗干扰能力。
402、利用所述电磁屏蔽膜对所述裸露线芯导体执行缠绕包覆。
将电磁屏蔽膜置于线缆中对线的裸露线芯导体之间,然后分别利用电磁屏蔽膜对对线两层的线芯导体执行缠绕包覆,使得位于连接器同一侧的线芯导体,一周都被电磁屏蔽膜包覆,从而加快位于同一侧的线芯导体周围电磁波的径向衰减和轴向衰减,也进一步提升了线芯导体的抗干扰力。
优选的,为了减小包覆后线缆的直径,本实施例中的电磁屏蔽膜可以采用厚度比图2实施例中薄的膜,以减小包袱后线缆的直径,提升线缆的柔韧度。
为了说明,图4实施例中包覆方式所带来的抗干扰能力的提升,图5B给出了图4实施例中线缆抗干扰能力与图2实施例中线缆抗干扰能力的对比示意图,其中,图(a)为图2实施例中线缆的抗干扰力,图(b)为图4实 施例中线缆的抗干扰力。
基于图1所述的实施例,下面对利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图6,图6为图1实施例中步骤103的另一细化步骤:
601、将所述电磁屏蔽膜包覆在所述线缆中每根线芯裸露导体的外侧。
为了再进一步提升线芯的抗干扰能力,还可以将电磁屏蔽膜包覆在线缆中每根线芯裸露导体的外侧,具体的包覆示意图请参阅图7A,在每个线芯导体外侧包覆电磁屏蔽膜,相当于加快了每个线芯周围电磁波的轴向衰减和径向衰减,从而更进一步提升了线芯导体的抗干扰能力。
优选的,为了减小包覆后线缆的直径,本实施例中的电磁屏蔽膜可以采用比图4实施例中更薄的膜,以减小包袱后线缆的直径,提升线缆的柔韧度。
为了说明,图6实施例中包覆方式所带来的抗干扰能力的提升,图7B给出了图6实施例中线缆抗干扰能力与图4实施例中线缆抗干扰能力的对比示意图,其中,图(a)为图4实施例中线缆的抗干扰力,图(b)为图6实施例中线缆的抗干扰力。
基于图1至图6所述的实施例,在利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆之后,所述方法还包括以下步骤,请参阅图8,本申请实施例中连接线缆及连接器的方法的另一个实施例,包括:
801、利用固定装置对所述电磁屏蔽膜执行固定。
为了提升电磁屏蔽膜与线芯导体之间的紧实度,还可以利用固定装置对电磁屏蔽膜执行固定,以保证线芯导体与电磁屏蔽膜之间的贴合度,使得电磁波可以通过电磁屏蔽膜执行快速衰减和导出。
优选的,在利用固定装置对电磁屏蔽膜执行固定时,一般优选马口铁对电磁屏蔽膜和线芯导体执行固定,而为了防止马口铁在使用的过程中发生松动,还可以在马口铁中灌胶定型,以增加马口铁与电磁屏蔽膜之间连接的可靠性。
本申请实施例中,对电磁屏蔽膜的固定方式及固定装置进行了详细描述,提升了本申请实施例中线芯导体与连接器连接的可靠性。
需要说明的是,基于图2、图4或图6中相同的包覆方式,为了提升线缆的抗干扰能力,还可以在电磁屏蔽膜的导电层B和保护膜C之间的设置第二金属层D,用于辅助导电层B执行屏蔽,因为在导电层B和保护膜C之间设置了第二金属层D,可以加速电磁波的引导速度,快速将电磁波带出线缆,更好的避免电磁波对线芯导体的干扰。故当带有连接器的线缆需要更高的信号传输速度或更高的传输功率时,可以在导电层B和保护膜C之间设置第二金属层D,增加第二金属层对电磁波的疏导效果,提升线线芯导体的抗干扰能力,图9给出了电磁屏蔽膜的结构示意图,其中,A为第一金属层,B为导电层,D为第二金属层,C为保护膜。
可选的,第二金属层D的厚度为5微米至50微米,由于第二金属层的厚度直接影响对电磁波的疏导效果,故可以根据线缆导体对抗干扰能力的需要,采用不同厚度的第二金属层。
而为了方便电磁屏蔽膜为固定装置之间的连接,还可以在保护膜C的外侧设置胶水层E,如水性热熔胶水,或丝印热熔胶水等,当然如果不需要的话,也可以不设置胶水层,胶水层主要根据实际需求进行设置,此处不做具体限制。
进一步的,本申请中电磁屏蔽膜的导电层除了金属粒子和承载金属粒子的聚氨酯外,还包括一定比例的固化剂,固化剂用于对液态产品进行固化,当聚氨酯制成溶液涂布后,固化剂对聚氨酯进行固化,一般在导电层中的含量为5%-15%。
此外,导电层中金属粒子的导电性直接影响到电磁波的导出和衰减,故导电层中的导电粒子一般选取导电性较强的金属粒子,如金、银、铜、镍、铝等金属粒子,而金属粒子所占的质量比例,也直接影响导电层的导电性能,金属粒子的所占的质量比例越大,即金属粒子越密,对电磁波的疏导能力越强,而金属粒子所占的质量比例越小,即金属粒子越疏,对电磁波的疏导能力越弱,故可以根据线芯导体所需的抗干扰能力,对导电层中金属粒子的质量比率进行调节,优选的,金属粒子所占导电层的质量比率为1%-80%,而在电磁屏蔽膜每层厚度及构成都相同的情况下,线芯导体的抗干扰能力可以达到40dB-100dB,最大时可以达到103dB。
上面对本申请实施例中的连接线缆及连接器的方法进行了描述,下面对本申请实施例中的线缆进行描述,请参阅图10,本申请实施例中线缆的一个实施例,包括:
连接器1001,与连接器连接的线芯导体1002,及电磁屏蔽膜1003,所述电磁屏蔽膜用于对所述线芯导体执行包覆。
优选的,所述电磁屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
优选的,所述电磁屏蔽膜置于所述线缆中对线的线芯导体之间,对所述线芯导体执行缠绕包覆。
优选的,所述电磁屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
优选的,所述线缆还包括固定装置1004,用于对所述电磁屏蔽膜执行固定。
优选的,所述固定装置为马口铁。
需要说明的是,申请实施例中的与连接器连接的线缆,是基于图1至图8实施例中所述的方法而制成,且各部分的作用及线缆的抗干扰能力,都可以参阅图1至图8的实施例,此处不再赘述。
下面是采用本实施例中的连接方法对线缆与连接器执行连接后,对线缆抗干扰能力的测试结果示意图。
如图11所示,图11A、图11B及图11C分别是采用本实施例中连接方法的24芯工业控制用数据线、HDMI数据传输线及USB 3.1数据与电源传输线与连接器连接后,电磁屏蔽效果与未采用本实施例中连接方法的屏蔽效果对比图,图11A中(a)图为未采用本实施例中连接方法的24芯工业控制用数据线的屏蔽效果图,(b)图为采用本实施例中连接方法的24芯工业控制用数据线的屏蔽效果图,其中(a)图的测试数据显示整个测试波段的线型跳动明显,多区域超过第一标准线(实线所示),还有超过第二标准线(虚线所示)的波段,属于不合格产品,而(b)图的测试数据显示整个测试波段的线型跳动明显稳定,各波段均在第一标准线(实线所示)下,没有超过第二标准线的波段,属于合格产品。
其中,图11B中(a)图为未采用本实施例中连接方法的HDMI数据传输 线的屏蔽效果图,(b)图为采用本实施例中连接方法的HDMI数据传输线的屏蔽效果图,且(a)图中测试数据显示整个测试波段的线型跳动明显,多区域超出标准线,属于不合格产品,而(b)图中的测试数据显示整个测试波段的线型跳动稳定,未超过标准线,属于合格产品。
图11C中(a)图为未采用本实施例中连接方法的USB 3.1数据与电源传输线的屏蔽效果图,(b)图为采用本实施例中连接方法的USB 3.1数据与电源传输线的屏蔽效果图,且(a)图中测试数据显示整个测试波段的线型跳动明显,多区域超出标准线,属于不合格产品,而(b)图中的测试数据显示整个测试波段的线型跳动稳定,未超过标准线,属于合格产品。
除上述类别的测试外,采用本发明中连接方法的线缆都可以通过对应线材的测试,此处不再一一列举。
所属领域的技术人可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种连接线缆和连接器的方法,其特征在于,所述方法包括:
    裸露线缆中预设长度的线芯导体;
    将所述线芯导体与连接器执行连接;
    利用电磁屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜;
    其中,所述第一金属层用于屏蔽电磁干扰;
    所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;
    所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。
  2. 根据权利要求1所述的方法,其特征在于,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述电磁屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
  3. 根据权利要求1所述的方法,其特征在于,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述电磁屏蔽膜置于所述线缆中对线的线芯导体之间;
    利用所述电磁屏蔽膜对所述线芯导体执行缠绕包覆。
  4. 根据权利要求1所述的方法,其特征在于,所述利用电磁屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述电磁屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    利用固定装置对所述电磁屏蔽膜执行固定。
  6. 根据权利要求5所述的方法,其特征在于,所述固定装置为马口铁。
  7. 一种与连接器连接的线缆,其特征在于,利用如权利要求1至6中任一项所述的方法制成,所述线缆包括:
    连接器,与所述连接器连接的裸露线芯导体;
    及电磁屏蔽膜,所述电磁屏蔽膜用于对所述裸露线芯导体执行包覆;
    所述电磁屏蔽膜至少包括第一金属层、导电层及保护膜;
    其中,所述第一金属层用于屏蔽电磁干扰;
    所述导电层设置于所述第一金属层上,用于屏蔽电磁干扰;
    所述保护膜设置于所述导电层上,用于对所述电磁屏蔽膜提供保护。
  8. 根据权利要求7所述的线缆,其特征在于,所述电磁屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
  9. 根据权利要求7所述的线缆,其特征在于,所述电磁屏蔽膜置于所述线缆中对线的线芯导体之间,对所述线芯导体执行缠绕包覆。
  10. 根据权利要求7所述的线缆,其特征在于,所述电磁屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
  11. 根据权利要求7至10中任一项所述的线缆,其特征在于,所述线缆还包括固定装置,用于对所述电磁屏蔽膜执行固定。
  12. 根据权利要求11所述的线缆,其特征在于,所述固定装置为马口铁。
PCT/CN2019/100686 2019-07-22 2019-08-15 一种连接线缆和连接器的方法及与连接器连接的线缆 WO2021012329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/627,813 US20220337003A1 (en) 2019-07-22 2019-08-15 Method for connecting cable to connector, and cable connected to connector
EP19938619.4A EP4006923A4 (en) 2019-07-22 2019-08-15 METHOD FOR CONNECTING A CABLE TO A CONNECTOR, AND CABLE CONNECTED TO A CONNECTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910663072.7 2019-07-22
CN201910663072.7A CN110311277A (zh) 2019-07-22 2019-07-22 一种连接线缆和连接器的方法及与连接器连接的线缆

Publications (1)

Publication Number Publication Date
WO2021012329A1 true WO2021012329A1 (zh) 2021-01-28

Family

ID=68081557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100686 WO2021012329A1 (zh) 2019-07-22 2019-08-15 一种连接线缆和连接器的方法及与连接器连接的线缆

Country Status (4)

Country Link
US (1) US20220337003A1 (zh)
EP (1) EP4006923A4 (zh)
CN (1) CN110311277A (zh)
WO (1) WO2021012329A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229695A (ja) * 2002-02-01 2003-08-15 Dainippon Printing Co Ltd 電磁波シールド材、及び電磁波シールド付きフラットケーブル
CN106952678A (zh) * 2017-04-28 2017-07-14 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜
CN207250890U (zh) * 2017-08-14 2018-04-17 维沃移动通信有限公司 一种usb数据线
CN207967535U (zh) * 2018-01-31 2018-10-12 深圳市美信缘实业有限公司 一种保真音频线
CN208753022U (zh) * 2018-09-05 2019-04-16 北科电子科技(苏州)有限公司 一种抗干扰耐腐蚀线缆
CN209993848U (zh) * 2019-07-22 2020-01-24 南昌联能科技有限公司 一种与连接器连接的线缆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525239C2 (sv) * 2002-05-27 2005-01-11 Ericsson Telefon Ab L M Kabel med skärmband
CN2705921Y (zh) * 2004-04-22 2005-06-22 东莞长安乌沙联基电业制品厂 多媒体连接器
DE202010014872U1 (de) * 2010-11-02 2012-02-03 Coninvers Gmbh Elektrisches Verbindungskabel
CN105139923A (zh) * 2015-09-21 2015-12-09 杨天纬 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
CN106531311A (zh) * 2016-12-26 2017-03-22 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229695A (ja) * 2002-02-01 2003-08-15 Dainippon Printing Co Ltd 電磁波シールド材、及び電磁波シールド付きフラットケーブル
CN106952678A (zh) * 2017-04-28 2017-07-14 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜
CN207250890U (zh) * 2017-08-14 2018-04-17 维沃移动通信有限公司 一种usb数据线
CN207967535U (zh) * 2018-01-31 2018-10-12 深圳市美信缘实业有限公司 一种保真音频线
CN208753022U (zh) * 2018-09-05 2019-04-16 北科电子科技(苏州)有限公司 一种抗干扰耐腐蚀线缆
CN209993848U (zh) * 2019-07-22 2020-01-24 南昌联能科技有限公司 一种与连接器连接的线缆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006923A4

Also Published As

Publication number Publication date
CN110311277A (zh) 2019-10-08
EP4006923A4 (en) 2023-07-19
US20220337003A1 (en) 2022-10-20
EP4006923A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
CN202196615U (zh) 光电混合传输线缆
US9934888B2 (en) Cable for differential serial transmission
US11949192B2 (en) HDMI cable
CN208045183U (zh) 芯线组及使用该芯线组的线缆
CN201199464Y (zh) 船用对称式控制低烟无卤信号电缆
JP2009224075A (ja) 通信ケーブルおよび該通信ケーブルの製造方法
CN101834033A (zh) 数据传输电缆
WO2021012329A1 (zh) 一种连接线缆和连接器的方法及与连接器连接的线缆
CN201681664U (zh) 数据传输电缆
WO2021128522A1 (zh) 一种线缆的屏蔽膜及连接线缆和连接器的方法
CN209993848U (zh) 一种与连接器连接的线缆
CN202373377U (zh) 舰船用轻型薄壁绝缘通信电缆
CN210956275U (zh) 一种汽车用高速数据传输电缆
CN203607152U (zh) 一种电话指令电缆
CN108123279A (zh) 一种小直径电缆线束及其制造方法
CN208444657U (zh) 芯线组及使用该芯线组的线缆
CN202839050U (zh) 多芯电缆组件
CN104600533A (zh) 一种电连接器内部导线余量控制方法
CN110473656A (zh) 一种高速数据传输线
CN202720935U (zh) 一种抗电磁干扰屏蔽控制电缆
CN218939269U (zh) 一种柔软耐弯折高频usb3.2线缆
CN214377713U (zh) 数据线、数据线总成以及电子设备
CN213459119U (zh) 一种屏蔽电缆
CN208861720U (zh) 线缆
CN108648874A (zh) 一种双层屏蔽抗干扰信号双芯或四芯线缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938619

Country of ref document: EP

Effective date: 20220222