WO2021128522A1 - 一种线缆的屏蔽膜及连接线缆和连接器的方法 - Google Patents

一种线缆的屏蔽膜及连接线缆和连接器的方法 Download PDF

Info

Publication number
WO2021128522A1
WO2021128522A1 PCT/CN2020/073083 CN2020073083W WO2021128522A1 WO 2021128522 A1 WO2021128522 A1 WO 2021128522A1 CN 2020073083 W CN2020073083 W CN 2020073083W WO 2021128522 A1 WO2021128522 A1 WO 2021128522A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding film
layer
cable
metal layer
absorbing layer
Prior art date
Application number
PCT/CN2020/073083
Other languages
English (en)
French (fr)
Inventor
杨天纬
Original Assignee
南昌联能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌联能科技有限公司 filed Critical 南昌联能科技有限公司
Publication of WO2021128522A1 publication Critical patent/WO2021128522A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0098Shielding materials for shielding electrical cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the invention relates to the technical field of material manufacturing, in particular to a shielding film for cables.
  • a shielding layer is usually added to the wire for shielding treatment.
  • a shielding film has been applied for, including: a first metal layer, a conductive layer and a protective film;
  • the first metal layer covers the outer cover of the conductor, which is used to shield electromagnetic interference and act as a medium;
  • the conductive layer is arranged on the first metal layer for shielding electromagnetic interference
  • the protective film is arranged on the conductive layer for protecting the conductive layer.
  • this structure can effectively shield the electromagnetic interference between cables, but the outermost protective film can only play a weak isolation effect on the electromagnetic interference in the environment, which leads to the environment.
  • the electromagnetic interference in the cable causes certain interference to the signal or power transmission inside the cable.
  • the embodiment of the present invention provides a cable shielding film and a method for connecting a cable and a connector, which are used for absorbing and shielding electromagnetic interference in the environment, so as to improve the shielding performance of the cable shielding film and the signal transmission speed.
  • the first aspect of the embodiments of the present application provides a cable shielding film, including:
  • the metal layer covering the outer cover of the cable conductor, is used as a medium to shield the electromagnetic interference in the cable conductor;
  • a carrier layer arranged between the metal layer and the wave absorbing layer to isolate the metal layer and the wave absorbing layer;
  • the wave absorbing layer is arranged on the carrier layer and is used as a medium to absorb electromagnetic interference in a shielding environment.
  • the shielding film further includes:
  • the glue layer is arranged between the metal layer and the carrier layer for combining the metal layer and the carrier layer, and the glue layer has a thickness of 2 um to 10 um.
  • the metal layer is a thin film composed of at least one of gold, silver, copper, nickel, and aluminum, and the thickness of the metal layer is 3 um to 100 um.
  • the carrier layer is a hybrid resin, and the thickness of the carrier layer is 3 um to 50 um.
  • the wave absorbing layer is composed of at least one of gold, silver, copper, iron, manganese, aluminum, zinc, nickel, carbon, and cobalt, which is fused with graphene and a hybrid resin.
  • the ratio of the metal particles in the wave absorbing layer is 0.5% to 60%, and the ratio of the graphene in the wave absorbing layer is 1% to 50%.
  • the wave-absorbing layer further includes a flame-retardant material.
  • the second aspect of the embodiments of the present application provides a method for connecting a cable and a connector, using the shielding film provided in the first aspect of the embodiments of the present application, and the method includes:
  • the shielding film to coat the bare core conductors that perform the connection to effectively reduce signal crosstalk between the cores, and the shielding film at least includes a metal layer, a carrier layer, and a wave absorbing layer;
  • the metal layer covers the outer cover of the cable conductor to be used as a medium to shield electromagnetic interference in the cable conductor
  • the carrier layer is arranged between the metal layer and the wave absorbing layer to isolate the metal layer and the wave absorbing layer;
  • the wave absorbing layer is arranged on the carrier layer and is used as a medium to absorb electromagnetic interference in a shielding environment.
  • the use of the shielding film to coat the core conductor for the connection includes:
  • the use of the shielding film to coat the core conductor for the connection includes:
  • the wire core conductor is wound and coated with the shielding film.
  • the use of the shielding film to coat the core conductor for the connection includes:
  • the shielding film is wrapped on the outer side of each core conductor in the cable.
  • the method further includes:
  • the shielding film is fixed by a fixing device.
  • the cable shielding film in the embodiment of this application absorbs and conducts electromagnetic interference waves in the environment through the outermost absorbing layer, and the carrier layer arranged between the absorbing layer and the metal layer uses its insulating properties , On the one hand, it isolates the electromagnetic interference waves in the environment, and on the other hand, isolates the electromagnetic interference waves inside the cable, so that external interference and internal interference are isolated from each other without mutual influence, and they are installed outside the cable conductor.
  • the upper metal layer makes the electromagnetic interference wave inside the cable form a closed conduction structure between the metal layer and the cable conductor to facilitate the rapid transmission of the electromagnetic interference wave inside the cable. Therefore, the cable shielding film in this application is more present As far as the cable shielding film in the technology is concerned, it can absorb and shield electromagnetic interference in the environment, and improve the shielding performance of the cable shielding film and the transmission speed of the signal.
  • Fig. 1 is a schematic diagram of an embodiment of a cable shielding film in an embodiment of the application
  • Figure 2 is a schematic diagram of two types of interference in an embodiment of this application.
  • 3A is an effect diagram of a shielding experiment in the prior art (old structure) in an embodiment of the application;
  • FIG. 3B is a shielding experiment effect diagram of the present invention (new structure) in an embodiment of the application.
  • FIG. 4 is a comparison diagram of the experimental effects of the shielding film in the prior art and the shielding film in this application;
  • Fig. 5 is a schematic diagram of another embodiment of the cable shielding film in the embodiment of the application.
  • FIG. 6 is a schematic diagram of an embodiment of a method for connecting cables and connectors in an embodiment of the application
  • FIG. 7 is a detailed step of step 603 in the embodiment of FIG. 6 in the embodiment of this application.
  • Fig. 8 is a schematic diagram of the coating method in the embodiment of Fig. 7;
  • FIG. 9 is another detailed step of step 603 in the embodiment of FIG. 6 in the embodiment of this application.
  • Fig. 10 is a schematic diagram of the coating method in the embodiment of Fig. 9;
  • FIG. 11 is another detailed step of step 603 in the embodiment of FIG. 6 in the embodiment of this application.
  • Fig. 12 is a schematic diagram of the coating method in the embodiment of Fig. 11;
  • FIG. 13 is a schematic diagram of another embodiment of a method for connecting cables and connectors in an embodiment of the application.
  • the embodiment of the present invention provides a cable shielding film and a method for connecting a cable and a connector, which are used to improve the shielding performance of the cable shielding film and increase the signal transmission speed.
  • CN106952678B patent has provided a cable shielding film, including: a first metal layer, a conductive layer and a protective film;
  • the first metal layer covers the outer cover of the conductor, which is used to shield electromagnetic interference and act as a medium;
  • the conductive layer is arranged on the first metal layer for shielding electromagnetic interference
  • the protective film is arranged on the conductive layer for protecting the conductive layer.
  • a spiral ring-shaped electromagnetic interference wave is formed around the cable for transmission, and the first metal layer arranged on the outer cover of the conductor can shield the electromagnetic interference wave , So that the electromagnetic interference wave is transmitted along the direction of the cable conductor, but the conductive layer arranged on the first metal layer has a certain absorption effect on the electromagnetic interference wave inside the cable, thereby destroying the electromagnetic interference wave inside the cable
  • the ring structure is not conducive to the transmission of electromagnetic interference waves in the conductor direction;
  • the protective film set on the outermost layer is generally an engineering plastic film, such as polypropylene PP film, polyvinyl chloride PVC film, which can only play a weak isolation effect on electromagnetic interference in the environment, resulting in electromagnetic interference in the environment. Interference has a certain impact on the cable conductors, so that the signal transmission in the cable conductor is subject to certain interference.
  • engineering plastic film such as polypropylene PP film, polyvinyl chloride PVC film
  • this application proposes a cable shielding film.
  • it is used to reduce and shield the electromagnetic interference in the environment, and on the other hand, it protects the ring structure of the electromagnetic interference wave inside the cable, so that the electromagnetic interference inside the cable is The wave propagates in the direction of the conductor, and finally is output along the ground wire inside the cable.
  • An embodiment of the cable shielding film in the present application includes:
  • the metal layer 101 covers the outer cover of the cable conductor to be used as a medium to shield the electromagnetic interference in the cable conductor;
  • the carrier layer 102 is disposed between the metal layer and the wave absorbing layer to isolate the metal layer and the wave absorbing layer;
  • the wave absorbing layer 103 is arranged on the carrier layer and used as a medium to absorb and shield electromagnetic interference in the environment.
  • the metal layer 101 not only shields the electronic interference waves inside the cable, but also serves as a medium for auxiliary current or signal transmission in the cable.
  • electromagnetic interference from different sources.
  • One is the spiral-shaped electromagnetic interference wave formed along the cable direction that interferes with the outside world, also known as conducted interference.
  • the other is electromagnetic waves from the atmospheric environment that interfere with the current or the signal itself, also known as radiated interference.
  • Figure 2 shows a schematic diagram of these two types of interference.
  • radiated interference is divided into different types according to the interference source and interference frequency.
  • Table 1 shows the classification table of radiated interference.
  • Interference source Interference frequency band Very low interference source Below 30HZ Power frequency and audio interference sources 50HZ and its harmonics Carrier frequency interference source 10K ⁇ 300KHZ Radio frequency and video interference sources 300KHZ Microwave interference source 300MHZ ⁇ 100GHZ
  • the cable shielding film in the embodiment of the present application is provided with an absorbing layer on the outermost side, which absorbs electromagnetic interference waves in the environment on the one hand, and on the other
  • the interference wave is smoothed and propagated, so that the electromagnetic interference wave in the environment is transmitted along the wave absorbing layer.
  • a carrier layer is set between the wave absorbing layer and the metal layer to protect the wave absorbing layer. Isolate it from the metal layer, and at the same time isolate the electromagnetic interference waves in the environment and cables to avoid the influence of electromagnetic interference waves in the environment on the current or transmission signals in the cable.
  • the absorbing layer contains at least one of gold, silver, copper, iron, manganese, aluminum, zinc, nickel, carbon, and cobalt, and may also include An alloy composed of the above-mentioned multiple metals.
  • graphene in order to increase the conduction effect of the absorbing layer, graphene can also be added to the absorbing layer, and in order to carry metal particles and graphene molecules, a hybrid resin can be added to the absorbing layer because of the flexibility and flexibility of the hybrid resin. Toughness, making the shielding film have strong flexibility and toughness after the production is completed, and meet the tightness requirements for the cable coating.
  • the hybrid resin when the hybrid resin is combined with metal particles and graphene molecules, It can also enhance the uniformity of the distribution of metal particles and graphene molecules, so that electromagnetic waves in the atmospheric environment can be quickly absorbed and conducted.
  • a carrier layer is provided between the wave-absorbing layer and the metal layer.
  • the carrier layer is composed of a hybrid resin, such as polypropylene PP, polyester resin PET, polyvinyl chloride PVC or Any one or more of ABS resins, because of the insulating properties of the hybrid resin, prevents electromagnetic interference waves in the environment from passing through the carrier layer and reaching the metal layer, thereby isolating electromagnetic interference waves in the environment.
  • the wave-absorbing layer absorbs and conducts electromagnetic interference waves in the environment, and the carrier layer isolates the electromagnetic interference waves, and the two cooperate with each other to interfere with the electromagnetic interference in the environment.
  • the wave plays a very good shielding effect.
  • the electromagnetic interference wave generated by the inner conductor of the cable when transmitting a signal or current that is, the conductive interference wave
  • it is mainly absorbed and conducted by the metal layer provided on the outside of the cable, and in order to enhance the metal layer
  • Conductivity The conductive particles in the metal layer are selected from metals with strong conductivity, such as at least one of gold, silver, copper, nickel, and aluminum. Of course, they can also be alloys composed of multiple metals.
  • a spiral ring-shaped electromagnetic interference wave will be formed around the cable conductor, and the metal layer provided on the outer cover of the conductor, because of its shielding performance, makes the electromagnetic interference inside the cable Interference waves are conducted along the metal layer, and the carrier layer provided on the metal layer, because of its insulation properties, can also isolate the electromagnetic interference waves inside the cable, so that the electromagnetic interference waves inside the cable are on the metal layer and the wire.
  • a closed conduction structure is formed between the cable conductors to facilitate the conduction of electromagnetic interference waves inside the cable.
  • the cable shielding film in the embodiment of the present application absorbs and conducts electromagnetic interference waves in the environment through the absorbing layer provided in the outermost layer, and is arranged on the carrier layer between the absorbing layer and the metal layer. Using its insulation performance, on the one hand, it isolates the electromagnetic interference waves in the environment, and on the other hand, isolates the electromagnetic interference waves inside the cable, so that external interference and internal interference are isolated from each other without mutual influence, and set in the line
  • the metal layer on the outer jacket of the cable conductor makes the electromagnetic interference wave inside the cable form a closed conduction structure between the metal layer and the cable conductor to facilitate the rapid transmission of the electromagnetic interference wave inside the cable. Therefore, the cable in this application Compared with the cable shielding film in the prior art, the shielding film has improved shielding performance, which is more conducive to signal transmission.
  • FIGs. 3A, 3B and 4 show comparison diagrams of the experimental effects of the shielding film in the prior art and the shielding film in this application.
  • the shielding film (old structure) in the prior art has many fluctuation points between 30-1000MHZ during the experiment, and the maximum fluctuation point has exceeded the standard set by the experiment.
  • the shielding film (new structure) in this application is between 30-1000MHZ. Not only does it have fewer fluctuation points, but there is also a distance between the largest fluctuation point and the standard line set in the experiment. Therefore, the shielding film in the present application has a greater improvement in shielding effect than the shielding film in the prior art.
  • the shielding film (new structure) in this application is between 30-40000 Hz, which has a significantly larger shielding value than the shielding film (old structure) in the prior art.
  • the cable shielding film in this application is composed of a three-layer structure superimposed, the final shielding film still looks like a one-layer film structure in appearance, and it can be cut into various widths according to application requirements.
  • the shielding film to adapt to the different needs of the wire.
  • the thickness of the metal layer is 3um-100um, where the thickness of the metal layer can be determined according to wires of different diameters. The larger the diameter of the wire, the thicker metal layer can be selected. The smaller the diameter of the wire, the thickness can be selected. The smaller metal layer varies according to the actual wire material, and there is no specific limitation here.
  • the thickness of the carrier layer is 3um-50um.
  • the thickness of the carrier layer mainly depends on the applicable environment of the cable and the resin material selected for the carrier layer. When the cable is suitable for indoor environment, it is more affected by the environmental climate. When the cable is suitable for outdoor environment, because it is greatly affected by the environment and climate, you need to choose a thicker material thickness; in addition, when the carrier layer is selected with a stronger resin material For extreme performance, a thinner material thickness can be selected, and when the resin material selected for the carrier layer has weaker insulating properties, a thicker material thickness can be selected.
  • the thickness of the carrier layer can be set according to actual needs. There are no specific restrictions here.
  • the resin material in the carrier layer may be at least one of polypropylene PP, polyester resin PET, polyvinyl chloride PVC, and ABS resin.
  • the thickness of the absorbing layer is 3um to 200um.
  • the thickness of the absorbing layer mainly considers two factors. One is the diameter of the wire. The diameter of the wire is different, and the thickness of the thin absorbing layer is also different. Thin wires can be made thinner, while for wires with larger diameters, in order to ensure the reliability of the wires, a thicker absorber layer is required; the other is the ability to absorb and conduct electromagnetic waves in the environment.
  • the wire with strong absorption and conductivity can be used with a thicker absorbing layer, because the thicker the absorbing layer, the larger the corresponding cross-section, and the metal particles and graphite contained
  • the weaker the absorption and conduction capacity, in actual situations, the thickness of the absorbing layer can be set differently according to actual needs, and there is no specific limitation here.
  • the metal particles in the absorbing layer include at least one of gold, silver, copper, iron, manganese, aluminum, zinc, nickel, carbon, and cobalt.
  • the metal particles in the absorbing layer are composed of two or more When composed of metal particles, it can also broaden the shielding bandwidth of electromagnetic interference waves, and overcome the limitation of electromagnetic shielding of single metal particles.
  • the mass ratio of metal particles in the absorbing layer is 0.5% to 60%, and the ratio of graphene in the absorbing layer is 1% to 50%.
  • the mass ratio of metal particles and graphene molecules are in the absorbing layer, If the mass ratio of is too large, it will affect the viscosity of the mixed resin, resulting in insufficient adhesion between the shielding film structure layers.
  • epoxy resin can be added to the absorber layer to improve the insufficient viscosity after adding metal particles and graphene molecules
  • the number of metal particles does not affect the viscosity of the mixed resin, it is not necessary to add epoxy resin.
  • a flame retardant can be added to the wave-absorbing layer.
  • a certain flame-retardant can also be added to the wave-absorbing layer to achieve a flame-resistant effect.
  • the flame retardant is in The mass ratio in the absorbing layer is 3%-15%.
  • a glue layer 104 may also be provided between the metal layer and the carrier layer for bonding the metal layer and the carrier layer, wherein, Figure 5 shows the structure of the cable shielding film containing the glue layer.
  • An embodiment of the method of and the connector includes:
  • connection method of the core conductor and the connector depends on the connection requirements of the connector, here There are no specific restrictions on the connection method.
  • the shielding film at least includes a metal layer, a carrier layer, and a wave absorbing layer; wherein the metal layer covers The outer cover of the cable conductor is used as a medium to shield the electromagnetic interference in the cable conductor; the carrier layer is arranged between the metal layer and the wave-absorbing layer to protect the metal layer and the absorbing layer.
  • the wave layer is isolated; the wave absorbing layer is arranged on the carrier layer and is used as a medium to absorb electromagnetic interference in a shielding environment.
  • the bare wire core is covered by a metal braiding method. Because the braided mesh has a low shielding rate, it cannot meet the requirements of high speed and high speed.
  • the shielding film is used to coat the bare core conductors that perform the connection, which effectively reduces the signal crosstalk between the cores, and improves the signal transmission rate and transmission power between the cores.
  • FIG. 7 is a refinement of step 603 in the embodiment of FIG. 6 step:
  • FIG. 8 shows a schematic diagram of the coating method in the embodiment of FIG. 7. Specifically, when the exposed core conductor is connected to the connector by welding, As shown in FIG. 8, the shielding film is directly wrapped to the connection between the bare core conductor and the connector, that is, the shielding film is wrapped to the welding point of the core conductor and the connector.
  • the shielding film shall be wrapped to the clamping, crimping or insertion position of the core conductor and the connector, so that the shielding film Fully and completely cover the bare core conductors to minimize electromagnetic interference between cores.
  • FIG. 9 is another step 603 in the embodiment of FIG. 6 Refinement steps:
  • the shielding film can also be placed on the bare core conductor of the cable.
  • the specific placement diagram can be seen in Figure 10 because when the core conductor is connected to the connector, the two sides of the connector are generally symmetrical, and in order to more effectively accelerate the attenuation of electromagnetic waves, the shielding film can be placed between the bare core conductors of the pair of wires in the cable, the core conductors on the same side of the connector accelerate the attenuation of electromagnetic waves in the radial direction and improve the anti-interference ability of the core.
  • the shielding film in this embodiment may be a thinner film than that in the embodiment of FIG. 7 to reduce the diameter of the cable after the furnishing and improve the flexibility of the cable. .
  • FIG. 10 is another detail of step 603 in the embodiment of FIG. Steps:
  • the shielding film is equivalent to speeding up the radial attenuation of electromagnetic waves around each core, and at the same time enhancing the anti-interference ability of each core conductor against electromagnetic interference waves in the environment.
  • the shielding film in this embodiment may be a thinner film than that in the embodiment of FIG. 9 to reduce the diameter of the cable after the furnishing and improve the flexibility of the cable. .
  • the method further includes the following steps. Please refer to FIG. 13 for connecting cables in the embodiments of the present application. And another embodiment of the method of the connector includes:
  • the fixing device 1301 can also be used to fix the shielding film to ensure the adhesion between the core conductor and the shielding film, so that electromagnetic waves can be quickly performed through the shielding film. Attenuation and export.
  • the tinplate fix the shielding film and the core conductor.
  • the tinplate can also be filled with glue and shaped to increase The reliability of the connection between the tinplate and the shielding film.
  • the fixing method and the fixing device of the shielding film are described in detail, which improves the reliability of the connection between the core conductor and the connector in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

一种线缆的屏蔽膜,用于吸收及屏蔽环境中的电磁干扰,以提升线缆屏蔽膜的屏蔽性能和信号的传输速度。该线缆屏蔽膜,包括:金属层(101),覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;载体层(102),设置于该金属层(101)与吸波层(103)之间,以将该金属层(101)和该吸波层(103)进行隔离;吸波层(103),设置于该载体层(102)上,用于作为介质吸收屏蔽环境中的电磁干扰。

Description

一种线缆的屏蔽膜及连接线缆和连接器的方法
本申请要求于2019年12月27日提交中国专利局、申请号为201911382831.9、发明名称为“一种线缆的屏蔽膜及连接线缆和连接器的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及材料制造技术领域,尤其涉及一种线缆的屏蔽膜。
背景技术
在具有信号传输线和/或电源传输的线缆生产行业,为了减小阻抗、衰减、防止信号的干扰及信号内部传输时的损耗,通常会对线材添加屏蔽层进行屏蔽处理。
在专利号为CN106952678B的专利中,已经申请了一种屏蔽膜,包括:第一金属层、导电层及保护膜;
其中,第一金属层覆盖在导体的外被上,用于屏蔽电磁干扰并作为介质;
导电层设置于第一金属层上,用于屏蔽电磁干扰;
保护膜设置于导电层上,用于对导电层进行保护。
但在实际应用中,发现该结构能对线缆间的电磁干扰起到很好的屏蔽作用,但最外层的保护膜对环境中的电磁干扰只能起到微弱的隔离作用,从而导致环境中的电磁干扰对线缆内部的信号或电源传输造成一定的干扰,而对于信号高速传输的5G时代,如何减弱及屏蔽环境中的电磁干扰也成为亟待解决的一个问题。
发明内容
本发明实施例提供了一种线缆的屏蔽膜及连接线缆和连接器的方法,用于吸收及屏蔽环境中的电磁干扰,以提升线缆屏蔽膜的屏蔽性能和信号的传输速度。
本申请实施例第一方面提供了一种线缆的屏蔽膜,包括:
金属层,覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;
载体层,设置于所述金属层与吸波层之间,以将所述金属层和所述吸波层进行隔离;
吸波层,设置于所述载体层上,用于作为介质吸收屏蔽环境中的电磁干扰。
优选的,所述屏蔽膜还包括:
胶水层,设置于所述金属层和载体层之间,以用于将所述金属层和所述载体层相结合,所述胶水层的厚度为2um至10um。
优选的,所述金属层为由金、银、铜、镍及铝中的至少一种所构成的薄膜,所述金属层的厚度为3um至100um。
优选的,所述载体层为混合型树脂,所述载体层的厚度为3um至50um。
优选的,所述吸波层由金、银、铜、铁、锰、铝、锌、镍、碳、钴中的至少一种,与石墨烯及混合型树脂相融合而组成。
优选的,所述金属粒子在所述吸波层中的比率为0.5%至60%,所述石墨烯在所述吸波层中的比率为1%至50%。
优选的,所述吸波层还包括阻燃材料。
本申请实施例第二方面提供了一种连接线缆和连接器的方法,利用本申请实施例第一方面提供的屏蔽膜,所述方法包括:
裸露线缆中预设长度的线芯导体;
将所述线芯导体与连接器执行连接;
利用所述屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述屏蔽膜至少包括金属层、载体层及吸波层;
其中,所述金属层覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;
所述载体层设置于所述金属层与吸波层之间,以将所述金属层和所述吸波层进行隔离;
所述吸波层设置于所述载体层上,用于作为介质吸收屏蔽环境中的电磁干扰。
优选的,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
优选的,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述屏蔽膜置于所述线缆中对线的线芯导体之间;
利用所述屏蔽膜对所述线芯导体执行缠绕包覆。
优选的,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
将所述屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
优选的,所述方法还包括:
利用固定装置对所述屏蔽膜执行固定。
从以上技术方案可以看出,本发明实施例具有以下优点:
本申请实施例中的线缆屏蔽膜,通过最外层设置的吸波层对环境中的电磁干扰波进行吸收及传导,设置于吸波层和金属层之间的载体层,利用其绝缘性能,一方面对环境中的电磁干扰波进行隔离,另一方面对线缆内部的电磁干扰波进行隔离,使得外部干扰和内部干扰之间相互隔离而不相互影响,而设置于线缆导体外被上的金属层,使得线缆内部的电磁干扰波在金属层和线缆导体间形成封闭的传导结构,以利于线缆内部电磁干扰波的快速传导,故本申请中的线缆屏蔽膜较现有技术中的线缆屏蔽膜而言,能够吸收及屏蔽环境中的电磁干扰,提升了线缆屏蔽膜的屏蔽性能和信号的传输速度。
附图说明
图1为本申请实施例中线缆屏蔽膜的一个实施例示意图;
图2为本申请实施例中两种干扰的示意图;
图3A为本申请实施例中现有技术中(旧结构)的屏蔽实验效果图;
图3B为本申请实施例中本发明(新结构)的屏蔽实验效果图;
图4为现有技术中屏蔽膜与本申请中屏蔽膜实验效果的比较图;
图5为本申请实施例中线缆屏蔽膜的另一个实施例示意图;
图6为本申请实施例中连接线缆及连接器的方法的一个实施例示意图;
图7为本申请实施例中图6实施例中步骤603的细化步骤;
图8为图7实施例中包覆方式的示意图;
图9为本申请实施例中图6实施例中步骤603的另一个细化步骤;
图10为图9实施例中包覆方式的示意图;
图11为本申请实施例中图6实施例中步骤603的另一个细化步骤;
图12为图11实施例中包覆方式的示意图;
图13为本申请实施例中连接线缆及连接器的方法的另一个实施例示意图。
具体实施方式
本发明实施例提供了一种线缆的屏蔽膜及连接线缆和连接器的方法,用于提升线缆屏蔽膜的屏蔽性能,提升信号的传输速度。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现有技术中,CN106952678B专利已经提供了一种线缆屏蔽膜,包括:第一金属层、导电层及保护膜;
其中,第一金属层覆盖在导体的外被上,用于屏蔽电磁干扰并作为介质;
导电层设置于第一金属层上,用于屏蔽电磁干扰;
保护膜设置于导电层上,用于对导电层进行保护。
研究发现,该类型的线缆屏蔽膜虽然可以对线缆内部的电磁干扰起到较强的屏蔽作用,但该类型的屏蔽膜在屏蔽的过程中却有很明显的缺点:
一、信号或电流在线缆中传输时,会在线缆周围形成螺旋形的环状电磁干扰波进行传输,而设置于导体外被上的第一金属层,虽然可以对电磁干扰波进行屏蔽,从而使得电磁干扰波沿着线缆导体的方向进行传输,但设置于第一金属层上的导电层对线缆内部的电磁干扰波有一定的吸收作用,从而破坏了线缆内部电磁干扰波的环状结构,不利于电磁干扰波在导体方向的传输;
二、设置于最外层的保护膜,一般为工程塑料膜,如聚丙烯PP膜,聚氯乙烯PVC膜,对环境中的电磁干扰只能起到微弱的隔离作用,从而导致环境中的电磁干扰对线缆导体造成一定的影响,使得信号在线缆导体内的传输受到一定的干扰。
基于该问题,本申请提出了一种线缆屏蔽膜,一方面用于减弱及屏蔽环境中的电磁干扰,另一方面保护线缆内部电磁干扰波的环状结构,使得线缆内部的电磁干扰波沿着导体方向传输,最后沿着线缆内部的地线进行输出。
下面对本申请中的线缆屏蔽膜进行描述,请参阅图1,本申请中线缆屏蔽膜的一个实施例,包括:
金属层101,覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;
载体层102,设置于所述金属层与吸波层之间,以将所述金属层和所述吸波层进行隔离;
吸波层103,设置于所述载体层上,用于作为介质吸收及屏蔽环境中的电磁干扰。
其中,金属层101在对线缆内部的电子干扰波进行屏蔽的同时,还可以作为辅助线缆中电流或信号传输的介质。
一般地,电流或信号在传输的过程中,会有不同来源的电磁干扰,一种是沿着线缆方向上形成的对外界进行干扰的螺旋形环状电磁干扰波,也称作传导型干扰;另一种是来自大气环境中对电流或信号本身进行干扰的电磁波,也称作辐射型干扰。
为方便理解,图2给出了这两种干扰的示意图。其中,辐射型干扰又根 据干扰源及干扰频率的不同,分为不同的种类,表1给出了辐射型干扰的分类表。
表1
干扰源 干扰频段
甚低干扰源 30HZ以下
工频与音频干扰源 50HZ及其谐波
载频干扰源 10K~300KHZ
射频及视频干扰源 300KHZ
微波干扰源 300MHZ~100GHZ
为了减少并屏蔽掉环境中的电磁干扰,本申请实施例中的线缆屏蔽膜,在最外侧设置吸波层,一方面对环境中的电磁干扰波进行吸收,另一方面对环境中的电磁干扰波进行疏导传播,使得环境中的电磁干扰波沿着吸波层进行传输,而为了进一步隔离环境中的电磁干扰波,在吸波层和金属层之间设置载体层,以对吸波层和金属层进行隔离,同时对环境中及电缆中的电磁干扰波进行隔离,以避免环境中电磁干扰波对电缆中电流或传输信号的影响。
优选的,因为吸波层对电磁干扰波的吸收及传导作用,吸波层至少包含金、银、铜、铁、锰、铝、锌、镍、碳、钴中的至少一种,也可以包括由上述多种金属组成的合金。
另外,为了增加吸波层的传导作用,还可以在吸波层中加入石墨烯,而为了承载金属粒子和石墨烯分子,可以在吸波层中加入混合型树脂,因为混合型树脂的柔性及韧性,使得屏蔽膜在制作完成后,具有较强的柔软性及韧性,达到对线缆包覆时对紧实度的要求,另一方面混合型树脂在与金属粒子及石墨烯分子结合时,还可以增强金属粒子及石墨烯分子分布的均匀性,使得大气环境中的电磁波可以被快速地吸收及传导。
而为了对环境中的电磁干扰波进行隔离,在吸波层和金属层之间设置有载体层,其中,载体层由混合型树脂组成,如聚丙烯PP、涤纶树脂PET、聚氯乙烯PVC或ABS树脂中的任意一种或多种,因为混合型树脂的绝缘性能,使得环境中的电磁干扰波无法穿过载体层,到达金属层,从而起到对环境中电磁干扰波的隔离作用。
上面所描述的吸波层和载体层,其中,吸波层对环境中的电磁干扰波进行吸收传导,载体层对电磁干扰波进行隔离,两者之间相互配合,从而对环境中的电磁干扰波起到很好的屏蔽作用。
而对于线缆内部导体在传输信号或电流时,所产生的电磁干扰波,即传导性干扰波,则主要通过在线缆外被上设置的金属层进行吸收及传导,而为了增强金属层的传导性能,金属层中的导电粒子从导电性能较强的金属中选取,如金、银、铜、镍及铝中的至少一种,当然也可以是上述多种金属组成的合金。
当线缆中的电流或信号在传输时,在线缆导体周围会形成螺旋形的环状电磁干扰波,而设置于导体外被上的金属层,因为其屏蔽性能,使得线缆内部的电磁干扰波沿着金属层进行传导,而设置在金属层上的载体层,因为其绝缘性能,也能对线缆内部的电磁干扰波进行隔离,使得线缆内部的电磁干扰波在金属层和线缆导体之间形成封闭的传导结构,以利于线缆内部电磁干扰波的传导。
由此可知,本申请实施例中的线缆屏蔽膜,通过最外层设置的吸波层对环境中的电磁干扰波进行吸收及传导,设置于吸波层和金属层之间的载体层,利用其绝缘性能,一方面对环境中的电磁干扰波进行隔离,另一方面对线缆内部的电磁干扰波进行隔离,使得外部干扰和内部干扰之间相互隔离而不相互影响,而设置于线缆导体外被上的金属层,使得线缆内部的电磁干扰波在金属层和线缆导体间形成封闭的传导结构,以利于线缆内部电磁干扰波的快速传导,故本申请中的线缆屏蔽膜较现有技术中的线缆屏蔽膜而言,屏蔽性能有所提升,更有利于信号的传输。
为方便说明,图3A、3B及图4给出了现有技术中屏蔽膜与本申请中屏蔽膜实验效果的比较图。
明显可知,在图3A中,现有技术中的屏蔽膜(旧结构)在实验过程中,在30-1000MHZ之间,有较多的波动点,且最大的波动点已经超出了实验设置的标准线,而在图3B中,本申请中的屏蔽膜(新结构)在30-1000MHZ之间,不仅波动点较少,且最大的波动点距离实验设置的标准线之间,还有一段距离,故本申请中的屏蔽膜较现有技术中的屏蔽膜而言,屏蔽效果有较 大的提升。
在图4中,本申请中的屏蔽膜(新结构)在30-40000HZ之间,较现有技术中的屏蔽膜(旧结构)而言,屏蔽值明显较大。
实际上,本申请中的线缆屏蔽膜虽然由三层结构叠加而成,但最后形成的屏蔽膜在外观上看起来仍旧是一层膜结构,根据应用需求可以将其切割成各种不同宽度的屏蔽膜,以适应于不同需求的线材。
可选的,金属层的厚度为3um-100um,其中,金属层的厚度可以根据不同直径的线材而定,线材直径越大,可以选取厚度较大的金属层,线材直径越小,可选取厚度较小的金属层,具体根据实际线材的不同而不同,此处不做具体限制。
可选的,载体层的厚度为3um-50um,其中,载体层厚度主要取决于线缆的适用环境及载体层所选取的树脂材料,当线缆适用于室内环境时,因为受环境气候影响较小,可以选择较薄的材料厚度,而当线缆适用于室外环境时,因为受环境气候影响较大,则需要选择较厚的材料厚度;另外,当载体层选取的树脂材料具有较强的绝限性能时,可以选取较薄的材料厚度,而当载体层选取的树脂材料具有较弱的绝缘性能时,则可以选取较厚的材料厚度,此处载体层的厚度根据实际需要进行设置,此处不做具体限制。
可选的,载体层中的树脂材料可以为聚丙烯PP、涤纶树脂PET、聚氯乙烯PVC及ABS树脂中的至少一种。
可选的,吸波层的厚度为3um至200um,其中,吸波层的厚度主要考虑两种因素,一种是线材的直径,线材的直径不同,吸薄层的厚度也有所不同,对于较细的线材,厚度可以做的较薄,而对于直径较大的线材,为了保证线材的可靠性,则需要较厚的吸波层;另一种是对环境中电磁波的吸收传导能力,当环境中的电磁干扰波较强时,需要吸收传导能力较强的线材可采用厚度较大的吸波层,因为吸波层越厚,其对应的横截面接越大,所含的金属粒子及石墨烯分子越多,对环境中电磁干扰的吸收传导能力越强,而吸波层越薄,对应的横截面接越小,所含的金属粒子及石墨烯分子越少,对环境中电磁干扰的吸收传导能力越弱,实际情况中,可以根据实际需要,对吸波层的厚度进行不同的设置,此处不做具体限制。
优选的,吸波层中的金属粒子包括金、银、铜、铁、锰、铝、锌、镍、碳、钴中的至少一种,当吸波层中的金属粒子由两种或多种金属粒子组成时,还可以拓宽对电磁干扰波的屏蔽带宽,克服单一金属粒子电磁屏蔽的局限性。
优选的,金属粒子在吸波层中的质量比率为0.5%至60%,石墨烯在所述吸波层中的比率为1%至50%,当金属粒子和石墨烯分子在吸波层中的质量比率过大时,则会影响混合树脂的粘性,造成屏蔽膜结构层之间粘合不足,此时可以在吸波层中加入环氧树脂来改善添加金属粒子和石墨烯分子后粘性不足的问题,但当金属粒子的数量不会影响到混合树脂的粘性时,则可以不用添加环氧树脂。
优选的,吸波层还可以添加阻燃剂,当线缆对耐燃有一定的要求时,还可以在吸波层中添加一定的阻燃剂,以起到耐燃的作用,一般阻燃剂在吸波层中的质量占比为3%-15%。
基于图1所述的实施例,为了增强金属层和载体层之间的粘合度,还可以在金属层和载体层之间设置胶水层104,以用于结合金属层和载体层,其中,图5给出了包含胶水层的线缆屏蔽膜结构图。
上面对本申请实施例中的线缆屏蔽膜做了详细描述,下面接着对本申请中利用线缆屏蔽膜连接线缆和连接器的方法进行描述,请参阅图6,本申请实施例中连接线缆及连接器的方法的一个实施例,包括:
601、裸露线缆中预设长度的线芯导体;
为了实现线缆与连接器之间的电连接,需要裸露出线缆中线芯的导体部分,以将线芯导体与连接器执行连接。
602、将所述线芯导体与连接器执行连接;
在将线芯导体与连接器执行连接时,可以是通过焊接、压合、卡接或插接的方式等,一般线芯导体与连接器的连接方式,取决于连接器的连接要求,此处对连接方式不做具体限制。
603、利用屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述屏蔽膜至少包括金属层、载体层及吸波层;其中,所述金属层覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;所述载体层设置于所述金属层与吸波层之间,以将所述金属层和所述吸 波层进行隔离;所述吸波层设置于所述载体层上,用于作为介质吸收屏蔽环境中的电磁干扰。
区别于现有技术中,在将线芯导体连接至连接器后,通过金属编织的方式,对裸露的线芯执行包覆,因为编织有网眼,从而导致屏蔽率较低,不能满足高速及高功率传输要求的问题,本申请实施例中利用屏蔽膜对执行连接的裸露线芯导体执行包覆,有效的降低了线芯间的信号串扰,提升了线芯间的信号传输速率及传输功率。
其中,屏蔽膜结构及组成的描述可以参阅图1至图5实施例所述,此处不再赘述。
基于图6所述的实施例,下面对利用屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图7,图7为图6实施例中步骤603的细化步骤:
701、将所述屏蔽膜缠绕包覆至所述裸露线芯导体与所述连接器执行连接的连接处。
为了明示屏蔽膜对裸露线芯导体的包覆方式,图8给出了图7实施例中包覆方式的示意图,具体的,当裸露的线芯导体通过焊接的方式与连接器执行连接时,则如图8所述,将屏蔽膜直接包覆至裸露线芯导体与所述连接器执行连接的连接处,即将屏蔽膜包覆至线芯导体与连接器的焊接处。
若线芯通过卡接、压合或插接的方式与连接器连接时,则分别将屏蔽膜包覆至线芯导体与连接器的卡接处、压合处或插接处,使得屏蔽膜对裸露的线芯导体执行充分完全的包覆,以最大化的减少线芯之间的电磁干扰。
基于图6所述的实施例,下面接着对利用屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图9,图9为图6实施例中步骤603的另一细化步骤:
901、将所述屏蔽膜置于所述线缆中对线的裸露线芯导体之间;
为了更有效地加速每个线芯周围电磁波的衰减,同时考虑包覆后的线芯直径及生产成本问题,本申请实施例中还可以将屏蔽膜置于线缆中对线的裸露线芯导体之间,具体的,放置示意图可以参阅图10所示,因为线芯导体在与连接器连接时,一般连接器两边是对称的,而为了更有效的加速电磁波的 衰减,可以将屏蔽膜置于线缆中对线的裸露线芯导体之间,从而使得位于连接器同一侧的线芯导体在径向方向上加快电磁波的衰减,提升线芯的抗干扰能力。
902、利用所述屏蔽膜对所述裸露线芯导体执行缠绕包覆。
将屏蔽膜置于线缆中对线的裸露线芯导体之间,然后分别利用屏蔽膜对对线两侧的线芯导体执行缠绕包覆,使得位于连接器同一侧的线芯导体,一周都被屏蔽膜包覆,从而加快位于同一侧的线芯导体周围电磁波的轴向衰减,同时也增强了同一侧的线芯导体对环境中电磁干扰波的抗干扰能力。
优选的,为了减小包覆后线缆的直径,本实施例中的屏蔽膜可以采用厚度比图7实施例中薄的膜,以减小包袱后线缆的直径,提升线缆的柔韧度。
基于图6述的实施例,下面接着对利用屏蔽膜对执行连接的裸露线芯导体执行包覆的方式进行详细描述,请参阅图11,图10为图6实施例中步骤603的另一细化步骤:
1101、将所述屏蔽膜包覆在所述线缆中每根线芯裸露导体的外侧。
为了再进一步提升线芯的抗干扰能力,还可以将屏蔽膜包覆在线缆中每根线芯裸露导体的外侧,具体的包覆示意图请参阅图12,在每个线芯导体外侧包覆屏蔽膜,相当于加快了每个线芯周围电磁波的径向衰减,同时也增强了每个线芯导体对环境中电磁干扰波的抗干扰能力。
优选的,为了减小包覆后线缆的直径,本实施例中的屏蔽膜可以采用比图9实施例中更薄的膜,以减小包袱后线缆的直径,提升线缆的柔韧度。
基于图6至图11所述的实施例,在利用屏蔽膜对执行连接的裸露线芯导体执行包覆之后,所述方法还包括以下步骤,请参阅图13,本申请实施例中连接线缆及连接器的方法的另一个实施例,包括:
1301、利用固定装置对所述屏蔽膜执行固定。
为了提升屏蔽膜与线芯导体之间的紧实度,还可以利用固定装置1301对屏蔽膜执行固定,以保证线芯导体与屏蔽膜之间的贴合度,使得电磁波可以通过屏蔽膜执行快速衰减和导出。
优选的,在利用固定装置对屏蔽膜执行固定时,一般优选马口铁对屏蔽膜和线芯导体执行固定,而为了防止马口铁在使用的过程中发生松动,还可 以在马口铁中灌胶定型,以增加马口铁与屏蔽膜之间连接的可靠性。
本申请实施例中,对屏蔽膜的固定方式及固定装置进行了详细描述,提升了本申请实施例中线芯导体与连接器连接的可靠性。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种线缆的屏蔽膜,其特征在于,包括:
    金属层,覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;
    载体层,设置于所述金属层与吸波层之间,以将所述金属层和所述吸波层进行隔离;
    吸波层,设置于所述载体层上,用于作为介质吸收屏蔽环境中的电磁干扰。
  2. 根据权利要求1所述的屏蔽膜,其特征在于,所述屏蔽膜还包括:
    胶水层,设置于所述金属层和载体层之间,以用于将所述金属层和所述载体层相结合,所述胶水层的厚度为2um至10um。
  3. 根据权利要求1所述的屏蔽膜,其特征在于,所述金属层为由金、银、铜、镍及铝中的至少一种所构成的薄膜,所述金属层的厚度为3um至100um。
  4. 根据权利要求1至3中任一项所述的屏蔽膜,其特征在于,所述载体层为混合型树脂,所述载体层的厚度为3um至50um。
  5. 根据权利要求1所述的屏蔽膜,其特征在于,所述吸波层由金、银、铜、铁、锰、铝、锌、镍、碳、钴中的至少一种,与石墨烯及混合型树脂相融合而组成。
  6. 根据权利要求5所述的屏蔽膜,其特征在于,所述金属粒子在所述吸波层中的比率为0.5%至60%,所述石墨烯在所述吸波层中的比率为1%至50%。
  7. 根据权利要求5所述的屏蔽膜,其特征在于,所述吸波层的厚度为3um至200um。
  8. 根据权利要求5至7中任一项所述的屏蔽膜,其特征在于,所述吸波层还包括阻燃材料。
  9. 一种连接线缆和连接器的方法,其特征在于,利用权利要求1至8中任一项所述的屏蔽膜,所述方法包括:
    裸露线缆中预设长度的线芯导体;
    将所述线芯导体与连接器执行连接;
    利用所述屏蔽膜对执行连接的裸露线芯导体执行包覆,以有效降低线芯间的信号串扰,所述屏蔽膜至少包括金属层、载体层及吸波层;
    其中,所述金属层覆盖在线缆导体的外被上,以用于作为介质屏蔽线缆导体内的电磁干扰;
    所述载体层设置于所述金属层与吸波层之间,以将所述金属层和所述吸波层进行隔离;
    所述吸波层设置于所述载体层上,用于作为介质吸收屏蔽环境中的电磁干扰。
  10. 根据权利要求9所述的方法,其特征在于,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述屏蔽膜缠绕包覆至所述线芯导体与所述连接器执行连接的连接处。
  11. 根据权利要求9所述的方法,其特征在于,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述屏蔽膜置于所述线缆中对线的线芯导体之间;
    利用所述屏蔽膜对所述线芯导体执行缠绕包覆。
  12. 根据权利要求9所述的方法,其特征在于,所述利用屏蔽膜对执行连接的线芯导体执行包覆,包括:
    将所述屏蔽膜包覆在所述线缆中每根线芯导体的外侧。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    利用固定装置对所述屏蔽膜执行固定。
PCT/CN2020/073083 2019-12-27 2020-01-20 一种线缆的屏蔽膜及连接线缆和连接器的方法 WO2021128522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911382831.9A CN111050536B (zh) 2019-12-27 2019-12-27 一种线缆的屏蔽膜及连接线缆和连接器的方法
CN201911382831.9 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021128522A1 true WO2021128522A1 (zh) 2021-07-01

Family

ID=70240666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073083 WO2021128522A1 (zh) 2019-12-27 2020-01-20 一种线缆的屏蔽膜及连接线缆和连接器的方法

Country Status (2)

Country Link
CN (1) CN111050536B (zh)
WO (1) WO2021128522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469260A (zh) * 2020-11-23 2021-03-09 南昌联能科技有限公司 屏蔽膜、屏蔽膜的制备方法及线缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203150199U (zh) * 2012-12-28 2013-08-21 天津市龙海东升金属制品有限公司 一种新型环保抗干扰线缆
US20130312993A1 (en) * 2012-05-26 2013-11-28 Ho-Man Rodney Chiu Cable structure
CN205247939U (zh) * 2015-12-08 2016-05-18 苏州安骐尔电缆科技有限公司 可吸收电磁辐射的电缆
CN205863549U (zh) * 2016-06-07 2017-01-04 鸿富锦精密工业(武汉)有限公司 连接器
CN207834006U (zh) * 2018-01-15 2018-09-07 东莞市多亚电子有限公司 一种同轴高频波屏蔽线
CN211350155U (zh) * 2019-12-27 2020-08-25 南昌联能科技有限公司 一种线缆的屏蔽膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200983284Y (zh) * 2006-11-27 2007-11-28 富港电子(东莞)有限公司 信号线缆
CN107419365B (zh) * 2017-06-16 2019-08-30 山东非金属材料研究所 一种石墨烯复合纤维吸收剂及其制备方法
CN107331469A (zh) * 2017-07-28 2017-11-07 深圳市益鑫智能科技有限公司 一种抗干扰性强的高频信号数据传输线缆
CN109243664A (zh) * 2018-09-21 2019-01-18 广州文搏科技有限公司 耐高温电磁屏蔽铜线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312993A1 (en) * 2012-05-26 2013-11-28 Ho-Man Rodney Chiu Cable structure
CN203150199U (zh) * 2012-12-28 2013-08-21 天津市龙海东升金属制品有限公司 一种新型环保抗干扰线缆
CN205247939U (zh) * 2015-12-08 2016-05-18 苏州安骐尔电缆科技有限公司 可吸收电磁辐射的电缆
CN205863549U (zh) * 2016-06-07 2017-01-04 鸿富锦精密工业(武汉)有限公司 连接器
CN207834006U (zh) * 2018-01-15 2018-09-07 东莞市多亚电子有限公司 一种同轴高频波屏蔽线
CN211350155U (zh) * 2019-12-27 2020-08-25 南昌联能科技有限公司 一种线缆的屏蔽膜

Also Published As

Publication number Publication date
CN111050536B (zh) 2021-02-26
CN111050536A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US9934888B2 (en) Cable for differential serial transmission
JP2008287948A (ja) シールドツイストペアケーブル
TWM572563U (zh) 芯線組及使用該芯線組的線纜
CN102347103A (zh) 船舶及海洋用硬质乙丙橡胶绝缘仪表电缆及其制造方法
WO2021128522A1 (zh) 一种线缆的屏蔽膜及连接线缆和连接器的方法
TWM632939U (zh) 線纜
CN101834033A (zh) 数据传输电缆
CN203659463U (zh) 多复合高电磁屏蔽轨道交通通信信号电缆
CN201681664U (zh) 数据传输电缆
CN211350155U (zh) 一种线缆的屏蔽膜
CN103871560A (zh) 一种低烟无卤抗干扰铁路数字信号电缆
CN203826034U (zh) 一种低烟无卤抗干扰铁路数字信号电缆
WO2017050050A1 (zh) 一种电动汽车快速充电电缆及其制备方法
CN102243905A (zh) 抗电磁干扰的高速数据电缆
CN206460800U (zh) 一种金属碳纤维复合屏蔽线
CN203150176U (zh) 抗紫外线综合电缆
CN205984325U (zh) 光电复合电缆
CN205194367U (zh) 一种屏蔽双结构电缆
WO2021012329A1 (zh) 一种连接线缆和连接器的方法及与连接器连接的线缆
CN203260398U (zh) 一种静磁屏蔽动力电缆
CN212380128U (zh) 一种高性能耐高温综合射频电缆
CN214043123U (zh) 一种汽车用手机无线充电座电缆
CN215069325U (zh) 通讯领域用耐高低温多层金属屏蔽抗干扰数据总线电缆
CN211376267U (zh) 一种无机矿物绝缘设备用防火电缆
CN213183661U (zh) 一种高压同轴屏蔽电线电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907405

Country of ref document: EP

Kind code of ref document: A1