WO2021010272A1 - 波長変換部材、光源装置、および、波長変換部材の製造方法 - Google Patents

波長変換部材、光源装置、および、波長変換部材の製造方法 Download PDF

Info

Publication number
WO2021010272A1
WO2021010272A1 PCT/JP2020/026822 JP2020026822W WO2021010272A1 WO 2021010272 A1 WO2021010272 A1 WO 2021010272A1 JP 2020026822 W JP2020026822 W JP 2020026822W WO 2021010272 A1 WO2021010272 A1 WO 2021010272A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic phosphor
wavelength conversion
heat radiating
radiating member
conversion member
Prior art date
Application number
PCT/JP2020/026822
Other languages
English (en)
French (fr)
Inventor
洋介 八谷
竜一 荒川
利之 桜井
智雄 田中
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020217041293A priority Critical patent/KR102633887B1/ko
Priority to US17/624,081 priority patent/US11692699B2/en
Priority to CN202080046550.0A priority patent/CN114041073A/zh
Priority to EP20839980.8A priority patent/EP4001752A4/en
Priority to JP2021533011A priority patent/JP7307799B2/ja
Publication of WO2021010272A1 publication Critical patent/WO2021010272A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/86Ceramics or glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion member, a light source device, and a method for manufacturing the wavelength conversion member.
  • the wavelength conversion member is generally composed of a phosphor that converts the wavelength of incident light, a heat radiating member, and a solder layer that joins the phosphor and the heat radiating member, and dissipates the heat of the phosphor by the heat radiating member.
  • the voids contained in the solder cause a decrease in thermal conductivity between the phosphor and the heat radiating member.
  • Patent Document 1 discloses a technique in which the size of voids contained in a solder layer is set to a specified value or less.
  • Patent Document 2 discloses a technique of forming a solder layer on the surface and the side surface of the phosphor on the heat radiating member side to increase the contact area between the phosphor and the solder layer.
  • the present invention has been made to solve the above-mentioned problems, and in the wavelength conversion member, both the improvement of the thermal conductivity between the ceramic phosphor and the heat radiating member and the suppression of damage to the ceramic phosphor are achieved.
  • the purpose is to provide technology.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
  • a wavelength conversion member comprises a ceramic phosphor that converts the wavelength of incident light, a heat radiation member that emits heat from the ceramic phosphor to the outside, and a solder layer that joins the ceramic phosphor and the heat radiation member.
  • the solder layer includes a joint portion arranged between the ceramic phosphor and the heat radiating member, and a protruding portion protruding outward from the outer peripheral portion of the ceramic phosphor, and the protruding portion includes a protruding portion.
  • the maximum value of the thickness of the protruding portion of the solder layer is larger than the average value of the thickness of the joint portion, which is separated from the side surface formed on the outer peripheral portion of the ceramic phosphor.
  • the maximum value of the protruding portion is larger than the average value of the thickness of the joint portion.
  • the protruding portion is formed by extruding the solder between the ceramic phosphor and the heat radiating member to the outside of the outer peripheral portion of the ceramic phosphor when the ceramic phosphor and the heat radiating member are joined. At this time, the voids in the solder between the ceramic phosphor and the heat radiating member move from between the ceramic phosphor and the heat radiating member together with the extruded solder, and float in the solder outside the outer peripheral portion of the ceramic phosphor. ..
  • the number of voids in the joint portion is smaller than in the case where the voids do not move, so that the heat transfer between the ceramic phosphor and the heat radiating member is less likely to be blocked by the voids. Therefore, the thermal conductivity between the ceramic phosphor and the heat radiating member can be improved. Further, the protruding portion is separated from the side surface of the ceramic phosphor, and does not restrain the ceramic phosphor even if it shrinks when the temperature is lowered after the ceramic phosphor and the heat radiating member are joined. As a result, it is possible to prevent the ceramic phosphor from being damaged by the shrinkage of the solder layer.
  • a wavelength conversion member comprises a ceramic phosphor that converts the wavelength of incident light, a heat radiation member that emits heat from the ceramic phosphor to the outside, and a solder layer that joins the ceramic phosphor and the heat radiation member.
  • the solder layer includes a joint portion arranged between the ceramic phosphor and the heat radiating member, and a protruding portion protruding outward from the outer peripheral portion of the ceramic phosphor, and includes the joint portion of the joint portion.
  • the void ratio is smaller than the void ratio of the protruding portion.
  • the void ratio of the joint portion is smaller than the void ratio of the protruding portion.
  • the void ratio is a solder layer on a virtual plane when a part of the solder layer and a void included in a part of the solder layer are projected on a virtual plane perpendicular to the central axis of the wavelength conversion member. Refers to the ratio of the area of the void projection to the area of a part of the projection.
  • a wavelength conversion member includes a ceramic phosphor that converts the wavelength of incident light, a heat radiation member that emits heat from the ceramic phosphor to the outside, and a solder layer that joins the ceramic phosphor and the heat radiation member.
  • the solder layer includes a joint portion arranged between the ceramic phosphor and the heat radiating member, and a protruding portion protruding outward from the outer peripheral portion of the ceramic phosphor, at the joint portion.
  • the void ratio of the central portion through which the central axis of the wavelength conversion member passes is smaller than the void ratio of other portions of the joint portion other than the central portion.
  • the central portion of the joint portion is located between the central portion of the ceramic phosphor and the heat radiating member, which generate a large amount of heat because it is easily irradiated with light.
  • the void ratio of the central portion of the joint portion is smaller than the void ratio of the portion excluding the central portion of the joint portion.
  • the protruding portion may be formed so as to surround the outer peripheral portion of the ceramic phosphor over the entire circumference.
  • the solder between the ceramic phosphor and the heat radiating member protrudes over the entire circumference of the outer peripheral portion of the ceramic phosphor.
  • the distance that the void between the ceramic phosphor and the heat radiating member moves to the outside of the outer peripheral portion of the ceramic phosphor is when the protruding portion is formed so as to surround a part of the outer peripheral portion of the ceramic phosphor.
  • the number of voids at the junction is even smaller because it is shorter than the other. Therefore, the thermal conductivity between the ceramic phosphor and the heat radiating member can be further improved.
  • the maximum value of the thickness of the protruding portion may be 2 times or more and 10 times or less the average value of the thickness of the joint portion.
  • the height of the protruding portion from the heat radiating member may be lower than the height of the incident surface on which the light of the ceramic phosphor is incident from the heat radiating member. According to this configuration, it is possible to prevent the emission of light from the ceramic phosphor from being hindered by the protruding portion in which the maximum value of the thickness is larger than the average value of the thickness of the joint portion.
  • a light source device includes the wavelength conversion member described above and a light source that irradiates a ceramic phosphor with light. According to this configuration, the light source device emits light having a wavelength different from the wavelength of the light irradiated to the ceramic phosphor by the light source to the outside.
  • the number of voids contained in the joint portion of the solder layer between the ceramic phosphor and the heat radiation member is relatively small, so that the ceramic phosphor in the joint portion The heat conduction between the heat radiation member and the heat radiation member is not easily blocked by the void.
  • a method for manufacturing a wavelength conversion member includes a preparatory step of preparing a ceramic phosphor that converts the wavelength of incident light and a heat radiation member to be bonded to the ceramic phosphor, and a solder layer for the ceramic phosphor and the heat radiation member.
  • a joining step of joining and a processing step of processing the solder layer after the joining step are provided.
  • the solder layer is arranged between the ceramic phosphor and the heat radiating member.
  • a portion and a protruding portion that protrudes outward from the outer peripheral portion of the ceramic phosphor and the maximum value of the thickness is larger than the average value of the thickness of the joint portion are formed, and in the processing step, the ceramic of the protruding portion is formed. At least a part including a portion separated from the side surface formed on the outer peripheral portion of the phosphor is removed.
  • the voids in the solder between the ceramic phosphor and the heat radiating member move from between the ceramic phosphor and the heat radiating member together with the solder, and on the outside of the outer peripheral portion of the ceramic phosphor. It floats in the solder.
  • the number of voids in the joint portion is smaller than in the case where the voids do not move, so that the thermal conductivity between the ceramic phosphor and the heat radiating member can be improved.
  • damage to the ceramic phosphor due to shrinkage of the solder layer can be suppressed by performing processing to remove at least a part of the protruding portion including a portion separated from the side surface of the ceramic phosphor. ..
  • the present invention can be realized in various aspects, for example, a light emitting system using a wavelength conversion member or a light source device, a method for manufacturing a light source device or a light emitting system, and manufacturing a wavelength conversion member or a light source device. It can be realized in the form of a computer program to be executed by a computer, a server device for distributing the computer program, a non-temporary storage medium for storing the computer program, or the like.
  • FIG. 1 is a schematic view of the light source device 5 of the first embodiment.
  • FIG. 2 is a top view of the wavelength conversion member 1.
  • the light source device 5 of the present embodiment includes a wavelength conversion member 1 and a light source 6.
  • a light source 6 such as an external light emitting diode (LED: Light Emitting Diode) or a semiconductor laser (LD: Laser Diode)
  • the wavelength conversion member 1 receives light L2 having a wavelength different from that of light L1. Occurs.
  • the wavelength conversion member 1 is used in various optical devices such as headlamps, lighting, and projectors.
  • the wavelength conversion member 1 includes a ceramic phosphor 10, a heat radiating member 20, and a solder layer 30.
  • a ceramic phosphor 10 a heat radiating member 20
  • a solder layer 30 a solder layer 30.
  • FIG. 1 the relationship between the thicknesses of the ceramic phosphor 10, the heat radiating member 20, and the solder layer 30 is shown so as to be different from the actual thickness relationship for convenience of explanation.
  • the ceramic phosphor 10 is composed of a ceramic sintered body, and converts the wavelength of light incident from the incident surface 11.
  • the ceramic sintered body has a fluorescent phase mainly composed of fluorescent crystal particles and a translucent phase mainly composed of translucent crystal particles.
  • the crystal particles of the translucent phase have a composition represented by the chemical formula Al 2 O 3
  • the crystal particles of the fluorescent phase have a composition represented by the chemical formula A 3 B 5 O 12 : Ce (so-called garnet structure). It is preferable to have.
  • “A 3 B 5 O 12 : Ce” indicates that Ce is dissolved in A 3 B 5 O 12 and a part of the element A is replaced with Ce.
  • Element A and element B in Ce are each composed of at least one element selected from the following element groups.
  • Element A Lanthanoids excluding Sc, Y, Ce (however, Gd may be further contained as element A).
  • Element B Al (However, Ga may be further contained as element B)
  • a metal film (not shown) is arranged on the main surface 12 of the ceramic phosphor 10 on the heat radiating member 20 side. Since this metal film has good solder wettability, it enhances the adhesion between the ceramic phosphor 10 and the solder layer 30, and also reflects the light transmitted through the ceramic phosphor 10 and the light generated by the ceramic phosphor 10. The luminous efficiency of the wavelength conversion member 1 is improved.
  • the heat radiating member 20 is a rectangular flat plate member formed of, for example, a material having higher thermal conductivity than the ceramic phosphor 10 such as copper, copper molybdenum alloy, copper tungsten alloy, aluminum, and aluminum nitride.
  • a bonding film (not shown) is arranged on the main surface 21 of the heat radiating member 20 on the ceramic phosphor 10 side. Since this bonding film has good solder wettability, the adhesion between the heat radiating member 20 and the solder layer 30 is improved.
  • the heat radiating member 20 releases the heat of the ceramic phosphor 10 transmitted through the solder layer 30 to the outside.
  • the heat radiating member 20 may be a member having a single-layer structure made of the above-mentioned materials, or may be a member having a multi-layer structure made of the same or different materials.
  • the solder layer 30 is arranged between the ceramic phosphor 10 and the heat radiating member 20, and is made of gold and tin.
  • the solder layer 30 joins the ceramic phosphor 10 and the heat radiating member 20.
  • the solder layer 30 has a joint portion 31 and a protruding portion 32.
  • the joint portion 31 is arranged under the ceramic phosphor 10 in the solder layer 30, that is, between the ceramic phosphor 10 and the heat radiating member 20.
  • the joining portion 31 is in contact with the main surface 12 of the ceramic phosphor 10 and the main surface 21 of the heat radiating member 20, and joins the ceramic phosphor 10 and the heat radiating member 20.
  • the protruding portion 32 is located outside the joint portion 31. Specifically, as shown in FIG. 1, the protruding portion 32 is connected to the outer peripheral portion of the joint portion 31 on the main surface 21 of the heat radiating member 20 and is ceramic fluorescent from the outer peripheral portion 13 of the ceramic phosphor 10. It has a shape that protrudes to the outside of the body 10. In the present embodiment, as shown in FIG. 2, the protruding portion 32 is formed so as to surround the outer peripheral portion 13 of the ceramic phosphor 10 over the entire circumference. As shown in FIG. 1, the inner wall 33 of the protruding portion 32 is separated from the side surface 14 formed on the outer peripheral portion 13 of the ceramic phosphor 10. As a result, the apex 34 (see FIG.
  • the protruding portion 32 is formed at a position away from the outer peripheral portion 13 of the ceramic phosphor 10. As shown in FIG. 1, the height H1 of the heat radiating member 20 of the apex 34 from the main surface 21 is the height H2 of the heat radiating member 20 of the incident surface 11 on which the light L1 of the ceramic phosphor 10 is incident. Lower than.
  • the maximum value of the thickness of the protruding portion 32 is larger than the average value of the thickness of the joint portion 31.
  • the maximum value of the thickness of the protruding portion 32 is 2 times or more and 10 times or less the average value of the thickness of the joint portion 31.
  • the thickness of the joint portion 31 is the joint portion 31 including the central axis A1 (see FIGS. 1 and 2) of the wavelength conversion member 1 and perpendicular to the joint surface between the ceramic phosphor 10 and the solder layer 30 and the heat radiation member 20. Refers to the average value of the thickness of each of the 10 portions set at equal intervals in the cross section of.
  • the solder layer 30 contains a void V1 generated inside the solder layer 30 when the wavelength conversion member 1 is manufactured.
  • the void ratio of the joint portion 31 is smaller than the void ratio of the protruding portion 32.
  • the void of the central portion 31a The rate is smaller than the void rate of the other portion 31b excluding the central portion 31a of the joint portion 31.
  • the central portion 31a is a part of the joint portion 31 through which the central axis A1 of the wavelength conversion member 1 passes.
  • the cross-sectional shape perpendicular to the central axis A1 is on the central axis A1. Refers to a columnar part that has a circular shape with a center.
  • the void ratio in the present embodiment means that when the void V1 contained in a part of the solder layer 30 and a part of the solder layer 30 is projected on a virtual plane perpendicular to the central axis A1 of the wavelength conversion member 1. It refers to the ratio of the area of the projection drawing of the void V1 to the area of the projection drawing of a part of the solder layer 30 on the virtual plane.
  • FIG. 3 is a diagram illustrating a method of calculating the void ratio of the solder layer 30.
  • a part 35 of the solder layer 30 shown in FIG. 3A which is a cross-sectional view perpendicular to the central axis A1 of the wavelength conversion member 1, will be described. It is assumed that a part 35 of the solder layer 30 is located between the ceramic phosphor 10 and the heat radiating member 20 and contains the void V1 in the state shown in FIG. 3A. Since FIG. 3A is a cross-sectional view, it is assumed that the void V1 that does not appear here is also included in a part 35 of the solder layer 30.
  • the projection drawing PV1 of the above will be scattered.
  • the ratio of the total area of the projection drawing PV1 of the void V1 to the area of the projection drawing P35 is the void ratio in the present embodiment.
  • the projection views PV1 of the plurality of voids V1 may overlap (for example, the projection of FIG. 3B).
  • Figure PV2 the area of the overlapping portion is calculated as the area occupied by the projection drawing of one void V1 and is not counted twice.
  • a metal film is formed on the main surface 12 of the ceramic phosphor 10 by vacuum vapor deposition or sputtering. Further, a bonding film is plated on the main surface 21 of the heat radiating member 20.
  • a gold-tin solder foil is sandwiched between the ceramic phosphor 10 and the heat-dissipating member 20 and heated in a reflow furnace in a nitrogen atmosphere or a hydrogen atmosphere to heat the ceramic phosphor 10 and the heat-dissipating member. Join with 20.
  • the ceramic phosphor 10 and the heat radiating member 20 are joined so that the gold-tin solder foil that melts between the ceramic phosphor 10 and the heat radiating member 20 protrudes to the outside of the ceramic phosphor 10.
  • the bonding film may be formed by vacuum deposition or sputtering. Further, instead of using the gold-tin solder foil, the gold-tin solder paste may be applied.
  • FIG. 4 is a diagram illustrating a manufacturing method of the wavelength conversion member 1.
  • FIG. 4A shows the ceramic phosphor 10, the heat radiating member 20, and the gold-tin solder foil F1 before being joined. As shown in FIG. 4A, the distance between the metal film formed on the main surface 12 of the ceramic phosphor 10 and the bonding film formed on the main surface 21 of the heat radiating member 20 is larger than that of the ceramic phosphor 10. The gold-tin solder foil F1 smaller than the heat radiating member 20 is inserted.
  • the outer portion S42 of the molten solder 40 rises due to the flow from the central portion S41 to the outer portion S42 in the molten solder 40 and becomes thicker than the central portion S41, the void V1 moves from the central portion S41 to the outer portion S42 to the outside. In the part S42, it floats in the molten solder 40 (dotted arrow D2 in FIG. 4B).
  • the thickness and size of the gold-tin solder foil F1 when inserted between the ceramic phosphor 10 and the heat radiating member 20 and the load when joining the ceramic phosphor 10 and the heat radiating member 20 are determined. By adjusting, the height of the outer portion S42 is adjusted.
  • the void V1 in the central portion S41 can easily move to the outer portion S42. Therefore, in the manufacturing method of the present embodiment, as shown in FIG. 4C, the void V1 in the molten solder 40 is the outer portion. It gathers in S42, and the number of voids V1 in the central portion S41 is reduced.
  • the outer portion S42 of the molten solder 40 covers the outer peripheral portion 13 of the ceramic phosphor 10. Surround around. As a result, the distance that the void V1 of the central portion S41 moves to the outer portion S42 becomes relatively short, so that the number of voids V1 of the central portion S41 is further reduced.
  • the central portion S41 of the molten solder 40 becomes the joint portion 31 of the solder layer 30, and the outer portion S42 becomes the protruding portion 32, and the ceramic becomes ceramic.
  • the phosphor 10 and the heat radiating member 20 are joined by a solder layer 30.
  • the ceramic phosphor 10 and the solder layer 30 are separated by lowering the temperature. Even if the molten solder 40 shrinks, the ceramic phosphor 10 is not restrained by the protruding portion 32.
  • the void ratio in each part of the solder layer 30 was measured and these values were compared.
  • the solder layer 30 was first irradiated with transmitted X-rays, and the target portion for which the void ratio was to be measured was imaged. Next, voids having a diameter of 10 ⁇ m or more were counted from the imaging results, and the void ratio of the target portion was calculated.
  • the void rate calculated here is the void rate calculated by the method described with reference to FIG.
  • FIG. 5 is a diagram illustrating the contents of the first evaluation test of the wavelength conversion member 1.
  • FIG. 5A is a top view of the wavelength conversion member 1 used in the first evaluation test
  • FIG. 5B is a sectional view taken along line AA of FIG. 5A.
  • the void ratio of the joint portion 31 the void ratio of the central portion 31a included in the joint portion 31, and the void ratio of the protruding portion 32.
  • the circular diameter W1 which is the cross-sectional shape of the central portion 31a formed in a columnar shape is defined as half of the narrowest width W2 of the ceramic phosphor 10.
  • the diameter W1 of the central portion 31a is 4 mm
  • the width W2 of the ceramic phosphor 10 is 8 mm.
  • the width W3 of the solder layer 30 is 9 mm. That is, the width of the portion where the protruding portion 32 protrudes from the ceramic phosphor 10 is 1 mm in total on both sides.
  • the thickness Th1 of the joint portion 31 is 10 ⁇ m, and the thickness Th2 of the protruding portion 32 is 17 ⁇ m. Therefore, the first evaluation test is performed using the wavelength conversion member 1 in which the ratio of the thickness Th2 of the protruding portion 32 to the thickness Th1 of the joint portion 31 is 1.7.
  • FIG. 6 is a diagram for explaining the result of the first evaluation test of the wavelength conversion member 1.
  • FIG. 6A is a table showing the measurement results of the void ratio in the first evaluation test
  • FIG. 6B is a diagram schematically showing the distribution of the void V1 in the wavelength conversion member 1. ..
  • the first evaluation test revealed that the void ratio (3.4%) of the joint portion 31 including the central portion 31a is smaller than the void ratio (4.3%) of the protruding portion 32.
  • the first evaluation test revealed that in the joint portion 31, the void ratio (2.8%) of the central portion 31a is smaller than the void ratio (3.4%) of the entire joint portion 31. .. That is, it was clarified that the void ratio of the central portion 31a is smaller than the void ratio of the other portions 31b excluding the central portion 31a of the joint portion 31.
  • the thermal conductivity of the central portion 31a located between the central portion C10 of the ceramic phosphor 10 and the heat radiating member 20, which generates a large amount of heat because it is easily irradiated with light is such that the central portion 31a of the joint portion 31 Higher than the thermal conductivity of other parts except.
  • FIG. 7 is a diagram for explaining the second evaluation result of the wavelength conversion member 1.
  • the ratio of the thickness of the protruding portion 32 to the thickness of the joint portion 31 was 1, 1.2, 1.5, 2, 5.3, as shown in the table of FIG. 7 (a).
  • the void ratio of the joint portion 31 when it was set to 10 was measured, and these values were compared.
  • 7 (b) and 7 (c) schematically show the distribution of voids V1 between the joint portion 31 and the protruding portion 32 when the ratio of the thickness of the protruding portion 32 to the thickness of the joint portion 31 is changed. It is a figure shown in.
  • the void rate in the second evaluation test is the same as the void rate calculated by the method described in the first evaluation test.
  • the void ratio of the joint portion 31 decreases as the ratio of the thickness of the protruding portion 32 to the thickness of the joint portion 31 increases. That is, when the thickness of the joint portion 31 is the same, the number of voids V1 included in the joint portion 31 of the wavelength conversion member 1 (FIG. 7 (c)) having a large thickness ratio is the wavelength conversion member 1 having a small ratio. It is shown that the number is less than the number of voids V1 contained in the joint portion 31 of FIG. 7B. In particular, as shown in FIG.
  • the maximum value of the protruding portion 32 is larger than the average value of the thickness of the joint portion 31.
  • the protruding portion 32 is formed by extruding the solder between the ceramic phosphor 10 and the heat radiating member 20 to the outside of the outer peripheral portion 13 of the ceramic phosphor 10 when the ceramic phosphor 10 and the heat radiating member 20 are joined.
  • the void V1 in the solder between the ceramic phosphor 10 and the heat radiating member 20 moves from between the ceramic phosphor 10 and the heat radiating member 20 together with the extruded solder, and the outer peripheral portion 13 of the ceramic phosphor 10 It floats in the molten solder 40 on the outside.
  • the number of voids V1 in the joint portion 31 is smaller than in the case where the voids do not move, so that the heat transfer between the ceramic phosphor 10 and the heat radiating member 20 is less likely to be blocked by the voids V1. Therefore, the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 can be improved.
  • the protruding portion 32 is separated from the side surface 14 of the ceramic phosphor 10, and when the temperature is lowered after the ceramic phosphor 10 and the heat radiating member 20 are joined.
  • the ceramic phosphor 10 is not constrained even if it shrinks. As a result, it is possible to prevent the ceramic phosphor 10 from being damaged by the shrinkage of the solder layer 30. In this way, it is possible to both improve the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 and suppress damage to the ceramic phosphor 10. Further, since the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 is improved, the durability of the ceramic phosphor 10 is improved, and the decrease in luminous efficiency can be suppressed.
  • the void ratio of the joint portion 31 is smaller than the void ratio of the protruding portion 32.
  • the heat conduction between the ceramic phosphor 10 and the heat radiating member 20 by the joint portion 31 is less likely to be hindered by the void V1. Therefore, the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 can be improved.
  • the void ratio of the central portion 31a located between the central portion C10 of the ceramic phosphor 10 and the heat radiating member 20 is the void ratio of the joint portion 31. It is smaller than the void ratio of the other portion 31b.
  • the central portion 31a of the joint portion 31 is located between the central portion C10 of the ceramic phosphor 10 and the heat radiating member 20 which generate a large amount of heat because it is easily irradiated with light.
  • the central portion 31a of the joint portion 31 has even better thermal conductivity than that of the joint portion 31, the heat generated in the central portion C10 of the ceramic phosphor 10 when irradiated with light is quickly dissipated. Can tell 20. Therefore, by making the void ratio of the central portion 31a smaller than the void ratio of the other portion 31b of the joint portion 31, the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 can be improved.
  • the protruding portion 32 is formed so as to surround the outer peripheral portion 13 of the ceramic phosphor 10 over the entire circumference.
  • the solder in the central portion S41 of the solder layer 30 protrudes over the entire circumference of the outer peripheral portion 13 of the ceramic phosphor 10.
  • the distance that the void V1 of the central portion S41 moves to the outer portion S42 is shorter than the case where the protruding portion 32 is formed so as to surround a part of the outer peripheral portion 13 of the ceramic phosphor 10. Therefore, the void of the joint portion 31 The number of V1s is even smaller. Therefore, the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 can be further improved.
  • the height H1 which is the maximum value of the thickness of the protruding portion 32, is 2 times or more and 10 times or less the average value of the thickness of the joint portion 31.
  • the void V1 that moves from between the ceramic phosphor 10 and the heat radiating member 20 to the outside of the outer peripheral portion 13 of the ceramic phosphor 10 floats in the solder layer 30 on the outer side of the outer peripheral portion 13 of the ceramic phosphor 10. It will be easier.
  • the void V1 in the central portion S41 can easily move to the outer portion S42, so that the number of voids V1 in the joint portion 31 is further reduced. Therefore, the thermal conductivity between the ceramic phosphor 10 and the heat radiating member 20 can be further improved.
  • the height H1 of the protruding portion 32 from the heat radiating member 20 is higher than the height H2 from the heat radiating member 20 of the incident surface 11 on which the light of the ceramic phosphor 10 is incident. Is also low. As a result, it is possible to prevent the emission of light from the ceramic phosphor 10 from being hindered by the protruding portion 32 in which the maximum value of the thickness is larger than the average value of the thickness of the bonding portion 31.
  • the light source device 5 emits light L2 having a wavelength different from the wavelength of the light L1 irradiated to the ceramic phosphor 10 by the light source 6.
  • the wavelength conversion member 1 including the ceramic phosphor 10 that converts the wavelength of the light L1 the number of voids V1 contained in the joint portion 31 of the solder layer 30 between the ceramic phosphor 10 and the heat radiation member 20 is relatively small. Therefore, the heat conduction between the ceramic phosphor 10 and the heat radiating member 20 at the joint portion 31 is less likely to be hindered by the void V1. As a result, it is possible to suppress a decrease in the light emission intensity of the light source device 5 due to temperature quenching.
  • the protruding portion 32 is separated from the side surface 14 of the ceramic phosphor 10, it is possible to prevent the ceramic phosphor 10 from being damaged by the shrinkage of the solder layer 30. As a result, it is possible to suppress a decrease in the emission intensity of the light source device 5 due to damage to the ceramic phosphor 10.
  • the void ratio of the protruding portion 32 which is separated from the side surface 14 of the ceramic phosphor 10 and whose maximum thickness is larger than the average value of the thickness of the joint portion 31, is the joint portion 31. It was assumed that the void ratio of the central portion 31a was larger than the void ratio and was smaller than the void ratio of the other portion 31b. However, the characteristics of the shape and void ratio of the solder layer 30 are not limited to this.
  • the void ratio of the protruding portion 32 which is separated from the side surface 14 of the ceramic phosphor 10 and whose maximum thickness is larger than the average value of the thickness of the joint portion 31, is larger than the void ratio of the joint portion 31, but is located in the central portion 31a.
  • the void ratio may be larger than the void ratio of the other portion 31b.
  • the void ratio of the protruding portion 32 may be larger than the void ratio of the joint portion 31, and the maximum value of the thickness of the protruding portion 32 is about the same as the average value of the thickness of the joint portion 31.
  • it may be small, or the void ratio of the central portion 31a may be larger than the void ratio of the other portion 31b.
  • FIG. 8 is a cross-sectional view of a modified example of the wavelength conversion member 1 of the first embodiment.
  • the modified example of the wavelength conversion member 1 shown in FIG. 8 is a modification of the one manufactured by the manufacturing method described in the first embodiment shown in FIG. 8A, in which the protruding portion 32 is processed as a processing step. .. Specifically, as shown in FIG. 8B, the portion 32a forming the inner wall 33 of the protruding portion 32 is removed, and for example, the thickness of the remaining portion 32b of the protruding portion 32 is defined as the thickness of the joint portion 31. Same degree. Even in the wavelength conversion member 1 having the shape shown in FIG.
  • the void V1 moves to the outside of the ceramic phosphor 10 when the ceramic phosphor 10 and the heat radiating member 20 are joined. Therefore, the void ratio of the joint portion 31 is smaller than the void ratio of the protruding portion 32. Therefore, even in the wavelength conversion member 1 in the state shown in FIG. 8, the heat transfer between the ceramic phosphor 10 and the heat radiating member 20 is less likely to be hindered by the void V1, so that the ceramic phosphor 10 and the heat radiating member 20 are combined. The thermal conductivity between them can be improved.
  • a part of the protruding portion 32 removed in the processing step may include a portion 32a forming an inner wall 33 separated from the side surface 14 of the ceramic phosphor 10, and the thickness of the remaining portion 32b after processing may be included. May be thinner than the thickness of the joint portion 31.
  • the void ratio of the central portion 31a may be smaller than the void ratio of the other portion 31b, and the maximum value of the thickness of the protruding portion 32 is smaller than the average value of the thickness of the joint portion 31.
  • the void ratio of the protruding portion 32 may be smaller than the void ratio of the joint portion 31.
  • the protruding portion 32 is formed so as to surround the outer peripheral portion 13 of the ceramic phosphor 10 over the entire circumference.
  • the protruding portion 32 may be formed so as to be adjacent to a part of the outer peripheral portion 13 of the ceramic phosphor 10.
  • FIG. 9 is a top view of another modification of the wavelength conversion member 1 of the first embodiment.
  • the protruding portion 32 may be formed in a C shape, for example, so as to surround a part of the outer peripheral portion 13 of the ceramic phosphor 10. Specifically, it is formed so as to surround the outer peripheral portion 13 forming the side surfaces 14b, 14c, 14d among the four side surfaces 14a, 14b, 14c, 14d of the ceramic phosphor 10 formed in a rectangular shape. May be good.
  • the maximum value of the thickness of the protruding portion 32 is set to be 2 times or more and 10 times or less the average value of the thickness of the joint portion 31.
  • the relationship between the maximum value of the thickness of the protruding portion 32 and the average value of the thickness of the joint portion 31 is not limited to this. Even if the maximum thickness of the protruding portion 32 is less than twice the average value of the thickness of the joint portion 31, the void V1 in the central portion S41 of the solder layer 30 moves to the outer portion S42, so that the ceramic phosphor 10 It is possible to improve the thermal conductivity between the heat radiating member 20 and the heat radiating member 20.
  • the height H1 of the apex 34 of the protruding portion 32 from the heat radiating member 20 is lower than the height H2 of the ceramic phosphor 10 from the heat radiating member 20.
  • the relationship between the height H1 of the protruding portion 32 and the height H2 of the ceramic phosphor 10 is not limited to this.
  • the void V1 is said to be derived from the gap between the metal film or the bonding film and the gold-tin solder foil F1 or the gas mixed in the plating step.
  • the cause of the formation of void V1 is not limited to this, and when the gold tin paste is used, it may be derived from the binder contained in the gold tin paste.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

波長変換部材は、入射する光の波長を変換するセラミック蛍光体と、セラミック蛍光体の熱を外部に放出する放熱部材と、セラミック蛍光体と放熱部材を接合する半田層と、を備え、半田層は、セラミック蛍光体と放熱部材の間に配置されている接合部と、セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、はみ出し部は、セラミック蛍光体の外周部に形成された側面から離間しており、半田層において、はみ出し部の厚みの最大値は、接合部の厚みの平均値よりも大きい。

Description

波長変換部材、光源装置、および、波長変換部材の製造方法
 本発明は、波長変換部材、光源装置、および、波長変換部材の製造方法に関する。
 従来から、光源が発した光の波長を変換する波長変換部材が知られている。波長変換部材は、一般的に、入射光の波長を変換する蛍光体と、放熱部材と、蛍光体と放熱部材とを接合する半田層から構成されており、蛍光体の熱を放熱部材によって放熱する。このとき、半田に含まれるボイドは、蛍光体と放熱部材との間の熱伝導性を低下させる原因となる。例えば、特許文献1には、半田層に含まれるボイドの大きさを規定値以下とする技術が開示されている。また、特許文献2には、蛍光体の放熱部材側の面と側面とに半田層を形成し、蛍光体と半田層との接触面積を増加させる技術が開示されている。
特許6020631号公報 特開2017-194706号公報
 しかしながら、特許文献1に記載の技術によって蛍光体と放熱部材との接合を行った場合でも、蛍光体と放熱部材の間にはボイドが残るため、半田層の熱伝導性をさらに向上することは容易ではなかった。また、特許文献2に記載の技術によって蛍光体と放熱部材との接合を行った場合、蛍光体と放熱部材を接合した後に波長変換部材を降温すると、半田層の熱収縮量と蛍光体の熱収縮量の差によって、蛍光体が蛍光体の側面に形成されている半田層によって拘束される。このため、半田層の収縮によって蛍光体が破損するおそれがあった。このように、蛍光体と放熱部材との間の熱伝導性を向上しつつ、蛍光体の破損を抑制することは、容易ではなかった。
 本発明は、上述した課題を解決するためになされたものであり、波長変換部材において、セラミック蛍光体と放熱部材との間の熱伝導性の向上と、セラミック蛍光体の破損の抑制を両立する技術を提供することを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
 (1)本発明の一形態によれば、波長変換部材が提供される。この波長変換部材は、入射する光の波長を変換するセラミック蛍光体と、前記セラミック蛍光体の熱を外部に放出する放熱部材と、前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、前記はみ出し部は、前記セラミック蛍光体の前記外周部に形成された側面から離間しており、前記半田層において、前記はみ出し部の厚みの最大値は、前記接合部の厚みの平均値よりも大きい。
 この構成によれば、半田層において、はみ出し部の最大値は、接合部の厚みの平均値よりも大きい。はみ出し部は、セラミック蛍光体と放熱部材とを接合するとき、セラミック蛍光体と放熱部材との間の半田がセラミック蛍光体の外周部の外側に押し出されることで形成される。このとき、セラミック蛍光体と放熱部材との間の半田にあるボイドは、押し出される半田とともにセラミック蛍光体と放熱部材との間から移動し、セラミック蛍光体の外周部の外側において半田の中で浮き上がる。これにより、接合部のボイドの数は、ボイドが移動しない場合に比べ少なくなるため、セラミック蛍光体と放熱部材との間の伝熱がボイドによって阻害されにくくなる。したがって、セラミック蛍光体と放熱部材との間の熱伝導性を向上することができる。また、はみ出し部は、セラミック蛍光体の側面から離間しており、セラミック蛍光体と放熱部材とを接合した後で降温したときに、収縮してもセラミック蛍光体を拘束しない。これにより、半田層の収縮によってセラミック蛍光体が破損することを抑制することができる。このように、セラミック蛍光体と放熱部材との間の熱伝導性の向上と、セラミック蛍光体の破損の抑制を両立することができる。また、セラミック蛍光体と放熱部材との間の熱伝導性が向上するため、セラミック蛍光体の耐久性が向上し、発光効率の低下を抑制することができる。
 (2)本発明の別の形態によれば、波長変換部材が提供される。この波長変換部材は、入射する光の波長を変換するセラミック蛍光体と、前記セラミック蛍光体の熱を外部に放出する放熱部材と、前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、前記接合部のボイド率は、前記はみ出し部のボイド率に比べ小さい。
 この構成によれば、接合部のボイド率は、はみ出し部のボイド率に比べ小さい。ここで、ボイド率とは、波長変換部材の中心軸に垂直な仮想平面上に、半田層の一部および半田層の一部に含まれるボイドを投影したときに、仮想平面上での半田層の一部の投影図の面積に対するボイドの投影図の面積の割合を指す。これにより、接合部によるセラミック蛍光体と放熱部材との間の熱伝導がボイドによって阻害されにくくなっている。したがって、セラミック蛍光体と放熱部材との間の熱伝導性を向上することができる。
 (3)本発明の別の形態によれば、波長変換部材が提供される。この波長変換部材は、入射する光の波長を変換するセラミック蛍光体と、前記セラミック蛍光体の熱を外部に放出する放熱部材と、前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、前記接合部において、前記波長変換部材の中心軸が通る中央部のボイド率は、前記接合部の前記中央部を除く他の部分のボイド率に比べ小さい。
 この構成によれば、接合部の中央部は、光が照射されやすいために発熱量が多くなるセラミック蛍光体の中央の部分と放熱部材との間に位置している。また、接合部の中央部のボイド率は、接合部の中央部を除く部分のボイド率に比べ小さい。これにより、接合部の中央部は、接合部の中でもさらに熱伝導性が良いため、光が照射されることでセラミック蛍光体の中央の部分に発生する熱を迅速に放熱部材に伝えることができる。したがって、中央部のボイド率を接合部の他の部分のボイド率に比べ小さくすることで、セラミック蛍光体と放熱部材との間の熱伝導性を向上することができる。
 (4)上記形態の波長変換部材において、前記はみ出し部は、前記セラミック蛍光体の前記外周部を全周にわたって囲むように形成されていてもよい。この構成によれば、セラミック蛍光体と放熱部材とを接合するとき、セラミック蛍光体と放熱部材との間の半田は、セラミック蛍光体の外周部の全周にわたってはみ出る。これにより、セラミック蛍光体と放熱部材との間のボイドがセラミック蛍光体の外周部の外側まで移動する距離は、はみ出し部がセラミック蛍光体の外周部の一部を囲むように形成される場合に比べ短くなるため、接合部のボイドの数は、さらに少なくなる。したがって、セラミック蛍光体と放熱部材との間の熱伝導性をさらに向上することができる。
 (5)上記形態の波長変換部材において、前記はみ出し部の厚みの最大値は、前記接合部の厚みの平均値の2倍以上10倍以下であってもよい。この構成によれば、セラミック蛍光体と放熱部材との間からセラミック蛍光体の外周部の外側に移動するボイドは、セラミック蛍光体の外周部の外側において半田層の中で浮き上がりやすくなる。これにより、セラミック蛍光体と放熱部材との間のボイドは、セラミック蛍光体の外周部の外側に移動しやすくなるため、接合部のボイドの数はさらに少なくなる。したがって、セラミック蛍光体と放熱部材との間の熱伝導性をさらに向上することができる。
 (6)上記形態の波長変換部材において、前記はみ出し部の前記放熱部材からの高さは、前記セラミック蛍光体の光が入射する入射面の前記放熱部材からの高さよりも低くてもよい。この構成によれば、厚みの最大値が接合部の厚みの平均値よりも大きいはみ出し部によって、セラミック蛍光体からの光の出射が阻害されることを抑制することができる。
 (7)本発明のさらに別の形態によれば、光源装置が提供される。この光源装置は、上述した波長変換部材と、セラミック蛍光体に光を照射する光源と、を備える。この構成によれば、光源装置は、光源によってセラミック蛍光体に照射した光の波長とは異なる波長の光を外部に放出する。光の波長を変換するセラミック蛍光体を備える波長変換部材では、セラミック蛍光体と放熱部材との間の半田層が有する接合部に含まれるボイドの数が比較的少ないため、接合部におけるセラミック蛍光体と放熱部材との間の熱伝導が、ボイドによって阻害されにくい。これにより、温度消光による光源装置の発光強度の低下を抑制することができる。また、はみ出し部は、セラミック蛍光体の側面から離間しているため、半田層の収縮によってセラミック蛍光体が破損することを抑制することができる。これにより、セラミック蛍光体の破損による光源装置の発光強度の低下を抑制することができる。
 (8)本発明のさらに別の形態によれば、波長変換部材の製造方法が提供される。この波長変換部材の製造方法は、入射する光の波長を変換するセラミック蛍光体と、前記セラミック蛍光体と接合させる放熱部材を準備する準備工程と、前記セラミック蛍光体と前記放熱部材を半田層によって接合する接合工程と、前記接合工程の後に、前記半田層を加工する加工工程と、を備え、前記接合工程において、前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置される接合部と、前記セラミック蛍光体の外周部から外側にはみ出しており、厚みの最大値が前記接合部の厚みの平均値より大きいはみ出し部を形成し、前記加工工程において、前記はみ出し部のうち前記セラミック蛍光体の前記外周部に形成された側面から離間している部分を含む少なくとも一部を取り除く。
 この構成によれば、接合工程において、セラミック蛍光体と放熱部材との間の半田にあるボイドは、半田とともにセラミック蛍光体と放熱部材との間から移動し、セラミック蛍光体の外周部の外側において半田の中で浮き上がる。これにより、接合部のボイドの数は、ボイドが移動しない場合に比べ少なくなるため、セラミック蛍光体と放熱部材との間の熱伝導性を向上することができる。その後、加工工程において、はみ出し部のうちセラミック蛍光体の側面から離間している部分を含む少なくとも一部を取り除く加工を行うことで、半田層の収縮によるセラミック蛍光体の破損を抑制することができる。このように、セラミック蛍光体と放熱部材との間の熱伝導性の向上と、セラミック蛍光体の破損の抑制を両立することができる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、波長変換部材または光源装置を用いた発光システム、光源装置または発光システムの製造方法、波長変換部材または光源装置の製造をコンピュータに実行させるコンピュータプログラム、コンピュータプログラムを配布するためのサーバ装置、コンピュータプログラムを記憶した一時的でない記憶媒体等などの形態で実現することができる。
第1実施形態の光源装置の模式図である。 波長変換部材の上面図である。 半田層のボイド率を算出する方法を説明する図である。 波長変換部材の製造方法を説明する図である。 波長変換部材の第1の評価試験の内容を説明する図である。 波長変換部材の第1の評価試験の結果を説明する図である。 波長変換部材の第2の評価試験の結果を説明する図である。 第1実施形態の波長変換部材の変形例の断面図である。 第1実施形態の波長変換部材の別の変形例の上面図である。
<第1実施形態>
 図1は、第1実施形態の光源装置5の模式図である。図2は、波長変換部材1の上面図である。本実施形態の光源装置5は、波長変換部材1と、光源6とを備える。波長変換部材1は、外部の発光ダイオード(LED:Light Emitting Diode)や半導体レーザー(LD:Laser Diode)などの光源6が発した光L1が照射されると、光L1とは異なる波長の光L2を発生する。この波長変換部材1は、例えば、ヘッドランプ、照明、プロジェクタなどの各種光学機器において使用される。波長変換部材1は、セラミック蛍光体10と、放熱部材20と、半田層30を備える。なお、図1では、セラミック蛍光体10と、放熱部材20と、半田層30のそれぞれの厚みの関係は、説明の便宜上、実際の厚みの関係とは異なるように図示されている。
 セラミック蛍光体10は、セラミック焼結体から構成されており、入射面11から入射する光の波長を変換する。セラミック焼結体は、蛍光性を有する結晶粒子を主体とする蛍光相と、透光性を有する結晶粒子を主体とする透光相を有する。透光相の結晶粒子は、化学式Alで表される組成を有し、蛍光相の結晶粒子は、化学式A12:Ceで表される組成(いわゆる、ガーネット構造)を有することが好ましい。「A12:Ce」とは、A12の中にCeが固溶し、元素Aの一部がCeに置換されていることを示す。
 化学式A12:Ce中の元素Aおよび元素Bは、それぞれ下記の元素群から選択される少なくとも1種類の元素から構成されている。
 元素A:Sc、Y、Ceを除くランタノイド(ただし、元素AとしてさらにGdを含んでいてもよい)
 元素B:Al(ただし、元素BとしてさらにGaを含んでいてもよい)
 セラミック蛍光体10として、セラミック焼結体を使用することで、蛍光相と透光相との界面で光が散乱し、光の色の角度依存性を減らすことができる。これにより、色の均質性を向上することができる。なお、セラミック蛍光体10の材料は、上述の材料に限定されない。
 セラミック蛍光体10の放熱部材20側の主面12には、図示しない金属膜が配置されている。この金属膜は、半田の濡れ性が良いため、セラミック蛍光体10と半田層30との密着性を高めるとともに、セラミック蛍光体10を透過した光やセラミック蛍光体10で発生した光を反射することで波長変換部材1の発光効率を向上させる。
 放熱部材20は、例えば、銅、銅モリブデン合金、銅タングステン合金、アルミニウム、窒化アルミニウムなどセラミック蛍光体10よりも高い熱伝導性を有する材料から形成されている矩形形状の平板部材である。放熱部材20のセラミック蛍光体10側の主面21には、図示しない接合膜が配置されている。この接合膜は、半田の濡れ性が良いため、放熱部材20と半田層30との密着性を高める。放熱部材20は、半田層30を通して伝わるセラミック蛍光体10の熱を外部に放出する。なお、放熱部材20は、上述した材料からなる単層構造の部材であってもよいし、同種または異なる材料から形成されている多層構造の部材であってもよい。
 半田層30は、セラミック蛍光体10と放熱部材20の間に配置され、金と錫から形成されている。半田層30は、セラミック蛍光体10と放熱部材20とを接合する。半田層30は、図1に示すように、接合部31と、はみ出し部32を有する。接合部31は、半田層30のうちセラミック蛍光体10の下、すなわち、セラミック蛍光体10と放熱部材20の間に配置されている。接合部31は、セラミック蛍光体10の主面12と放熱部材20の主面21とに接触し、セラミック蛍光体10と放熱部材20を接合している。
 はみ出し部32は、接合部31の外側に位置している。具体的には、はみ出し部32は、図1に示すように、放熱部材20の主面21上において、接合部31の外周部に接続した状態で、セラミック蛍光体10の外周部13からセラミック蛍光体10の外側にはみ出した形状をなしている。本実施形態では、図2に示すように、はみ出し部32は、セラミック蛍光体10の外周部13を全周にわたって囲むように形成されている。はみ出し部32の内壁33は、図1に示すように、セラミック蛍光体10の外周部13に形成された側面14から離間している。これにより、はみ出し部32の頂点34(図1参照)は、セラミック蛍光体10の外周部13から離れた位置に形成される。頂点34の放熱部材20の主面21からの高さH1は、図1に示すように、セラミック蛍光体10の光L1が入射する入射面11の放熱部材20の主面21からの高さH2よりも低い。
 本実施形態の半田層30では、はみ出し部32の厚みの最大値は、接合部31の厚みの平均値よりも大きい。具体的には、はみ出し部32の厚みの最大値は、接合部31の厚みの平均値の2倍以上10倍以下になっている。ここで、接合部31の厚みとは、波長変換部材1の中心軸A1(図1、2参照)を含みセラミック蛍光体10と半田層30と放熱部材20との接合面に垂直な接合部31の断面において、等間隔に設定した10か所の部分のそれぞれでの厚みの平均値を指す。
 半田層30には、波長変換部材1を製造するときに半田層30の内部に発生するボイドV1が含まれている。本実施形態の半田層30では、接合部31のボイド率は、はみ出し部32のボイド率に比べ小さい。また、波長変換部材1の中心軸A1が通るセラミック蛍光体10の中央の部分C10と、放熱部材20との間に位置する接合部31の一部を中央部31aとすると、中央部31aのボイド率は、接合部31の中央部31aを除く他の部分31bのボイド率に比べ小さい。ここで、中央部31aとは、波長変換部材1の中心軸A1が通る接合部31の一部分であり、本実施形態では、例えば、中心軸A1に対して垂直な断面形状が中心軸A1上に中心を有する円形状である柱状の部分を指す。
 ここで、本実施形態における半田層30のボイド率を算出する方法を説明する。本実施形態でのボイド率とは、波長変換部材1の中心軸A1に垂直な仮想平面上に、半田層30の一部および半田層30の一部に含まれるボイドV1を投影したときに、仮想平面上での半田層30の一部の投影図の面積に対するボイドV1の投影図の面積の割合を指す。
 図3は、半田層30のボイド率を算出する方法を説明する図である。ここでは、波長変換部材1の中心軸A1に垂直な断面図である図3(a)に示す半田層30の一部35を用いて説明する。半田層30の一部35は、セラミック蛍光体10と放熱部材20との間に挟まれた位置にあり、図3(a)に示すような状態で、ボイドV1が含まれているとする。なお、図3(a)は、断面図であるため、ここに表れないボイドV1も半田層30の一部35には含まれていることが想定される。
 半田層30のボイド率を算出するとき、中心軸A1に垂直な仮想平面VPを仮定し、図3(a)に示す点線矢印W1のように半田層30の一部35を見たときに、仮想平面VPに投影される一部35の投影図を作図する。その投影図を図3(b)に示す。ここでは、半田層30の一部35の仮想平面VP上の投影図P35は、正方形であるとした。このとき、半田層30の一部35に含まれるボイドV1も投影図P35にボイドV1の投影図PV1として投影されるため、投影図P35には、図3(b)に示すように、ボイドV1の投影図PV1が点在することとなる。この投影図P35の面積に対するボイドV1の投影図PV1の面積の合計の割合が、本実施形態でのボイド率となる。なお、図3(b)に示すように、ボイドV1を仮想平面VP上に投影したときに、複数のボイドV1のそれぞれの投影図PV1が重なる場合がある(例えば、図3(b)の投影図PV2)。この場合、重なっている部分の面積は、1つのボイドV1の投影図が占める面積として計算し、2重にはカウントしない。
 次に、波長変換部材1の製造方法について説明する。初めに、準備工程として、セラミック蛍光体10の主面12に、真空蒸着またはスパッタリングを用いて、金属膜を成膜する。また、放熱部材20の主面21に接合膜をめっきする。次に、接合工程として、セラミック蛍光体10と放熱部材20の間に金錫半田箔を挟みこんだ状態で、窒素雰囲気中または水素雰囲気中のリフロー炉において加熱し、セラミック蛍光体10と放熱部材20とを接合する。このとき、セラミック蛍光体10と放熱部材20との間で溶融する金錫半田箔がセラミック蛍光体10の外側にはみ出るように、セラミック蛍光体10と放熱部材20とを接合する。なお、放熱部材20の表面に接合膜を成膜する場合、真空蒸着またはスパッタリングによって成膜してもよい。また、金錫半田箔を使用する代わりに、金錫半田ペーストを塗布してもよい。
 図4は、波長変換部材1の製造方法を説明する図である。図4(a)には、接合される前の、セラミック蛍光体10と放熱部材20と金錫半田箔F1を示す。図4(a)に示すように、セラミック蛍光体10の主面12に成膜された金属膜と放熱部材20の主面21に成膜された接合膜の間に、セラミック蛍光体10より大きく放熱部材20より小さい金錫半田箔F1を挿入する。金錫半田箔F1を挟み込んだ状態のセラミック蛍光体10と放熱部材20をリフロー炉において加熱すると、溶融する金錫半田箔F1がセラミック蛍光体10の金属膜と放熱部材20の接合膜と反応し、セラミック蛍光体10と放熱部材20とが接合される。このとき、金属膜や接合膜と金錫半田箔F1との間にあった隙間や、めっき工程において混入したガス由来のボイドV1が発生する(図4(b)参照)。
 セラミック蛍光体10と放熱部材20に荷重をかけて接合するとき(図4(b)に示す白抜き矢印F10、F20参照)、金錫半田箔F1が溶融した溶融半田40のうちセラミック蛍光体10と放熱部材20との間にある中央部S41は、セラミック蛍光体10の外周部13の外側に向かって移動する。このとき、中央部S41のボイドV1は、中央部S41での半田の流れによって溶融半田40の外側部S42に移動する(図4(b)の点線矢印D1)。溶融半田40の外側部S42は、溶融半田40での中央部S41から外側部S42への流れによって盛り上がり中央部S41より厚くなるため、ボイドV1は、中央部S41から外側部S42に移動すると、外側部S42において溶融半田40の中で浮き上がる(図4(b)の点線矢印D2)。本実施形態では、セラミック蛍光体10と放熱部材20との間に挿入されるときの金錫半田箔F1の厚みと大きさ、および、セラミック蛍光体10と放熱部材20を接合するときの荷重を調整することによって、外側部S42の高さを調整する。これにより、中央部S41のボイドV1は外側部S42に移動しやすくなるため、本実施形態の製造方法では、図4(c)に示すように、溶融半田40の中のボイドV1は、外側部S42に集まり、中央部S41のボイドV1の数は少なくなる。
 本実施形態の波長変換部材1の製造方法では、セラミック蛍光体10と放熱部材20に荷重をかけて接合するとき、溶融半田40の外側部S42は、セラミック蛍光体10の外周部13を、全周にわたって囲む。これにより、中央部S41のボイドV1が外側部S42まで移動する距離は、比較的短くなるため、中央部S41のボイドV1の数はさらに少なくなる。
 図4(c)に示す状態のセラミック蛍光体10と放熱部材20を降温すると、溶融半田40の中央部S41が半田層30の接合部31となり、外側部S42がはみ出し部32となって、セラミック蛍光体10と放熱部材20とは半田層30によって接合される。このとき、図4(c)に示すように、溶融半田40の外側部S42の内壁S43は、セラミック蛍光体10の側面14から離間しているため、降温によってセラミック蛍光体10と半田層30となる溶融半田40が収縮しても、セラミック蛍光体10は、はみ出し部32によって拘束されることはない。
 次に、本実施形態の波長変換部材1の効果を説明するための評価試験の内容およびその評価試験の結果を説明する。本評価試験では、以下で説明する2つの評価試験を行った。
 第1の評価試験では、半田層30の各部におけるボイド率を測定し、これらの値を比較した。第1の評価試験では、最初に、半田層30に透過X線を照射し、ボイド率を測定する対象部分を撮像した。次に、撮像結果から直径が10μm以上のボイドをカウントし、対象部分のボイド率を算出した。なお、ここで算出されるボイド率は、図3で説明した方法で算出されるボイド率である。
 図5は、波長変換部材1の第1の評価試験の内容を説明する図である。図5(a)は、第1の評価試験に用いられた波長変換部材1の上面図であって、図5(b)は、図5(a)のA-A線断面図である。第1の評価試験では、矩形形状のセラミック蛍光体10を備える波長変換部材1について、接合部31のボイド率と、接合部31に含まれる中央部31aのボイド率と、はみ出し部32のボイド率を算出した。第1の評価試験では、円柱状に形成されている中央部31aの断面形状である円形状の直径W1は、セラミック蛍光体10の最も狭い幅W2の半分と規定している。具体的には、中央部31aの直径W1は、4mmであって、セラミック蛍光体10の幅W2は、8mmとしている。また、図5(b)において、半田層30の幅W3は、9mmとなっている。すなわち、はみ出し部32がセラミック蛍光体10からはみ出ている部分の幅は、両側を足して1mmとなっている。
 また、図5に示す波長変換部材1では、接合部31の厚みTh1は、10μmであって、はみ出し部32の厚みTh2は、17μmとなっている。したがって、第1の評価試験は、接合部31の厚みTh1に対するはみ出し部32の厚みTh2の比率が1.7となっている波長変換部材1を用いて行っている。
 図6は、波長変換部材1の第1の評価試験での結果を説明する図である。図6(a)は、第1の評価試験でのボイド率の測定結果を示す表であり、図6(b)は、波長変換部材1におけるボイドV1の分布を模式的に示した図である。第1の評価試験によって、中央部31aを含む接合部31のボイド率(3.4%)は、はみ出し部32のボイド率(4.3%)に比べ小さいことが明らかとなった。これは、セラミック蛍光体10と放熱部材20とを接合するときにセラミック蛍光体10と放熱部材20との間のボイドがセラミック蛍光体10の外側に移動するため、はみ出し部32のボイドV1の数が多くなる一方、接合部31のボイドV1の数が少なくなることを示している(図6(b)参照)。
 また、第1の評価試験によって、接合部31において、中央部31aのボイド率(2.8%)は、接合部31全体のボイド率(3.4%)に比べ小さいことが明らかとなった。すなわち、中央部31aのボイド率は、接合部31の中央部31aを除く他の部分31bのボイド率に比べ小さいことが明らかとなった。これにより、光が照射されやすいために発熱量が多くなるセラミック蛍光体10の中央の部分C10と放熱部材20との間に位置する中央部31aの熱伝導性は、接合部31の中央部31aを除く他の部分の熱伝導性に比べ高い。
 図7は、波長変換部材1の第2の評価結果を説明する図である。第2の評価試験では、接合部31の厚みに対するはみ出し部32の厚みの比率を、図7(a)の表に示すように、1、1.2、1.5、2、5.3、10としたときの接合部31のボイド率を測定し、これらの値を比較した。図7(b)と図7(c)は、接合部31の厚みに対するはみ出し部32の厚みの比率を変更したときの、接合部31とはみ出し部32とのそれぞれのボイドV1の分布を模式的に示した図である。なお、第2の評価試験でのボイド率は、第1の評価試験で説明した方法で算出されるボイド率と同じである。
 図7(a)に示すように、接合部31の厚みに対するはみ出し部32の厚みの比率が大きくなると、接合部31のボイド率は、小さくなることが明らかとなった。すなわち、接合部31の厚みが同じである場合、厚みの比率が大きい波長変換部材1(図7(c))の接合部31に含まれるボイドV1の数は、該比率が小さい波長変換部材1(図7(b))の接合部31に含まれるボイドV1の数より少ないことを示している。特に、図7(a)に示すように、接合部31の厚みに対するはみ出し部32の厚みの比率を2倍以上にすると、該比率が2倍より小さい場合に比べ、接合部31のボイド率は大幅に小さくなることが明らかとなった。
 以上、説明した本実施形態の波長変換部材1によれば、半田層30において、はみ出し部32の最大値は、接合部31の厚みの平均値よりも大きい。はみ出し部32は、セラミック蛍光体10と放熱部材20とを接合するとき、セラミック蛍光体10と放熱部材20との間の半田がセラミック蛍光体10の外周部13の外側に押し出されることで形成される。このとき、セラミック蛍光体10と放熱部材20との間の半田にあるボイドV1は、押し出される半田とともにセラミック蛍光体10と放熱部材20との間から移動し、セラミック蛍光体10の外周部13の外側において溶融半田40の中で浮き上がる。これにより、接合部31のボイドV1の数は、ボイドが移動しない場合に比べ少なくなるため、セラミック蛍光体10と放熱部材20との間の伝熱がボイドV1によって阻害されにくくなる。したがって、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。また、本実施形態の波長変換部材1によれば、はみ出し部32は、セラミック蛍光体10の側面14から離間しており、セラミック蛍光体10と放熱部材20とを接合した後で降温したときに、収縮してもセラミック蛍光体10を拘束しない。これにより、半田層30の収縮によってセラミック蛍光体10が破損することを抑制することができる。このように、セラミック蛍光体10と放熱部材20との間の熱伝導性の向上と、セラミック蛍光体10の破損の抑制を両立することができる。また、セラミック蛍光体10と放熱部材20との間の熱伝導性が向上するため、セラミック蛍光体10の耐久性が向上し、発光効率の低下を抑制することができる。
 また、本実施形態の波長変換部材1によれば、接合部31のボイド率は、はみ出し部32のボイド率に比べ小さい。これにより、接合部31によるセラミック蛍光体10と放熱部材20との間の熱伝導がボイドV1によって阻害されにくくなっている。したがって、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。
 また、本実施形態の波長変換部材1によれば、接合部31において、セラミック蛍光体10の中央の部分C10と放熱部材20との間に位置する中央部31aのボイド率は、接合部31の他の部分31bのボイド率に比べ小さい。接合部31の中央部31aは、光が照射されやすいために発熱量が多くなるセラミック蛍光体10の中央の部分C10と放熱部材20との間に位置している。これにより、接合部31の中央部31aは、接合部31の中でもさらに熱伝導性が良いため、光が照射されることでセラミック蛍光体10の中央の部分C10に発生する熱を迅速に放熱部材20に伝えることができる。したがって、中央部31aのボイド率を接合部31の他の部分31bのボイド率に比べ小さくすることで、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。
 また、本実施形態の波長変換部材1によれば、はみ出し部32は、セラミック蛍光体10の外周部13を全周にわたって囲むように形成されている。これにより、セラミック蛍光体10と放熱部材20とを接合するとき、半田層30の中央部S41の半田は、セラミック蛍光体10の外周部13の全周にわたってはみ出る。中央部S41のボイドV1が外側部S42まで移動する距離は、はみ出し部32がセラミック蛍光体10の外周部13の一部を囲むように形成される場合に比べ短くなるため、接合部31のボイドV1の数は、さらに少なくなる。したがって、セラミック蛍光体10と放熱部材20との間の熱伝導性をさらに向上することができる。
 また、本実施形態の波長変換部材1によれば、はみ出し部32の厚みの最大値である高さH1は、接合部31の厚みの平均値の2倍以上10倍以下になっている。これにより、セラミック蛍光体10と放熱部材20との間からセラミック蛍光体10の外周部13の外側に移動するボイドV1は、セラミック蛍光体10の外周部13の外側において半田層30の中で浮き上がりやすくなる。これにより、中央部S41のボイドV1は、外側部S42に移動しやすくなるため、接合部31のボイドV1の数はさらに少なくなる。したがって、セラミック蛍光体10と放熱部材20との間の熱伝導性をさらに向上することができる。
 また、本実施形態の波長変換部材1によれば、はみ出し部32の放熱部材20からの高さH1は、セラミック蛍光体10の光が入射する入射面11の放熱部材20からの高さH2よりも低い。これにより、厚みの最大値が接合部31の厚みの平均値よりも大きいはみ出し部32によって、セラミック蛍光体10からの光の出射が阻害されることを抑制することができる。
 また、本実施形態の光源装置5によれば、光源装置5は、光源6によってセラミック蛍光体10に照射された光L1の波長とは異なる波長の光L2を外部に放出する。光L1の波長を変換するセラミック蛍光体10を備える波長変換部材1では、セラミック蛍光体10と放熱部材20との間の半田層30が有する接合部31に含まれるボイドV1の数が比較的少ないため、接合部31におけるセラミック蛍光体10と放熱部材20との間の熱伝導が、ボイドV1によって阻害されにくい。これにより、温度消光による光源装置5の発光強度の低下を抑制することができる。また、はみ出し部32は、セラミック蛍光体10の側面14から離間しているため、半田層30の収縮によってセラミック蛍光体10が破損することを抑制することができる。これにより、セラミック蛍光体10の破損による光源装置5の発光強度の低下を抑制することができる
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 上述の実施形態の半田層30では、セラミック蛍光体10の側面14から離間しており厚みの最大値が接合部31の厚みの平均値よりも大きいはみ出し部32のボイド率は、接合部31のボイド率より大きく、中央部31aのボイド率は、他の部分31bのボイド率より小さいとした。しかしながら、半田層30の形状およびボイド率の特徴は、これに限定されない。セラミック蛍光体10の側面14から離間しており厚みの最大値が接合部31の厚みの平均値よりも大きいはみ出し部32のボイド率は、接合部31のボイド率より大きいものの、中央部31aのボイド率は、他の部分31bのボイド率より大きくてもよい。
 [変形例2]
 また、半田層30では、はみ出し部32のボイド率が、接合部31のボイド率より大きいだけであってもよく、はみ出し部32の厚みの最大値が接合部31の厚みの平均値と同程度または小さくてもよいし、中央部31aのボイド率が他の部分31bのボイド率より大きくてもよい。
 図8は、第1実施形態の波長変換部材1の変形例の断面図である。図8に示す波長変換部材1の変形例は、図8(a)に示す第1実施形態で説明した製造方法によって製造したものに対して、加工工程として、はみ出し部32を加工したものである。具体的には、図8(b)に示すように、はみ出し部32のうち内壁33を形成する部分32aを取り除き、例えば、はみ出し部32の残りの部分32bの厚みを、接合部31の厚みと同じ程度とする。図8(b)に示すような形状の波長変換部材1であっても、セラミック蛍光体10と放熱部材20とを接合するときに、ボイドV1は、セラミック蛍光体10の外側に移動しているため、接合部31のボイド率は、はみ出し部32のボイド率より小さい。したがって、図8に示すような状態の波長変換部材1でも、セラミック蛍光体10と放熱部材20との間の伝熱がボイドV1によって阻害されにくくなるため、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。なお、加工工程において取り除かれるはみ出し部32の一部は、セラミック蛍光体10の側面14から離間している内壁33を形成する部分32aを含んでいればよく、加工後の残りの部分32bの厚みは、接合部31の厚みより薄くてもよい。
 [変形例3]
 また、半田層30では、中央部31aのボイド率が他の部分31bのボイド率より小さいだけであってもよく、はみ出し部32の厚みの最大値が接合部31の厚みの平均値よりも小さくてもよいし、はみ出し部32のボイド率が、接合部31のボイド率より小さくてもよい。
 [変形例4]
 上述の実施形態では、はみ出し部32は、セラミック蛍光体10の外周部13を全周にわたって囲むように形成されているとした。しかしながら、はみ出し部32は、セラミック蛍光体10の外周部13の一部に隣接するように形成されていてもよい。
 図9は、第1実施形態の波長変換部材1の別の変形例の上面図である。図9に示すように、はみ出し部32は、セラミック蛍光体10の外周部13の一部を囲むように、例えば、C字状に形成されていてもよい。具体的には、矩形状に形成されているセラミック蛍光体10の4つの側面14a、14b、14c、14dのうち、側面14b、14c、14dを形成する外周部13を囲むように形成されていてもよい。このような場合でも、セラミック蛍光体10と放熱部材20とを接合するとき、セラミック蛍光体10と放熱部材20との間のボイドはセラミック蛍光体10の外側に移動するため、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。
 [変形例5]
 上述の実施形態では、はみ出し部32の厚みの最大値は、接合部31の厚みの平均値の2倍以上10倍以下になっているとした。しかしながら、はみ出し部32の厚みの最大値と接合部31の厚みの平均値との関係は、これに限定されない。はみ出し部32の厚みの最大値が接合部31の厚みの平均値の2倍未満であっても、半田層30の中央部S41のボイドV1は、外側部S42に移動するため、セラミック蛍光体10と放熱部材20との間の熱伝導性を向上することができる。
 [変形例6]
 上述の実施形態では、はみ出し部32の頂点34の放熱部材20からの高さH1は、セラミック蛍光体10の放熱部材20からの高さH2よりも低いとした。しかしながら、はみ出し部32の高さH1と、セラミック蛍光体10の高さH2との関係は、これに限定されない。
 [変形例7]
 上述の実施形態では、ボイドV1は、金属膜や接合膜と金錫半田箔F1との間にあった隙間やめっき工程において混入したガス由来であるとした。しかしながら、ボイドV1の生成原因は、これに限定されず、金錫ペーストを使用する場合では金錫ペーストに含まれるバインダー由来であってもよい。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1…波長変換部材
  5…光源装置
  6…光源
  10…セラミック蛍光体
  11…入射面
  12…主面
  13…外周部
  14、14a、14b、14c、14d…側面
  20…放熱部材
  21…主面
  30…半田層
  31…接合部
  31a…中央部
  31b…他の部分
  32…はみ出し部
  32a…離間している部分
  32b…残りの部分
  33…内壁
  34…頂点
  40…溶融半田
  C10…セラミック蛍光体の中央の部分
  F1…金錫半田箔
  L1、L2…光
  S41…中央部
  S42…外側部
  S43…内壁
  V1…ボイド

Claims (8)

  1.  波長変換部材であって、
     入射する光の波長を変換するセラミック蛍光体と、
     前記セラミック蛍光体の熱を外部に放出する放熱部材と、
     前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、
     前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、
     前記はみ出し部は、前記セラミック蛍光体の前記外周部に形成された側面から離間しており、
     前記半田層において、前記はみ出し部の厚みの最大値は、前記接合部の厚みの平均値よりも大きい、
     波長変換部材。
  2.  波長変換部材であって、
     入射する光の波長を変換するセラミック蛍光体と、
     前記セラミック蛍光体の熱を外部に放出する放熱部材と、
     前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、
     前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、
     前記接合部のボイド率は、前記はみ出し部のボイド率に比べ小さい、
     波長変換部材。
  3.  波長変換部材であって、
     入射する光の波長を変換するセラミック蛍光体と、
     前記セラミック蛍光体の熱を外部に放出する放熱部材と、
     前記セラミック蛍光体と前記放熱部材を接合する半田層と、を備え、
     前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置されている接合部と、前記セラミック蛍光体の外周部から外側にはみ出しているはみ出し部と、を含み、
     前記接合部において、前記波長変換部材の中心軸が通る中央部のボイド率は、前記接合部の前記中央部を除く他の部分のボイド率に比べ小さい、
     波長変換部材。
  4.  請求項1から請求項3のいずれか一項に記載の波長変換部材であって、
     前記はみ出し部は、前記セラミック蛍光体の前記外周部を全周にわたって囲むように形成されている、
     波長変換部材。
  5.  請求項1から請求項4のいずれか一項に記載の波長変換部材であって、
     前記はみ出し部の厚みの最大値は、前記接合部の厚みの平均値の2倍以上10倍以下である、
     波長変換部材。
  6.  請求項1から請求項5のいずれか一項に記載の波長変換部材であって、
     前記はみ出し部の前記放熱部材からの高さは、前記セラミック蛍光体の光が入射する入射面の前記放熱部材からの高さよりも低い、
     波長変換部材。
  7.  光源装置であって、
     請求項1から請求項6のいずれか一項に記載の波長変換部材と、
     前記セラミック蛍光体に光を照射する光源と、を備える、
     光源装置。
  8.  波長変換部材の製造方法であって、
     入射する光の波長を変換するセラミック蛍光体と、前記セラミック蛍光体と接合させる放熱部材を準備する準備工程と、
     前記セラミック蛍光体と前記放熱部材を半田層によって接合する接合工程と、
     前記接合工程の後に、前記半田層を加工する加工工程と、を備え、
     前記接合工程において、前記半田層は、前記セラミック蛍光体と前記放熱部材の間に配置される接合部と、前記セラミック蛍光体の外周部から外側にはみ出しており、厚みの最大値が前記接合部の厚みの平均値より大きいはみ出し部を形成し、
     前記加工工程において、前記はみ出し部のうち前記セラミック蛍光体の前記外周部に形成された側面から離間している部分を含む少なくとも一部を取り除く、
     波長変換部材の製造方法。

     
PCT/JP2020/026822 2019-07-16 2020-07-09 波長変換部材、光源装置、および、波長変換部材の製造方法 WO2021010272A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217041293A KR102633887B1 (ko) 2019-07-16 2020-07-09 파장 변환 부재, 광원 장치, 및, 파장 변환 부재의 제조 방법
US17/624,081 US11692699B2 (en) 2019-07-16 2020-07-09 Wavelength conversion member, light source device, and method for manufacturing wavelength conversion member
CN202080046550.0A CN114041073A (zh) 2019-07-16 2020-07-09 波长转换构件、光源装置和波长转换构件的制造方法
EP20839980.8A EP4001752A4 (en) 2019-07-16 2020-07-09 WAVELENGTH CONVERSION ELEMENT, LIGHT SOURCE DEVICE AND METHOD OF MAKING WAVELENGTH CONVERSION ELEMENT
JP2021533011A JP7307799B2 (ja) 2019-07-16 2020-07-09 波長変換部材、光源装置、および、波長変換部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131117 2019-07-16
JP2019-131117 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021010272A1 true WO2021010272A1 (ja) 2021-01-21

Family

ID=74210756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026822 WO2021010272A1 (ja) 2019-07-16 2020-07-09 波長変換部材、光源装置、および、波長変換部材の製造方法

Country Status (7)

Country Link
US (1) US11692699B2 (ja)
EP (1) EP4001752A4 (ja)
JP (1) JP7307799B2 (ja)
KR (1) KR102633887B1 (ja)
CN (1) CN114041073A (ja)
TW (1) TWI788684B (ja)
WO (1) WO2021010272A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020631B2 (ja) 1980-01-19 1985-05-23 松下電器産業株式会社 電磁式比例制御弁
WO2012026206A1 (ja) * 2010-08-26 2012-03-01 日本電気硝子株式会社 波長変換素子、光源及び液晶用バックライトユニット
WO2014065051A1 (ja) * 2012-10-26 2014-05-01 ウシオ電機株式会社 蛍光光源装置
JP2014194895A (ja) * 2013-03-29 2014-10-09 Ushio Inc 蛍光光源装置
JP2017194706A (ja) 2012-08-02 2017-10-26 日亜化学工業株式会社 波長変換装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020631U (ja) 1983-07-15 1985-02-13 株式会社クボタ 車両の変速装置
JP6107024B2 (ja) * 2012-09-26 2017-04-05 日亜化学工業株式会社 発光装置およびその製造方法
CN104968995B (zh) 2013-02-08 2017-03-08 优志旺电机株式会社 荧光光源装置
JP6020631B2 (ja) 2015-03-20 2016-11-02 ウシオ電機株式会社 蛍光光源装置
JP2019002952A (ja) * 2017-06-12 2019-01-10 セイコーエプソン株式会社 波長変換素子、光源装置、および投射型装置
JP2019045620A (ja) * 2017-08-31 2019-03-22 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
EP4001975A4 (en) * 2019-07-16 2023-08-02 Ngk Spark Plug Co., Ltd. WAVELENGTH CONVERSION ELEMENT FOR BRAZING, WAVELENGTH CONVERSION AND LIGHT SOURCE DEVICES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020631B2 (ja) 1980-01-19 1985-05-23 松下電器産業株式会社 電磁式比例制御弁
WO2012026206A1 (ja) * 2010-08-26 2012-03-01 日本電気硝子株式会社 波長変換素子、光源及び液晶用バックライトユニット
JP2017194706A (ja) 2012-08-02 2017-10-26 日亜化学工業株式会社 波長変換装置の製造方法
WO2014065051A1 (ja) * 2012-10-26 2014-05-01 ウシオ電機株式会社 蛍光光源装置
JP2014194895A (ja) * 2013-03-29 2014-10-09 Ushio Inc 蛍光光源装置

Also Published As

Publication number Publication date
CN114041073A (zh) 2022-02-11
JPWO2021010272A1 (ja) 2021-01-21
TWI788684B (zh) 2023-01-01
KR102633887B1 (ko) 2024-02-06
US20220357027A1 (en) 2022-11-10
TW202105775A (zh) 2021-02-01
US11692699B2 (en) 2023-07-04
EP4001752A4 (en) 2023-12-06
JP7307799B2 (ja) 2023-07-12
EP4001752A1 (en) 2022-05-25
KR20220010004A (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
JP6460162B2 (ja) 波長変換装置の製造方法
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
JP2005268323A (ja) 半導体発光装置
JP6705462B2 (ja) 発光装置
JP2014137973A (ja) 光源装置
KR102501831B1 (ko) 광 파장 변환 장치
JP2019211670A (ja) 蛍光発光素子
JP7148291B2 (ja) 光波長変換装置
WO2021010272A1 (ja) 波長変換部材、光源装置、および、波長変換部材の製造方法
JP2024028483A (ja) 発光装置及び発光装置の製造方法
JP2019207761A (ja) 光波長変換装置
WO2021010273A1 (ja) 半田付け用波長変換部材、波長変換装置、および、光源装置
JP7174290B2 (ja) 発光装置及び発光装置の製造方法
JP2016134539A (ja) 半導体発光装置
US11796156B2 (en) Fluorescent plate, wavelength conversion member, and light source device
JP7502613B2 (ja) 波長変換部材及び発光装置の製造方法
JP2019197143A (ja) 光波長変換装置
JP7441140B2 (ja) 波長変換部材、波長変換装置、および、光源装置
JP2019184644A (ja) 光波長変換部材及び発光装置
JP6602111B2 (ja) 半導体発光装置
JP2023167773A (ja) 波長変換部材および光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533011

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217041293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020839980

Country of ref document: EP

Effective date: 20220216