WO2021008451A1 - 一种多普勒频偏估计方法及通信装置 - Google Patents

一种多普勒频偏估计方法及通信装置 Download PDF

Info

Publication number
WO2021008451A1
WO2021008451A1 PCT/CN2020/101291 CN2020101291W WO2021008451A1 WO 2021008451 A1 WO2021008451 A1 WO 2021008451A1 CN 2020101291 W CN2020101291 W CN 2020101291W WO 2021008451 A1 WO2021008451 A1 WO 2021008451A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
mobile terminals
base station
group
mobile terminal
Prior art date
Application number
PCT/CN2020/101291
Other languages
English (en)
French (fr)
Inventor
代西桃
胥恒
王维新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021008451A1 publication Critical patent/WO2021008451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Definitions

  • This application relates to the field of mobile communication technology, and in particular, to a Doppler frequency offset estimation method and communication device.
  • a mobile station such as a high-speed rail, a mobile terminal on a car, etc.
  • the signal received by the base station will have a Doppler frequency offset, specifically the signal received by the base station will The phase and frequency changes due to the movement of the mobile station.
  • the base station can usually estimate the frequency offset of the received signal of the mobile station, and use the estimated value of the frequency offset to correct the frequency offset of the signal received by the base station, so that the base station can subsequently demodulate the signal; otherwise, , If the base station demodulates the signal with an uncorrected frequency, it may cause a significant degradation of demodulation performance, and even cause the base station to be unable to communicate with the mobile station.
  • the frequency offset estimation value calculated by the base station for some mobile terminals that accesses is not accurate, so that the frequency offset estimation value of the mobile terminal is less than the actual frequency offset value of the mobile terminal signal received by the base station. Therefore, the base station may not be able to successfully demodulate the signal of the mobile terminal, and the communication between the base station and the mobile terminal may not be completed normally.
  • the embodiments of the present application provide a Doppler frequency offset estimation method and a communication device to improve the accuracy of the frequency offset estimation value calculated by the base station for some mobile terminals, so as to improve the base station's response to the mobile terminal.
  • the possibility of successful signal demodulation which in turn enables normal communication between the base station and the mobile terminal.
  • an embodiment of the present application provides a Doppler frequency offset estimation method, which includes: a base station performs Doppler frequency offset measurement on each mobile terminal among a plurality of mobile terminals accessed to obtain the Frequency offset measurement value; the base station groups the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals to obtain multiple groups of mobile terminals; the base station is each of the multiple groups of mobile terminals The mobile terminal determines the reference frequency offset estimation value or reference frequency offset interval; the base station determines the target frequency offset estimation value corresponding to each mobile terminal in each group of mobile terminals according to the reference frequency offset estimation value or reference frequency offset interval corresponding to each group of mobile terminals .
  • the base station can determine some mobile terminals with better signal quality from each group of mobile terminals, and based on the frequency offset estimation value or frequency offset interval of this part of the mobile terminal, determine the relatively relatively An accurate reference frequency offset estimation value or reference frequency offset interval, so that the reference frequency offset estimation value or reference frequency offset interval is based on the frequency offset estimation value determined by the mobile terminal with poor signal quality, than directly based on the signal quality of the mobile terminal.
  • the frequency offset estimation value determined by the frequency offset measurement value of the mobile terminal is more accurate, which improves the accuracy of the frequency offset estimation value calculated by the base station for the mobile terminal, thereby improving the base station’s ability to successfully demodulate the signal of the mobile terminal. possibility.
  • the base station can use the reference frequency offset estimation value or reference frequency offset interval corresponding to the group where the mobile terminal is located, and perform a simple calculation process to obtain the frequency offset estimation value corresponding to the mobile terminal, without the need to perform each mobile terminal.
  • the complex calculation process can effectively reduce the amount of calculation when the base station performs frequency offset estimation for multiple mobile terminals and reduce the consumption of calculation resources of the base station.
  • the method may further include that the base station obtains a parameter value of a preset parameter of each of the multiple mobile terminals, where the preset parameter includes the reference signal received power RSRP and/or the timing advance TA of the mobile terminal; then
  • the base station grouping the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals includes: the base station according to the frequency offset measurement value of each of the multiple mobile terminals and the preset parameter
  • the parameter value groups multiple mobile terminals.
  • the base station can obtain the reference signal received power RSRP and/or timing advance TA corresponding to each mobile terminal, so as to access the mobile terminal based on the frequency offset measurement value of the mobile terminal and the corresponding RSRP and/or TA. Multiple mobile terminals of the base station are grouped.
  • the frequency offset measurement value of each group of mobile terminals meets the corresponding frequency offset interval of the group, and the parameter value of the preset parameter of each group of mobile terminals meets the preset parameter interval corresponding to the group.
  • the frequency offset measurement value may be in the same frequency offset interval, and the parameter value of the preset parameter is in the same frequency offset interval.
  • the mobile terminals corresponding to the same preset parameter interval are divided into one group, so that the frequency offset measurement values of the mobile terminals in the same group meet the same frequency offset interval, and the parameter values of their preset parameters meet the same preset Parameter interval.
  • the method further includes: the base station obtains the maximum theoretical frequency offset estimation value and the maximum theoretical frequency offset measurement value, and determines the number of groups according to the maximum theoretical frequency offset estimation value and the maximum theoretical frequency offset measurement value;
  • Grouping by a mobile terminal includes: the base station groups a plurality of mobile terminals according to the number of groups.
  • the number of groups of multiple mobile terminals by the base station may be determined according to the maximum theoretical frequency offset estimation value and the maximum theoretical frequency offset measurement value.
  • the maximum theoretical frequency offset may be calculated. The ratio between the estimated value of the deviation and the measured value of the maximum theoretical frequency deviation, and the ratio is determined as the number of groups of the mobile terminal.
  • the base station determines a reference frequency offset estimation value or a reference frequency offset interval for each group of mobile terminals in a plurality of groups: the base station determines the signal quality of each mobile terminal in the first group of mobile terminals, where the first group The mobile terminal is any group of mobile terminals in multiple groups, and one or more mobile terminals in the first group of mobile terminals whose signal quality is greater than or equal to a threshold are reference mobile terminals; the base station is based on the first group of mobile terminals.
  • the target frequency offset estimation value of each mobile terminal in the first group of mobile terminals is the reference frequency offset estimation value.
  • mobile terminals with better signal quality can be determined from the group of mobile terminals, that is, mobile terminals with signal quality greater than or equal to a threshold, and based on these mobile terminals Frequency offset estimation value to obtain the reference frequency offset estimation value of the group of mobile terminals.
  • the reference frequency offset estimation value corresponding to the first group of mobile terminals may be an average value of the frequency offset estimation value of one or more reference mobile terminals.
  • the base station determines the reference frequency offset estimation value of each group of mobile terminals
  • the frequency offset estimation value of the mobile terminal with better signal quality in this group of mobile terminals can be averaged, so that these signals can be calculated.
  • the average value of the frequency offset estimation values of mobile terminals with better quality is used as the reference frequency offset estimation value corresponding to the group of mobile terminals.
  • the base station determines a reference frequency offset estimation value or a reference frequency offset interval for each group of mobile terminals in a plurality of groups of mobile terminals: including: the base station determines the signal quality of each mobile terminal in the first group of mobile terminals, where the The first group of mobile terminals is any one of multiple groups of mobile terminals, and one or more mobile terminals in the first group of mobile terminals whose signal quality is greater than or equal to a threshold are reference mobile terminals; the base station moves according to each reference The frequency offset measurement value of the terminal determines the frequency offset interval of each reference mobile terminal, and determines the reference frequency offset interval corresponding to the first group of mobile terminals according to the frequency offset interval of each reference mobile terminal;
  • the corresponding reference frequency offset estimation value or reference frequency offset interval determining the target frequency offset estimation value corresponding to each mobile terminal in each group of mobile terminals includes: the base station according to the reference frequency offset interval corresponding to the first group of mobile terminals and the first The frequency offset measurement value of each mobile terminal in the group of mobile terminals determines the target
  • mobile terminals with better signal quality can be determined from the group of mobile terminals, that is, mobile terminals with signal quality greater than or equal to a threshold, and based on these mobile terminals Frequency offset interval to obtain the reference frequency offset interval of the group of mobile terminals.
  • the reference frequency offset intervals corresponding to the first group of mobile terminals are the same and the largest number of frequency offset intervals among the one or more frequency offset intervals corresponding to one or more reference mobile terminals.
  • the base station can determine the frequency offset interval corresponding to the mobile terminal with better signal quality in this group of mobile terminals, and can follow the principle of minority to majority, from these better signal quality Among the frequency offset intervals of the mobile terminal, the same and the largest number of frequency offset intervals are determined, so that the determined frequency offset interval is used as the reference frequency offset interval of the group of mobile terminals.
  • the signal quality of the above mobile terminal is determined according to at least one of the following: signal to interference and noise ratio, number of scheduled resource blocks, and reference signal received power.
  • the base station determines a mobile terminal with better signal quality, it can be specifically based on any one or more of the signal to interference and noise ratio of the mobile terminal, the number of scheduled resource blocks, and the received power of the reference signal. determine.
  • the moving directions of multiple mobile terminals grouped by the base station are the same.
  • the mobile terminals grouped by the base station all have the same direction of movement.
  • the base station can group mobile terminals that are also from left to right, and/or, move from right to left. Of mobile terminals for grouping, etc.
  • the method further includes: the base station determines a base station accessed by each mobile terminal of the plurality of mobile terminals; the base station determines the base station with the same moving direction according to the relative position of the base station and the base station accessed by the previous connection. Multiple mobile terminals.
  • the base station determines the moving direction of the mobile terminal, it can be specifically determined according to the base station currently accessed by the mobile terminal and a base station accessed by the mobile terminal, that is, the moving direction of the mobile terminal is from The direction from the last accessed base station to the currently accessed base station.
  • the embodiments of the present application also provide a communication device, which is applied to a base station, and the communication device includes: a measurement module configured to perform Doppler on each of the multiple mobile terminals accessed. Frequency offset measurement to obtain the frequency offset measurement value of each mobile terminal; the grouping module is used to group the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals to obtain multiple groups of mobile terminals The first determining module is used to determine the reference frequency offset estimation value or the reference frequency offset interval for each group of mobile terminals in the multiple groups of mobile terminals; the second determining module is used to estimate the reference frequency offset corresponding to each group of mobile terminals The value or reference frequency offset interval determines the target frequency offset estimation value corresponding to each mobile terminal in each group of mobile terminals.
  • the communication device further includes: a first obtaining module configured to obtain a parameter value of a preset parameter of each mobile terminal in the plurality of mobile terminals, the preset parameter including the reference signal received power RSRP of the mobile terminal And/or the timing advance TA; the above-mentioned grouping module is specifically configured to group the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals and the parameter value of the preset parameter.
  • a first obtaining module configured to obtain a parameter value of a preset parameter of each mobile terminal in the plurality of mobile terminals, the preset parameter including the reference signal received power RSRP of the mobile terminal And/or the timing advance TA
  • the above-mentioned grouping module is specifically configured to group the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals and the parameter value of the preset parameter.
  • the frequency offset measurement value of each group of mobile terminals meets the corresponding frequency offset interval of the group
  • the parameter value of the preset parameter of each group of mobile terminals meets the preset parameter interval corresponding to the group.
  • the communication device further includes: a second obtaining module, configured to obtain the maximum theoretical frequency deviation estimated value and the maximum theoretical frequency deviation measurement value; and a third determining module, configured to obtain the maximum theoretical frequency deviation estimated value and the maximum theoretical frequency deviation measurement value;
  • the frequency offset measurement value determines the number of groups; the above-mentioned grouping module is specifically used to group multiple mobile terminals according to the number of groups.
  • the above-mentioned first determining module includes: a first determining unit, configured to determine the signal quality of each mobile terminal in the first group of mobile terminals, wherein the first group of mobile terminals is one of the multiple groups of mobile terminals For any group of mobile terminals, one or more mobile terminals in the first group of mobile terminals whose signal quality is greater than or equal to a threshold are reference mobile terminals; the second determining unit is configured to move according to each reference in the first group of mobile terminals The frequency offset measurement value of the terminal determines the frequency offset estimation value of each reference mobile terminal; the third determining unit is configured to determine the reference frequency offset corresponding to the first group of mobile terminals according to the frequency offset estimation value corresponding to each reference mobile terminal Estimated value; wherein, the target frequency offset estimated value of each mobile terminal in the first group of mobile terminals is the reference frequency offset estimated value.
  • the reference frequency offset estimation value corresponding to the first group of mobile terminals is an average value of the frequency offset estimation value of the one or more reference mobile terminals.
  • the above-mentioned first determining module includes: a fourth determining unit configured to determine the signal quality of each mobile terminal in the first group of mobile terminals, where the first group of mobile terminals is one of the multiple groups of mobile terminals For any group of mobile terminals, one or more mobile terminals in the first group of mobile terminals whose signal quality is greater than or equal to the threshold are reference mobile terminals; the fifth determining unit is configured to determine according to the frequency offset measurement value of each reference mobile terminal The frequency offset interval of each reference mobile terminal; the sixth determining unit is configured to determine the reference frequency offset interval corresponding to the first group of mobile terminals according to the frequency offset interval of each reference mobile terminal; the above-mentioned second determining module is specifically used The target frequency offset estimation value of each mobile terminal in the first group of mobile terminals is determined according to the reference frequency offset interval corresponding to the first group of mobile terminals and the frequency offset measurement value of each mobile terminal in the first group of mobile terminals.
  • the reference frequency offset intervals corresponding to the first group of mobile terminals are the same and the largest number of frequency offset intervals among the one or more frequency offset intervals corresponding to the one or more reference mobile terminals.
  • the above-mentioned signal quality is determined according to at least one of the following: signal-to-interference and noise ratio, number of scheduled resource blocks, and reference signal received power.
  • the moving directions of the multiple mobile terminals are the same.
  • the communication device further includes: a fourth determining module, configured to determine a base station accessed by each of the plurality of mobile terminals; and a fifth determining module, configured to determine whether the base station is connected to the previous base station The relative positions of the accessed base stations determine the multiple mobile terminals with the same moving direction.
  • the communication device described in the second aspect corresponds to the Doppler frequency offset method described in the first aspect. Therefore, various possible implementations and beneficial effects of the second aspect can be referred to the corresponding implementations in the first aspect and The relevant description of the beneficial effects will not be repeated here.
  • the embodiment of the present application also provides a communication device.
  • the communication device includes a processor coupled with a memory, the memory is used to store a computer program or instruction, and the processor is used to execute the computer program or instruction, so that the method of the first aspect described above is executed.
  • the Doppler frequency deviation device may also include the memory.
  • the Doppler frequency offset estimation device may be a base station or a chip in the base station.
  • an embodiment of the present application provides a chip including a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the method of the first aspect, The interface circuit is used to communicate with other modules outside the chip.
  • an embodiment of the present application provides a computer storage medium that stores a program for implementing the method of the first aspect.
  • the Doppler frequency offset estimation device is caused to execute the method of the first aspect.
  • an embodiment of the present application provides a computer program product, the program product includes a program, and when the program is executed, the method of the first aspect described above is executed.
  • the base station in the embodiment of the present application can measure the Doppler frequency offset of each of the multiple mobile terminals that are accessed to obtain the corresponding Doppler frequency of each mobile terminal. Frequency offset measurement value; then, the base station does not directly calculate the frequency offset estimation value of each mobile terminal based on the frequency offset measurement value of each mobile terminal, but performs calculations on multiple mobile terminals based on the frequency offset measurement value of each mobile terminal. Groups to obtain multiple groups of mobile terminals; then, the base station can determine a relatively accurate reference frequency offset estimate or reference frequency offset interval for each group of mobile terminals.
  • the frequency offset estimation value or reference frequency offset interval corresponding to the mobile terminal is used to obtain the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals, so that the base station can obtain the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals.
  • the frequency offset interval determines the target frequency offset estimation value corresponding to each mobile terminal in the group of mobile terminals.
  • the base station can directly use the reference frequency offset estimation value as the target frequency offset corresponding to each mobile terminal in the group of mobile terminals.
  • the estimated value, or the frequency offset measurement value of each mobile terminal is directly added to the reference frequency offset interval of the group of mobile terminals to obtain the target frequency offset estimation value corresponding to each mobile terminal.
  • the base station can determine a relatively accurate reference frequency offset estimation value or reference frequency offset interval for the group of mobile terminals based on the frequency offset estimation value or frequency offset interval of the mobile terminal with better signal quality in each group of mobile terminals, thereby The frequency offset estimation value of the mobile terminal determined based on the reference frequency offset estimation value or the reference frequency offset interval is more accurate than the frequency offset estimation value determined directly based on the frequency offset measurement value of the mobile terminal with poor signal quality.
  • the base station can use the reference frequency offset estimation value or reference frequency offset interval corresponding to the group where the mobile terminal is located, and perform a simple calculation process to obtain the frequency offset estimation value corresponding to the mobile terminal, without the need to perform each mobile terminal.
  • the complex calculation process can effectively reduce the amount of calculation when the base station performs frequency offset estimation for multiple mobile terminals and reduce the consumption of calculation resources of the base station.
  • Figure 1 is a schematic diagram of an exemplary application scenario in an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for estimating a Doppler frequency offset in an embodiment of the application
  • 3 is a schematic flowchart of another Doppler frequency offset estimation method in an embodiment of this application.
  • FIG. 4 is a schematic diagram of TPR grouping mobile terminals in an embodiment of the application.
  • Figure 5 is a schematic diagram of the configuration of 1 Front symbol plus 1 Additional symbol
  • FIG. 6 is a schematic structural diagram of a communication device in an embodiment of this application.
  • FIG. 7 is a schematic diagram of the hardware structure of a base station in an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a communication device in an embodiment of this application.
  • the base station needs to calculate the frequency offset estimation value corresponding to each mobile terminal’s signal. And demodulate the signal of the mobile terminal based on the estimated value of the frequency offset.
  • the base station can first calculate the phase rotation corresponding to each signal and perform coherent combination, and then according to the coherence The combined phase rotation calculates the frequency offset.
  • DMRS demodulation reference signals
  • km represents the subcarrier number corresponding to the DMRS pilot number of mobile terminal m
  • the port number occupied by the mobile terminal m p Tx p m , p m +1,..., q m
  • the start port number is p m
  • the end port number is q m
  • the smallest user-level digital automatic gain control between antennas ( digital automatic gain control, DAGC) factor l 0 , l 1 are the positions of two adjacent pilots
  • km represents the occupied subcarrier index of the p Tx pilot channel estimation after windowing and noise reduction output
  • ⁇ ( ⁇ ) is the phase difference
  • ERS is the maximum frequency deviation measurement value.
  • the phase value estimated each time may correspond to multiple frequency offset estimation values, that is, there are multiple values of n, and n is an integer.
  • the frequency offset interval estimation is required to determine the value of n, that is, to determine the frequency offset interval corresponding to the mobile terminal, so as to calculate the frequency offset estimation value of the mobile terminal m.
  • n In the current implementation of determining n, two or three corrections are usually performed in one time slot, and the DMRS on the first time slot is frequency-domain corrected and minimized according to the obtained frequency deviation intervals. Least square (LS) estimation. Then, the base station can calculate the time offset separately according to the corrected DMRS in each frequency offset interval, and complete the time offset compensation in the frequency domain. Finally, the base station can separately calculate the time offset in each frequency offset interval. Do DMRS coherent combination to identify the correct frequency offset interval. In this embodiment, since two or three correction processing needs to be performed in one time slot, the calculation workload is large, and for each mobile terminal signal, n is determined in the above embodiment.
  • LS least square
  • the quality of the mobile terminal signals received by the base station is uneven, and the base station calculates the frequency offset estimation value for the mobile terminal based on the higher quality signal, which corresponds to the real Doppler of the mobile terminal.
  • the error between the frequency offset values is small, and the accuracy of the frequency offset estimation value calculated by the base station for the mobile terminal based on the signal of lower quality is low, which is less than the true Doppler frequency offset value corresponding to the mobile terminal.
  • the base station may not be able to demodulate the signal successfully, which may cause the base station to communicate with the mobile terminal. Communication between terminals cannot be completed normally.
  • the embodiment of the present application provides a Doppler frequency offset estimation method.
  • the base station can determine the reference frequency offset estimation value or reference frequency offset interval corresponding to the group with higher accuracy for mobile terminals in different groups.
  • Each mobile terminal can calculate the target frequency offset estimation value of the mobile terminal according to the reference frequency offset estimation value or reference frequency offset interval corresponding to the group to which it belongs, so as to improve the accuracy of the frequency offset estimation value calculated by the base station for the mobile terminal.
  • the base station can measure the Doppler frequency offset of each of the multiple mobile terminals that it accesses to obtain the frequency offset measurement value corresponding to each mobile terminal; then, the base station is not The frequency offset estimation value of each mobile terminal is directly calculated based on the frequency offset measurement value of each mobile terminal, but multiple mobile terminals are grouped according to the frequency offset measurement value of each mobile terminal to obtain multiple groups of mobile terminals; , The base station can determine the reference frequency offset estimation value or reference frequency offset interval with relatively high accuracy for each group of mobile terminals, for example, it can be based on the frequency offset estimation value corresponding to some mobile terminals with higher signal quality selected in the group Or refer to the frequency offset interval to obtain the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals, so that the base station determines the group of mobile terminals according to the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals The target frequency offset estimation value corresponding to each mobile terminal in the mobile terminal.
  • the base station can directly use the reference frequency offset estimation value as the target frequency offset estimation value corresponding to each mobile terminal in the group of mobile terminals, or set each mobile terminal The frequency offset measurement value of is directly added to the reference frequency offset interval of the group of mobile terminals to obtain the target frequency offset estimation value corresponding to each mobile terminal.
  • the base station can determine a relatively accurate reference frequency offset estimation value or reference frequency offset interval for the group of mobile terminals based on the frequency offset estimation value or frequency offset interval of the mobile terminal with better signal quality in each group of mobile terminals, thereby The frequency offset estimation value of the mobile terminal determined based on the reference frequency offset estimation value or the reference frequency offset interval is more accurate than the frequency offset estimation value determined directly based on the frequency offset measurement value of the mobile terminal with poor signal quality.
  • the base station can use the reference frequency offset estimation value or reference frequency offset interval corresponding to the group where the mobile terminal is located, and perform a simple calculation process to obtain the frequency offset estimation value corresponding to the mobile terminal, without the need to perform each mobile terminal.
  • the complex calculation process can effectively reduce the amount of calculation when the base station performs frequency offset estimation for multiple mobile terminals and reduce the consumption of calculation resources of the base station.
  • the embodiment of the present application may be applied to the exemplary application scenario described in FIG. 1.
  • the base station 100 can receive signals sent by multiple mobile terminals (including the mobile terminals 201, 202, 203, 204, etc. shown in FIG. 1) moving at a high speed to the right, and provide each signal based on the received signals.
  • the mobile terminal performs Doppler frequency offset estimation.
  • the base station (BS) in the embodiment of the present application may be a device used on the access network side to support terminal access to the communication system.
  • it may be an evolved base station (evolved nodeB) in a 4G access technology communication system.
  • ENB evolved base station
  • next-generation base station next-generation nodeB, gNB
  • transmission reception point TRP
  • relay node relay node
  • access point access point, AP
  • cooperative transmitting and receiving node transmission reception point, TRP
  • base stations that may appear in the future with the evolution of wireless communication technology.
  • the base station can be fixed or mobile.
  • the base station may be called an access network device or a network side device.
  • the mobile terminal (terminal) in the embodiments of this application may be a device that provides voice or data connectivity to users.
  • the mobile terminal may be called user equipment (UE), mobile station (mobile station), and user unit ( subscriber unit), terminal equipment (terminal equipment, TE), etc.
  • the mobile terminal can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, a cordless phone, Wireless local loop (WLL) station, tablet computer (pad), etc.
  • PDA personal digital assistant
  • WLL Wireless local loop
  • devices that can access the wireless communication network, perform mobile communication with the wireless network side, or perform mobile communication with other objects through the wireless network can all be the mobile terminals in the embodiments of the present application, for example, Mobile terminals in intelligent transportation, etc.
  • the base station 100 can measure the Doppler frequency offsets of the mobile terminals 201 to 204, and obtain the respective corresponding values of the mobile terminals 201 to 204. Frequency deviation measurement value. Then, the base station 100 can divide the mobile terminals 201 and 102 into one group (hereinafter referred to as group A) according to the frequency offset measurement values of the mobile terminals 201 to 204, and divide the mobile terminals 203 and 204 into another group (hereinafter referred to as group A).
  • the target frequency offset estimation value of the mobile terminal is calculated from the reference frequency offset interval of the mobile terminal. Similarly, it can also be calculated for each mobile terminal in group B based on the frequency offset measurement value of the mobile terminal and the reference frequency offset interval corresponding to group B The target frequency offset estimation value of the mobile terminal is obtained.
  • the foregoing scenario is only an example of a scenario provided in an embodiment of the present application, and the embodiment of the present application is not limited to this scenario.
  • the number of mobile terminals can also be more than 4, and the base station 100 can divide multiple mobile terminals into 3 or more than 3 groups; for another example, the base station 100 is performing services for the mobile terminals.
  • After grouping it is also possible to determine the corresponding reference frequency offset estimation value for the mobile terminals of group A or B, so as to calculate the target frequency offset estimation value of each mobile terminal in the group based on the corresponding reference frequency offset estimation value of each group .
  • the embodiments of the present application can be applied to any applicable scenarios, and are not limited to the foregoing scenarios.
  • FIG. 2 shows a schematic flow chart of a method for Doppler frequency offset estimation in an embodiment of the present application.
  • the method may specifically include:
  • S201 The base station performs Doppler frequency offset measurement on each of the multiple mobile terminals accessed, to obtain the frequency offset measurement value of each mobile terminal.
  • the base station can usually exchange information with multiple mobile terminals.
  • the mobile terminal When the mobile terminal is moving at a high speed (for example, the mobile terminal is on a high-speed train, etc.), the signal sent by the mobile terminal will be received by the base station.
  • the base station There is a Doppler frequency offset, that is, the phase and frequency of the signal sent by the mobile terminal to the base station are not the same as the phase and frequency of the signal received by the base station. Therefore, the base station usually calculates the corresponding frequency offset estimation value for the received signal of each mobile terminal, and demodulates the signal of the mobile terminal based on the frequency offset estimation value, so that the base station can communicate with the mobile terminal based on the signal.
  • the terminal communicates normally.
  • the above-mentioned multiple mobile terminals can access the base station in advance, so as to be able to communicate with the base station; and, different base stations can access different multiple mobile terminals, and each base station can access the mobile terminal.
  • the terminal determines the frequency offset estimation value.
  • the base station may first perform Doppler frequency offset measurement on each of the multiple mobile terminals that are accessed to obtain each mobile terminal.
  • Frequency offset measurement value of the mobile terminal it is worth noting that when the DMRS pilot symbols of the signal sent by the mobile terminal to the base station are configured as 1 Front symbol and 1 Additional symbol, for each mobile terminal that accesses the base station, the frequency offset measurement of the mobile terminal The value may be the same as the estimated value of the frequency offset of the mobile terminal, or may be different from the estimated value of the frequency offset of the mobile terminal.
  • step S202 and subsequent steps can be performed based on the frequency offset measurement value to determine a more accurate determination for the mobile terminal. Estimated value of frequency offset.
  • the maximum value of the frequency offset that can be measured by the base station is usually greater than the frequency offset value of the mobile terminal.
  • the frequency offset measurement value of the mobile terminal is the same as the frequency offset estimation value of the mobile terminal.
  • the base station may also continue to perform step S202 and subsequent steps based on the frequency offset measurement value to determine a more accurate frequency offset estimation value for the mobile terminal.
  • the base station groups the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals to obtain multiple groups of mobile terminals.
  • the base station after the base station calculates the frequency offset measurement value corresponding to each mobile terminal, it can group multiple mobile terminals that access the base station according to the frequency offset measurement value of each mobile terminal, so that at least two groups of mobile terminals can be obtained. terminal. After the mobile terminals are grouped, the frequency offset estimation values of the mobile terminals in each group of mobile terminals are smaller than the maximum frequency offset measurement value. For example, if multiple mobile terminals are divided into two groups, the mobile terminals with positive frequency offset measurement values among multiple mobile terminals can be divided into one group, and the mobile terminals with negative frequency offset measurement values among multiple mobile terminals can be divided into A group.
  • multiple mobile terminals can not only be simply divided into two groups, but in some other possible implementation manners, multiple mobile terminals can also be divided into three groups, four groups, etc.
  • the base station can divide the accessed mobile terminals into two groups, and when the mobile terminal reports to the base station
  • the base station can divide the multiple mobile terminals that access it into two groups, three groups, four groups, etc.
  • the base station may also combine the preset parameters of the mobile terminal and the frequency offset measurement value to group multiple mobile terminals.
  • the base station may obtain the parameter value of the preset parameter of each mobile station terminal among the multiple mobile terminals, where the preset parameter may be a reference of the mobile terminal.
  • Signal received power reference signal receiving powe, RSRP
  • timing advance timing advance, TA
  • the base station can use the frequency offset measurement value of each of the multiple mobile terminals and the parameters of the preset parameters Value to group mobile terminals.
  • the frequency offset measurement values of the group of mobile terminals and the parameter values of the preset parameters both satisfy the preset grouping conditions corresponding to the group.
  • the preset grouping conditions corresponding to each group of mobile terminals can specifically enable the frequency offset measurement values of the group of mobile terminals to meet the corresponding frequency offset interval of the group, and at the same time, the parameter values of the preset parameters of the group of mobile terminals satisfy The preset parameter interval corresponding to this group.
  • the base station may divide the RSRP difference between a mobile terminal that accesses the base station and two adjacent base stations into multiple RSRP intervals. For example, if the base station currently accessed by the mobile terminal is base station 2, base station 2 can perform the difference calculation on the RSRP values of the mobile terminal measured by base station 3 and base station 1 adjacent to base station 2, namely RSRP3-RSRP1, where, RSRP1 is the RSRP value of the mobile terminal measured by base station 3, and RSRP1 is the RSRP value measured by base station 1.
  • the base station can The RSRP difference is divided into 3 RSRP intervals, namely [-100dB, -10dB), [-10dB, 10dB) and [10dB, 100dB]; at the same time, the base station can be based on the frequency offset of multiple mobile terminals connected to the base station.
  • the measured value is divided into two frequency offset intervals, namely [-f d0 ,0) and [0,f d0 ]. Among them, f d0 is the measured value of the maximum frequency deviation.
  • the base station can divide multiple mobile terminals into 4 groups, namely, group A, group B, group C, and group D.
  • the frequency offset measurement values of the mobile terminals in group A are in the frequency offset interval [-f d0 , 0)
  • the RSRP values of the mobile terminals in group A are in [-100dB, -10dB)
  • the frequency offset measurement values of the mobile terminals in group B are in the frequency In the offset interval [0, f d0 ]
  • the RSRP values of the mobile terminals in group B are in [-10dB, 10dB)
  • the frequency offset measurement values of the mobile terminals in group C are in the frequency offset interval [-f d0 , 0).
  • the RSRP value is in [10dB, 100dB]
  • the frequency offset measurement value of the mobile terminal in group D is in the frequency offset interval [0, f d0 ]
  • the RSRP value of the mobile terminal in group D is in [10dB, 100dB].
  • the RSRP value of the mobile terminal may also be the RSRP value measured by the mobile terminal currently accessing the base station, and the base station divides the intervals according to the possible range of the RSRP value.
  • the base station may divide the TA difference between the mobile terminal accessing the base station and two adjacent base stations into multiple TA intervals. For example, if the base station currently accessed by the mobile terminal is base station 2, base station 2 can perform the difference calculation on the TA values of the mobile terminal measured by base station 3 and base station 1 adjacent to base station 2 to obtain the TA difference of TA3-TA1 Value, where TA3 refers to the TA value of the mobile terminal measured by the base station 3, TA1 refers to the TA value of the mobile terminal measured by the base station 1; then, since the TA value of the mobile terminal is in the range of -50us (microseconds) To 50us, the TA value of the mobile terminal can be divided into 3 TA intervals, which are [-50us, -10us), [-10us, 10us), and [10us, 50us]; at the same time, the base station can be based on the access to the base station The frequency offset measurement values of multiple mobile terminals are divided into two
  • f d0 is the maximum frequency deviation measurement value.
  • the base station can divide the multiple mobile terminals into four groups: A group, B group, C group, and D group.
  • the frequency offset measurement values of the mobile terminals in group A are in the frequency offset interval [-f d0 , 0)
  • the TA value is in [10us, 50us]
  • the frequency offset measurement values of the mobile terminals in the group B are in the frequency offset interval [0, f d0 ]
  • the TA value is in [-10us, 10us
  • the frequency offset measurement value of the mobile terminal in group C is in the frequency offset interval [-f d0 , 0)
  • the TA value is in [-50us, -10us)
  • the offset measurement value is in the frequency offset interval [0, f d0 ]
  • the TA value is in [-50us, -10us).
  • the TA value of the mobile terminal may also be the TA value measured by the mobile terminal
  • the base station can also divide multiple mobile terminals into four groups: A group, B group, C group, and D group. Wherein, while the frequency offset measurement values of the mobile terminals in each group satisfy the corresponding frequency offset interval, the RSRP of the mobile terminals in the group is in the corresponding RSRP interval, and the TA is in the corresponding TA interval.
  • the measured frequency deviation is in the frequency deviation interval [-f d0 , 0), the RSRP value is [-100dB, -10dB), and the TA value is [10us, 50us]; and
  • the frequency offset measurement value is in the frequency offset interval [0, f d0 ], the RSRP value is [10dB, 100dB], and the TA value is [-50us, -10us).
  • the base station determines the number of packets, it can be based on the maximum theoretical Doppler frequency offset estimation value that can be generated by the mobile terminal connected to the base station and the maximum theoretical frequency offset measurement value that the base station can measure Make sure.
  • the number of groups of the mobile terminal can be calculated according to formula (3):
  • N refers to the number of groups of mobile terminals, rounded up
  • f dmax refers to the maximum theoretical frequency offset estimation value of the base station, that is, the maximum Doppler frequency offset that a mobile terminal connected to the base station can generate
  • f d0 It refers to the maximum theoretical frequency deviation measurement value of the base station, that is, the maximum frequency deviation measurement value that the base station can measure.
  • the base station can calculate f d0 and f dmax based on formulas (4) and (5):
  • ⁇ t is the time interval between two adjacent pilot symbols under a certain pilot configuration
  • f 0 is the working center frequency of the base station
  • v max is the maximum speed that the mobile terminal can move (in the high-speed rail application scenario Below, the v max is also the maximum operating speed allowed by the high-speed rail)
  • c is the speed of light.
  • the base station can use formula (6) when calculating f dmax :
  • the base station can group multiple mobile terminals. Multiple mobile terminals with the same moving direction are grouped. For example, in some scenarios in practical applications, when two high-speed rails are meeting, the base station can calculate the Doppler frequency offset of 20 mobile terminals that are connected. Among them, 12 mobile terminals move from left to right (located on the same high-speed rail), and 8 mobile terminals move from right to left (located on the same high-speed rail). Then, the base station can respectively group the 12 mobile terminals that move from left to right, and group the 8 mobile terminals that move from right to left.
  • the base station when determining the moving direction of each mobile terminal, it can be determined based on the base stations that the base station has accessed successively. In specific implementation, for multiple mobile terminals that access the base station, the base station can determine the last accessed base station of each mobile terminal, and then the base station can, according to the relative position of the base station and the base station accessed by the mobile terminal, The moving direction of the mobile terminal is determined, so that multiple mobile terminals with the same moving direction can be determined, so as to group mobile terminals with the same moving direction. For example, for mobile terminal A and mobile terminal B, the base stations they access during the entire movement include base station 1, base station 2, and base station 3.
  • base station 2 determines the direction of movement of mobile terminal A, it first determines the The last base station accessed by mobile terminal A is base station 1, and the moving direction of mobile terminal A is from base station 1 to base station 2.
  • base station 2 determines the moving direction of mobile terminal B, it first determines the mobile terminal B The last accessed base station is base station 2, and the moving direction of mobile terminal B is from base station 3 to base station 2.
  • the base station determines a reference frequency offset estimation value or a reference frequency offset interval for each group of mobile terminals in the multiple groups of mobile terminals.
  • the base station determines the target frequency offset estimation value corresponding to each mobile terminal in each group of mobile terminals according to the reference frequency offset estimation value or reference frequency offset interval corresponding to each group of mobile terminals.
  • the base station may determine a reference frequency offset estimation value or a reference frequency offset interval for each group of mobile terminals, so that the base station can subsequently estimate based on the determined reference frequency offset Value or reference frequency offset interval to calculate the target frequency offset estimation value of each mobile terminal in the group of mobile terminals.
  • the base station is for each group of mobile terminals, and some mobile terminals with higher signal quality can be selected from the group of mobile terminals, and based on the frequency corresponding to the mobile terminals with higher signal quality.
  • the offset estimation value is used to determine the target frequency offset estimation value of each mobile terminal in the group of mobile terminals (including the target frequency offset estimation value corresponding to the mobile terminal with poor signal quality).
  • the base station can determine the signal of each mobile terminal in the first group of mobile terminals Quality, and determine one or more mobile terminals with signal quality greater than or equal to the threshold as a reference mobile terminal.
  • the signal quality of the reference mobile terminal is compared with the signal quality of other mobile terminals in the first group of mobile terminals.
  • the base station can determine the frequency offset estimation value of each mobile terminal according to the frequency offset measurement value of each reference mobile terminal in the first group of mobile terminals, and according to the frequency offset estimation value corresponding to each reference mobile terminal Determine the reference frequency offset estimation value corresponding to the first group of mobile terminals, and then the base station may determine the reference frequency offset estimation value corresponding to the first group of mobile terminals as the target frequency offset of each mobile terminal in the first group of mobile terminals estimated value.
  • the frequency offset estimation value of the mobile terminal calculated based on the frequency offset measurement value of the mobile terminal usually has a relatively large error, so there may be a base station
  • the frequency offset estimation value demodulates the signal of the mobile terminal, the signal cannot be demodulated incorrectly, and the base station cannot successfully complete the communication with the mobile terminal. Therefore, in this embodiment, when determining the frequency offset estimation value (that is, the target frequency offset estimation value) for each group of mobile terminals, part of the signal quality can be selected from the group of mobile terminals according to the signal quality of the mobile terminal.
  • the better mobile terminal uses the frequency offset estimation value of the part of the mobile terminal as the frequency offset estimation value of the remaining mobile terminals in the group with poor signal quality.
  • the base station obtains the frequency offset estimation value for the mobile terminal with better signal quality, it not only does not need to perform a complicated calculation process to obtain the frequency offset estimation value corresponding to the other mobile terminals with poor signal quality, but also based on
  • the frequency offset estimation value of the mobile terminal with better signal quality is used to determine the frequency offset estimation value of the mobile terminal with poor signal quality, which can make the finally determined frequency offset estimation value of the mobile terminal with poor signal quality more accurate, thereby
  • the base station demodulates the signal of the mobile terminal with poor signal quality, the frequency offset estimation value is more accurate. Therefore, the base station is more likely to demodulate the signal successfully.
  • the signal quality of the mobile terminal can be specifically characterized as the signal-to-interference and noise ratio (SINR) of the mobile terminal, the number of scheduling resource blocks (RB), and the reference signal received power (RSRP) At least one of the others.
  • SINR signal-to-interference and noise ratio
  • RB scheduling resource blocks
  • RSRP reference signal received power
  • the base station can obtain the SINR value of each mobile terminal in the first group of mobile terminals, and determine the mobile terminal whose SINR value is greater than or equal to a preset threshold as A mobile terminal with better signal quality, and a mobile terminal with an SINR value less than a preset threshold is determined as a mobile terminal with poor signal quality; similarly, when the signal quality of the mobile terminal is characterized by the SINR and the number of scheduled RBs, the base station can A mobile terminal whose SINR value is greater than or equal to the first preset threshold and the number of scheduled RBs is greater than or equal to the second preset threshold is determined as a mobile terminal with better signal quality.
  • the base station when the base station determines the reference frequency offset estimation value of the first group of mobile terminals based on the frequency offset estimation value of the reference mobile terminal, it may estimate the frequency offset of multiple reference mobile terminals Any one of the frequency offset estimation values in the values is determined as the reference frequency offset estimation value of the first group of mobile terminals.
  • the base station may determine the frequency offset estimation value of the reference mobile terminal with the highest signal quality as the reference frequency offset estimation value corresponding to the first group of mobile terminals.
  • the base station may also calculate the reference frequency offset estimation values of the first group of mobile terminals according to the frequency offset estimation values of multiple reference mobile terminals.
  • the base station can calculate the average value of the frequency offset estimation values of multiple reference mobile terminals, and determine the average value as the reference frequency offset estimation value corresponding to the first group of mobile terminals.
  • the base station can also use data And other complex calculation processes, and determine the reference frequency offset estimation value corresponding to the first group of mobile terminals.
  • the target frequency offset estimation value can be either a frequency offset estimation value calculated based on the frequency offset measurement value of the mobile terminal, or a reference frequency offset corresponding to the group of mobile terminals estimated value.
  • the reference frequency offset estimation value corresponding to the first group of mobile terminals is determined according to the frequency offset estimation values of a plurality of mobile terminals with better signal quality.
  • the reference frequency offset interval corresponding to the first group of mobile terminals may be determined according to the frequency offset intervals of multiple mobile terminals with better signal quality.
  • the base station can determine the signal of each mobile terminal of the first group of mobile terminals Quality, and determine one or more mobile terminals with signal quality greater than or equal to a threshold in the first group of mobile terminals as the reference mobile terminal.
  • the signal quality of the mobile terminal can be characterized by at least one of the mobile terminal SINR, the number of scheduled RBs, and the received power of the reference signal. Then, the base station may determine the frequency offset interval of each reference mobile terminal according to the frequency offset measurement value of each reference mobile terminal, and determine the reference frequency offset interval corresponding to the first group of mobile terminals according to the frequency offset interval of each reference mobile terminal.
  • the base station may select the frequency offset interval of one of the reference mobile terminals from a plurality of reference mobile terminals to determine the reference frequency offset interval corresponding to the first group of mobile terminals.
  • the base station may also select the same and largest number of frequency offset intervals from the frequency offset intervals of multiple reference mobile terminals, and determine the selected frequency offset interval as the reference frequency offset interval corresponding to the first group of mobile terminals. Wherein, when the number of reference mobile terminals is 1, the base station may directly use the frequency offset interval of the reference mobile terminal as the reference frequency offset interval corresponding to the first group of mobile terminals.
  • the base station may select an odd number of reference mobile terminals from the first group of mobile terminals when selecting the reference mobile terminal. Therefore, according to the principle that the minority obeys the majority, the same and the largest number of frequency offset intervals are selected from the reference frequency offset intervals of an odd number of reference mobile terminals. For example, the base station can select 5 reference mobile terminals from the first group of mobile terminals, so that the base station can determine the frequency offset intervals corresponding to these 5 reference mobile terminals, and then the base station can select the same frequency offset interval from the 5 frequency offset intervals. And the three frequency offset intervals with the largest number are used as the reference frequency offset intervals corresponding to the first group of mobile terminals.
  • the target frequency offset estimation value of each mobile terminal in the first group of mobile terminals may be based on the reference frequency offset corresponding to the first group of mobile terminals.
  • the estimated value can be ( ⁇ +2f d0 ), where f d0 is the maximum frequency deviation measurement value that the base station can measure.
  • the target frequency offset estimation value may be performed based on its frequency offset measurement value and the reference frequency offset interval corresponding to the group of mobile terminals.
  • the determination can also be calculated based on the frequency offset interval corresponding to the frequency offset measurement value of the mobile terminal (that is, the frequency offset interval of the mobile terminal calculated by the base station according to the frequency offset measurement value of the mobile terminal).
  • the real frequency offset values of different mobile terminals are usually different.
  • the base station can calculate the target frequency offset estimation value of each mobile terminal based on the frequency offset measurement value of each mobile terminal and the reference frequency offset interval. Because the frequency offset measurement values of different mobile terminals are usually different, the base station calculates The target frequency offset estimation values corresponding to different mobile terminals are also different from each other. Compared with the implementation of determining the target frequency offset estimation value of the same size for each mobile terminal, the target frequency offset estimation value corresponding to each mobile terminal is different. The accuracy of the target frequency offset estimate is higher.
  • the base station can also directly specify the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals for each group after grouping multiple mobile terminals, so as to be based on the specified reference
  • the frequency offset estimation value or the reference frequency offset interval determines the target frequency offset estimation value corresponding to each mobile terminal.
  • the base station determines the Doppler frequency offset of the mobile terminal for the mobile terminal on the high-speed rail
  • the mobile terminal on the high-speed rail connected to the base station has a relatively fixed moving speed and movement trajectory (specifically moving along the rail).
  • the base station may collect the corresponding frequency offset estimation values or frequency offset intervals calculated by the base station for mobile terminals in different groups within a preset time period (such as the previous week, the previous month, etc.).
  • the base station can establish the correspondence between different groups and different frequency offset estimation values, or establish the correspondence between different groups and different frequency offset intervals Therefore, after the base station groups multiple mobile terminals to access, it can determine the reference frequency offset estimation values corresponding to different groups, or the reference frequency offset intervals corresponding to different groups based on the pre-established correspondence relationship, In order to determine the target frequency offset estimation value corresponding to each mobile terminal based on the determined reference frequency offset estimation value or reference frequency offset interval corresponding to each group.
  • the positive or negative of the frequency offset measurement value of the mobile terminal can be used to determine the mobile terminal's
  • the divided groups correspondingly, the frequency offset interval corresponding to the group (that is, the value of n corresponding to the frequency offset interval) can be directly determined.
  • the base station can directly specify the reference frequency offset interval corresponding to the group for each group, so that each mobile terminal in the group of mobile terminals can determine the target frequency offset corresponding to the mobile terminal based on the specified reference frequency offset interval. estimated value.
  • the base station can measure the Doppler frequency offset of each of the multiple mobile terminals that are accessed to obtain the frequency offset measurement value corresponding to each mobile terminal; then, the base station It is not based on the frequency offset measurement value of each mobile terminal to perform a complex calculation process to calculate the frequency offset estimation value of the mobile terminal, but grouping according to the frequency offset measurement value of each mobile terminal to obtain multiple groups of mobile terminals; Then, the base station may determine the reference frequency offset estimation value or reference frequency offset interval for each group of mobile terminals, so that the base station determines each group of mobile terminals according to the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of mobile terminals. The target frequency offset estimation value corresponding to each mobile terminal.
  • the base station can directly use the reference frequency offset estimation value as the target frequency offset estimation value corresponding to each mobile terminal in the group of mobile terminals, or the frequency offset of each mobile terminal The measured value is directly added to the reference frequency offset interval of the group of mobile terminals to obtain the target frequency offset estimation value corresponding to each mobile terminal.
  • the base station does not need to perform a complicated calculation process for each mobile terminal to obtain the frequency offset estimation value of each mobile terminal, but can use the reference frequency offset estimation value or reference frequency offset interval corresponding to the group of the mobile terminal to perform simple
  • the calculation process can obtain the frequency offset estimation value corresponding to the mobile terminal, which can effectively reduce the calculation amount of the base station when performing frequency offset estimation for multiple mobile terminals, and reduce the consumption of calculation resources of the base station.
  • FIG. 3 shows a Doppler frequency offset estimation method in an embodiment of the present application.
  • FIG. 4 shows a Doppler frequency offset estimation method in an embodiment of the present application.
  • FIG. 4 shows a Doppler frequency offset estimation method in an embodiment of the present application.
  • two back-to-back TRPs can be arranged at each station, as shown in FIG. 4, for high-speed rail with two moving directions (ie, the traveling direction of train 1 and the traveling direction of train 2 shown in FIG. 4).
  • the mobile terminal on the mobile terminal communicates, where f d0 is the maximum frequency deviation measurement value, and f dmax is the maximum frequency deviation estimation value; and the signal sent by the mobile terminal accessing the base station uses 1 Front symbol as shown in Figure 5
  • the DMRS pilot symbol configuration with one additional symbol (the horizontal axis represents time, the vertical axis represents frequency, and RB represents resource blocks), due to the difference between the frequency offset measurement value of the mobile terminal and the frequency offset estimation value by one or more Frequency offset interval, therefore, TRP2 can make interval judgment of frequency offset interval for each mobile terminal.
  • the method may specifically include:
  • TRP2 determines multiple mobile terminals to access.
  • a mobile terminal on a high-speed rail moving along direction 1 can continuously switch the TRP that it accesses.
  • the TRP accessed by the mobile terminal during high-speed movement can be switched from TRP1 to TRP2.
  • TRP2 can first determine which mobile terminals are currently connected to.
  • TRP2 When a new mobile terminal accesses TRP2, TRP2 reverses the Doppler frequency offset measurement value of the mobile terminal.
  • TRP1 and TRP2 receive signals from the mobile terminal.
  • Its Doppler frequency offset is the same, but the direction is opposite. Therefore, when TRP2 determines to access a new mobile terminal, it can obtain the measured value of the Doppler frequency offset of the mobile terminal from TRP1, and perform the measurement. The value is reversed (that is, the negative value of the measured value is taken, and the absolute value is the same). In this way, TRP2 can obtain the Doppler frequency offset measurement value of the mobile terminal without performing a complicated calculation process, thereby reducing the amount of calculation that TRP2 needs in the process of obtaining the Doppler frequency offset measurement value of the mobile terminal.
  • TRP2 distinguishes the movement direction of the accessed mobile terminal.
  • the moving direction of the high-speed rail includes the opposite train 1 direction and train 2 direction. Therefore, different mobile terminals connected to TRP2 may move in opposite directions. Based on this, TRP2 can classify mobile terminals with different moving directions, so that mobile terminals with the same moving direction belong to the same category.
  • TRP2 may determine its moving direction according to a TRP accessed by the mobile terminal. Specifically, assuming that mobile terminal A moves along the direction of train 1 with the high-speed rail, the last TRP accessed by mobile terminal A is TRP1, and TRP2 can determine its moving direction according to the last TRP1 accessed by mobile terminal A It is the direction from TRP1 to TRP2, that is, the direction of train 1 shown in Figure 4; similarly, if the TRP accessed by the mobile terminal A is TRP3, TRP2 can be based on the one accessed by the mobile terminal A. TRP3 determines that its moving direction is the direction from TRP3 to TRP2, that is, the direction of train 2 shown in FIG. 4.
  • TRP2 is aimed at accessing mobile terminals with the same moving direction, and can group according to the frequency offset measurement values of the mobile terminals to obtain 4 groups of mobile terminals.
  • TRP2 is aimed at multiple mobile terminals moving in the direction of train 1 or moving in the direction of train 2, which can be divided into 4 groups (ie, 1, 2, 3, 4) mobile terminals as shown in FIG. 4.
  • TRP2 can first perform Doppler frequency offset measurement on multiple mobile terminals that are connected to it to obtain the frequency offset measurement value of each mobile terminal (for the mobile terminal that switches TRP access, TRP2 can be obtained from other mobile terminals. To get the opposite value at TRP). Then, for multiple mobile terminals with the same moving direction, TRP2 can group the mobile terminals according to the frequency offset measurement value of each mobile terminal.
  • TRP2 may be grouped according to the frequency offset measurement value of each mobile terminal and the RSRP value measured at the mobile terminal TRP2.
  • the frequency offset measurement value of each group of mobile terminals meets the frequency offset interval corresponding to the group, and at the same time, the RSRP value of the group of mobile terminals meets the RSRP interval corresponding to the group.
  • TRP2 may also be grouped according to the frequency offset measurement value of each mobile terminal and the TA value measured at the mobile terminal TRP2.
  • the frequency offset measurement value of each group of mobile terminals meets the corresponding frequency offset interval of the group, and at the same time, the TA value of the group of mobile terminals meets the corresponding TA interval of the group.
  • the frequency offset measurement value of the mobile terminal, the RSRP and TA values measured by the mobile terminal at TRP2 can be combined for grouping. That is, after the mobile terminals are grouped, the frequency offset measurement value of each group of mobile terminals meets the frequency offset interval corresponding to the group, and at the same time, the RSRP value of the group of mobile terminals meets the RSRP interval corresponding to the group, and the TA of the group of mobile terminals The value satisfies the TA interval corresponding to the group.
  • the number of groups when the base station performs grouping for the mobile terminal may be determined according to the above formula (3).
  • TRP2 selects N (N is an odd number) mobile terminals with better signal quality for each group of mobile terminals.
  • TRP2 determines the frequency offset estimation value of each of the N mobile terminals according to the frequency offset measurement values of the N mobile terminals in the group, and according to the frequency offset estimation value of each mobile terminal The estimated frequency offset is used to determine the reference frequency offset interval of the group of mobile terminals.
  • TRP2 can select mobile terminals with better signal quality from each group of mobile terminals to determine the reference frequency offset interval corresponding to the group of mobile terminals.
  • a mobile terminal with better signal quality may specifically be a mobile terminal whose SNR and the number of scheduled RBs exceed the threshold. In other possible implementation manners, it may also be a mobile terminal with an RSRP value higher than the threshold.
  • TRP2 can first determine the signal quality of each mobile terminal in the group of mobile terminals, and select N signal quality greater than Or the mobile terminal equal to the threshold is determined to be the mobile terminal with better signal quality; then, TRP2 can calculate the frequency offset interval corresponding to each mobile terminal based on the frequency offset measurement value of these mobile terminals with better signal quality, and from it The same frequency offset interval with the largest number is selected and determined as the reference frequency offset interval corresponding to the group of mobile terminals.
  • TRP2 calculates the target frequency offset estimation value corresponding to each mobile terminal according to the reference frequency offset interval corresponding to the mobile terminal and the reference frequency offset interval corresponding to each mobile terminal.
  • the frequency of each mobile terminal in the group can be The offset measurement value is added to the reference frequency offset interval corresponding to the group of mobile terminals, so that the target frequency offset estimation value corresponding to each mobile terminal in the group of mobile terminals can be obtained.
  • the target frequency offset estimation value of each mobile terminal that accesses TRP2 can be obtained.
  • the frequency offset determined by the base station for the mobile terminal with poor signal quality can be improved.
  • the accuracy of the estimated value can further improve the possibility of successful demodulation of the signal sent by the mobile terminal with poor signal quality by the base station.
  • the base station only calculates the frequency offset estimation value of some mobile terminals (mobile terminals with better signal quality), while for the remaining mobile terminals, simple The frequency offset measurement value and the reference frequency offset interval can be added to obtain the target frequency offset estimation value of the remaining mobile terminals, which can reduce the amount of calculation required when TRP2 determines the frequency offset estimation value for each mobile terminal.
  • the reference frequency offset interval corresponding to the group of mobile terminals is determined based on the frequency offset measurement value of the mobile terminal with better signal quality, and in other possible implementation manners, it may also be based on The frequency offset measurement value of the mobile terminal with better signal quality determines the reference frequency offset estimation value corresponding to the group of mobile terminals. In this way, after TRP2 obtains the reference frequency offset estimation value corresponding to each group of mobile terminals, the reference frequency offset estimation value corresponding to the group of mobile terminals can be determined as the frequency offset estimation value of each mobile terminal in the group.
  • TRP2 divides the mobile terminals into groups 1, 2, 3, and 4, it can also determine 1 according to the pre-established correspondence between different groups and reference frequency offset intervals or reference frequency offset estimates.
  • Reference frequency offset interval or reference frequency offset estimation value corresponding to each of groups, 2, 3, and 4 groups
  • FIG. 6 shows a communication device in an embodiment of the present application.
  • the communication device 600 may be applied to a base station, and the communication device 600 includes:
  • the measurement module 601 is configured to perform Doppler frequency offset measurement on each of the multiple mobile terminals that are connected to obtain the frequency offset measurement value of each mobile terminal;
  • the grouping module 602 is configured to group the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals to obtain multiple groups of mobile terminals;
  • the first determining module 603 is configured to determine a reference frequency offset estimation value or a reference frequency offset interval for each group of mobile terminals in the multiple groups of mobile terminals;
  • the second determining module 604 is configured to determine the target frequency offset estimation value corresponding to each mobile terminal in each group of mobile terminals according to the reference frequency offset estimation value or reference frequency offset interval corresponding to each group of mobile terminals.
  • the communication device 600 further includes:
  • the first acquiring module is configured to acquire a parameter value of a preset parameter of each mobile terminal in the plurality of mobile terminals, the preset parameter including the reference signal received power RSRP and/or the timing advance TA of the mobile terminal;
  • the above-mentioned grouping module 602 is specifically configured to group the multiple mobile terminals according to the frequency offset measurement value of each of the multiple mobile terminals and the parameter value of the preset parameter.
  • the frequency offset measurement value of each group of mobile terminals meets the corresponding frequency offset interval of the group
  • the parameter value of the preset parameter of each group of mobile terminals meets the preset parameter interval of the group.
  • the communication device 600 further includes:
  • the second acquisition module is used to acquire the maximum theoretical frequency deviation estimated value and the maximum theoretical frequency deviation measured value
  • the third determining module is used to determine the number of groups according to the maximum theoretical frequency deviation estimation value and the maximum theoretical frequency deviation measurement value;
  • the above-mentioned grouping module 602 is specifically configured to group multiple mobile terminals according to the number of groups.
  • the foregoing first determining module 603 includes:
  • the first determining unit is configured to determine the signal quality of each mobile terminal in the first group of mobile terminals, where the first group of mobile terminals is any one of the multiple groups of mobile terminals, and the first group of mobile terminals One or more mobile terminals whose signal quality is greater than or equal to the threshold are the reference mobile terminals;
  • the second determining unit is configured to determine the frequency offset estimation value of each reference mobile terminal in the first group of mobile terminals according to the frequency offset measurement value of each reference mobile terminal;
  • the third determining unit is configured to determine the reference frequency offset estimation value corresponding to the first group of mobile terminals according to the frequency offset estimation value corresponding to each reference mobile terminal;
  • the target frequency offset estimation value of each mobile terminal in the first group of mobile terminals is the reference frequency offset estimation value.
  • the reference frequency offset estimation value corresponding to the first group of mobile terminals is an average value of the frequency offset estimation value of the one or more reference mobile terminals.
  • the foregoing first determining module 603 includes:
  • the fourth determining unit is used to determine the signal quality of each mobile terminal in the first group of mobile terminals, where the first group of mobile terminals is any one of the multiple groups of mobile terminals, and the first group of mobile terminals One or more mobile terminals whose signal quality is greater than or equal to the threshold are the reference mobile terminals;
  • a fifth determining unit configured to determine the frequency offset interval of each reference mobile terminal according to the frequency offset measurement value of each reference mobile terminal
  • a sixth determining unit configured to determine the reference frequency offset interval corresponding to the first group of mobile terminals according to the frequency offset interval of each reference mobile terminal;
  • the second determining module 604 is specifically configured to determine each mobile terminal in the first group of mobile terminals according to the reference frequency offset interval corresponding to the first group of mobile terminals and the frequency offset measurement value of each mobile terminal in the first group of mobile terminals. Estimated target frequency offset of the mobile terminal.
  • the reference frequency offset intervals corresponding to the first group of mobile terminals are the same and the largest number of frequency offset intervals among the one or more frequency offset intervals corresponding to the one or more reference mobile terminals.
  • the above-mentioned signal quality is determined according to at least one of the following: signal-to-interference and noise ratio, number of scheduled resource blocks, and reference signal received power.
  • the moving directions of the multiple mobile terminals are the same.
  • the communication device 600 further includes:
  • a fourth determining module configured to determine a base station accessed by each mobile terminal of the plurality of mobile terminals
  • the fifth determining module is configured to determine the multiple mobile terminals with the same moving direction according to the relative position of the base station and the base station accessed by the last connection.
  • One or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • FIG. 7 shows a schematic diagram of the hardware structure of a base station in an embodiment of the present application.
  • the base station includes at least one processor 111, at least one memory 112, at least one transceiver 113, at least one network interface 114, and one or more antennas 115.
  • the processor 111, the memory 112, the transceiver 113, and the network interface 114 are connected, for example, by a bus. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment. .
  • the antenna 115 is connected to the transceiver 113.
  • the network interface 114 is used to connect the access network device to other communication devices through a communication link.
  • the network interface 114 may include a network interface between the access network device and a core network element, such as an S1 interface.
  • the network interface may include A network interface between an access network device and other access network devices, such as an X2 or Xn interface.
  • the processor in the embodiment of the present application may include, but is not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor ( Various computing devices that run software, such as DSP, microcontroller (microcontroller unit, MCU), or artificial intelligence processor. Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor can also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, and may also be Electrically Erasable Programmable-only Memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM Electrically Erasable Programmable-only Memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 112 may exist independently and is connected to the processor 111.
  • the memory 112 may be integrated with the processor 111, for example, integrated in one chip.
  • the memory 112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 111 controls the execution, and various types of computer program codes that are executed can also be regarded as drivers of the processor 111.
  • the processor 111 is configured to execute computer program codes stored in the memory 112, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the base station and the terminal, and the transceiver 113 may be connected to the antenna 115.
  • the transceiver 113 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 115 can receive radio frequency signals, and the receiver Rx of the transceiver 113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 115 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • FIG. 8 it is a schematic structural diagram of a communication device 800 provided by an embodiment of this application.
  • the communication device 800 includes a processing unit 801 and a communication unit 802.
  • the communication device 800 further includes a storage unit 803.
  • the processing unit 801, the communication unit 802, and the storage unit 803 are connected by a communication bus.
  • the communication unit 802 may be a device with a transceiving function for communicating with other network equipment or terminals.
  • the storage unit 803 may include one or more memories.
  • the storage unit 803 may exist independently and is connected to the processing unit 801 through a communication bus.
  • the storage unit 803 may also be integrated with the processing unit 801.
  • the communication device 800 may be used in a communication device, a circuit, a hardware component, or a chip.
  • the communication device 800 may be a base station in the embodiment of the present application.
  • the schematic diagram of the base station may be as shown in FIG. 7.
  • the communication unit 802 of the communication device 800 may include an antenna and a transceiver of the access network device.
  • the communication unit 802 may also include a network interface of an access network device.
  • the communication device 800 may be a chip in a base station in the embodiment of the present application.
  • the communication unit 802 may be an input or output interface, pin or circuit, or the like.
  • the storage unit 803 may store a computer execution instruction of the method on the access network device side, so that the processing unit 801 executes the method on the base station side in the foregoing embodiment.
  • the storage unit 803 can be a register, a cache or RAM, etc.
  • the storage unit 803 can be integrated with the processing unit 801; the storage unit 803 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage unit 803 can be integrated with The processing unit 801 is independent.
  • the transceiver may be integrated on the Doppler frequency offset estimation device 800.
  • At least one refers to one or more.
  • Multiple means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the disclosed devices, equipment, and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种多普勒频偏估计方法及通信装置,包括:基站对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值;基站根据多个移动终端中每个移动终端的频偏测量值对该多个移动终端进行分组,得到多组移动终端;基站为多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;该基站根据每组移动终端对应的参考频偏估计值或参考频偏区间确定每组移动终端中每个移动终端对应的目标频偏估计值。可见,基站基于相对较为准确的参考频偏估计值或者参考频偏区间为信号质量较差的移动终端所确定的频偏估计值,比直接基于信号质量较差的移动终端的频偏测量值而确定出的频偏估计值更加准确。

Description

一种多普勒频偏估计方法及通信装置
本申请要求于2019年7月12日提交中国国家知识产权局、申请号为201910631343.0、发明名称为“一种多普勒频偏估计方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其是涉及一种多普勒频偏估计方法及通信装置。
背景技术
在移动通信系统中,当移动台(如高铁、汽车上的移动终端等)在移动中与基站进行通信时,基站所接收到的信号会存在多普勒频偏,具体是基站接收的信号会因为移动台的移动而产生相位和频率的变化。基于此,基站通常可以对接收到的移动台的信号进行频偏估计,并利用该频偏的估计值对基站所接收信号进行频偏纠正,以便于基站后续对该信号进行解调处理;否则,基站若以未纠正的频率来解调该信号,可能会导致解调性能显著下降,甚至是导致基站无法与移动台进行通信。
而实际应用中,基站为部分接入的移动终端计算出的频偏估计值并不准确,使得该移动终端的频偏估计值与基站接收到的该移动终端的信号的真实频偏值差距较大,从而导致基站可能无法成功对该移动终端的信号进行解调,进而导致基站与该移动终端之间无法正常完成通信。
发明内容
为了解决上述问题,本申请实施例提供了一种多普勒频偏估计方法及通信装置,以提高基站为部分移动终端计算出的频偏估计值的准确性,从而可以提高基站对该移动终端的信号解调成功的可能性,进而使得基站与该移动终端之间能够正常通信。
第一方面,本申请实施例提供了一种多普勒频偏估计方法,包括:基站对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值;该基站根据多个移动终端中每个移动终端的频偏测量值对该多个移动终端进行分组,得到多组移动终端;该基站为所述多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;该基站根据每组移动终端对应的参考频偏估计值或参考频偏区间确定每组移动终端中每个移动终端对应的目标频偏估计值。在该实施方式中,基站可以从每组移动终端中确定出部分信号质量较好的移动终端,并基于这部分移动终端的频偏估计值或者频偏区间,为该组移动终端确定出相对较为准确的参考频偏估计值或者参考频偏区间,从而基于该参考频偏估计值或者参考频偏区间为信号质量较差的移动终端所确定的频偏估计值,比直接基于信号质量较差的移动终端的频偏测量值而确定出的频偏估计值更加准确,提高了基站为移动终端计算出的频偏估计值的准确性,从而可以提高基站为该移动终端的信号成功解调信号的可能性。而且,基站可以利用该移动终端所在分组对应的参考频偏估计值或者参考频偏区间,进行简单的计算过程即可得到该移动终端对应的频偏估计值,而无需为每个移 动终端均执行复杂的计算过程,从而可以有效减少基站在为多个移动终端进行频偏估计时计算量,降低基站计算资源的消耗。
可选的,该方法还可以包括基站获取多个移动终端中每个移动终端的预设参数的参数值,该预设参数包括移动终端的参考信号接收功率RSRP和/或定时提前量TA;则,该基站根据多个移动终端中每个移动终端的频偏测量值对多个移动终端进行分组包括:该基站根据多个移动终端中每个移动终端的频偏测量值和该预设参数的参数值对多个移动终端进行分组。在该实施方式中,基站可以获取每个移动终端对应的参考信号接收功率RSRP和/或定时提前量TA,从而基于该移动终端的频偏测量值以及相应的RSRP和/或TA来将接入基站的多个移动终端进行分组。
可选的,每组移动终端的频偏测量值满足该组对应的频偏区间,每组移动终端的预设参数的参数值满足该组对应的预设参数区间。在该实施方式中,基站在根据移动终端的频偏测量值以及预设参数的参数值进行分组时,具体可以是将频偏测量值处于同一频偏区间,并且,预设参数的参数值处于对应的同一预设参数区间的移动终端划分为一组,从而使得同一组内的移动终端,其频偏测量值满足相同的频偏区间,并且,其预设参数的参数值满足相同的预设参数区间。
可选的,该方法还包括:该基站获取最大理论频偏估计值和最大理论频偏测量值,并根据该最大理论频偏估计值和最大理论频偏测量值确定分组数目;该基站对多个移动终端进行分组包括:该基站根据该分组数目对多个移动终端进行分组。在该实施方式中,基站对多个移动终端进行分组的数目,可以是根据最大理论频偏估计值以及最大理论频偏测量值进行确定,比如,在一种示例中,可以是计算最大理论频偏估计值与最大理论频偏测量值之间的比值,并将该比值确定为移动终端的分组数目。
可选的,基站为多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间:该基站确定第一组移动终端中每个移动终端的信号质量,其中,第一组移动终端为多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;该基站根据所述第一组移动终端中每个参考移动终端的频偏测量值确定每个参考移动终端的频偏估计值,并根据每个参考移动终端对应的频偏估计值确定第一组移动终端对应的参考频偏估计值;其中,该第一组移动终端中每个移动终端的目标频偏估计值为所述参考频偏估计值。在该实施方式中,针对于每一组移动终端,可以从该组移动终端中确定出信号质量较好的移动终端,也即为信号质量大于或者等于阈值的移动终端,并根据这些移动终端的频偏估计值来得到该组移动终端的参考频偏估计值。
可选的,上述第一组移动终端对应的参考频偏估计值可以为一个或者多个参考移动终端的频偏估计值的均值。在该实施方式中,基站在确定每组移动终端的参考频偏估计值时,可以将这组移动终端中信号质量较好的移动终端的频偏估计值进行求均值运算,从而可以将这些信号质量较好的移动终端的频偏估计值的均值作为该组移动终端对应的参考频偏估计值。
可选的,基站为多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间:包括:该基站确定第一组移动终端中每个移动终端的信号质量,其中,该第一组移动终端 为多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;该基站根据每个参考移动终端的频偏测量值确定每个参考移动终端的频偏区间,并根据每个参考移动终端的频偏区间确定该第一组移动终端对应的参考频偏区间;该基站根据每组移动终端分别对应的参考频偏估计值或参考频偏区间确定每组移动终端中每个移动终端对应的目标频偏估计值包括:该基站根据该第一组移动终端对应的参考频偏区间和该第一组移动终端中每个移动终端的频偏测量值确定该第一组移动终端中每个移动终端的目标频偏估计值。在该实施方式中,针对于每一组移动终端,可以从该组移动终端中确定出信号质量较好的移动终端,也即为信号质量大于或者等于阈值的移动终端,并根据这些移动终端的频偏区间来得到该组移动终端的参考频偏区间。
可选的,上述第一组移动终端对应的参考频偏区间为一个或者多个参考移动终端对应的一个或者多个频偏区间中,相同且数目最多的频偏区间。在该实施方式中,针对魅族移动终端,基站可以确定出这组移动终端中信号质量较好的移动终端所对应的频偏区间,并可以按照少数服从多数的原则,从这些信号质量较好的移动终端的频偏区间中,确定相同并且数目最多的频偏区间,从而将所确定出的频偏区间作为该组移动终端的参考频偏区间。
可选的,上述移动终端的信号质量至少根据以下一项进行确定:信号与干扰噪声比、调度资源块数目和参考信号接收功率。在该实施方式中,基站在确定出信号质量较好的移动终端时,具体可以是根据移动终端的信号与干扰噪声比、调度资源块数目以及参考信号接收功率中的任意一种或者多种进行确定。
可选的,上述基站进行分组的多个移动终端的移动方向相同。在该实施方式中,基站所进行分组的移动终端,均是具有相同的移动方向,比如,基站可以将同样是从左向右的移动终端进行分组,和/或,将同样是从右向左的移动终端进行分组等。
可选的,该方法还包括:基站确定多个移动终端的每个移动终端上一个接入的基站;该基站根据该基站与上一个连接接入的基站的相对位置,确定出移动方向相同的多个移动终端。在该实施方式中,基站在确定移动终端的移动方向时,具体可以是根据移动终端当前所接入的基站以及该移动终端上一个接入的基站进行确定,即该移动终端的移动方向为从上一个接入的基站向当前接入的基站的方向。
第二方面,本申请实施例还提供了一种通信装置,该通信装置应用于基站,该通信装置包括:测量模块,用于对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值;分组模块,用于根据该多个移动终端中每个移动终端的频偏测量值对该多个移动终端进行分组,得到多组移动终端;第一确定模块,用于为该多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;第二确定模块,用于根据每组移动终端对应的参考频偏估计值或参考频偏区间确定该每组移动终端中每个移动终端对应的目标频偏估计值。
可选的,该通信装置还包括:第一获取模块,用于获取该多个移动终端中每个移动终端的预设参数的参数值,该预设参数包括该移动终端的参考信号接收功率RSRP和/或定时提前量TA;上述分组模块,具体用于根据该多个移动终端中每个移动终端的频偏测量值和该预设参数的参数值对该多个移动终端进行分组。
可选的,每组移动终端的频偏测量值满足该组对应的频偏区间,每组移动终端的预设参数的参数值满足该组对应的预设参数区间。
可选的,该通信装置还包括:第二获取模块,用于获取最大理论频偏估计值和最大理论频偏测量值;第三确定模块,用于根据该最大理论频偏估计值和最大理论频偏测量值确定分组数目;上述分组模块,具体用于根据该分组数目对多个移动终端进行分组。
可选的,上述第一确定模块,包括:第一确定单元,用于确定第一组移动终端中每个移动终端的信号质量,其中,该第一组移动终端为该多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;第二确定单元,用于根据该第一组移动终端中每个参考移动终端的频偏测量值确定每个参考移动终端的频偏估计值;第三确定单元,用于根据每个参考移动终端对应的该频偏估计值确定该第一组移动终端对应的参考频偏估计值;其中,该第一组移动终端中每个移动终端的目标频偏估计值为该参考频偏估计值。
可选的,该第一组移动终端对应的参考频偏估计值为该一个或者多个参考移动终端的频偏估计值的均值。
可选的,上述第一确定模块,包括:第四确定单元,用于确定第一组移动终端中每个移动终端的信号质量,其中,该第一组移动终端为该多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;第五确定单元,用于根据每个参考移动终端的频偏测量值确定每个参考移动终端的频偏区间;第六确定单元,用于根据每个参考移动终端的该频偏区间确定该第一组移动终端对应的参考频偏区间;上述第二确定模块,具体用于根据该第一组移动终端对应的参考频偏区间和该第一组移动终端中每个移动终端的频偏测量值确定该第一组移动终端中每个移动终端的目标频偏估计值。
可选的,该第一组移动终端对应的参考频偏区间为该一个或者多个参考移动终端对应的一个或者多个频偏区间中,相同且数目最多的频偏区间。
可选的,上述信号质量至少根据以下一项进行确定:信号与干扰噪声比、调度资源块数目和参考信号接收功率。
可选的,该多个移动终端的移动方向相同。
可选的,该通信装置还包括:第四确定模块,用于确定该多个移动终端的每个移动终端上一个接入的基站;第五确定模块,用于根据该基站与该上一个连接接入的基站的相对位置,确定出移动方向相同的该多个移动终端。
第二方面所描述的通信装置,对应于第一方面所描述的多普勒频偏方法,因此,第二方面的各种可能的实施方式以及其有益效果可以参照第一方面中对应实施方式以及有益效果的相关描述,在此不做赘述。
第三方面,本申请实施例还提供了一种通信装置。该通信装置包括处理器,该处理器与存储器耦合,该存储器用于存储计算机程序或指令,该处理器用于执行该计算机程序或指令,使得上述第一方面的方法被执行。该多普勒频偏设备还可以包括该存储器。该多普勒频偏估计设备可以是基站或者基站中的芯片。
第四方面,本申请实施例提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现第一方面的方法,该接口电路用于与该芯片之外的其它模块进行通信。
第五方面,本申请实施例提供了一种计算机存储介质,存储有用于实现上述第一方面的方法的程序。当该程序在多普勒频偏估计设备中运行时,使得该多普勒频偏估计设备执行第一方面的方法。
第六方面,本申请实施例提供了一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述第一方面的方法被执行。
从以上技术方案可以看出,本申请实施例中基站可以对接入的多个移动终端中的每个移动终端均测量出该移动终端的多普勒频偏,以得到每个移动终端对应的频偏测量值;然后,基站并非是基于每个移动终端的频偏测量值直接计算出该移动终端的频偏估计值,而是根据每个移动终端的频偏测量值对多个移动终端进行分组,得到多组移动终端;接着,基站可以为每组移动终端确定出准确性相对较高的参考频偏估计值或者参考频偏区间,比如,可以是根据该分组中选取部分信号质量较高的移动终端对应的频偏估计值或者参考频偏区间,来得到该组移动终端对应的参考频偏估计值或者参考频偏区间,从而基站根据该组移动终端对应的参考频偏估计值或者参考频偏区间确定出该组移动终端中的每个移动终端对应的目标频偏估计值,比如,基站可以直接将该参考频偏估计值作为该组移动终端中每个移动终端对应的目标频偏估计值,或者将每个移动终端的频偏测量值直接加上该组移动终端的参考频偏区间,以此得到每个移动终端对应的目标频偏估计值。这样,基站可以基于每组移动终端中信号质量较好的移动终端的频偏估计值或者频偏区间,为该组移动终端确定出相对较为准确的参考频偏估计值或者参考频偏区间,从而基于该参考频偏估计值或者参考频偏区间所确定的移动终端的频偏估计值,比直接基于信号质量较差的移动终端的频偏测量值而确定出的频偏估计值更加准确,提高了基站为移动终端计算出的频偏估计值的准确性,从而可以提高基站为该移动终端的信号成功解调信号的可能性。而且,基站可以利用该移动终端所在分组对应的参考频偏估计值或者参考频偏区间,进行简单的计算过程即可得到该移动终端对应的频偏估计值,而无需为每个移动终端均执行复杂的计算过程,从而可以有效减少基站在为多个移动终端进行频偏估计时计算量,降低基站计算资源的消耗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一示例性应用场景示意图;
图2为本申请实施例中一种多普勒频偏估计方法的流程示意图;
图3为本申请实施例中又一种多普勒频偏估计方法的流程示意图;
图4为本申请实施例中的TPR对移动终端进行分组的示意图;
图5为1个Front符号加1个Addition符号配置的示意图;
图6为本申请实施例中一种通信装置的结构示意图;
图7为本申请实施例中一种基站的硬件结构示意图;
图8为本申请实施例中一种通信装置的结构示意图。
具体实施方式
当用户乘坐高速移动的高铁或者汽车时,基站所接收到的用户移动终端发送的信号会存在多普勒频移,因此,基站需要计算出每个移动终端的信号所对应的频偏估计值,并基于该频偏估计值来对该移动终端的信号进行解调。在计算频偏估计值时,由于多普勒频偏对于信号的影响在时域上表现为相位旋转,因此,基站可以先计算出每个信号对应的相位旋转,并做相干合并,然后根据相干合并后的相位旋转计算出频偏。
具体的,当时域上发送两个相同的符号块,如果存在频偏,则基站所接收的这两个符号块之间只相差一个相位的关系。则,可以利用成对的解调参考信号(demodulation reference signal,DMRS)进行频偏估计,其基本原理就是利用子帧内两个相邻的DMRS符号上的相位差,计算这两个DMRS符号时间间隔相位旋转对应的频偏估计值。频偏估计值可以利用公式(1)以及公式(2)进行计算得到。
Figure PCTCN2020101291-appb-000001
Figure PCTCN2020101291-appb-000002
其中,km表示移动终端m的DMRS导频编号所对应子载波编号,
Figure PCTCN2020101291-appb-000003
移动终端m占用的端口号p Tx=p m,p m+1,...,q m,起始端口号为p m,终止端口号为q m,天线间最小用户级数字自动增益控制(digital automatic gain control,DAGC)因子
Figure PCTCN2020101291-appb-000004
l 0,l 1为相邻两导频位置,km表示第p Tx个导频信道估计经过加窗降噪输出的占用的子载波索引,Γ(μ)为相位差,ERS为最大频偏测量值。
若基站接收到的移动终端的信号采用1个Front符号加2个Addition符号的DMRS导频符号配置,n=0,
Figure PCTCN2020101291-appb-000005
为频偏估计值;而若基站接收到的移动终端的信号采用1个Front符号加1个Addition符号的DMRS导频符号配置,则当ERS大于最大多普勒频偏值,n=0,
Figure PCTCN2020101291-appb-000006
为频偏估计值,而当ERS小于最大多普勒频偏值,每次估计出来的相位值,可能对应多个频偏估计值,即n存在多个取值,n为整数,此时就需要做频偏区间估计来确定n的值,也即为确定该移动终端对应的频偏区间,以便于计算出移动终端m的频偏估计值。
在目前确定n的实施方式中,通常是在一个时隙内做两路或者三路纠偏处理,并根据所得到的几个频偏区间对第1个时隙上的DMRS进行频域纠偏以及最小二乘法(least  square,LS)估计,然后,基站可以根据各个频偏区间上的纠偏后的DMRS分别求时偏,并在频域完成时偏补偿,最后,基站可以在各个频偏区间上分别做DMRS相干合并,以识别出正确的频偏区间。在该实施方式中,由于需要在一个时隙内做两路或者三路纠偏处理,计算工作量大,而针对于每个移动终端的信号,均以上述实施方式确定n。
实际应用中,基站所接收到的移动终端的信号的质量参差不齐,而基站基于较高质量的信号为移动终端计算出的频偏估计值,其与该移动终端对应的真实的多普勒频偏值之间误差较小,而对于基站基于较低质量的信号为移动终端计算出的频偏估计值,准确性较低,其与该移动终端对应的真实的多普勒频偏值之间的误差较大,这使得基站基于该准确性较低的频偏估计值对该移动终端的信号进行解调时,可能会造成基站无法成功对该信号进行解调,从而导致基站与该移动终端之间无法正常完成通信。
基于此,本申请实施例提供了一种多普勒频偏估计方法,基站可以为不同分组的移动终端确定出该分组对应的准确性较高的参考频偏估计值或参考频偏区间,从而每个移动终端可以依据其所属分组对应的参考频偏估计值或参考频偏区间计算出该移动终端的目标频偏估计值,以提高基站为移动终端计算出的频偏估计值的准确性。具体实现时,基站可以对接入的多个移动终端中的每个移动终端均测量出该移动终端的多普勒频偏,以得到每个移动终端对应的频偏测量值;然后,基站并非是基于每个移动终端的频偏测量值直接计算出该移动终端的频偏估计值,而是根据每个移动终端的频偏测量值对多个移动终端进行分组,得到多组移动终端;接着,基站可以为每组移动终端确定出准确性相对较高的参考频偏估计值或者参考频偏区间,比如,可以是根据该分组中选取部分信号质量较高的移动终端对应的频偏估计值或者参考频偏区间,来得到该组移动终端对应的参考频偏估计值或者参考频偏区间,从而基站根据该组移动终端对应的参考频偏估计值或者参考频偏区间确定出该组移动终端中的每个移动终端对应的目标频偏估计值,比如,基站可以直接将该参考频偏估计值作为该组移动终端中每个移动终端对应的目标频偏估计值,或者将每个移动终端的频偏测量值直接加上该组移动终端的参考频偏区间,以此得到每个移动终端对应的目标频偏估计值。这样,基站可以基于每组移动终端中信号质量较好的移动终端的频偏估计值或者频偏区间,为该组移动终端确定出相对较为准确的参考频偏估计值或者参考频偏区间,从而基于该参考频偏估计值或者参考频偏区间所确定的移动终端的频偏估计值,比直接基于信号质量较差的移动终端的频偏测量值而确定出的频偏估计值更加准确,提高了基站为移动终端计算出的频偏估计值的准确性,从而可以提高基站为该移动终端的信号成功解调信号的可能性。而且,基站可以利用该移动终端所在分组对应的参考频偏估计值或者参考频偏区间,进行简单的计算过程即可得到该移动终端对应的频偏估计值,而无需为每个移动终端均执行复杂的计算过程,从而可以有效减少基站在为多个移动终端进行频偏估计时计算量,降低基站计算资源的消耗。
作为一种示例,本申请实施例可以应用于如图1所述的示例性应用场景。在该场景中,基站100可以接收到向右高速移动的多个移动终端(包括图1中所示的移动终端201、202、203、204等)发送的信号,并基于接收到的信号为各个移动终端进行多普勒频偏估计。
其中,本申请实施例中的基站(base station,BS)可以是接入网侧用于支持终端接入 通信系统的设备,例如,可以为4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)、协同发射接收节点(transmission reception point,TRP)或者随着无线通信技术的演进,未来可能出现的基站等等。基站可以为固定的,也可以是移动的。基站可以称为接入网设备或者网络侧设备等。
本申请实施例中的移动终端(terminal)可以是一种向用户提供语音或者数据连通性的设备,移动终端可以称为用户设备(user equipment,UE)、移动台(mobile station)、用户单元(subscriber unit)、终端设备(terminal equipment,TE)等。移动终端可以为蜂窝电话(cellular phone)、个人数字助理(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台、平板电脑(pad)等。随着无线通信技术的发展,可以接入无线通信网络、可以与无线网络侧进行移动通信,或者通过无线网络与其它物体进行移动通信的设备都可以是本申请实施例中的移动终端,譬如,智能交通中的移动终端等。
在图1所示的示例性应用场景中,基站100在接收到移动终端201至204发送的信号后,可以测量移动终端201至204的多普勒频偏,得到移动终端201至204各自对应的频偏测量值。然后,基站100可以根据移动终端201至204的频偏测量值将移动终端201和102划分为一组(以下称之为A组),将移动终端203和204划分为另一组(以下称之为B组),并分别为A组移动终端以及B组移动终端确定参考频偏区间,从而基站100可以为A组内的每个移动终端,基于该移动终端的频偏测量值与A组对应的参考频偏区间计算出该移动终端的目标频偏估计值,同样,也可以为B组内的每个移动终端,基于该移动终端的频偏测量值与B组对应的参考频偏区间计算出该移动终端的目标频偏估计值。
可以理解的是,上述场景仅是本申请实施例提供的一个场景示例,本申请实施例并不限于此场景。比如,在其它可能的场景中,移动终端的数量也可以多于4个,并且基站100可以将多个移动终端划分成3个及3个以上的分组;又比如,基站100在为移动终端进行分组后,也可以是为A组或者B组移动终端确定出对应的参考频偏估计值,从而基于每组对应的参考频偏估计值计算出该组内每个移动终端的目标频偏估计值。总之,本申请实施例可以应用于任何可适用的场景中,而不局限于上述场景。
下面结合附图,通过实施例来详细说明本申请实施例中一种多普勒频偏估计方法的各种非限定性具体实现方式。参阅图2,图2示出了本申请实施例中一种多普勒频偏估计方法的方法流程示意图,该方法具体可以包括:
S201:基站对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值。
实际应用中,基站通常可以与多个移动终端进行信息交互,而当移动终端处于高速移动状态时(比如移动终端处于高速行驶的火车上等),移动终端发送的信号,在被基站接收 时会存在多普勒频偏,即移动终端向基站发送的信号的相位以及频率,与基站接收到的信号的相位以及频率并不相同。因此,基站通常是为接收到的每个移动终端的信号计算出对应的频偏估计值,从而基于该频偏估计值对该移动终端的信号进行解调,以使得基站能够基于该信号与移动终端进行正常通信。当然,上述多个移动终端可以预先接入该基站,以便能够与该基站之间能够相互通信;并且,不同基站可以接入不同的多个移动终端,并且每个基站可以为其接入的移动终端确定频偏估计值。
本实施例中,基站在得到每个移动终端对应的频偏估计值的过程中,可以先对接入的多个移动终端中的每个移动终端均进行多普勒频偏测量,得到每个移动终端的频偏测量值。值得注意的是,当移动终端向基站发送的信号的DMRS导频符号配置为1个Front符号与1个Addition符号时,针对于接入基站的每个移动终端而言,移动终端的频偏测量值可能与该移动终端的频偏估计值相同,也可能与该移动终端的频偏估计值不同,如上述公式(2)中所示,当n=0时,所测量得到的移动终端的频偏测量值即为该移动终端的频偏估计值,但是当n不等于0时,所测量得到的移动终端的频偏测量值与该移动终端的频偏估计值之间可能相差一个或者多个频偏区间,比如,当n=±2时,频偏估计值=频偏测量值+2*最大频偏测量值,即频偏测量值与频偏估计值之间相差两个频偏区间(区间长度等于最大频偏测量值的绝对值)。并且,当基站接收到的移动终端的信号质量较差时,基站为该移动终端所确定出的频偏测量值并不准确,从而基于该频偏测量值为该移动终端所确定出的频偏估计值也不准确,因此,本实施例中在计算出各个移动终端的频偏测量值后,可以基于该频偏测量值继续执行步骤S202及其后续步骤,以为该移动终端确定出更为准确的频偏估计值。
而当移动终端向基站发送的信号的DMRS导频符号配置为1个Front符号与2个Addition符号时,由于基站可测量频偏的最大值通常大于该移动终端的频偏值,因此,针对于接入基站的每个移动终端而言,移动终端的频偏测量值虽然与该移动终端的频偏估计值相同。但是,基站在为信号质量欠佳的移动终端确定该移动终端的频偏估计值时,所计算出的频偏测量值可能并不准确,从而基于该频偏测量值所确定的频偏估计值也并不准确,因此,本实施例中,基站也可以基于该频偏测量值继续执行步骤S202及其后续步骤,以为该移动终端确定出更为准确的频偏估计值。
S202:基站根据多个移动终端中每个移动终端的频偏测量值对多个移动终端进行分组,得到多组移动终端。
本实施例中,基站在计算出每个移动终端对应的频偏测量值后,可以依据各个移动终端的频偏测量值对接入基站的多个移动终端进行分组,从而可以得到至少两组移动终端。对移动终端进行分组后,每组移动终端中的各个移动终端的频偏估计值之间小于最大频偏测量值。比如,若将多个移动终端划分为两组,则可以将多个移动终端中频偏测量值为正的移动终端划分为一组,将多个移动终端中频偏测量值为负的移动终端划分为一组。
实际应用中,多个移动终端不仅仅可以简单的划分为两组,在一些其它可能的实施方式中,也可以将多个移动终端划分为三组、四组等。具体的,当移动终端向基站发送的信号的DMRS导频符号配置为1个Front符号与2个Addition符号时,基站可以将接入的多个移动终端划分为两组,而当移动终端向基站发送的信号的DMRS导频符号配置为1个 Front符号与1个Addition符号时,基站可以将接入的多个移动终端划分为两组、三组、四组等。本实施例中,基站还可以结合移动终端的预设参数以及频偏测量值对多个移动终端进行分组。在一种对多个移动终端进行分组的示例性实施方式中,基站可以获取多个移动终端中每个移动站终端的预设参数的参数值,其中,该预设参数可以是移动终端的参考信号接收功率(reference signal receiving powe,RSRP)和/或定时提前量(timing advance,TA),然后,基站可以根据多个移动终端中每个移动终端的频偏测量值以及该预设参数的参数值,对移动终端进行分组。这样,针对于每组移动终端,该组移动终端的频偏测量值与预设参数的参数值均满足该组所对应的预设分组条件。
作为一种示例,每组移动终端对应的预设分组条件具体可以使得该组移动终端的频偏测量值满足该组对应的频偏区间,同时,该组移动终端的预设参数的参数值满足该组对应的预设参数区间。
以预设参数为RSRP为例,基站可以将接入基站的移动终端与相邻两个基站之间的RSRP差值,划分成多个RSRP区间。比如,移动终端当前接入的基站为基站2,则基站2可以将与基站2相邻的基站3以及基站1分别测得的移动终端的RSRP值进行差值运算,即RSRP3-RSRP1,其中,RSRP1为基站3测得的移动终端的RSRP值,RSRP1为基站1测得RSRP值;然后,由于实际应用中移动终端对应的RSRP差值范围处于-100dB(分贝)至100dB,则基站可以将移动终端的RSRP差值划分成3个RSRP区间,分别为[-100dB,-10dB)、[-10dB,10dB)以及[10dB,100dB];同时,基站可以根据接入基站的多个移动终端的频偏测量值划分成两个频偏区间,分别为[-f d0,0)以及[0,f d0]。其中,f d0为最大频偏测量值。基于此,基站可以将多个移动终端划分为4组,即A组、B组、C组、D组。其中,A组移动终端的频偏测量值处于频偏区间[-f d0,0),A组移动终端的RSRP值处于[-100dB,-10dB),B组移动终端的频偏测量值处于频偏区间[0,f d0],B组移动终端的RSRP值处于[-10dB,10dB),C组移动终端的频偏测量值处于频偏区间[-f d0,0),C组移动终端的RSRP值处于[10dB,100dB],D组移动终端的频偏测量值处于频偏区间[0,f d0],D组移动终端的RSRP值处于[10dB,100dB]。当然,在其它可能的实施方式中,移动终端的RSRP值也可以是该移动终端当前接入基站所测得的RSRP值,基站根据该RSRP值所可能处于的范围进行区间划分。
又比如,当预设参数为TA时,基站可以将接入基站的移动终端与相邻两个基站之间的TA差值,划分成多个TA区间。比如,移动终端当前接入的基站为基站2,则基站2可以将与基站2相邻的基站3以及基站1分别测得的移动终端的TA值进行差值运算,得到TA3-TA1的TA差值,其中,TA3是指基站3所测得的移动终端的TA值,TA1是指基站1所测得的移动终端的TA值;然后,由于移动终端的TA值范围处于-50us(微秒)至50us,则可以将移动终端的TA值划分成3个TA区间,分别为[-50us,-10us)、[-10us,10us)以及[10us,50us];同时,基站可以根据接入基站的多个移动终端的频偏测量值划分成两个频偏区间,分别为[-f d0,0)以及[0,f d0]。其中,f d0为最大频偏测量值。则,基站可以将多个移动终端划分为A组、B组、C组以及D组这4组。其中,A组移动终端的频偏测量值处于频偏区间[-f d0,0),TA值处于[10us,50us],B组移动终端的频偏测量值处于频偏区间[0, f d0],TA值处于[-10us,10us),C组移动终端的频偏测量值处于频偏区间[-f d0,0),TA值处于[-50us,-10us),D组移动终端的频偏测量值处于频偏区间[0,f d0],TA值处于[-50us,-10us)。当然,在其它可能的实施方式中,移动终端的TA值也可以是该移动终端当前接入基站所测得的TA值,基站根据该TA值所可能处于的范围进行区间划分。
再比如,当预设参数同时包括RSRP以及TA时,基站同样可以将多个移动终端划分为A组、B组、C组以及D组这4组。其中,每个组内的移动终端的频偏测量值在满足对应的频偏区间的同时,该组内的移动终端的RSRP处于对应的RSRP区间,TA处于对应的TA区间。比如,对于A组内的移动终端而言,其频偏测量值处于频偏区间[-f d0,0),RSRP值处于[-100dB,-10dB)以及TA值处于[10us,50us];又比如,对于D组内的移动终端而言,其频偏测量值处于频偏区间[0,f d0],RSRP值处于[10dB,100dB]以及TA值处于[-50us,-10us)。
实际应用中,基站在确定分组的个数时,可以是根据接入该基站的移动终端所能产生的最大理论多普勒频偏估计值以及该基站所能测得的最大理论频偏测量值进行确定。作为一种示例,移动终端的分组数目可以是根据公式(3)计算得到:
Figure PCTCN2020101291-appb-000007
其中,N是指移动终端的分组数目,向上取整,f dmax是指基站的最大理论频偏估计值,即接入该基站的移动终端所能产生的最大多普勒频偏,而f d0是指基站的最大理论频偏测量值,即基站所能测得的最大频偏测量值。
进一步的,基站可以分别基于公式(4)、(5)计算出f d0、f dmax
Figure PCTCN2020101291-appb-000008
Figure PCTCN2020101291-appb-000009
其中,Δt为一定的导频配置下,相邻两个导频符号之间的时间间隔,f 0为基站的工作中心频点,v max为移动终端所能移动的最大速度(在高铁应用场景下,该v max也即为高铁允许的最大运行速度),c为光速。
实际应用中,考虑到上下行有一个锁频误差Δf d(锁频误差,是指移动终端与基站之间的频率同步误差),基站在计算f dmax时,可以采用公式(6):
Figure PCTCN2020101291-appb-000010
值得注意的是,具有相同或者相近移动方向的移动终端,其多普勒频偏的变化趋势通常一致,因此,在进一步可能的实施方式中,基站在对多个移动终端进行分组时,可以对具有相同移动方向的多个移动终端进行分组。比如,实际应用中一些场景中,两辆高铁在会车过程中,基站可以对接入的20个移动终端计算其多普勒频偏。其中,12个移动终端从左向右移动(同位于一辆高铁上),8个移动终端从右向左移动(同位于另一辆高铁上)。则,基站可以分别将对这12个从左向右移动的移动终端进行分组,对这8个从右向左移动的移动终端进行分组。
对于基站而言,其在确定每个移动终端的移动方向时,可以是根据该基站先后接入的 基站进行确定。具体实现时,对于接入基站的多个移动终端,基站可以确定每个移动终端的上一个接入的基站,然后,基站可以根据该基站与移动终端上一个连接接入的基站的相对位置,确定出该移动终端的移动方向,从而可以确定出移动方向相同的多个移动终端,以便为具有相同移动方向的移动终端进行分组。例如,对于移动终端A与移动终端B而言,其在整个移动过程中接入的基站包括基站1、基站2以及基站3,则基站2在确定移动终端A的移动方向时,先确定出该移动终端A上一个接入的基站为基站1,则移动终端A的移动方向为从基站1向基站2的方向,而基站2在确定移动终端B的移动方向时,先确定出该移动终端B上一个接入的基站为基站2,则移动终端B的移动方向为从基站3向基站2的方向。
S203:基站为多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间。
S204:基站根据每组移动终端对应的参考频偏估计值或参考频偏区间确定每组移动终端中每个移动终端对应的目标频偏估计值。
本实施例中,基站在完成对多个移动终端的分组后,可以为每组移动终端确定一个参考频偏估计值或者确定一个参考频偏区间,以便基站后续基于所确定出的参考频偏估计值或参考频偏区间计算出该组移动终端中每个移动终端的目标频偏估计值。
在一种示例性的实施方式中,基站针对于每组移动终端,可以从该组移动终端中选择部分信号质量较高的移动终端,并基于这部分信号质量较高的移动终端所对应的频偏估计值来确定出该组移动终端中每个移动终端的目标频偏估计值(包括信号质量较差的移动终端对应的目标频偏估计值)。具体实现时,针对于多组移动终端中的任一组移动终端(为便于描述,以下称之为第一组移动终端),基站可以确定出该第一组移动终端中每个移动终端的信号质量,并将信号质量大于或者等于阈值的一个或者多个移动终端确定为参考移动终端,该参考移动终端的信号质量相较于第一组移动终端内其它移动终端的信号质量而言,信号质量更好,从而基站可以根据第一组移动终端中的每个参考移动终端的频偏测量值,确定出每个移动终端的频偏估计值,并根据每个参考移动终端对应的频偏估计值确定出该第一组移动终端对应的参考频偏估计值,进而基站可以将该第一组移动终端所对应的参考频偏估计值确定为第一组移动终端中每个移动终端的目标频偏估计值。
可以理解,实际应用中,如果移动终端的信号质量较差,则基于该移动终端的频偏测量值所计算出的该移动终端的频偏估计值误差通常较大,从而可能会存在基站以该频偏估计值对该移动终端的信号进行解调时,信号无法解调不正确的问题,进而导致基站无法成功与该移动终端完成通信。因此,本实施例中,在为每组移动终端确定频偏估计值(也即为上述目标频偏估计值)时,可以根据移动终端的信号质量,从该组移动终端中选择出部分信号质量较优的移动终端,并将该部分移动终端的频偏估计值作为该组内其余信号质量欠佳的移动终端的频偏估计值。这样,基站在为信号质量较好的移动终端得到其频偏估计值后,不仅无需再执行复杂的计算过程即可得到其余信号质量较差的移动终端所对应的频偏估计值,而且,基于信号质量较优的移动终端的频偏估计值来确定信号质量较差的移动终端的频偏估计值,可以使得最终所确定的该信号质量较差的移动终端的频偏估计值更准确,从而基站在对信号质量较差的移动终端的信号进行解调时,由于其频偏估计值更准确, 因此,基站成功解调出该信号的可能性会更高。
其中,移动终端的信号质量具体可以表征为移动终端的信号与干扰噪声比(signal-to-interference and noise ratio,SINR)、调度资源块(resource block,RB)数目以及参考信号接收功率(RSRP)等中的至少一项。具体的,以信噪比表征移动终端的信号质量为例进行说明,基站可以获取第一组移动终端中每个移动终端的SINR值,并将SINR值大于或者等于预设阈值的移动终端确定为信号质量较优的移动终端,而将SINR值小于预设阈值的移动终端确定为信号质量较差的移动终端;类似的,当移动终端的信号质量用SINR以及调度RB数目来表征时,基站可以将SINR值大于或者等于第一预设阈值且调度RB数目大于或者等于第二预设阈值的移动终端确定为信号质量较优的移动终端。
实际应用中,针对于第一组移动终端,基站在基于参考移动终端的频偏估计值确定该第一组移动终端的参考频偏估计值时,可以是将多个参考移动终端的频偏估计值中的任意一个频偏估计值确定为该第一组移动终端的参考频偏估计值。比如,基站可以将信号质量最高的参考移动终端的频偏估计值确定为该第一组移动终端所对应的参考频偏估计值。当然,在其它可能的实施方式中,基站也可以是根据多个参考移动终端的频偏估计值计算出该第一组移动终端的参考频偏估计值。比如,基站可以计算出多个参考移动终端的频偏估计值的平均值,并将该平均值确定为第一组移动终端所对应的参考频偏估计值,当然,基站也可以是通过数据拟合等其它复杂的运算过程,确定为第一组移动终端所对应的参考频偏估计值。而对于信号质量较好的移动终端,其目标频偏估计值既可以是基于该移动终端的频偏测量值所计算出的频偏估计值,也可以是该组移动终端所对应的参考频偏估计值。
上述示例性实施方式中,是根据多个信号质量较好的移动终端的频偏估计值来确定为该第一组移动终端对应的参考频偏估计值,而在其它可能的实施方式中,也可以是根据多个信号质量较好的移动终端的频偏区间来确定出第一组移动终端对应的参考频偏区间。具体实现时,针对于第一组移动终端(类似的,第一组移动终端是指多组移动终端中的任一组移动终端),基站可以确定该第一组移动终端每个移动终端的信号质量,并且,将第一组移动终端中信号质量大于或者等于阈值的一个或者多个移动终端确定为参考移动终端。其中,移动终端的信号质量可以用移动终端SINR、调度RB数目以及参考信号接收功率中的至少一项来表征。然后,基站可以根据每个参考移动终端的频偏测量值确定每个参考移动终端的频偏区间,并根据每个参考移动终端的频偏区间确定第一组移动终端对应的参考频偏区间。
在一些示例中,基站可以从多个参考移动终端中选择其中一个参考移动终端的频偏区间确定为该第一组移动终端对应的参考频偏区间。当然,基站也可以是从多个参考移动终端的频偏区间中选择相同且数目最多的频偏区间,并将所选择的频偏区间确定为第一组移动终端对应的参考频偏区间。其中,当参考移动终端的数量为1时,基站可以直接将该参考移动终端的频偏区间作为第一组移动终端对应的参考频偏区间。
进一步的,为方便从多个参考移动终端的频偏区间中选择相同且数目最多的频偏区间,基站在选择参考移动终端时,可以从该第一组移动终端内选取奇数个参考移动终端,从而按照少数服从多数的原则,从奇数个参考移动终端的参考频偏区间中选择相同且数目最多 的频偏区间。比如,基站可以从第一组移动终端中选取出5个参考移动终端,从而基站可以确定出这5个参考移动终端所对应的频偏区间,然后,基站可以这5个频偏区间中选取相同且数量最多的3个频偏区间作为该第一组移动终端对应的参考频偏区间。
相应的,在基站确定出第一组移动终端的参考频偏区间后,第一组移动终端中每个移动终端的目标频偏估计值,可以是根据该第一组移动终端对应的参考频偏区间以及该第一组移动终端中每个移动终端的频偏测量值进行计算得到。比如,假设第一组移动终端中移动终端A的频偏测量值为θ,第一组移动终端对应的参考频偏区间为n=2所对应的频偏区间,则,移动终端A的目标频偏估计值可以为(θ+2f d0),其中,f d0为基站所能测量的最大频偏测量值。
在一些可能的实施方式中,对于信号质量较好的移动终端(也即参考移动终端),其目标频偏估计值可以是基于其频偏测量值与该组移动终端对应的参考频偏区间进行确定,也可以是基于其频偏测量值与该移动终端对应的频偏区间(即基站根据该移动终端的频偏测量值所计算出的该移动终端的频偏区间)进行计算得到。
值得注意的是,对于第一组移动终端,不同移动终端的真实频偏值通常并不相同,而本实施方式中,为第一组移动终端内的每个移动终端确定出参考频偏区间后,基站可以基于每个移动终端的频偏测量值与该参考频偏区间,计算出该移动终端的目标频偏估计值,由于不同移动终端的频偏测量值通常存在差异,因此,基站所计算出的不同移动终端对应的目标频偏估计值相互之间也存在差异,这相比于为各个移动终端确定相同大小的目标频偏估计值的实施方式而言,各个移动终端对应的不同大小的目标频偏估计值的准确性更高。
在进一步的实施方式中,基站也可以在对多个移动终端进行分组后,直接为每个分组指定该组移动终端所对应的参考频偏估计值或者参考频偏区间,以便基于该指定的参考频偏估计值或者参考频偏区间确定出每个移动终端对应的目标频偏估计值。
比如,基站在为高铁上的移动终端确定该移动终端多普勒频偏时,由于接入该基站的高铁上的移动终端的移动速度与移动轨迹相对固定(具体为沿着铁轨移动),因此,基站可以采集预设时间段(比如前一个星期、前一个月等)内基站为处于不同分组的移动终端所计算出的相应的频偏估计值或频偏区间。由于不同分组的移动终端所对应的频偏估计值或者频偏区间固定,因此,基站可以建立不同分组与不同频偏估计值之间对应关系,或者,建立不同分组与不同频偏区间之间对应关系,从而,基站在为接入的多个移动终端进行分组后,可以基于该预先建立的对应关系,确定不同分组所对应的参考频偏估计值,或者不同分组所对应的参考频偏区间,以便基于所确定出的各个分组对应的参考频偏估计值或者参考频偏区间确定出每个移动终端对应的目标频偏估计值。
又比如,当基站为接入的多个移动终端进行分组时的分组数目较少时,比如分组数目为两组时,通过移动终端的频偏测量值的正负即可确定该移动终端所被划分的组,相应的,该组所对应的频偏区间(也即该频偏区间对应的n的取值)可以直接确定。此时,基站可以直接为每个分组指定该分组对应的参考频偏区间,以便该组移动终端中的每个移动终端可以基于该指定的参考频偏区间确定出该移动终端对应的目标频偏估计值。
值得注意的是,本实施例中,基站测量得到每个移动终端的频偏测量值以及根据移动 终端的频偏测量值计算得到该移动终端的频偏估计值的过程,目前的应用中已存在相应的实施方式,在此不做赘述。
本实施例中,基站可以对接入的多个移动终端中的每个移动终端均测量出该移动终端的多普勒频偏,以得到每个移动终端对应的频偏测量值;然后,基站并非是基于每个移动终端的频偏测量值执行复杂的计算过程来计算出该移动终端的频偏估计值,而是根据每个移动终端的频偏测量值进行分组,得到多组移动终端;接着,基站可以为每组移动终端确定出参考频偏估计值或者参考频偏区间,从而基站根据该组移动终端对应的参考频偏估计值或者参考频偏区间确定出该组移动终端中的每个移动终端对应的目标频偏估计值,比如,基站可以直接将该参考频偏估计值作为该组移动终端中每个移动终端对应的目标频偏估计值,或者将每个移动终端的频偏测量值直接加上该组移动终端的参考频偏区间,以此得到每个移动终端对应的目标频偏估计值。这样,基站无需为每个移动终端均执行复杂的计算过程以得到每个移动终端的频偏估计值,而可以利用该移动终端所在分组对应的参考频偏估计值或者参考频偏区间,进行简单的计算过程即可得到该移动终端对应的频偏估计值,从而可以有效减少基站在为多个移动终端进行频偏估计时计算量,降低基站计算资源的消耗。
为便于理解本申请实施例的技术方案,下面结合具体场景示例对本申请实施例的技术方案进行详细介绍,参阅图3,图3示出了本申请实施例中一种多普勒频偏估计方法的流程示意图。在该场景实施例中,可以在每个站点布置两个背靠背TRP,如图4所示,用于与两个移动方向(即图4所示的列车1行驶方向与列车2行驶方向)的高铁上的移动终端进行通信,其中,f d0为最大频偏测量值,f dmax为最大频偏估计值;并且,接入基站的移动终端所发送的信号采用如图5所示的1个Front符号加1个Addition符号的DMRS导频符号配置(横轴表示时间,纵轴表示频率,RB表征资源块),由于移动终端的频偏测量值与频偏估计值之间了可能相差一个或者多个频偏区间,因此,TRP2可以对每个移动终端进行频偏区间的区间判决。以TRP2为移动终端计算多普勒频偏估计值为例,该方法具体可以包括:
S301:TRP2确定接入的多个移动终端。
如图4所示,沿着1方向移动的高铁上的移动终端,其可以不断切换所接入的TRP,比如,该移动终端在高速移动过程中接入的TRP可以由TRP1切换至TRP2。基于此,TRP2可以先确定当前接入了哪些移动终端。
S302:在存在新的移动终端接入TRP2时,TRP2将该移动终端的多普勒频偏测量值取反。
通常情况下,移动终端所接入的TRP在由TRP1切换至TRP2时,可以是在该TRP1与TRP2之间的中点处进行切换,此时,TRP1与TRP2所接收到的该移动终端的信号,其多普勒频偏的大小相同,方向相反,因此,TRP2在确定接入新的移动终端时,可以从TRP1处获取到该移动终端的多普勒频偏的测量值,并对该测量值进行取反(即取该测量值的负值,绝对值大小相同)。这样,TRP2可以无需执行复杂的计算过程以得到该移动终端的多 普勒频偏测量值,从而可以减少TRP2在得到移动终端的多普勒频偏测量值的过程中所需耗费的计算量。
S303:TRP2区分所接入的移动终端的运动方向。
如图4所示,高铁的运动方向包括相反的列车1方向以及列车2方向,因此,接入TRP2上的不同移动终端的移动方向可能相反。基于此,TRP2可以将不同移动方向的移动终端进行分类,以使得具有相同移动方向的移动终端属于同一类。
在一种示例性的实施方式中,TRP2可以根据移动终端上一个接入的TRP来确定其移动方向。具体的,假设移动终端A随高铁沿着列车1方向进行移动,则该移动终端A上一个接入的TRP为TRP1,则TRP2可以根据该移动终端A上一个接入的TRP1来确定其移动方向为从TRP1至TRP2的方向,也即为图4中所示的列车1方向;类似的,若移动终端A上一个接入的TRP为TRP3,则TRP2可以根据该移动终端A上一个接入的TRP3来确定其移动方向为从TRP3至TRP2的方向,也即为图4中所示的列车2方向。
S304:TRP2针对于接入的具有相同移动方向的移动终端,可以根据该移动终端的频偏测量值进行分组,得到4组移动终端。
本实施例中,TRP2针对于列车1方向运动或者列车2方向运动的多个移动终端,可以将其划分为如图4所示的4组(即1、2、3、4组)移动终端。
具体实现时,TRP2可以先对接入的多个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值(对于切换TRP所接入的移动终端而言,TRP2可以从其它TRP处去其相反值即可得到)。然后,针对于具有相同移动方向的多个移动终端,TRP2可以根据每个移动终端的频偏测量值对移动终端进行分组。
在一种示例中,TRP2可以是根据每个移动终端的频偏测量值以及该移动终端TRP2处测量的RSRP值进行分组。每组移动终端的频偏测量值满足该组对应的频偏区间,同时,该组移动终端的RSRP值满足该组对应的RSRP区间。
在又一种示例中,TRP2也可以是根据每个移动终端的频偏测量值以及该移动终端TRP2处测量的TA值进行分组。每组移动终端的频偏测量值满足该组对应的频偏区间,同时,该组移动终端的TA值满足该组对应的TA区间。
当然,结合上述两种示例,可以同时结合移动终端的频偏测量值、移动终端在TRP2处测量的RSRP以及TA值进行分组。即,对移动终端进行分组后,每组移动终端的频偏测量值满足该组对应的频偏区间,同时,该组移动终端的RSRP值满足该组对应的RSRP区间,该组移动终端的TA值满足该组对应的TA区间。
其中,基站为移动终端进行分组时的分组数目可以是根据上述公式(3)进行确定。
S305:TRP2针对于每组移动终端,选择N(N为奇数)个信号质量较好的移动终端。
S306:针对于每组移动终端,TRP2根据该组移动终端中的N个移动终端的频偏测量值确定N个移动终端中每个移动终端的频偏估计值,并根据该每个移动终端的频偏估计值来确定该组移动终端的参考频偏区间。
本实施例中,TRP2可以从每组移动终端中选取信号质量较好的移动终端来确定该组移动终端所对应的参考频偏区间。其中,信号质量较好的移动终端具体可以是SNR与调度 RB数目均超出门限值的移动终端,在其它可能的实施方式中,也可以是RSRP值高于门限值的移动终端等。
在确定每组移动终端对应的参考频偏区间(比如3组对应的参考频偏区间)时,TRP2可以先确定该组移动终端中每个移动终端的信号质量,并从中选取N个信号质量大于或者等于阈值的移动终端,确定为信号质量较好的移动终端;然后,TRP2可以根据这些信号质量较好的移动终端的频偏测量值,计算出每个移动终端对应的频偏区间,并从中选取相同并且数目最多的频偏区间,确定为该组移动终端所对应的参考频偏区间。
S307:针对于每组移动终端,TRP2根据该移动终端对应的参考频偏区间以及每个移动终端对应的参考频偏区间,计算出每个移动终端对应的目标频偏估计值。
本实施例中,TRP2在得到每个移动终端的频偏测量值以及每组移动终端的参考频偏区间后,针对于每组移动终端,可以将该组移动终端内的每个移动终端的频偏测量值与该组移动终端对应的参考频偏区间进行相加,从而可以得到该组移动终端中每个移动终端对应的目标频偏估计值。以此类推,可以得到接入TRP2的每个移动终端的目标频偏估计值。
可以理解,由于上述过程中是根据信号质量较好的移动终端的频偏估计值来得到信号质量较差的频偏估计值,从而可以提高基站为信号质量较差的移动终端所确定的频偏估计值的准确性,进而可以提高基站为信号质量较差的移动终端发送的信号进行成功解调的可能性。而且,基站在为每个移动终端确定其频偏估计值的过程中,仅计算了部分移动终端(信号质量较好的移动终端)的频偏估计值,而对于其余移动终端,可以通过简单的频偏测量值与参考频偏区间相加,即可得到其余移动终端的目标频偏估计值,可以减少TRP2为每个移动终端确定频偏估计值时所需耗费的计算量。
值得注意的是,本实施例中,是基于信号质量较好的移动终端的频偏测量值确定出该组移动终端对应的参考频偏区间,而在其它可能的实施方式中,也可以是基于信号质量较好的移动终端的频偏测量值确定出该组移动终端对应的参考频偏估计值。这样,TRP2在得到每组移动终端对应的参考频偏估计值后,即可将该组移动终端对应的参考频偏估计值确定为该组内每个移动终端的频偏估计值。
进一步的,TRP2在将移动终端划分为1组、2组、3组以及4组后,也可以按照预先建立的不同分组与参考频偏区间或者参考频偏估计值之间的对应关系,确定1组、2组、3组以及4组各自所对应的参考频偏区间或者参考频偏估计值
此外,本申请实施例还提供了一种通信装置。参阅图6,图6示出了本申请实施例中一种通信装置,该通信装置600可以应用于基站,该通信装置600包括:
测量模块601,用于对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值;
分组模块602,用于根据该多个移动终端中每个移动终端的频偏测量值对该多个移动终端进行分组,得到多组移动终端;
第一确定模块603,用于为该多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;
第二确定模块604,用于根据每组移动终端对应的参考频偏估计值或参考频偏区间确定该每组移动终端中每个移动终端对应的目标频偏估计值。
在一些可能的实施方式中,该通信装置600还包括:
第一获取模块,用于获取该多个移动终端中每个移动终端的预设参数的参数值,该预设参数包括该移动终端的参考信号接收功率RSRP和/或定时提前量TA;
上述分组模块602,具体用于根据该多个移动终端中每个移动终端的频偏测量值和该预设参数的参数值对该多个移动终端进行分组。
在一些可能的实施方式中,每组移动终端的频偏测量值满足该组对应的频偏区间,每组移动终端的预设参数的参数值满足该组对应的预设参数区间。
在一些可能的实施方式中,该通信装置600还包括:
第二获取模块,用于获取最大理论频偏估计值和最大理论频偏测量值;
第三确定模块,用于根据该最大理论频偏估计值和最大理论频偏测量值确定分组数目;
上述分组模块602,具体用于根据该分组数目对多个移动终端进行分组。
在一些可能的实施方式中,上述第一确定模块603,包括:
第一确定单元,用于确定第一组移动终端中每个移动终端的信号质量,其中,该第一组移动终端为该多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;
第二确定单元,用于根据该第一组移动终端中每个参考移动终端的频偏测量值确定每个参考移动终端的频偏估计值;
第三确定单元,用于根据每个参考移动终端对应的该频偏估计值确定该第一组移动终端对应的参考频偏估计值;
其中,该第一组移动终端中每个移动终端的目标频偏估计值为该参考频偏估计值。
在一些可能的实施方式中,该第一组移动终端对应的参考频偏估计值为该一个或者多个参考移动终端的频偏估计值的均值。
在一些可能的实施方式中,上述第一确定模块603,包括:
第四确定单元,用于确定第一组移动终端中每个移动终端的信号质量,其中,该第一组移动终端为该多组移动终端中的任一组移动终端,该第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;
第五确定单元,用于根据每个参考移动终端的频偏测量值确定每个参考移动终端的频偏区间;
第六确定单元,用于根据每个参考移动终端的该频偏区间确定该第一组移动终端对应的参考频偏区间;
上述第二确定模块604,具体用于根据该第一组移动终端对应的参考频偏区间和该第一组移动终端中每个移动终端的频偏测量值确定该第一组移动终端中每个移动终端的目标频偏估计值。
在一些可能的实施方式中,该第一组移动终端对应的参考频偏区间为该一个或者多个参考移动终端对应的一个或者多个频偏区间中,相同且数目最多的频偏区间。
在一些可能的实施方式中,上述信号质量至少根据以下一项进行确定:信号与干扰噪声比、调度资源块数目和参考信号接收功率。
在一些可能的实施方式中,该多个移动终端的移动方向相同。
在一些可能的实施方式中,该通信装置600还包括:
第四确定模块,用于确定该多个移动终端的每个移动终端上一个接入的基站;
第五确定模块,用于根据该基站与该上一个连接接入的基站的相对位置,确定出移动方向相同的该多个移动终端。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。
当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。
需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请实施例中方法实施例基于同一构思,其带来的技术效果与本申请实施例中方法实施例相同,具体内容可参见本申请实施例前述所示的方法实施例中的叙述,此处不再赘述。
下面,对本申请实施例中的基站的硬件结构进行示意性描述。参阅图7,图7示出了本申请实施例中一种基站的硬件结构示意图。
基站包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线115与收发器113相连。网络接口114用于使得接入网设备通过通信链路,与其它通信设备相连,例如网络接口114可以包括接入网设备与核心网网元之间的网络接口,例如S1接口,网络接口可以包括接入网设备和其他接入网设备之间的网络接口,例如X2或者Xn接口。
本申请实施例中的处理器,例如处理器111,本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可 擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。例如,处理器111用于执行存储器112中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器113可以用于支持基站与终端之间射频信号的接收或者发送,收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器113中的发射机Tx还用于从处理器111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
如图8所示,为本申请实施例提供的一种通信装置800的结构示意图。
通信装置800包括处理单元801和通信单元802。可选的,通信装置800还包括存储单元803。处理单元801、通信单元802和存储单元803通过通信总线相连。
通信单元802可以是具有收发功能的装置,用于与其他网络设备或者终端进行通信。
存储单元803可以包括一个或者多个存储器。
存储单元803可以独立存在,通过通信总线与处理单元801相连。存储单元803也可以与处理单元801集成在一起。
通信装置800可以用于通信设备、电路、硬件组件或者芯片中。
通信装置800可以是本申请实施例中的基站。基站的示意图可以如图7所示。可选的,通信装置800的通信单元802可以包括接入网设备的天线和收发机。通信单元802还可以包括接入网设备的网络接口。
通信装置800可以是本申请实施例中的基站中的芯片。通信单元802可以是输入或者输出接口、管脚或者电路等。可选的,存储单元803可以存储接入网设备侧的方法的计算 机执行指令,以使处理单元801执行上述实施例中基站侧的方法。存储单元803可以是寄存器、缓存或者RAM等,存储单元803可以和处理单元801集成在一起;存储单元803可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元803可以与处理单元801相独立。可选的,随着无线通信技术的发展,收发机可以被集成在多普勒频偏估计设备800上。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种多普勒频偏估计方法,其特征在于,所述方法包括:
    所述基站对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到所述每个移动终端的频偏测量值;
    所述基站根据所述多个移动终端中每个移动终端的频偏测量值对所述多个移动终端进行分组,得到多组移动终端;
    所述基站为所述多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;
    所述基站根据每组移动终端对应的参考频偏估计值或参考频偏区间确定所述每组移动终端中每个移动终端对应的目标频偏估计值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站获取所述多个移动终端中每个移动终端的预设参数的参数值,所述预设参数包括所述移动终端的参考信号接收功率RSRP和/或定时提前量TA;
    所述基站根据所述多个移动终端中每个移动终端的频偏测量值对所述多个移动终端进行分组包括:
    所述基站根据所述多个移动终端中每个移动终端的频偏测量值和所述预设参数的参数值对所述多个移动终端进行分组。
  3. 根据权利要求2所述的方法,其特征在于,每组移动终端的频偏测量值满足所述组对应的频偏区间,每组移动终端的预设参数的参数值满足所述组对应的预设参数区间。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述基站获取最大理论频偏估计值和最大理论频偏测量值,并根据所述最大理论频偏估计值和最大理论频偏测量值确定分组数目;
    所述基站对多个移动终端进行分组包括:
    所述基站根据所述分组数目对多个移动终端进行分组。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述基站为所述多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间包括:
    所述基站确定第一组移动终端中每个移动终端的信号质量,其中,所述第一组移动终端为所述多组移动终端中的任一组移动终端,所述第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;
    所述基站根据所述第一组移动终端中每个参考移动终端的频偏测量值确定每个参考移动终端的频偏估计值,并根据每个参考移动终端对应的所述频偏估计值确定所述第一组移动终端对应的参考频偏估计值;
    其中,所述第一组移动终端中每个移动终端的目标频偏估计值为所述参考频偏估计值。
  6. 根据权利要求5所述的方法,其特征在于,所述第一组移动终端对应的参考频偏估计值为所述一个或者多个参考移动终端的频偏估计值的均值。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述基站为所述多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间包括:
    所述基站确定第一组移动终端中每个移动终端的信号质量,其中,所述第一组移动终 端为所述多组移动终端中的任一组移动终端,所述第一组移动终端中信号质量大于或等于阈值的一个或多个移动终端为参考移动终端;
    所述基站根据每个参考移动终端的频偏测量值确定每个参考移动终端的频偏区间,并根据每个参考移动终端的所述频偏区间确定所述第一组移动终端对应的参考频偏区间;
    所述基站根据每组移动终端分别对应的参考频偏估计值或参考频偏区间确定所述每组移动终端中每个移动终端对应的目标频偏估计值包括:
    所述基站根据所述第一组移动终端对应的参考频偏区间和所述第一组移动终端中每个移动终端的频偏测量值确定所述第一组移动终端中每个移动终端的目标频偏估计值。
  8. 根据权利要求7所述的方法,其特征在于,所述第一组移动终端对应的参考频偏区间为所述一个或者多个参考移动终端对应的一个或者多个频偏区间中,相同且数目最多的频偏区间。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述信号质量至少根据以下一项进行确定:
    信号与干扰噪声比、调度资源块数目和参考信号接收功率。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述多个移动终端的移动方向相同。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述基站确定所述多个移动终端的每个移动终端上一个接入的基站;
    所述基站根据所述基站与所述上一个连接接入的基站的相对位置,确定出移动方向相同的所述多个移动终端。
  12. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,使得权利要求1至11任一所述的方法被执行。
  13. 一种通信装置,其特征在于,所述通信装置应用于基站,所述通信装置包括:
    测量模块,用于对接入的多个移动终端中每个移动终端进行多普勒频偏测量,得到每个移动终端的频偏测量值;
    分组模块,用于根据所述多个移动终端中每个移动终端的频偏测量值对所述多个移动终端进行分组,得到多组移动终端;
    第一确定模块,用于为所述多组移动终端中的每组移动终端确定参考频偏估计值或参考频偏区间;
    第二确定模块,用于根据每组移动终端对应的参考频偏估计值或参考频偏区间确定所述每组移动终端中每个移动终端对应的目标频偏估计值。
  14. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,以执行权利要求1至11任一所述的方法,所述接口电路用于与所述芯片之外的其它模块进行通信。
  15. 一种计算机存储介质,其特征在于,存储有用于实现权利要求1至11任一所述方法的程序;当所述程序在多普勒频偏估计设备中运行时,使得所述多普勒频偏估计设备执 行所述权利要求1至11任一所述的方法。
  16. 一种计算机程序产品,其特征在于,所述程序产品包括程序,当所述程序被运行时,使得权利要求1至11任一所述的方法被执行。
  17. 一种装置,其特征在于,所述装置用于执行权利要求1至11任一项所述的方法。
PCT/CN2020/101291 2019-07-12 2020-07-10 一种多普勒频偏估计方法及通信装置 WO2021008451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910631343.0 2019-07-12
CN201910631343.0A CN112217756B (zh) 2019-07-12 2019-07-12 一种多普勒频偏估计方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021008451A1 true WO2021008451A1 (zh) 2021-01-21

Family

ID=74047854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101291 WO2021008451A1 (zh) 2019-07-12 2020-07-10 一种多普勒频偏估计方法及通信装置

Country Status (2)

Country Link
CN (1) CN112217756B (zh)
WO (1) WO2021008451A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810323A (zh) * 2021-05-12 2021-12-17 重庆邮电大学 融合5g nr的leo卫星多普勒频偏变化率估计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810326B (zh) * 2021-09-27 2023-07-25 新华三技术有限公司 时偏估计的方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595468A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 用于发送探测参考信号的资源分配方法和装置
CN102611484A (zh) * 2011-01-24 2012-07-25 中兴通讯股份有限公司 一种多用户多输入多输出的调度方法和装置
US20140369243A1 (en) * 2012-01-27 2014-12-18 Telefonaktiebolaget L M Ericsson (Publ) Frequency Synchronization Method for Nodes in a Downlink Coordinated Multiple Point Transmission Scenario
CN105007241A (zh) * 2015-07-01 2015-10-28 杭州祥声通讯股份有限公司 一种高铁环境下多普勒频偏估计方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431493B (zh) * 2007-11-07 2012-11-21 中国科学院微电子研究所 用于ofdm分组检测、频偏估计的系统及方法
CN101184075B (zh) * 2007-12-13 2012-01-04 华为技术有限公司 频偏补偿方法及装置
CN101814931B (zh) * 2009-02-19 2014-07-02 中兴通讯股份有限公司 Td-scdma系统中多普勒频移估计和补偿的方法
CN102141771B (zh) * 2011-03-08 2013-10-02 无锡辐导微电子有限公司 一种频率校正方法和装置
CN103731378B (zh) * 2012-10-10 2017-05-10 京信通信系统(中国)有限公司 一种频率偏移管理方法及装置
CN107454027B (zh) * 2016-05-31 2020-02-04 展讯通信(上海)有限公司 一种频偏估计的方法及装置
CN106230762B (zh) * 2016-07-26 2019-06-18 广州海格通信集团股份有限公司 多普勒频偏估计方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595468A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 用于发送探测参考信号的资源分配方法和装置
CN102611484A (zh) * 2011-01-24 2012-07-25 中兴通讯股份有限公司 一种多用户多输入多输出的调度方法和装置
US20140369243A1 (en) * 2012-01-27 2014-12-18 Telefonaktiebolaget L M Ericsson (Publ) Frequency Synchronization Method for Nodes in a Downlink Coordinated Multiple Point Transmission Scenario
CN105007241A (zh) * 2015-07-01 2015-10-28 杭州祥声通讯股份有限公司 一种高铁环境下多普勒频偏估计方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810323A (zh) * 2021-05-12 2021-12-17 重庆邮电大学 融合5g nr的leo卫星多普勒频偏变化率估计方法
CN113810323B (zh) * 2021-05-12 2023-12-01 上海正测通科技股份有限公司 融合5g nr的leo卫星多普勒频偏变化率估计方法

Also Published As

Publication number Publication date
CN112217756B (zh) 2022-03-29
CN112217756A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US20210306895A1 (en) Measurement and reporting method and apparatus
JP7179156B2 (ja) 信号伝送方法及び通信機器
TW202145814A (zh) 定位方法、裝置及電腦存儲介質
TWI801768B (zh) 時鐘偏差確定方法及裝置
WO2020221318A1 (zh) 一种上行波束管理方法及装置
WO2021008451A1 (zh) 一种多普勒频偏估计方法及通信装置
CN110972054B (zh) 定位方法及装置
US10715288B2 (en) Wireless local area network sounding protocol
US20220330198A1 (en) Signal transmission method and apparatus
WO2016188657A1 (en) Dynamic cca for increasing system throughput of a wlan network
WO2021258776A1 (zh) 通信方法及通信装置
WO2021249287A1 (zh) 信息传输方法、装置及存储介质
WO2019029583A1 (zh) 获取定时偏差的方法及相关设备
WO2021162612A1 (en) L1-sinr measurement procedure based on measurement restrictions
CN110830202B (zh) 通信方法、装置和通信系统
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2022077387A1 (zh) 一种通信方法及通信装置
TW202231006A (zh) 用於測量和使用者設備天線選擇的方法
WO2021159258A1 (zh) 一种数据传输方法及装置
WO2021088089A1 (zh) 链路质量监测方法及相关产品
WO2022022306A1 (zh) 一种通信方法及装置
CN110603846A (zh) 一种调度系统信息块的方法及装置
WO2021142562A1 (zh) 一种干扰抑制方法以及相关装置
CN111629397A (zh) 一种测量的方法和装置
WO2023241648A1 (zh) 通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839639

Country of ref document: EP

Kind code of ref document: A1