WO2021142562A1 - 一种干扰抑制方法以及相关装置 - Google Patents

一种干扰抑制方法以及相关装置 Download PDF

Info

Publication number
WO2021142562A1
WO2021142562A1 PCT/CN2020/071644 CN2020071644W WO2021142562A1 WO 2021142562 A1 WO2021142562 A1 WO 2021142562A1 CN 2020071644 W CN2020071644 W CN 2020071644W WO 2021142562 A1 WO2021142562 A1 WO 2021142562A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
signal quality
cell
channel state
coverage
Prior art date
Application number
PCT/CN2020/071644
Other languages
English (en)
French (fr)
Inventor
库拉斯·马丁
戴思达
席勒·拉斯
彭晶波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/071644 priority Critical patent/WO2021142562A1/zh
Publication of WO2021142562A1 publication Critical patent/WO2021142562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an interference suppression method and related devices.
  • a cellular network In a cellular network (cellular network), increasing the number of base stations can increase the network capacity, but as the number of base stations increases, the interference between cells also gradually increases, which limits the increase in network capacity.
  • CBF coordinated beamforming
  • JT space domain and joint transmission
  • the accuracy requirements for the channel state information of each terminal device are relatively high.
  • the channel state information is inaccurate, the narrow beam determined by the network device will not be able to accurately cover the terminal device, which may also cause the The narrow beam determined by the network equipment interferes with the terminal equipment of the neighboring cell.
  • the embodiments of the present application provide an interference suppression method and related devices, which are used to suppress signal interference between cells and expand system capacity.
  • the embodiments of the present application provide an interference suppression method, which can be applied to a large-scale co-frequency dense networking scenario, by controlling the coverage of the beam to avoid overlapping of the coverage of the beams of different cells, In turn, signal interference between terminal devices in different cells is avoided.
  • the interference suppression method includes:
  • the network device determines a first weight based on the codebook set, where the first weight is used to generate a first-level beam, and the first-level beam is used to serve one or more terminal devices in the first cell under the network device, That is, one or more terminal devices in the first cell are located within the coverage area of the first-level beam. In addition, the coverage of the primary beam and the coverage of the primary beam in the second cell do not overlap. Then, the network device determines a second weight based on the first weight and the channel state information of one or more terminal devices within the coverage of the first-level beam. Then, the network device determines a transmission weight according to the first weight and the second weight, the transmission weight is used to generate a target beam, and a terminal device within the coverage of the first-level beam is located in the coverage of the target beam Within range.
  • the network device since the coverage of the primary beam indicated by the first weight value determined by the network device does not overlap the coverage of any beam in the second cell, and the network device is based on the first The weight value further determines the second weight value. Also, because the second weight is limited by the first weight, the sending weight determined by the first weight and the second weight is also limited by the first weight, so the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the determination of the second weight value based on the first weight value is performed independently in the first cell, it is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, the signal quality information of each terminal equipment can be determined, and then the appropriate second weight can be determined, and finally the appropriate Target beam to avoid interference between cells.
  • the network device determines based on the first weight and the channel state information of one or more terminal devices within the coverage of the first-level beam
  • the second weight includes: the network device determines the signal quality information of the one or more terminal devices based on the first weight and the channel state information of the one or more terminal devices within the coverage of the first-level beam, and The signal quality information is used to indicate the signal quality of the terminal device in the coverage area of the first-level beam. Then, the network device determines the second weight based on the signal quality information of the one or more terminal devices.
  • the network device determines the second weight based on the signal quality information of each terminal device, which helps to enable each target beam determined in the subsequent process to more accurately cover the aforementioned terminal devices, which is beneficial to expand the system. capacity.
  • the network device determines the second weight value based on the first weight value and the signal quality information of the terminal equipment within the coverage of the primary beam, and the terminal equipment within the coverage of the primary beam is also Located in the first cell. In this process, the information of the terminal equipment outside the first cell may not be needed.
  • the process of determining the second weight by the network device is completed in the first cell and is less affected by the channel fading of the terminal device outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, the signal quality information of each terminal equipment can be determined, and then the appropriate second weight can be determined, and finally the appropriate Target beam to avoid interference between cells. At the same time, since the information of the terminal equipment outside the first cell is not required when calculating the second weight, the calculation amount of the second weight can also be reduced.
  • the network device determining the second weight based on the signal quality information of the one or more terminal devices includes: The network device determines the target terminal device from the one or more terminal devices within the coverage of the primary beam based on the signal quality information of the one or more terminal devices. Then, the network device determines a second weight based on the first weight and the signal quality information of the target terminal device.
  • the terminal devices with poor signal quality located within the coverage of the first-level beam are further excluded, and the network device can determine the second weight based on the target terminal device, which is beneficial to reduce the amount of calculation of the network device. It is also beneficial to improve the efficiency of the second weight value, so that the target beam generated by the subsequently determined sending weight value can provide better signal coverage for the terminal device.
  • the network device determines the first implementation based on the codebook set. Before weighting, the method further includes: the network device determines the codebook set based on statistical channel state information, where the statistical channel state information is used to indicate the channel states of multiple terminal devices within a preset time range, and the multiple terminal devices include At least one terminal device in the first cell and at least one terminal device in the second cell.
  • the network device when a network device needs to establish a codebook set or reset a codebook set for the first time, the network device needs to determine the codebook set based on statistical channel state information. Because the statistical channel state information can reflect the channel state of one or more terminal devices in the first cell and the channel state of one or more terminal devices in the second cell within the preset time range. Therefore, it is beneficial for the network device to determine a more accurate codebook set based on the statistical channel state information, so that the beam coverage corresponding to each codebook can more accurately avoid the terminal equipment in the second cell and cover the first cell Terminal equipment.
  • the network device determines the codebook set based on statistical channel state information, including: the network device obtains the first channel state Information and second channel state information, where the first channel state information is used to indicate the channel state of one or more terminal devices in the first cell, and the second channel state information is used to indicate one or more terminal devices in the second cell Channel status of multiple terminal devices. Then, the network device determines the codebook set according to the first channel state information and the second channel state information.
  • the channel state information is further proposed to determine the statistical channel state information based on the first channel state information and the second channel state information, and then determine the codebook set based on the statistical channel state information. Because the determination of the channel state information is limited by the speed of the channel change. In a fast fading system, it is possible that the channel changes after one character is transmitted. At this time, it is more reasonable to use real-time channel state information to describe the channel state. In a slow fading system, the channel can only change the characters that can be transmitted for a period of time after obtaining the real-time channel state information. At this time, the use of statistical channel state information can improve communication efficiency. However, in this embodiment, combining the aforementioned real-time channel state information and statistical channel state information is beneficial to determining a reasonable codebook set, and also beneficial to improving the efficiency of determining the codebook set.
  • a codebook in the codebook set is used To determine a candidate first-level beam.
  • the network device determining the first weight based on the codebook set includes: the network device determining the first signal quality information and the second signal quality information.
  • the signal quality indicated by the first signal quality information is greater than the first threshold, and the signal quality indicated by the second signal quality information is less than the second threshold, it is determined that the codebook corresponding to the candidate first-level beam is the first weight ,
  • the first threshold is greater than the second threshold.
  • the first signal quality information is the signal quality information of one or more terminal devices in the first cell within the coverage of the candidate first-level beam
  • the second signal quality information is one or more information in the second cell. Signal quality information of multiple terminal devices in the coverage area of the candidate first-level beam.
  • the first threshold is greater than the second threshold
  • the signal quality indicated by the first signal quality information when the signal quality indicated by the first signal quality information is greater than the first threshold, it can indicate the signal quality between the terminal device in the first cell and the network device Better; the signal quality indicated by the second signal quality information is less than the second threshold, which may indicate that the signal quality between the terminal device in the second cell and the network device is poor.
  • the network equipment can determine that the candidate first-level beam can provide higher-quality signals to the terminal equipment in the cell (i.e., the first cell), and such high-quality information will not be provided to adjacent cells (i.e., the first cell).
  • the second cell adjacent to the cell causes signal interference. Therefore, the network device can determine that the codebook corresponding to the candidate first-level beam is the first weight. Therefore, the first weight can generate a first-level beam, and the coverage of the first-level beam does not overlap with the coverage of the first-level beam in the second cell.
  • the embodiments of the present application provide a communication device, which combines the foregoing interference suppression method to avoid overlapping of the coverage of beams of different cells by controlling the coverage of the beams, thereby avoiding interference between terminal equipment in different cells.
  • Signal interference occurs between.
  • the communication device includes: a first determining module, configured to determine a first weight value based on a codebook set, wherein the first weight value is used to generate a first-level beam, and the first-level beam is used to serve the network device
  • One or more terminal devices in the first cell that is, one or more terminal devices in the first cell are located within the coverage area of the first-level beam.
  • the coverage of the primary beam and the coverage of the primary beam in the second cell do not overlap.
  • the first determining module is further configured to determine the second weight based on the first weight and the channel state information of one or more terminal devices within the coverage of the first-level beam.
  • the first determining module is further configured to determine a transmission weight value according to the first weight value and the second weight value, the transmission weight value is used to generate a target beam, and a terminal device within the coverage of the first-level beam is located in the Within the coverage of the target beam.
  • the coverage of the primary beam indicated by the first weight value determined by the first determining module in the network device does not overlap the coverage of any beam in the second cell
  • the network The first determining module in the device further determines the second weight based on the first weight.
  • the second weight is limited by the first weight
  • the sending weight determined by the first weight and the second weight is also limited by the first weight
  • the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the determination of the second weight based on the first weight is performed independently in the first cell, it is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, a suitable target beam can be determined to avoid inter-cell interference. At the same time, since the information of the terminal equipment outside the first cell is not required when calculating the second weight, the calculation amount of the second weight can also be reduced.
  • the first determining module is specifically configured to: based on the first weight and one or more of the coverage of the first-level beam
  • the channel state information of the terminal device determines the signal quality information of the one or more terminal devices, and the signal quality information is used to indicate the signal quality of the terminal device within the coverage of the first-level beam; based on the one or more terminal devices
  • the signal quality information of the device determines the second weight.
  • the first determining module in the network device determines the second weight based on the signal quality information of each terminal device, which is beneficial to enable each target beam determined in the subsequent process to more accurately cover the aforementioned terminal devices. , which will help expand the system capacity.
  • the first determining module in the network device determines the second weight value, the first weight value and the signal quality information of the terminal device within the coverage of the first-level beam may be involved, and the coverage of the first-level beam The terminal equipment within the range is also located in the first cell.
  • the information of the terminal equipment outside the first cell may not be needed. Therefore, it can be understood that the process of determining the second weight is completed in the first cell and is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, the signal quality information of each terminal equipment can be determined, and then the appropriate second weight can be determined, and finally the appropriate Target beam to avoid interference between cells.
  • the first determining module is specifically configured to: obtain information from the terminal device based on the signal quality information of the one or more terminal devices.
  • the target terminal device is determined among one or more terminal devices within the coverage of the first-level beam; the second weight value is determined based on the first weight value and the signal quality information of the target terminal device.
  • the terminal devices with poor signal quality located within the coverage of the first-level beam are further excluded, and the network device can determine the second weight based on the target terminal device, which is beneficial to reduce the amount of calculation of the network device. It is also beneficial to improve the efficiency of the second weight value, so that the target beam generated by the subsequently determined sending weight value can provide better signal coverage for the terminal device.
  • the second determination module is further used for:
  • the codebook set is determined based on statistical channel state information, where the statistical channel state information is used to indicate the channel state of multiple terminal devices within a preset time range, and the multiple terminal devices include at least one terminal device in the first cell and the At least one terminal device in the second cell.
  • the second determining module in the network device when the second determining module in the network device needs to establish a codebook set or reset the codebook set for the first time, the second determining module in the network device needs to determine the codebook set based on statistical channel state information. Because the statistical channel state information can reflect the channel state of one or more terminal devices in the first cell and the channel state of one or more terminal devices in the second cell within the preset time range. Therefore, it is beneficial for the second determining module in the network device to determine a more accurate codebook set based on the statistical channel state information, so that the beam coverage corresponding to each codebook can more accurately avoid the terminal device in the second cell It covers the terminal equipment in the first cell.
  • the second determining module is specifically configured to: obtain the first channel state information and the second channel state information, the The first channel state information is used to indicate the channel state of one or more terminal devices in the first cell, and the second channel state information is used to indicate the channel state of one or more terminal devices in the second cell; according to The first channel state information and the second channel state information determine the codebook set.
  • the channel state information is further proposed to determine the statistical channel state information based on the first channel state information and the second channel state information, and then determine the codebook set based on the statistical channel state information. Because the determination of the channel state information is limited by the speed of the channel change. In a fast fading system, it is possible that the channel changes after one character is transmitted. At this time, it is more reasonable to use real-time channel state information to describe the channel state. In a slow fading system, the channel can only change the characters that can be transmitted for a period of time after obtaining the real-time channel state information. At this time, the use of statistical channel state information can improve communication efficiency. However, in this embodiment, combining the aforementioned real-time channel state information and statistical channel state information is beneficial to determining a reasonable codebook set, and also beneficial to improving the efficiency of determining the codebook set.
  • the first determination module is specifically used for: Determine the first signal quality information and the second signal quality information. And, when the signal quality indicated by the first signal quality information is greater than the first threshold, and the signal quality indicated by the second signal quality information is less than the second threshold, it is determined that the codebook corresponding to the candidate first-level beam is the first Weight, the first threshold is greater than the second threshold.
  • the first signal quality information is the signal quality information of one or more terminal devices in the first cell within the coverage of the candidate first-level beam
  • the second signal quality information is one or more information in the second cell. Signal quality information of multiple terminal devices in the coverage area of the candidate first-level beam.
  • the first threshold is greater than the second threshold
  • the signal quality indicated by the first signal quality information when the signal quality indicated by the first signal quality information is greater than the first threshold, it can indicate the signal quality between the terminal device in the first cell and the network device Better; the signal quality indicated by the second signal quality information is less than the second threshold, which may indicate that the signal quality between the terminal device in the second cell and the network device is poor.
  • the network equipment can determine that the candidate first-level beam can provide higher-quality signals to the terminal equipment in the cell (i.e., the first cell), and such high-quality information will not be provided to adjacent cells (i.e., the first cell).
  • the second cell adjacent to the cell causes signal interference. Therefore, the network device can determine that the codebook corresponding to the candidate first-level beam is the first weight. Therefore, the first weight can generate a first-level beam, and the coverage of the first-level beam does not overlap with the coverage of the first-level beam in the second cell.
  • the embodiments of the present application provide a communication device that combines the foregoing interference suppression method to avoid overlapping of the coverage of beams of different cells by controlling the coverage of the beams, thereby avoiding the interference of terminal equipment in different cells.
  • Signal interference occurs between.
  • the communication device includes: a processing module and a storage module.
  • the storage module is used to store data and programs, for example, data such as a codebook set, a first weight value, and a second weight value.
  • the processing module is configured to determine a first weight value based on a codebook set, where the first weight value is used to generate a first-level beam, and the first-level beam is used to serve one or more of the first cells under the network device
  • a terminal device that is, one or more terminal devices in the first cell are located within the coverage area of the first-level beam.
  • the coverage of the primary beam and the coverage of the primary beam in the second cell do not overlap.
  • the processing module is further configured to determine a second weight based on the first weight and channel state information of one or more terminal devices within the coverage of the first-level beam.
  • the processing module is further configured to determine a transmission weight value according to the first weight value and the second weight value, the transmission weight value is used to generate a target beam, and a terminal device within the coverage of the first-level beam is located in the target beam Coverage.
  • the processing module further determines the second weight based on the first weight. Also, because the second weight is limited by the first weight, the sending weight determined by the first weight and the second weight is also limited by the first weight, so the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the determination of the second weight based on the first weight is performed independently in the first cell, it is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, a suitable target beam can be determined to avoid inter-cell interference.
  • the processing module is specifically configured to: based on the first weight and one or more terminal devices within the coverage of the first-level beam The signal quality information of the one or more terminal devices is determined, and the signal quality information is used to indicate the signal quality of the terminal device within the coverage of the first-level beam; based on the signal quality of the one or more terminal devices The signal quality information determines the second weight.
  • the processing module in the network device determines the second weight based on the signal quality information of each terminal device, which is beneficial to enable each target beam determined in the subsequent process to more accurately cover the aforementioned terminal devices, and then Conducive to the expansion of system capacity.
  • the processing module in the network device determines the second weight value, it only needs to involve the first weight value and the signal quality information of the terminal device within the coverage area of the first-level beam, and the first-level beam is within the coverage area.
  • the terminal equipment is also located in the first cell.
  • the information of the terminal equipment outside the first cell may not be needed. Therefore, it can be understood that the process of determining the second weight is completed in the first cell and is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, the signal quality information of each terminal equipment can be determined, and then the appropriate second weight can be determined, and finally the appropriate Target beam to avoid interference between cells. At the same time, since the information of the terminal equipment outside the first cell is not required when calculating the second weight, the calculation amount of the second weight can also be reduced.
  • the processing module is specifically configured to: obtain information from the first level based on the signal quality information of the one or more terminal devices
  • the target terminal device is determined among one or more terminal devices within the coverage of the beam; the second weight value is determined based on the first weight value and the signal quality information of the target terminal device.
  • the terminal devices with poor signal quality located within the coverage of the first-level beam are further excluded, and the network device can determine the second weight based on the target terminal device, which is beneficial to reduce the amount of calculation of the network device. It is also beneficial to improve the efficiency of the second weight value, so that the target beam generated by the subsequently determined sending weight value can provide better signal coverage for the terminal device.
  • the processing module is also used for: statistics-based
  • the channel state information determines the codebook set, and the statistical channel state information is used to indicate the channel state of multiple terminal devices within a preset time range, and the multiple terminal devices include at least one terminal device in the first cell and the second cell. At least one terminal device in the cell.
  • the processing module in the network device when the processing module in the network device needs to establish a codebook set or reset the codebook set for the first time, the processing module in the network device needs to determine the codebook set based on statistical channel state information. Because the statistical channel state information can reflect the channel state of one or more terminal devices in the first cell and the channel state of one or more terminal devices in the second cell within the preset time range. Therefore, it is beneficial for the processing module in the network device to determine a more accurate codebook set based on the statistical channel state information, so that the beam coverage corresponding to each codebook can more accurately avoid the terminal device in the second cell and cover Terminal equipment in the first cell.
  • the processing module is specifically configured to: obtain the first channel state information and the second channel state information, and the first The channel state information is used to indicate the channel state of one or more terminal devices in the first cell, and the second channel state information is used to indicate the channel state of one or more terminal devices in the second cell; A channel state information and a second channel state information determine the codebook set.
  • the channel state information is further proposed to determine the statistical channel state information based on the first channel state information and the second channel state information, and then determine the codebook set based on the statistical channel state information. Because the determination of the channel state information is limited by the speed of the channel change. In a fast fading system, it is possible that the channel changes after one character is transmitted. At this time, it is more reasonable to use real-time channel state information to describe the channel state. In a slow fading system, the channel can only change the characters that can be transmitted for a period of time after obtaining the real-time channel state information. At this time, the use of statistical channel state information can improve communication efficiency. However, in this embodiment, combining the aforementioned real-time channel state information and statistical channel state information is beneficial to determining a reasonable codebook set, and also beneficial to improving the efficiency of determining the codebook set.
  • the processing module is specifically used to: One signal quality information and second signal quality information. And, when the signal quality indicated by the first signal quality information is greater than the first threshold, and the signal quality indicated by the second signal quality information is less than the second threshold, it is determined that the codebook corresponding to the candidate first-level beam is the first Weight, the first threshold is greater than the second threshold.
  • the first signal quality information is the signal quality information of one or more terminal devices in the first cell within the coverage of the candidate first-level beam
  • the second signal quality information is one or more information in the second cell. Signal quality information of multiple terminal devices in the coverage area of the candidate first-level beam.
  • the first threshold is greater than the second threshold
  • the signal quality indicated by the first signal quality information when the signal quality indicated by the first signal quality information is greater than the first threshold, it can indicate the signal quality between the terminal device in the first cell and the network device Better; the signal quality indicated by the second signal quality information is less than the second threshold, which may indicate that the signal quality between the terminal device in the second cell and the network device is poor.
  • the network equipment can determine that the candidate first-level beam can provide higher-quality signals to the terminal equipment in the cell (i.e., the first cell), and such high-quality information will not be provided to adjacent cells (i.e., the first cell).
  • the second cell adjacent to the cell causes signal interference. Therefore, the network device can determine that the codebook corresponding to the candidate first-level beam is the first weight. Therefore, the first weight can generate a first-level beam, and the coverage of the first-level beam does not overlap with the coverage of the first-level beam in the second cell.
  • an embodiment of the present application provides a communication device, and the communication device may be the network device in the foregoing embodiment, or may be a chip in the network device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor, and the transceiver module may be a transceiver;
  • the network device may also include a storage module, and the storage module may be a memory; the storage module is used to store instructions, the The processing module executes the instructions stored in the storage module, so that the network device executes the first aspect or the method in any one of the implementation manners of the first aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.;
  • the processing module executes the instructions stored in the storage module, so that the network device executes the method in the first aspect or any one of the implementations of the first aspect, and the storage module may be a storage module in the chip (for example, a register, The cache, etc.) may also be a storage module (for example, read-only memory, random access memory, etc.) located outside the chip in the access network device.
  • this application provides a communication device, which may be an integrated circuit chip.
  • the integrated circuit chip includes a processor.
  • the processor is coupled with a memory, and the memory is used to store a program or instruction.
  • the communication device is caused to execute the method in the first aspect or any one of the implementation manners of the first aspect .
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in the foregoing first aspect or any one of the implementation manners of the first aspect .
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, when the instructions are run on a computer, so that the computer executes as described in the foregoing first aspect or any one of the implementation manners of the first aspect.
  • the method of introduction includes
  • the network device since the coverage of the primary beam indicated by the first weight value determined by the network device does not overlap the coverage of any beam in the second cell, and the network device is based on the first The first weight further determines the second weight. Also, because the second weight is limited by the first weight, the sending weight determined by the first weight and the second weight is also limited by the first weight, so the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the codebook set is determined based on statistical channel information, and the statistical channel information is less affected by instant (instantaneous) channel information fluctuations. Therefore, even if the accuracy of the instant (instantaneous) channel state information is not high, a suitable target beam can be determined to avoid inter-cell interference.
  • FIG. 1 is a schematic diagram of an application scenario of the interference suppression method in an embodiment of the application
  • FIG. 2 is a flowchart of the interference suppression method in an embodiment of the application
  • FIG. 3A is a schematic diagram of an embodiment of an interference suppression method in an embodiment of this application.
  • 3B is a schematic diagram of another embodiment of the interference suppression method in the embodiment of the application.
  • 3C is a schematic diagram of another embodiment of the interference suppression method in the embodiment of the application.
  • FIG. 4 is a schematic diagram of another embodiment of an interference suppression method in an embodiment of this application.
  • FIG. 5 is a schematic diagram of another embodiment of an interference suppression method in an embodiment of this application.
  • FIG. 6 is a schematic diagram of an embodiment of a network device in an embodiment of the application.
  • Fig. 7 is a schematic diagram of another embodiment of a network device in an embodiment of the application.
  • the embodiments of the present application provide an interference suppression method and related devices, which are used to suppress signal interference between cells and expand system capacity.
  • the solution proposed in the embodiments of this application is mainly based on the fifth generation mobile communication technology (the 5th generation, 5G) or the new radio technology (NR), and can also be based on the long term evolution (LTE) technology, and can also be based on The subsequent evolution access standard is not specifically limited here.
  • 5G fifth generation mobile communication technology
  • NR new radio technology
  • LTE long term evolution
  • 5G-based communication system only a 5G-based communication system is used as an example for introduction.
  • the interference suppression method in this embodiment can be applied to a large-scale co-frequency dense networking scenario, by controlling the coverage of the beam to avoid overlapping of the coverage of the beams of different cells, thereby avoiding signal generation between terminal devices in different cells interference.
  • FIG. 1 The following takes Fig. 1 as an example to introduce the application scenario of the interference suppression method.
  • This scenario includes network device A, network device B, network device C, and multiple terminal devices.
  • there are three cells under the network device A namely, cell 1, cell 2, and cell 3.
  • terminal equipment a is located in cell 1; terminal equipment b, terminal equipment c, terminal equipment d, and terminal equipment e are located in cell 2; terminal equipment g is located in cell 3.
  • the terminal device f is located in the cell 4 under the network device B, and the terminal device h is located at the junction of the cell 3 under the network device A and the cell 5 under the network device C.
  • the network device when a certain terminal device is located in a certain cell of a certain network device, the network device will provide services for the terminal device. For example, if the terminal device f is located in the cell 4 under the network device B, the network device B provides a service for the terminal device f. For another example, if the terminal device h is located at the junction of the cell 3 under the network device A and the cell 5 under the network device C, the network device A can provide services for the terminal device h, and the network device C can also be the terminal device h Provide services.
  • the beam of a certain network device covers both terminal devices in a cell under the network device and terminal devices in a cell under other network devices, it may cause inter-cell interference.
  • the beam 10 of network device A covers both the terminal device e in cell 2 under network device A and the terminal device f in cell 4 under network device B, which may cause a gap between cell 2 and cell 4.
  • the interference can also be understood as the interference caused by cell 2 to cell 4.
  • the beam 11 of network device A covers both the terminal device g in cell 3 under network device A and the terminal device h in the junction of cell 3 and cell 5, which may cause a difference between cell 3 and cell 5.
  • Inter-interference can also be understood as causing cell 3 to cell 5 interference.
  • the beam of a certain network device can cover terminal devices in different cells under the network device, different cells of the same network device may also cause interference.
  • the beam 12 of the network device A covers both the terminal device a in the cell 1 and the terminal device b in the cell 2, interference may also exist between the cell 1 and the cell 2 under the network device A.
  • the interference suppression method proposed in the embodiment of the present application can avoid the aforementioned inter-cell interference situation.
  • the network device can control the coverage of the beam of the network device by properly configuring the weights, so that the coverage of the aforementioned beam can accurately cover the terminal device to be served, and can also avoid interference to the terminal device of other cells.
  • each network device may have more than three cells.
  • the embodiments of the present application do not limit the number of network devices and the number of cells in each network device. It should also be understood that in practical applications, the number of terminal devices in each cell will be greater, and the distribution of terminal devices in each cell will be denser. The embodiment of the present application does not limit the specific number of terminal devices in each cell, nor does it limit the distribution density of each terminal device in each cell.
  • the network equipment in the embodiments of the present application may be a radio access network (radio access network).
  • network, RAN radio access network
  • the RAN device may be a base station or an access point, or a device that communicates with terminal devices (for example, the aforementioned terminal device a, terminal device b, etc.) through one or more cells on the air interface in the access network.
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment includes an evolved base station (evolutional node B, NodeB or eNB or e-NodeB) in a long term evolution LTE system or an evolved LTE system (long term evolution advanced, LTE-A), and a downlink in a new wireless system
  • the next generation node B (gNB) may also include a centralized unit (CU) and a distributed unit (DU) in a cloud access network (Cloud RAN) system.
  • CU centralized unit
  • DU distributed unit
  • Cloud RAN cloud access network
  • the network equipment When the network equipment is a centralized unit CU, the network equipment can be located in a certain base station, making the base station a base station with a strong management function; the network equipment can also be independent of each base station and located at the same level as each base station. In the management equipment or computer room close to each other, there is no limitation here.
  • the network device may be any one of the above-mentioned devices or a chip in the device, which is not specifically limited here. Whether as a device or as a chip, the network device can be manufactured, sold, or used as an independent product. In this embodiment and subsequent embodiments, only a network device is taken as an example for introduction.
  • the terminal devices in the embodiments of the present application include devices that provide users with voice and/or data connectivity.
  • they may include handheld devices with wireless connection functions.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • UE user equipment
  • wireless terminal equipment mobile terminal equipment
  • mobile terminal equipment subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • UE user equipment
  • wireless terminal equipment mobile terminal equipment
  • mobile terminal equipment subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities.
  • information sensing equipment such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device in the embodiment of the present application may be any one of the above-mentioned devices or a chip in the device, and the details are not limited here. Whether as a device or as a chip, the terminal device can be manufactured, sold or used as an independent product. In this embodiment and subsequent embodiments, only the terminal device is taken as an example for introduction.
  • the steps performed by the network device in the interference suppression method are Including the following:
  • the network device determines a first weight based on a codebook set.
  • the codebook set (may also be called cooperative codebook set) includes multiple codebooks (may also be called cooperative codebooks), and each of the foregoing multiple codebooks may indicate a candidate first-level beam Coverage.
  • each codebook set there is a codebook set in a network device, and the coverage areas of the candidate first-level beams indicated by each codebook in the codebook set are different. However, the coverage of the candidate first-level beams indicated by each codebook is different. The ranges may also overlap, which is not limited here.
  • the aforementioned codebook can be represented by an angle in the horizontal direction and an angle in the vertical direction.
  • the foregoing codebook may indicate the angle range of the candidate first-level beam in the horizontal direction by the lower limit of the angle in the horizontal direction and the upper limit of the angle in the horizontal direction, and the lower limit of the angle in the vertical direction and the upper limit of the angle in the vertical direction may indicate the candidate first-level beam
  • the angular range in the vertical direction For ease of understanding, take the following table 1 as an example to introduce:
  • Codebook 1 Codebook 2
  • Codebook 3 Codebook 4
  • Codebook 5 Codebook 6 ⁇ min -60° -60° 30° 30° -30° -30° ⁇ max -30° -30° 60° 60° 30° 30° ⁇ min -45° -60° -45° -60° -45° -60° ⁇ max -15° -45° -15° -45° -15° -45° -15° -45°
  • ⁇ min represents the lower limit of the angle in the horizontal direction
  • ⁇ max represents the upper limit of the angle in the horizontal direction. Therefore, the angular range in the horizontal direction can be determined as [ ⁇ min , ⁇ max ]; ⁇ min represents the lower limit of the vertical angle, and ⁇ max represents The upper limit of the angle in the vertical direction, therefore, the range of the angle in the vertical direction can be determined as [ ⁇ min , ⁇ max ].
  • "[" is a left closed interval symbol, indicating that the angle range includes the left end point;
  • "]" is a right closed interval symbol, indicating that the angle range includes the right end point.
  • the network device determines the first weight based on the codebook set. It can also be understood that the network device selects a codebook from the foregoing codebook set as the first weight; it can also be understood that the network The device selects a codebook from the foregoing codebook set, and converts the codebook into the foregoing first weight through a formula, which is not specifically limited here. However, it should be understood that one codebook in the codebook set in this embodiment corresponds to one weight. It can also be understood that different codebooks in the codebook set correspond to different weights.
  • the candidate beams have a one-to-one correspondence.
  • 5 different candidate first-level beams correspond to 5 different beam coverage areas one-to-one.
  • the aforementioned first weight is used to generate a first-level beam.
  • the first-level beam may cover one or more terminal devices, and it may also be understood that one or more terminal devices are located in the coverage area of the first-level beam.
  • the primary beam may cover one or more terminal devices in a certain cell, and it can also be understood that the aforementioned one or more terminal devices are located in the coverage of the primary beam in a certain cell. Since the network device is based on the first weight determined based on the foregoing codebook set, the first-level beam may be one of the foregoing multiple candidate first-level beams.
  • the coverage area of the first-level beam is located in a certain cell under the network device.
  • the coverage of the first-level beam is located in the first cell under the network device, then one or more terminal devices in the first cell are located in the first cell.
  • the coverage of the first-class beam there may also be some other terminal devices or a few other terminal devices in the first cell that are not located in the coverage area of the first-level beam, which is not specifically limited here.
  • Figure 3A as an example for introduction.
  • the cell 2 can be called the aforementioned first cell.
  • multiple terminal devices are located in the coverage area of the beam 21, for example, the terminal device c and the terminal device e are located in the beam 21. At this time, the terminal device d in the cell 2 is not located in the coverage area of the beam 21 either.
  • the second cell may be another cell in the network equipment other than the aforementioned first cell.
  • the second cell may be under network equipment A.
  • the cell 1; the second cell can also be a cell in an adjacent network device (ie, a network device adjacent to the aforementioned network device), for example, network device B is adjacent to network device A, when network device A is a cell
  • the second cell may be cell 4 under network device B, which is not specifically limited here.
  • the coverage of the primary beam in the first cell and the coverage of the primary beam in the second cell do not overlap.
  • the coverage of the primary beam in the first cell and the coverage of the primary beam in the second cell do not overlap at all, that is, the primary beam in the first cell There is no coverage of the primary beam in the second cell, and the coverage of the primary beam in the second cell does not have the coverage of the primary beam in the first cell.
  • the coverage area of the beam 21 in the cell 2 and the coverage area of the beam 22 in the cell 4 do not overlap at all.
  • the coverage of the primary beam in the first cell and the coverage of the primary beam in the second cell have an overlap that is less than a certain threshold, but the overlap is less than The aforementioned threshold can be ignored.
  • Fig. 3A as an example for introduction, suppose the first cell is cell 2 under network device A, the primary beam in the first cell is beam 31, and suppose the second cell is cell 1 under network device A, The primary beam in the second cell is beam 32. At this time, the coverage of the beam 31 in the cell 2 and the coverage of the beam 32 in the cell 1 have an overlap that is less than a certain threshold.
  • the aforementioned threshold value can be adjusted by the network equipment according to actual needs, and the larger the aforementioned threshold value, the lower the anti-interference demand between cells, and the smaller the aforementioned threshold value, the higher the anti-interference demand between cells.
  • the embodiment of the present application does not limit the value of the threshold.
  • the foregoing two non-overlapping implementation manners are both applicable to the interference suppression method in the embodiment of the present application.
  • only the coverage of the primary beam in the first cell and the coverage of the primary beam in the second cell are not overlapped at all for introduction.
  • the first-level beams in the first cell should not overlap with the first-level beams in multiple second cells. It can also be understood that there is no second cell.
  • the first-level beam of is overlapped with the first-level beam in the aforementioned first cell.
  • Figure 3B shows part of the primary beams of the second cell. In practical applications, the number of primary beams of the second cell may be more, and the distribution of the primary beams of the second cell may be denser. , The specifics are not limited here.
  • the network device will perform the next steps to determine the transmission beam.
  • the network device determines a second weight based on the first weight and the channel state information of one or more terminal devices within the coverage of the first-level beam.
  • the first-level beam is a first-level beam located in the first cell generated by the first weight.
  • One or more terminal devices within the coverage of the first-level beam can also be understood as part of the terminal devices or all terminal devices within the coverage of the first-level beam.
  • the aforementioned channel state information of one or more terminal devices can be understood as the channel state information of different terminal devices are not completely the same.
  • the network device will refer to the channel state information of each of the aforementioned one or more terminal devices when determining the second weight value.
  • the aforementioned channel state information (CSI) is used to indicate the channel attributes of the communication link between the network device and the terminal device, and can also be understood as indicating the channel between the network device and the terminal device state.
  • the channel state information may describe the attenuation factor of the signal on each transmission path, for example, information such as signal scattering (scattering), environmental fading (multipath fading or shadowing fading), and distance attenuation (power decay of distance).
  • the second weight determined by the network device is for a certain terminal device among the aforementioned one or more terminal devices. It can also be understood that the network device determines at least one second weight based on the foregoing first weight and the channel state information of each of the one or more terminal devices within the coverage of the first-level beam. Wherein, each of the aforementioned at least one second weight corresponds to a terminal device, and this terminal device is a certain terminal device among the aforementioned one or more terminal devices.
  • Figure 3C as an example for introduction. Suppose that the first-level beam generated by the first weight value determined by network device A is beam 21.
  • one or more terminal devices within the coverage of the foregoing first-level beam can be understood as terminal devices c and Terminal equipment e.
  • the network device A determines two second weights based on the first weight, the channel state information of the aforementioned terminal device c, and the channel state information of the aforementioned terminal device e, and these two second weights include the same as those of the aforementioned terminal device.
  • the network device A may also determine a second weight based on the first weight, the channel state information of the aforementioned terminal device c, and the channel state information of the aforementioned terminal device e, this second weight It may be the second weight corresponding to the aforementioned terminal device c, or it may be the second weight corresponding to the aforementioned terminal device e.
  • the network device determines the second weight value
  • the first weight value and the channel state information of the terminal device within the coverage area of the first-level beam may be involved, and the terminal device within the coverage area of the first-level beam
  • the equipment is also located in the first cell.
  • the information of the terminal equipment outside the first cell may not be needed. Therefore, it can be understood that the process of determining the second weight by the network device (that is, step 202) is completed in the first cell and is less affected by the channel fading of the terminal device outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, the appropriate second weight can be determined, and then the appropriate target beam can be determined to avoid inter-cell interference. At the same time, since the information of the terminal equipment outside the first cell is not required when calculating the second weight, the calculation amount of the second weight can also be reduced.
  • the network device after the network device determines the second weight, the network device will perform step 203.
  • the network device determines a sending weight according to the first weight and the second weight.
  • the transmission weight is used to generate a target beam
  • the target beam is a transmission beam
  • the transmission beam is a beam actually emitted by the network device.
  • the network device provides services to terminal devices within the coverage of the target beam through the target beam. Since the foregoing second weight value is for a certain terminal device, the target beam generated based on the transmission weight value determined based on the first weight value and the second weight value is also for this terminal device. In other words, the target beam is used to serve a certain terminal device.
  • the aforementioned certain terminal device is a terminal device within the coverage of the foregoing first-level beam, which can also be understood as: A terminal device within the coverage of the foregoing first-level beam is located within the coverage of the target beam.
  • the network device A determines the second weight 1 and the second weight 2 based on the aforementioned first weight generation beam 21, the channel state information of the terminal device c in the beam 21, and the channel state information of the terminal device e, where, The second weight 1 corresponds to the terminal device c, and the second weight 2 corresponds to the terminal device e. Then, the network device A can determine the transmission weight 1 based on the aforementioned first weight and the second weight 1.
  • the target beam generated by the transmission weight 1 is the beam 211, and the terminal device c is located in the beam 211; the network The device A can determine the transmission weight 2 based on the foregoing first weight and the second weight 2.
  • the target beam generated by the transmission weight 2 is the beam 212, and the terminal device e is located in the beam 212.
  • the network device since the coverage of the primary beam indicated by the first weight value determined by the network device does not overlap the coverage of any beam in the second cell, and the network device is based on the first weight.
  • the value further determines the second weight. Also, because the second weight is limited by the first weight, the sending weight determined by the first weight and the second weight is also limited by the first weight, so the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the determination of the second weight based on the first weight is performed independently in the first cell, it is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, a suitable target beam can be determined to avoid inter-cell interference.
  • the steps performed by the network device in the interference suppression method include the following:
  • the network device determines a codebook set based on statistical channel state information.
  • the network device needs to determine the codebook set first, so as to subsequently determine the first weight, the second weight, and the transmission weight based on the codebook set.
  • the network device may determine statistical channel state information (statistical channel state information, statistical CSI) through instantaneous channel state information (instantaneous channel state information, instantaneous CSI) of multiple terminal devices and the network device, and then, based on the statistics The channel state information determines the codebook set.
  • the statistical channel state information is used to indicate the channel state of multiple terminal devices within a preset time range.
  • the instant channel state information is used to indicate the channel state between the network device and the terminal device at the current moment or a certain moment in history, or used to indicate the communication link between the network device and the terminal device at the current moment or a certain moment in history Channel properties.
  • the instant channel state information can be regarded as the instantaneous channel characteristic information from the terminal device to the network device, which can be used to generate the impulse response of the digital filter, so that the sending end (such as the aforementioned network device) can adjust the transmission signal in time. In turn, a low error rate and high-quality received signal can be obtained.
  • the statistical channel state information refers to the statistical characteristics of the channel between the network device and the terminal device over a period of time. The statistical characteristics can include information such as the distribution of environmental fading, average channel gain, time delay and angle spread components, and spatial correlation.
  • the network device may obtain first channel state information and second channel state information, where the first channel state information is used to indicate the instant channel state of one or more terminal devices in the first cell, and the second channel The status information is used to indicate the real-time channel status of one or more terminal devices in the second cell. Then, the network device determines the codebook set according to the first channel state information and the second channel state information.
  • the first channel state information of different terminal devices in the first cell may be different, and the second channel state information of different terminal devices in the second cell may also be different.
  • the network device determines the codebook set according to the foregoing first channel state information and the foregoing second channel state information
  • the network device can refer to the first channel state information of each terminal device in the first cell and the information in the second cell.
  • the second channel state information of each terminal device may be another cell in the network device other than the aforementioned first cell; the second cell may also be a cell in an adjacent network device.
  • the relevant description in the foregoing step 201 please refer to the relevant description in the foregoing step 201. The details are not repeated here.
  • the network device may adopt an averaging method or a filtering method, specifically here Not limited.
  • the determination of the channel state information is limited by the speed of the channel change.
  • a fast fading system it is possible that the channel changes after one character is transmitted.
  • the channel can only change the characters that can be transmitted for a period of time after obtaining the real-time channel state information.
  • the use of statistical channel state information can improve communication efficiency.
  • combining the aforementioned real-time channel state information and statistical channel state information is beneficial to determining a reasonable codebook set, and also beneficial to improving the efficiency of determining the codebook set.
  • step 401 is an optional step.
  • the network device When a network device needs to establish a codebook set or reset a codebook set for the first time, the network device will perform step 401.
  • the network device may directly use the historically determined codebook set without performing step 401. In this case, the network device may directly perform step 402.
  • the network device determines the first weight based on the codebook set.
  • the first weight is used to generate a first-level beam
  • the first-level beam may cover one or more terminal devices. It can also be understood that one or more terminal devices are located in the coverage area of the first-level beam.
  • the primary beam may cover one or more terminal devices in a certain cell, and it can also be understood that the aforementioned one or more terminal devices are located in the coverage of the primary beam in a certain cell.
  • the coverage of the primary beam and the coverage of the primary beam in the second cell do not overlap. Specifically, reference may be made to the related introduction in the foregoing step 201, which will not be repeated here.
  • the network device may determine the aforementioned first weight based on the codebook set through the following steps:
  • the network device determines first signal quality information and second signal quality information.
  • the signal quality information is used to indicate the signal quality of the terminal device within the coverage area of the first-level beam.
  • the signal quality information can be reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), signal to interference plus noise ratio, SINR) or other information that can reflect the signal quality of the terminal device in the coverage of the first-level beam, which is specifically not limited here.
  • the first signal quality information is the signal quality information of one or more terminal devices in the first cell within the coverage of the candidate primary beam
  • the second signal quality information is the signal quality information in the second cell Signal quality information of one or more terminal devices in the coverage of the candidate first-level beam. It should be understood that the first signal quality information of different terminal devices in the first cell may be different, and the second signal quality information of different terminal devices in the second cell may also be different.
  • the foregoing first signal quality information is determined based on the codebook corresponding to the candidate first-level beam and the first channel state information
  • the foregoing second signal quality information is determined based on the codebook corresponding to the candidate first-level beam and the The second channel state information is determined.
  • the explanation of the first channel state information and the second channel state information can refer to the foregoing step 401, which will not be repeated here.
  • the network device judges whether the aforementioned first signal quality information is greater than a first threshold, and judges whether the aforementioned second signal quality information is less than a second threshold.
  • the first threshold is greater than the second threshold.
  • the network device determines that the codebook corresponding to the candidate first-level beam is The first weight.
  • the first threshold is greater than the second threshold
  • the signal quality indicated by the first signal quality information when the signal quality indicated by the first signal quality information is greater than the first threshold, it can indicate the signal quality between the terminal device in the first cell and the network device Better; the signal quality indicated by the second signal quality information is less than the second threshold, which may indicate that the signal quality between the terminal device in the second cell and the network device is poor.
  • the network equipment can determine that the candidate first-level beam can provide higher-quality signals to the terminal equipment in the cell (i.e., the first cell), and such high-quality information will not be provided to adjacent cells (i.e., the first cell).
  • the second cell adjacent to the cell causes signal interference. Therefore, the network device can determine that the codebook corresponding to the candidate first-level beam is the first weight. Therefore, the first weight can generate a first-level beam, and the coverage of the first-level beam does not overlap with the coverage of the first-level beam in the second cell.
  • the network device determines the signal quality information of the one or more terminal devices based on the first weight and the channel state information of the one or more terminal devices within the coverage of the first-level beam.
  • the signal quality information is used to indicate the signal quality of the terminal equipment within the coverage of the first-level beam in the coverage of the first-level beam.
  • the signal quality information in step 403 is different from the first signal quality information and the second signal quality information in step 402 above. Since the aforementioned first signal quality information and second signal quality information are not determined based on the first weight, the network device needs to determine the signal of the terminal device within the coverage of the first-level beam at the current moment based on the first weight. Quality information.
  • the network device may project the channel state information onto the first-level beam space, and estimate the signal quality information of the terminal device within the coverage of the first-level beam.
  • the network device determines the second weight based on the signal quality information of the one or more terminal devices.
  • the network device may determine the signal quality information of the one or more terminal devices based on the signal quality information of the one or more terminal devices.
  • the second weight may be determined.
  • the second weight determined by the network device is for a certain terminal device among the aforementioned one or more terminal devices. It can also be understood that the network device determines at least one second weight based on the foregoing first weight and the channel state information of each of the one or more terminal devices within the coverage of the first-level beam. Wherein, each of the aforementioned at least one second weight corresponds to a terminal device, and this terminal device is a certain terminal device among the aforementioned one or more terminal devices. Specifically, reference may be made to the related description in the embodiment corresponding to FIG. 3C in step 202, which is not repeated here.
  • each element in the matrix H represents the channel coefficient, that is, the antenna of the m-th terminal device to the n-th network The channel coefficient between the antennas of the device.
  • m is an integer greater than or equal to 1
  • n is an integer greater than or equal to 1.
  • a first set of weights may be represented by a matrix W n rows and p columns 1. Among them, p is the number of the first weight, and p is an integer greater than or equal to 1 and less than or equal to n.
  • the network device may employ a zero-forcing algorithm based on the equivalent channel H e, minimum mean square error (min mean square error, MMSE) algorithm to determine the second weight W ei, wherein, the i is greater than or equal to 1 and less than or equal Integer of m.
  • the network device may employ one or more of the foregoing second embodiment determines the weights W ei based on the equivalent channel H e, specific embodiments of the present application is not limited to the embodiments.
  • the network device may first determine the target terminal device from the one or more terminal devices within the coverage of the first-level beam based on the signal quality information of the one or more terminal devices, and then based on the first The weight and the signal quality information of the target terminal device determine the second weight.
  • the number of target terminal devices is less than or equal to the number of terminal devices in the coverage of the foregoing first-level beam.
  • the signal quality information of the target terminal device is greater than a third threshold.
  • the network device may determine that the signal quality information is less than the fourth threshold except for the foregoing signal quality information.
  • the terminal equipment other than the terminal equipment is the target terminal equipment.
  • the first-level beam generated by the first weight value determined by network device A is beam 21'.
  • one or more terminal devices within the coverage of the foregoing first-level beam can be understood as terminal devices in beam 21' c.
  • the network device A determines the signal quality information of the terminal device c (that is, the signal quality information of the terminal device c in the beam 21') based on the first weight and the channel state information of the aforementioned terminal device c, and the network device A is based on The first weight and the channel state information of the aforementioned terminal device d determine the signal quality information of the terminal device d (that is, the signal quality information of the terminal device d in the beam 21'), and the network device A is based on the first weight and the aforementioned The channel state information of the terminal device e determines the signal quality information of the terminal device e (that is, the signal quality information of the terminal device e in the beam 21').
  • the network device A may determine the target terminal device based on the signal quality information of the terminal device c, the signal quality information of the terminal device d, and the signal quality information of the terminal device e.
  • the network device A can determine that the terminal device c and the terminal device e are the target terminals. equipment.
  • the network device A can determine that the terminal device c and the terminal device e are target terminal devices. Then, the network device A respectively determines the second weight value corresponding to the aforementioned terminal device c and the second weight value corresponding to the aforementioned terminal device e.
  • the network device may also first determine the target terminal device from one or more terminal devices within the coverage of the first-level beam based on the signal quality information and priority information of the one or more terminal devices, and then, The second weight is determined based on the first weight and the signal quality information of the target terminal device.
  • the number of target terminal devices is less than or equal to the number of terminal devices in the coverage of the foregoing first-level beam.
  • the priority information means that the network device determines the priority of sending beams for the terminal devices. It can also be understood that when determining the sending beam, the network device needs to meet the coverage requirements of some terminal devices first, and then meet the coverage requirements of other terminal devices.
  • the signal quality information of the target terminal device is greater than a third threshold.
  • the network device may determine that the signal quality information is less than the fourth threshold except for the foregoing signal quality information.
  • the terminal equipment other than the terminal equipment is the target terminal equipment.
  • terminal devices with poor signal quality or low priority within the coverage of the first-level beam are further excluded, and the network device can determine the second weight based on the target terminal device, which is beneficial for comparison. Less calculation of the network device is also conducive to improving the efficiency of the second weight value, so that the target beam generated by the subsequently determined sending weight value can provide better signal coverage for the terminal device.
  • the network device determines a sending weight according to the first weight and the second weight.
  • the transmission weight is used to generate a target beam, and a terminal device in the coverage of the first-level beam is located in the coverage of the target beam.
  • the transmission weight is used to generate a target beam
  • the network device provides a service to terminal devices within the coverage of the target beam through the target beam. Since the foregoing second weight value is for the target terminal device, the target beam generated based on the transmission weight value determined based on the first weight value and the second weight value is also for this target terminal device. In other words, the target beam is used to serve the target terminal device. In addition, the target terminal device is located within the coverage of the foregoing first-level beam. Specifically, reference may be made to the related description in the foregoing step 203, and details are not repeated here.
  • the network device can use the following formula to determine the foregoing sending weight:
  • W 1 indicates that the element is a matrix of the first weight value
  • W ei indicates that the element is a matrix of the second weight value
  • W i indicates that the element is a matrix of the transmission weight value
  • the network device A generates the beam 21 based on the aforementioned first weight, and determines that the terminal devices in the beam 21' are the terminal device c and the terminal device e. Then, the network device A determines a second weight 3 and a second weight 4, where the second weight 3 corresponds to the terminal device c, and the second weight 4 corresponds to the terminal device e. Then, the network device A can determine the transmission weight 3 based on the aforementioned first weight and the second weight 3. The target beam generated by the transmission weight 3 is the beam 21'1, and the terminal device c is located in the beam 21'1. In; the network device A can determine the sending weight 4 based on the aforementioned first weight and the second weight 4, the target beam generated by the sending weight 4 is the beam 21'2, and the terminal device e is located in the beam 21'2 middle.
  • the network device since the coverage of the primary beam indicated by the first weight value determined by the network device does not overlap the coverage of any beam in the second cell, and the network device is based on the first weight.
  • the value further determines the second weight. Also, because the second weight is limited by the first weight, the sending weight determined by the first weight and the second weight is also limited by the first weight, so the The target beam determined by the transmission weight is also limited to the aforementioned first-level beam. Therefore, in the case where the coverage of the aforementioned primary beam does not overlap with the coverage of any beam in the second cell, the target beam can avoid overlapping with the coverage of the primary beam in the second cell, that is, Inter-cell interference can be avoided.
  • the determination of the second weight based on the first weight is performed independently in the first cell, it is less affected by the channel fading of the terminal equipment outside the first cell. Therefore, even when the accuracy of the channel state information of the terminal equipment outside the first cell is not high, a suitable target beam can be determined to avoid inter-cell interference.
  • interference suppression method proposed in the embodiment of the present application has been introduced above, and the specific structure of the network device involved in the implementation of the interference suppression method will be introduced below.
  • this embodiment provides a schematic structural diagram of a communication device 60.
  • the network equipment in the method embodiments corresponding to FIG. 2 and FIG. 4 may be based on the structure of the communication device 60 shown in FIG. 6 in this embodiment.
  • the network device A, the network device B, or the network device C in the examples corresponding to FIG. 1, FIG. 3A, FIG. 3B, FIG. 3C, and FIG. 5 may also be based on the structure of the communication device 60 shown in FIG. 6 in this embodiment. .
  • the communication device 60 includes at least one processor 601, at least one memory 602, at least one transceiver 603, at least one network interface 605, and one or more antennas 604.
  • the processor 601, the memory 602, the transceiver 603, and the network interface 605 are connected through a connecting device, and the antenna 604 is connected to the transceiver 603.
  • the aforementioned connection device may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor 601 can be used to process communication protocols and communication data, control the entire network equipment, execute software programs, and process data of the software programs, for example, to support the communication device 60 to execute the description in the foregoing embodiments action.
  • the communication device 60 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire communication device 60, execute software programs, and process software. Program data.
  • the processor 601 in FIG. 6 can integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the communication device 60 may include multiple baseband processors to adapt to different network standards, the communication device 60 may include multiple central processors to enhance its processing capabilities, and the various components of the communication device 60 may use various Bus connection.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the processor 601 is configured to determine a first weight based on a codebook set, and determine a second weight based on the first weight and channel state information of one or more terminal devices within the coverage of the first-level beam , And determine the sending weight according to the first weight and the second weight.
  • the first weight is used to generate a first-level beam
  • one or more terminal devices in the first cell are located within the coverage of the first-level beam
  • the coverage of the first-level beam is the same as that of the first-level beam in the second cell.
  • the coverage of the beams does not overlap.
  • the transmission weight is used to generate a target beam, and a terminal device within the coverage of the first-level beam is located in the coverage of the target beam.
  • the processor 601 is further configured to determine the signal quality information of the one or more terminal devices based on the first weight and the channel state information of the one or more terminal devices within the coverage of the first-level beam
  • the signal quality information is used to indicate the signal quality of the terminal device within the coverage of the first-level beam, and then the second weight is determined based on the signal quality information of the one or more terminal devices.
  • the processor 601 is further configured to determine a target terminal device from one or more terminal devices within the coverage of the first-level beam based on the signal quality information of the one or more terminal devices; A weight and the signal quality information of the target terminal device determine the second weight.
  • the processor 601 is further configured to determine the codebook set based on statistical channel state information, where the statistical channel state information is used to indicate the channel state of multiple terminal devices within a preset time range, and the multiple terminal devices include the At least one terminal device in the first cell and at least one terminal device in the second cell.
  • the processor 601 is further configured to obtain first channel state information and second channel state information.
  • the first channel state information is used to indicate the channel state of one or more terminal devices in the first cell.
  • the second channel state information is used to indicate the channel state of one or more terminal devices in the second cell; then, the codebook set is determined according to the first channel state information and the second channel state information.
  • the processor 601 is further configured to determine first signal quality information and second signal quality information, where the first signal quality information is the output of one or more terminal devices in the first cell in the candidate first-level beam The signal quality information in the coverage area, and the second signal quality information is the signal quality information of one or more terminal devices in the second cell within the coverage area of the candidate first-level beam; then, when the first signal quality information is When the indicated signal quality is greater than the first threshold, and the signal quality indicated by the second signal quality information is less than the second threshold, it is determined that the codebook corresponding to the candidate first-level beam is the first weight, and the first threshold is greater than the The second threshold.
  • the memory 602 is mainly used to store software programs and data.
  • the memory 602 may exist independently and is connected to the processor 601.
  • the memory 602 may be integrated with the processor 601, for example, integrated in one or more chips.
  • the memory 602 can store data and program codes for executing the technical solutions of the embodiments of the present application.
  • the memory 602 can store the foregoing codebook set, the foregoing first weight value, and the foregoing second weight value of each terminal device.
  • the foregoing program codes can be controlled and executed by the processor 601, and various types of computer program codes that are executed can also be regarded as drivers of the processor 601. It should be understood that Fig. 6 in this embodiment only shows one memory and one processor.
  • the communication device 60 may have multiple processors or multiple memories, which are not specifically limited here.
  • the memory 602 may also be referred to as a storage medium or a storage device.
  • the memory 602 may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 603 can be used to support the communication device 60 and other network equipment (for example, when the network equipment is the aforementioned network equipment A in FIG. 3A, the other network equipment may be the aforementioned network equipment in FIG. 3A
  • the transceiver 603 may be connected to the antenna 604.
  • the transceiver 603 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 604 can receive radio frequency signals
  • the receiver Rx of the transceiver 603 is used to receive the aforementioned radio frequency signals from the antenna 604, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and transfer the digital signals.
  • the baseband signal or digital intermediate frequency signal is provided to the processor 601, so that the processor 601 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 603 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 601, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 604 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or multiple down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the sequence of the aforementioned down-mixing processing and analog-to-digital conversion processing is The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on modulated digital baseband signals or digital intermediate frequency signals to obtain radio frequency signals.
  • the order of precedence is adjustable.
  • the aforementioned digital baseband signal and digital intermediate frequency signal can be collectively referred to as a digital signal.
  • the aforementioned transceiver 603 may also be referred to as a transceiver unit, transceiver, or transceiver device.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit.
  • the transceiver unit includes a receiving unit and a transmitting unit. It can be called a receiver, a receiver, an input port, or a receiving circuit
  • the sending unit can be called a transmitter, a transmitter, an output port, or a transmitting circuit, etc.
  • the aforementioned network interface 605 is used to connect the communication device 60 with other communication devices through a communication link.
  • the network interface 605 may include a network interface between the communication device 60 and a core network element, such as an S1 interface; the network interface 605 may also include the communication device 60 and other network equipment (such as other network equipment or core Network interface between network elements), such as X2 or Xn interface.
  • this embodiment provides a schematic structural diagram of a communication device 60.
  • the network device, network device A, network device B, or network device C in the method embodiments corresponding to FIG. 2 and FIG. 4 may be based on the structure of the communication device 70 shown in FIG. 7 in this embodiment.
  • the communication device 70 includes a processing module 701, a communication module 702, and a storage module 703.
  • the communication device 70 may be the chip of the network device, the network device A, the network device B, or the network device C in the method embodiment corresponding to FIG. 2 and FIG. 4.
  • the aforementioned processing module 701 may be a baseband processor or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire communication device 70, execute software programs, and process data of the software programs.
  • the aforementioned processing module 701 can integrate the functions of a baseband processor and a central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the aforementioned communication module 702 may be an input or output interface, pin or circuit, or the like.
  • the aforementioned storage module 703 may be a register, a cache, a random access memory (RAM), etc.
  • the storage module 703 may be integrated with the processing module 701; the storage module 703 may be a read-only memory (read only memory, ROM) or other types of static storage devices that can store static information and instructions.
  • the storage module 703 may be independent of the processing module 701.
  • the processing module 701 may include instructions, which may run on a processor, so that the communication device 70 executes the method executed by the network device in the foregoing embodiment.
  • an instruction is stored in the storage module 703, and the instruction can be executed on the processing module 701, so that the communication device 70 executes the method executed by the receiving end in the foregoing embodiment.
  • the aforementioned storage module 703 may also store data.
  • the processing module 701 may also store instructions and/or data.
  • the processing module 701 is configured to determine a first weight value based on a codebook set, and the first weight value is used to generate a first-level beam, and one or more terminal devices in the first cell are located in the coverage area of the first-level beam Within, the coverage area of the first-level beam and the coverage area of the first-level beam in the second cell do not overlap.
  • the processing module 701 is further configured to determine a second weight based on the first weight and channel state information of one or more terminal devices within the coverage of the first-level beam.
  • the processing module 701 is further configured to determine a transmission weight value according to the first weight value and the second weight value. The transmission weight value is used to generate a target beam, and a terminal device within the coverage of the first-level beam is located in the target beam. Within the coverage of the beam.
  • the processing module 701 is specifically configured to determine the one or more terminal devices based on the first weight and the channel state information of one or more terminal devices within the coverage of the first-level beam. Signal quality information of a terminal device, and the second weight is determined based on the signal quality information of the one or more terminal devices, where the signal quality information is used to indicate that the terminal device is within the coverage of the first-level beam Signal quality.
  • the processing module 701 is specifically configured to determine a target from one or more terminal devices within the coverage of the primary beam based on the signal quality information of the one or more terminal devices. Terminal device, and determine the second weight value based on the first weight value and the signal quality information of the target terminal device.
  • the processing module 701 is specifically configured to determine the codebook set based on statistical channel state information, and the statistical channel state information is used to indicate the channel state of multiple terminal devices within a preset time range ,
  • the multiple terminal devices include at least one terminal device in the first cell and at least one terminal device in the second cell.
  • the processing module 701 is further configured to obtain the first channel state information and the second channel state information, and determine the code according to the first channel state information and the second channel state information In this set, the first channel state information is used to indicate the channel state of one or more terminal devices in the first cell, and the second channel state information is used to indicate one or more terminals in the second cell The channel status of the device.
  • the processing module 701 is specifically configured to determine first signal quality information and second signal quality information, where the first signal quality information is one or more terminals in the first cell The signal quality information of the device within the coverage of the candidate primary beam, and the second signal quality information is the signal quality information of one or more terminal devices in the second cell within the coverage of the candidate primary beam.
  • the processing module 701 is further configured to determine the signal quality corresponding to the candidate first-level beam when the signal quality indicated by the first signal quality information is greater than a first threshold and the signal quality indicated by the second signal quality information is less than a second threshold.
  • the codebook is the first weight, and the first threshold is greater than the second threshold.
  • the communication module 702 is used to obtain the aforementioned channel state information, signal quality information, and the like.
  • the aforementioned network device may have functional units (means) corresponding to the steps of the method or process of the network device.
  • One or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • the processor in the embodiment of the present application may include, but is not limited to, at least one of the following: central processing unit CPU, microprocessor, digital signal processor (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), Or artificial intelligence processors and other computing devices that run software.
  • Each computing device may include one or more cores for executing software instructions for calculations or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip.
  • the processor can be combined with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits) to form a system-on-chip ( system-on-a-chip, SoC), or as an application specific integrated circuit (ASIC) built-in processor integrated in the ASIC, the ASIC integrated with the processor can be packaged separately or It can also be packaged with other circuits.
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA) and programmable logic device (programmable logic device). device, PLD), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory ROM or other types of static storage devices that can store static information and instructions, random access memory RAM, or other types of information and instructions that can be stored
  • the dynamic storage device may also be an electrically erasable programmable read-only memory (EEPROM).
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, instead of dealing with the original
  • the implementation process of the application examples constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种干扰抑制方法以及相关装置,应用于大规模同频密集组网场景,通过控制波束的覆盖范围而避免不同小区的波束的覆盖范围交叠,进而实现小区间干扰抑制。本申请实施例中的方法包括:基于码本集合确定第一权值。然后,基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。最后,根据该第一权值和该第二权值确定发送权值。其中,第一小区中的一个或多个终端设备位于第一权值生成的一级波束的覆盖范围内,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠,并且,该一级波束的覆盖范围内的一个终端设备位于发送权值生成的目标波束的覆盖范围内。因此,可以抑制小区间干扰。

Description

一种干扰抑制方法以及相关装置 技术领域
本申请实施例涉及通信领域,尤其涉及一种干扰抑制方法以及相关装置。
背景技术
在蜂窝网络(cellular network)中,增加基站数量可以增大网络容量,但是随着基站数量的增加,小区之间的干扰也逐渐增加,从而限制了网络容量的增大。
目前,可以采用基于空间域的协调波束成型(coordinated beam forming,CBF)技术和联合传输(joint transmission,JT)技术抑制小区间的干扰。具体地,网络设备需要基于本服务小区中的每个终端设备的信道状态信息计算该网络设备到前述每个终端设备的窄波束。
在这样的方案中,对前述每个终端设备的信道状态信息的精度要求较高,当前述信道状态信息不准确时,该网络设备确定的窄波束将无法准确覆盖该终端设备,也可能造成该网络设备确定的窄波束干扰到相邻小区的终端设备。
发明内容
本申请实施例提供了一种干扰抑制方法以及相关装置,用于抑制小区间的信号干扰,扩大系统容量。
第一方面,本申请实施例提供了一种干扰抑制方法,该干扰抑制方法可以应用于大规模同频密集组网场景,通过控制波束的覆盖范围而避免不同小区的波束的覆盖范围交叠,进而避免不同小区内的终端设备之间产生信号干扰。具体地,该干扰抑制方法包括:
网络设备基于码本集合确定第一权值,其中,该第一权值用于生成一级波束,该一级波束用于服务该网络设备下的第一小区中的一个或多种终端设备,也就是说,该第一小区中的一个或多个终端设备位于该一级波束的覆盖范围内。此外,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。然后,该网络设备基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。然后,该网络设备根据该第一权值和该第二权值确定发送权值,该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
本申请实施例中,由于该网络设备确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于基于第一权值确定第二权值是在第一小区内独立进行的, 受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定各个终端设备的信号质量信息,进而能确定出合适的第二权值,最终确定出合适的目标波束以避免小区间的干扰。
根据第一方面,本申请实施例第一方面的第一种实施方式中,该网络设备基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值,包括:网络设备基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息,该信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量。然后,该网络设备基于该一个或多个终端设备的信号质量信息确定该第二权值。
本实施方式中,由于该一级波束的覆盖范围内的不同的终端设备的分布位置、数据传输量等情况不尽相同,因此,前述不同的终端设备的信号质量信息也不尽相同。而本实施方式中,该网络设备基于各个终端设备的信号质量信息确定第二权值,有利于使得后续过程中确定的各个目标波束能够更加准确的覆盖到前述各个终端设备,进而有利于扩大系统容量。此外,由于,网络设备确定第二权值时基于第一权值和该一级波束的覆盖范围内的终端设备的信号质量信息即可,并且,该一级波束的覆盖范围内的终端设备也是位于第一小区内的。在这个过程中,可以不需要第一小区外的终端设备的信息。因此,可以理解为,该网络设备确定第二权值的过程是在第一小区内完成的,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定各个终端设备的信号质量信息,进而能确定出合适的第二权值,最终确定出合适的目标波束以避免小区间的干扰。同时,由于第二权值计算时不需要第一小区外的终端设备的信息,因此也能降低第二权值的计算量。
根据第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中,该网络设备基于该一个或多个终端设备的信号质量信息确定该第二权值,包括:该网络设备基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备。然后,该网络设备基于该第一权值和该目标终端设备的信号质量信息确定第二权值。
本实施方式中,进一步剔除了位于该一级波束的覆盖范围内的信号质量较差的终端设备,该网络设备可以基于目标终端设备确定第二权值,有利于较少网络设备的计算量,也有利于提高第二权值的有效率,使得后续确定的发送权值生成的目标波束能给终端设备提供更好的信号覆盖。
根据第一方面、第一方面的第一种实施方式至第一方面的第二种实施方式,本申请实施例第一方面的第三种实施方式中,该网络设备基于码本集合确定第一权值之前,该方法还包括:该网络设备基于统计信道状态信息确定该码本集合,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,该多个终端设备包括该第一小区中的至少一个终端设备和该第二小区中的至少一个终端设备。
本实施方式中,当网络设备需要初次建立码本集合或者重置码本集合时,该网络设备需要基于统计信道状态信息确定该码本集合。由于,该统计信道状态信息可以反映预设时 间范围内第一小区中的一个或多个终端设备的信道状态以及第二小区中的一个或多个终端设备的信道状态。因此,有利于该网络设备基于该统计信道状态信息确定较为准确的码本集合,进而使得各个码本对应的波束覆盖范围可以较为准确地避开第二小区中的终端设备而覆盖第一小区中的终端设备。
根据第一方面的第三种实施方式,本申请实施例第一方面的第四种实施方式中,该网络设备基于统计信道状态信息确定该码本集合,包括:该网络设备获取第一信道状态信息和第二信道状态信息,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的信道状态。然后,该网络设备根据该第一信道状态信息和第二信道状态信息确定该码本集合。
本实施方式中,进一步地提出基于第一信道状态信息和第二信道状态信息确定统计信道状态信息,然后,基于该统计信道状态信息确定码本集合。由于信道状态信息的确定受限于信道变化的快慢。在快衰落系统中,可能信道在传输一个字符后便发生变化,此时用即时信道状态信息描述信道状态比较合理。在慢衰落系统中,信道在获得即时信道状态信息后可传送一段时间的字符才发生变化,此时用统计信道状态信息可以提高通信效率。而本实施例中,将前述即时信道状态信息和统计信道状态信息相结合,有利于确定出合理的码本集合,也有利于提高确定码本集合的效率。
根据第一方面、第一方面的第一种实施方式至第一方面的第四种实施方式,本申请实施例第一方面的第五种实施方式中,该码本集合中的一个码本用于确定一个候选一级波束。该网络设备基于码本集合确定第一权值,包括:该网络设备确定第一信号质量信息和第二信号质量信息。当该第一信号质量信息指示的信号质量大于第一阈值,且,该第二信号质量信息指示的信号质量小于第二阈值时,确定该候选一级波束对应的码本为该第一权值,该第一阈值大于该第二阈值。其中,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息。
本实施方式中,由于第一阈值大于第二阈值,因此,当第一信号质量信息指示的信号质量大于第一阈值,可以说明该第一小区中的终端设备与该网络设备之间的信号质量较好;第二信号质量信息指示的信号质量小于第二阈值,可以说明该第二小区中的终端设备与该网络设备之间的信号质量较差。此时,该网络设备可以确定该候选一级波束可以给本小区(即第一小区)中的终端设备提供较优质的信号,而这样的优质信息不会给相邻小区(即与该第一小区相邻的第二小区)造成信号干扰。因此,该网络设备可以确定该候选一级波束对应的码本为第一权值。于是,该第一权值可以生成一级波束,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。
第二方面,本申请实施例提供了一种通信装置,该通信装置结合前述干扰抑制方法通过控制波束的覆盖范围而避免不同小区的波束的覆盖范围交叠,进而避免不同小区内的终端设备之间产生信号干扰。具体地,该通信装置包括:第一确定模块,用于基于码本集合确定第一权值,其中,该第一权值用于生成一级波束,该一级波束用于服务该网络设备下的第一小区中的一个或多种终端设备,也就是说,该第一小区中的一个或多个终端设备位 于该一级波束的覆盖范围内。此外,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。该第一确定模块,还用于基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。该第一确定模块,还用于根据该第一权值和该第二权值确定发送权值,该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
本申请实施例中,由于该网络设备中的第一确定模块确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备中的第一确定模块又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于基于第一权值确定第二权值是在第一小区内独立进行的,因此,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定出合适的目标波束以避免小区间的干扰。同时,由于第二权值计算时不需要第一小区外的终端设备的信息,因此也能降低第二权值的计算量。
根据第二方面,本申请实施例第二方面的第一种实施方式中,该第一确定模块,具体用于:基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息,该信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量;基于该一个或多个终端设备的信号质量信息确定该第二权值。
本实施方式中,由于该一级波束的覆盖范围内的不同的终端设备的分布位置、数据传输量等情况不尽相同,因此,前述不同的终端设备的信号质量信息也不尽相同。而本实施方式中,该网络设备中的第一确定模块基于各个终端设备的信号质量信息确定第二权值,有利于使得后续过程中确定的各个目标波束能够更加准确的覆盖到前述各个终端设备,进而有利于扩大系统容量。此外,由于,网络设备中的第一确定模块确定第二权值时涉及第一权值和该一级波束的覆盖范围内的终端设备的信号质量信息即可,并且,该一级波束的覆盖范围内的终端设备也是位于第一小区内的。在这个过程中,可以不需要第一小区外的终端设备的信息。因此,可以理解为,该确定第二权值的过程是在第一小区内完成的,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定各个终端设备的信号质量信息,进而能确定出合适的第二权值,最终确定出合适的目标波束以避免小区间的干扰。
根据第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式中,该第一确定模块,具体用于:基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备;基于该第一权值和该目标终端设备的信号质量信息确定第二权值。
本实施方式中,进一步剔除了位于该一级波束的覆盖范围内的信号质量较差的终端设 备,该网络设备可以基于目标终端设备确定第二权值,有利于较少网络设备的计算量,也有利于提高第二权值的有效率,使得后续确定的发送权值生成的目标波束能给终端设备提供更好的信号覆盖。
根据第二方面、第二方面的第一种实施方式至第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式中,该第二确定模块,还用于:基于统计信道状态信息确定该码本集合,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,该多个终端设备包括该第一小区中的至少一个终端设备和该第二小区中的至少一个终端设备。
本实施方式中,当网络设备中的第二确定模块需要初次建立码本集合或者重置码本集合时,该网络设备中的第二确定模块需要基于统计信道状态信息确定该码本集合。由于,该统计信道状态信息可以反映预设时间范围内第一小区中的一个或多个终端设备的信道状态以及第二小区中的一个或多个终端设备的信道状态。因此,有利于该网络设备中的第二确定模块基于该统计信道状态信息确定较为准确的码本集合,进而使得各个码本对应的波束覆盖范围可以较为准确地避开第二小区中的终端设备而覆盖第一小区中的终端设备。
根据第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式中,该第二确定模块,具体用于:获取第一信道状态信息和第二信道状态信息,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的信道状态;根据该第一信道状态信息和第二信道状态信息确定该码本集合。
本实施方式中,进一步地提出基于第一信道状态信息和第二信道状态信息确定统计信道状态信息,然后,基于该统计信道状态信息确定码本集合。由于信道状态信息的确定受限于信道变化的快慢。在快衰落系统中,可能信道在传输一个字符后便发生变化,此时用即时信道状态信息描述信道状态比较合理。在慢衰落系统中,信道在获得即时信道状态信息后可传送一段时间的字符才发生变化,此时用统计信道状态信息可以提高通信效率。而本实施例中,将前述即时信道状态信息和统计信道状态信息相结合,有利于确定出合理的码本集合,也有利于提高确定码本集合的效率。
根据第二方面、第二方面的第一种实施方式至第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式中,该第一确定模块,具体用于:确定第一信号质量信息和第二信号质量信息。并且,当该第一信号质量信息指示的信号质量大于第一阈值,且,该第二信号质量信息指示的信号质量小于第二阈值时,确定该候选一级波束对应的码本为该第一权值,该第一阈值大于该第二阈值。其中,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息。
本实施方式中,由于第一阈值大于第二阈值,因此,当第一信号质量信息指示的信号质量大于第一阈值,可以说明该第一小区中的终端设备与该网络设备之间的信号质量较好;第二信号质量信息指示的信号质量小于第二阈值,可以说明该第二小区中的终端设备与该网络设备之间的信号质量较差。此时,该网络设备可以确定该候选一级波束可以给本小区 (即第一小区)中的终端设备提供较优质的信号,而这样的优质信息不会给相邻小区(即与该第一小区相邻的第二小区)造成信号干扰。因此,该网络设备可以确定该候选一级波束对应的码本为第一权值。于是,该第一权值可以生成一级波束,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。
第三方面,本申请实施例提供了一种通信装置,该通信装置结合前述干扰抑制方法通过控制波束的覆盖范围而避免不同小区的波束的覆盖范围交叠,进而避免不同小区内的终端设备之间产生信号干扰。具体地,该通信装置包括:处理模块和存储模块。其中,存储模块用于存储数据和程序,例如,码本集合、第一权值以及第二权值等数据。该处理模块,用于基于码本集合确定第一权值,其中,该第一权值用于生成一级波束,该一级波束用于服务该网络设备下的第一小区中的一个或多种终端设备,也就是说,该第一小区中的一个或多个终端设备位于该一级波束的覆盖范围内。此外,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。该处理模块,还用于基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。该处理模块,还用于根据该第一权值和该第二权值确定发送权值,该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
本申请实施例中,由于该网络设备中的处理模块确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备中的处理模块又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于基于第一权值确定第二权值是在第一小区内独立进行的,因此,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定出合适的目标波束以避免小区间的干扰。
根据第三方面,本申请实施例第三方面的第一种实施方式中,该处理模块,具体用于:基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息,该信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量;基于该一个或多个终端设备的信号质量信息确定该第二权值。
本实施方式中,由于该一级波束的覆盖范围内的不同的终端设备的分布位置、数据传输量等情况不尽相同,因此,前述不同的终端设备的信号质量信息也不尽相同。而本实施方式中,该网络设备中的处理模块基于各个终端设备的信号质量信息确定第二权值,有利于使得后续过程中确定的各个目标波束能够更加准确的覆盖到前述各个终端设备,进而有利于扩大系统容量。此外,由于,网络设备中的处理模块确定第二权值时涉及第一权值和该一级波束的覆盖范围内的终端设备的信号质量信息即可,并且,该一级波束的覆盖范围内的终端设备也是位于第一小区内的。在这个过程中,可以不需要第一小区外的终端设备的信息。因此,可以理解为,该确定第二权值的过程是在第一小区内完成的,受第一小区 外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定各个终端设备的信号质量信息,进而能确定出合适的第二权值,最终确定出合适的目标波束以避免小区间的干扰。同时,由于第二权值计算时不需要第一小区外的终端设备的信息,因此也能降低第二权值的计算量。
根据第三方面的第一种实施方式,本申请实施例第三方面的第二种实施方式中,该处理模块,具体用于:基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备;基于该第一权值和该目标终端设备的信号质量信息确定第二权值。
本实施方式中,进一步剔除了位于该一级波束的覆盖范围内的信号质量较差的终端设备,该网络设备可以基于目标终端设备确定第二权值,有利于较少网络设备的计算量,也有利于提高第二权值的有效率,使得后续确定的发送权值生成的目标波束能给终端设备提供更好的信号覆盖。
根据第三方面、第三方面的第一种实施方式至第三方面的第二种实施方式,本申请实施例第三方面的第三种实施方式中,该处理模块,还用于:基于统计信道状态信息确定该码本集合,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,该多个终端设备包括该第一小区中的至少一个终端设备和该第二小区中的至少一个终端设备。
本实施方式中,当网络设备中的处理模块需要初次建立码本集合或者重置码本集合时,该网络设备中的处理模块需要基于统计信道状态信息确定该码本集合。由于,该统计信道状态信息可以反映预设时间范围内第一小区中的一个或多个终端设备的信道状态以及第二小区中的一个或多个终端设备的信道状态。因此,有利于该网络设备中的处理模块基于该统计信道状态信息确定较为准确的码本集合,进而使得各个码本对应的波束覆盖范围可以较为准确地避开第二小区中的终端设备而覆盖第一小区中的终端设备。
根据第三方面的第三种实施方式,本申请实施例第三方面的第四种实施方式中,该处理模块,具体用于:获取第一信道状态信息和第二信道状态信息,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的信道状态;根据该第一信道状态信息和第二信道状态信息确定该码本集合。
本实施方式中,进一步地提出基于第一信道状态信息和第二信道状态信息确定统计信道状态信息,然后,基于该统计信道状态信息确定码本集合。由于信道状态信息的确定受限于信道变化的快慢。在快衰落系统中,可能信道在传输一个字符后便发生变化,此时用即时信道状态信息描述信道状态比较合理。在慢衰落系统中,信道在获得即时信道状态信息后可传送一段时间的字符才发生变化,此时用统计信道状态信息可以提高通信效率。而本实施例中,将前述即时信道状态信息和统计信道状态信息相结合,有利于确定出合理的码本集合,也有利于提高确定码本集合的效率。
根据第三方面、第三方面的第一种实施方式至第三方面的第四种实施方式,本申请实施例第三方面的第五种实施方式中,该处理模块,具体用于:确定第一信号质量信息和第二信号质量信息。并且,当该第一信号质量信息指示的信号质量大于第一阈值,且,该第 二信号质量信息指示的信号质量小于第二阈值时,确定该候选一级波束对应的码本为该第一权值,该第一阈值大于该第二阈值。其中,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息。
本实施方式中,由于第一阈值大于第二阈值,因此,当第一信号质量信息指示的信号质量大于第一阈值,可以说明该第一小区中的终端设备与该网络设备之间的信号质量较好;第二信号质量信息指示的信号质量小于第二阈值,可以说明该第二小区中的终端设备与该网络设备之间的信号质量较差。此时,该网络设备可以确定该候选一级波束可以给本小区(即第一小区)中的终端设备提供较优质的信号,而这样的优质信息不会给相邻小区(即与该第一小区相邻的第二小区)造成信号干扰。因此,该网络设备可以确定该候选一级波束对应的码本为第一权值。于是,该第一权值可以生成一级波束,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。
第四方面,本申请实施例提供了一种通信装置,该通信装置可以是前述实施方式中的网络设备,也可以是该网络设备内的芯片。该通信装置可以包括处理模块和收发模块。当该通信装置是网络设备时,该处理模块可以是处理器,该收发模块可以是收发器;该网络设备还可以包括存储模块,该存储模块可以是存储器;该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种实施方式中的方法。当该通信装置是网络设备内的芯片时,例如,该通信装置为该网络设备中的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种实施方式中的方法,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该接入网设备内的位于该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
第五方面,本申请提供了一种通信装置,该装置可以是集成电路芯片。该集成电路芯片包括处理器。该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行如第一方面或第一方面的任一种实施方式中的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如前述第一方面或第一方面的任一种实施方式所介绍的方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,以使得计算机执行如前述第一方面或第一方面的任一种实施方式所介绍的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,由于所述网络设备确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限 于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于第一权值是从码本集合中选取的,该码本集合是基于统计信道信息确定的,并且,该统计信道信息受即时(瞬时)信道信息波动的影响较小。因此,即使在即时(瞬时)信道状态信息的精度不高的情况下,也能确定出合适的目标波束以避免小区间的干扰。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请实施例中干扰抑制方法的一个应用场景示意图;
图2为本申请实施例中干扰抑制方法的一个流程图;
图3A为本申请实施例中干扰抑制方法的一个实施例示意图;
图3B为本申请实施例中干扰抑制方法的另一个实施例示意图;
图3C为本申请实施例中干扰抑制方法的另一个实施例示意图;
图4为本申请实施例中干扰抑制方法的另一个实施例示意图;
图5为本申请实施例中干扰抑制方法的另一个实施例示意图;
图6为本申请实施例中网络设备的一个实施例示意图;
图7为本申请实施例中网络设备的另一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种干扰抑制方法以及相关装置,用于抑制小区间的信号干扰,扩大系统容量。
为便于理解,下面先对本申请实施例提出的干扰抑制方法所适应的系统架构以及应用场景进行介绍:
本申请实施例提出的方案主要基于第五代移动通信技术(the 5th generation,5G)或新空口技术(new radio,NR),也可以基于长期演进(long term evolution,LTE)技术,还可以基于后续演进接入制式,具体此处不做限定。在本实施例以及后续实施例中, 仅以基于5G的通信系统为例进行介绍。
本实施例中的干扰抑制方法可以应用于大规模同频密集组网场景,通过控制波束的覆盖范围而避免不同小区的波束的覆盖范围交叠,进而避免不同小区内的终端设备之间产生信号干扰。
下面以图1为例,对该干扰抑制方法的应用场景进行介绍。该场景中,包括网络设备A、网络设备B、网络设备C和多个终端设备。其中,网络设备A下存在三个小区,分别为小区1、小区2和小区3。其中,终端设备a位于小区1中;终端设备b、终端设备c、终端设备d和终端设备e位于小区2中;终端设备g位于小区3中。此外,终端设备f位于网络设备B下的小区4中,终端设备h位于网络设备A下的小区3与网络设备C下的小区5的交界处。应当理解的是,当某个终端设备位于某个网络设备的某个小区中时,这个网络设备将为这个终端设备提供服务。例如,终端设备f位于网络设备B下的小区4中,则该网络设备B为该终端设备f提供服务。又例如,终端设备h位于网络设备A下的小区3与网络设备C下的小区5的交界处,则该网络设备A可以为该终端设备h提供服务,该网络设备C也可以为该终端设备h提供服务。
此时,若某网络设备的波束既覆盖到该网络设备下的小区中的终端设备,又覆盖到其他网络设备下的小区中的终端设备,则可能造成小区间干扰。例如,网络设备A的波束10既覆盖到网络设备A下的小区2中的终端设备e,又覆盖到网络设备B下的小区4中的终端设备f,则可能造成小区2和小区4之间的干扰,也可以理解为,造成小区2对小区4的干扰。又例如,网络设备A的波束11既覆盖到网络设备A下的小区3中的终端设备g,又覆盖到小区3与小区5的交界中的终端设备h,则可能造成小区3和小区5之间的干扰,也可以理解为,造成小区3对小区5的干扰。
除此之外,若某网络设备的波束可以覆盖到该网络设备下的不同小区中的终端设备,则相同网络设备的不同小区也可能造成干扰。例如,网络设备A的波束12既覆盖到小区1中的终端设备a又覆盖到小区2中的终端设备b,则该网络设备A下的小区1和小区2之间也可能存在干扰。
对此,本申请实施例提出的干扰抑制方法便可以避免前述小区间干扰的情况。具体地,网络设备可以通过合理地配置权值以控制网络设备的波束的覆盖范围,以使得前述波束的覆盖范围可以准确覆盖到待服务的终端设备,也可以避免干扰到其他小区的终端设备。
此外,应当理解的是,前述图1中的示例仅列举了三个网络设备,在实际应用中,可能存在更多数量的网络设备,并且,每个网络设备的小区也可能不止三个小区。本申请实施例不对网络设备的个数以及每个网络设备中的小区的个数进行限定。还应理解的是,在实际应用中,各个小区中的终端设备的数量将更多,并且,终端设备在各个小区中的分布更加密集。本申请实施例不对各个小区中的终端设备的具体数量进行限定,也不对各个终端设备在各个小区中的分布密集程度进行限定。
还应理解的是,本申请实施例中的网络设备(例如,前述网络设备A、网络设备B、网络设备C以及后续实施例中提及的网络设备),可以为无线接入网络(radio access network,RAN)设备。具体地,该RAN设备可以是基站或接入点,也可以是接入网中在空中接口上通过一个或多个小区与终端设备(例如,前述终端设备a、终端设备b等)通信的设备。该网 络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空中接口的属性管理。例如,该网络设备包括长期演进LTE系统或演进的LTE系统(long term evolution advanced,LTE-A)中的演进型基站(evolutional node B,NodeB或eNB或e-NodeB),新无线系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
当该网络设备为集中式单元CU时,该网络设备可以位于某个基站中,使该基站成为一个功能较强的管理功能的基站;该网络设备也可以独立于各个基站,位于与各个基站都相距较近的管理设备或机房中,具体此处不做限定。
此外,该网络设备可以是上述任意一种设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该网络设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以网络设备为例进行介绍。
此外,本申请实施例中的终端设备(例如,前述终端设备a、终端设备b等),包括向用户提供语音和/或数据连通性的设备,例如,可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、用户单元(subscriber unit)、用户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话,具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还可以包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如,包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)以及激光扫描器等信息传感设备。
本申请实施例中的终端设备可以是上述任意一种设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该终端设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以终端设备为例进行介绍。
为便于更好地理解本申请实施例所提出的方案,下面将基于前述场景对本实施例中干扰抑制方法的主要流程进行介绍,如图2所示,该干扰抑制方法中的网络设备执行的步骤包括如下:
201、网络设备基于码本集合确定第一权值。
其中,码本集合(也可以被称为协作码本集合)包括多个码本(也可以被称为协作码本),前述多个码本中的每一个码本可以指示一个候选一级波束的覆盖范围。一般地,一个网络设备中存在一个码本集合,该码本集合中的各个码本所指示的候选一级波束的覆盖范围不相同,但是,前述各个码本所指示的候选一级波束的覆盖范围也可能存在交叠,具体此处不做限定。
在实际应用中,前述码本可以用水平方向的角度和垂直方向的角度表示。可选的,前述码本可以由水平方向的角度下限和水平方向的角度上限表示候选一级波束在水平方向的角度范围,可以由垂直方向的角度下限和垂直方向的角度上限表示候选一级波束在垂直方向的角度范围。为便于理解,以如下表1为例进行介绍:
表1
  码本1 码本2 码本3 码本4 码本5 码本6
α min -60° -60° 30° 30° -30° -30°
α max -30° -30° 60° 60° 30° 30°
β min -45° -60° -45° -60° -45° -60°
β max -15° -45° -15° -45° -15° -45°
其中,α min表示水平方向的角度下限,α max表示水平方向的角度上限,因此,可以确定水平方向的角度范围为[α min,α max];β min表示垂直方向的角度下限,β max表示垂直方向的角度上限,因此,可以确定垂直方向的角度范围为[β min,β max]。其中,“[”为左闭区间符号,表示该角度范围包括左端点;“]”为右闭区间符号,表示该角度范围包括右端点。例如,[α min,α max]中的“[”表示该水平方向的角度范围包括左端点α min,“]”表示该水平方向的角度范围包括右端点α max。又例如,例如,[β min,β max]中的“[”表示该垂直方向的角度范围包括左端点β min,“]”表示该垂直方向的角度范围包括右端点β max
在实际应用中,还可以采用其他的方式表示前述码本或码本集合,具体此处不做限定。
本实施例中,该网络设备基于码本集合确定第一权值,也可以理解为,该网络设备从前述码本集合中选择了一个码本作为第一权值;也可以理解为,该网络设备从前述码本集合中选择了一个码本,并将该码本通过公式换算为前述第一权值,具体此处不做限定。但是,应当理解的是,本实施例中的码本集合中的一个码本与一个权值对应。也可以理解为,该码本集合中不同的码本与不同的权值对应。例如,若码本集合中存在5个不同的码本,则这5个不同的码本与5个不同的权值一一对应,并且,这5个不同的权值与5个不同的一级候选波束一一对应。当然,5个不同的候选一级波束与5个不同的波束覆盖范围一一对应。此外,前述第一权值用于生成一级波束。可选的,该一级波束可以覆盖一个或多个终端设备,也可以理解为,一个或多个终端设备位于该一级波束的覆盖范围中。进一步地,该一级波束可以覆盖某一个小区中的一个或多个终端设备,也可以理解为,前述一个或多个终端设备位于某一个小区中的一级波束的覆盖范围中。由于,该网络设备是基于前述码本集合确定的第一权值,则该一级波束可以是前述多个候选一级波束中的一个波束。
本实施例中,由于,该第一权值生成的一级波束来自该网络设备,因此,该一级波束的覆盖范围位于该网络设备下的某一个小区中。可选的,若该网络设备下存在第一小区,并且,该一级波束的覆盖范围位于该网络设备下的第一小区中,则该第一小区中的一个或多个终端设备位于该一级波束的覆盖范围内。当然,也可能存在该第一小区中的另外的某一个或某几个终端设备并未位于该一级波束的覆盖范围中,具体此处不做限定。为便于理解,以图3A为例进行介绍。若网络设备A从码本集合中确定的第一权值对应的一级波束为波束21,并且,该波束21位于小区2中,此时,可以称该小区2为前述第一小区。此外,多个终端设备位于该波束21的覆盖范围内,例如,终端设备c和终端设备e位于波束21中。此时,小区2中的终端设备d也并没有位于该波束21的覆盖范围中。
除此之外,该第一小区中的一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。其中,该第二小区可以为该网络设备中的除前述第一小区外的另一个小区,例如,当网络设备A下的小区2为第一小区时,该第二小区可以为网络设备A下的小区1;该第二小区也可以为相邻网络设备(即与前述网络设备相邻的网络设备)中的小区,例如,网络设备B与网络设备A相邻,当网络设备A下的小区2为第一小区时,该第二小区可以为网络设备B下的小区4,具体此处不做限定。
此外,前述第一小区中的一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。在一种实施方式中,可以理解为,前述第一小区中的一级波束的覆盖范围与第二小区中的一级波束的覆盖范围完全不交叠,即该第一小区中的一级波束的覆盖范围中不存在该第二小区中的一级波束的覆盖范围,并且,该第二小区中的一级波束的覆盖范围中不存在该第一小区中的一级波束的覆盖范围。以图3A为例进行介绍,假设第一小区为网络设备A下的小区2,该第一小区中的一级波束为波束21,并且,假设第二小区为网络设备B下的小区4,该第二小区中的一级波束为波束22。此时,该小区2中的波束21的覆盖范围与小区4中的波束22的覆盖范围完全不交叠。在另一实施方式中,可以理解为,该第一小区中的一级波束的覆盖范围与第二小区中的一级波束的覆盖范围存在小于一定阈值的交叠,但是,由于交叠程度小于前述阈值而可以忽略不计。依然以图3A为例进行介绍,假设第一小区为网络设备A下的小区2,该第一小区中的一级波束为波束31,并且,假设第二小区为网络设备A下的小区1,该第二小区中的一级波束为波束32。此时,该小区2中的波束31的覆盖范围与小区1中的波束32的覆盖范围存在小于一定阈值的交叠,因此,依然可以视为前述小区2中的波束31的覆盖范围与小区1中的波束32的覆盖范围不交叠。应当理解的是,前述阈值可以由网络设备根据实际需求进行调整,并且,前述阈值越大,小区之间的抗干扰需求越低,前述阈值越小,小区之间抗干扰的需求越高,具体本申请实施例不对阈值的数值进行限定。
本实施例中,前述两种不交叠的实施方式均适用于本申请实施例的干扰抑制方法。为便于介绍,在本实施例以及后续实施例中,仅以该第一小区中的一级波束的覆盖范围与该第二小区中的一级波束的覆盖范围完全不交叠为例进行介绍。
但是,应当注意的是,为了避免小区间干扰,该第一小区中的一级波束应当与多个第二小区中的一级波束均不交叠,也可以理解为,不存在一个第二小区的一级波束与前述第 一小区中的一级波束交叠。为便于理解,以图3B为例进行介绍。若该第一小区为网络设备A下的小区2,该第一小区中的一级波束为波束21,则该波束21应当与网络设备B下的小区4中的波束22不交叠,并且,该波束21应当与网络设备A下的小区1中的波束32不交叠,并且,该波束21应当与网络设备A下的小区3中的波束33不交叠。前述图3B仅示出了部分的第二小区的一级波束,在实际应用中,该第二小区的一级波束的数量可能更多,该第二小区的一级波束的分布也可能更密集,具体此处不做限定。
此外,还应理解的是,前述一级波束仅为该第一权值的理论辐射波束并非实际发送波束。因此,该网络设备将执行后续步骤以确定发送波束。
202、该网络设备基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。
其中,该一级波束为该第一权值生成的位于第一小区中的一级波束。该一级波束的覆盖范围内的一个或多个终端设备,也可以理解为,该一级波束的覆盖范围内的部分终端设备或者所有终端设备。
此外,前述一个或多个终端设备的信道状态信息,可以理解为,不同的终端设备的信道状态信息不完全相同。可选的,该网络设备在确定第二权值时将参考前述一个或多个终端设备中的每个终端设备的信道状态信息。前述信道状态信息(channel state information,CSI)用于指示该网络设备与该终端设备之间的通信链路的信道属性,也可以理解为,用于指示该网络设备与该终端设备之间的信道状态。该信道状态信息可以是描述信号在每条传输路径上的衰弱因子,例如,信号散射(scattering)、环境衰弱(fading,multipath fading or shadowing fading)以及距离衰减(power decay of distance)等信息。
具体地,后文图4对应的实施例中将进行详细介绍,具体此处不再赘述。
此外,还应理解的是,该网络设备确定的第二权值是针对前述一个或多个终端设备中的某一个终端设备的。也可以理解为,该网络设备基于前述第一权值和该一级波束的覆盖范围内的一个或多个终端设备中的每个终端设备的信道状态信息,确定了至少一个第二权值。其中,前述至少一个第二权值中的每个第二权值对应一个终端设备,并且,这一个终端设备为前述一个或多个终端设备中的某一个终端设备。为便于理解,以图3C为例进行介绍。假设,网络设备A确定的第一权值生成的一级波束为波束21,此时,前述一级波束的覆盖范围内的一个或多个终端设备可以理解为是波束21中的终端设备c和终端设备e。然后,该网络设备A基于该第一权值、前述终端设备c的信道状态信息以及前述终端设备e的信道状态信息确定两个第二权值,这两个第二权值包括与前述终端设备c对应的第二权值和与前述终端设备e对应的第二权值。在另一种示例中,该网络设备A也可以基于该第一权值、前述终端设备c的信道状态信息以及前述终端设备e的信道状态信息确定一个第二权值,这一个第二权值可以为与前述终端设备c对应的第二权值,也可以为与前述终端设备e对应的第二权值。
本实施例中,由于网络设备确定第二权值时涉及第一权值和该一级波束的覆盖范围内的终端设备的信道状态信息即可,并且,该一级波束的覆盖范围内的终端设备也是位于第 一小区内的。在这个过程中,可以不需要第一小区外的终端设备的信息。因此,可以理解为,该网络设备确定第二权值的过程(即步骤202)是在第一小区内完成的,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定出合适的第二权值,进而确定出合适的目标波束以避免小区间的干扰。同时,由于第二权值计算时不需要第一小区外的终端设备的信息,因此也能降低第二权值的计算量。
本实施例中,当该网络设备确定第二权值之后,该网络设备将执行步骤203。
203、该网络设备根据该第一权值和该第二权值确定发送权值。
其中,该发送权值用于生成目标波束,该目标波束为发送波束,该发送波束为该网络设备实际发出的波束。该网络设备通过该目标波束给该目标波束的覆盖范围内的终端设备提供服务。由于,前述第二权值是针对某一个终端设备的,因此,基于该第一权值和该第二权值确定的发送权值生成的目标波束也是针对这一个终端设备的。也就是说,该目标波束是用于对某一个终端设备进行服务的。又由于,该目标波束的覆盖范围位于第一权值生成的一级波束的覆盖范围内,因此,前述某一个终端设备是前述一级波束的覆盖范围内的一个终端设备,也可以理解为,前述一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
依然以前述图3C为例进行介绍。假设,网络设备A基于前述第一权值生成波束21、波束21中的终端设备c的信道状态信息和终端设备e的信道状态信息确定了第二权值1和第二权值2,其中,第二权值1对应终端设备c,第二权值2对应终端设备e。然后,该网络设备A基于前述第一权值和第二权值1可以确定发送权值1,该发送权值1生成的目标波束为波束211,该终端设备c位于该波束211中;该网络设备A基于前述第一权值和第二权值2可以确定发送权值2,该发送权值2生成的目标波束为波束212,该终端设备e位于该波束212中。
本实施例中,由于该网络设备确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于基于第一权值确定第二权值是在第一小区内独立进行的,因此,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定出合适的目标波束以避免小区间的干扰。
下面将基于前述实施例对本申请实施例中的干扰抑制方法进行详细介绍,如图4所示,该干扰抑制方法中的网络设备执行的步骤包括如下:
401、网络设备基于统计信道状态信息确定码本集合。
本实施例中,网络设备需要先确定码本集合,以便于后续基于该码本集合确定第一权 值、第二权值以及发送权值等。具体地,该网络设备可以通过多个终端设备与该网络设备的即时信道状态信息(instantaneous channel state information,instantaneous CSI)确定统计信道状态信息(statistical channel state information,statistical CSI),然后,基于该统计信道状态信息确定该码本集合。其中,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态。其中,该即时信道状态信息用于指示当前时刻或历史某一时刻网络设备与终端设备之间的信道状态,或者,用于指示当前时刻或历史某一时刻网络设备与终端设备之间通信链路的信道属性。在实际应用中,该即时信道状态信息可视为终端设备到网络设备的瞬时信道特征信息,可用于生成数字滤波器的脉冲响应,可以使发送端(例如前述网络设备)及时的调整发射信号,进而可以取得低误码率且优质的接收信号。此外,该统计信道状态信息是指网络设备与终端设备之间的信道在一段时间内的统计特性。该统计特性可以包含环境衰落的分布、平均信道增益、时延及角度扩展分量以及空间相关性等信息。
具体地,该网络设备可以获取第一信道状态信息和第二信道状态信息,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的即时信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的即时信道状态。然后,该网络设备根据该第一信道状态信息和第二信道状态信息确定该码本集合。其中,第一小区中不同的终端设备的第一信道状态信息可以不同,第二小区中不同的终端设备的第二信道状态信息也可以不同。当该网络设备根据前述第一信道状态信息和前述第二信道状态信息确定码本集合时,该网络设备可以参考第一小区中的每个终端设备的第一信道状态信息以及第二小区中的每个终端设备的第二信道状态信息。此外,该第二小区可以为该网络设备中的除前述第一小区外的另一个小区;该第二小区也可以为相邻网络设备中的小区,具体可以参阅前述步骤201中的相关描述,具体此处不再赘述。
可选的,当该网络设备基于前述第一信道状态信息和前述第二信道状态信息确定该码本集合时,该网络设备可以采用取平均值的方式,也可以采用滤波的方式,具体此处不做限定。
此外,关于码本集合的介绍可以参阅前述步骤201中的相关描述,此处不再赘述。
本实施例中,由于信道状态信息的确定受限于信道变化的快慢。在快衰落系统中,可能信道在传输一个字符后便发生变化,此时用即时信道状态信息描述信道状态比较合理。在慢衰落系统中,信道在获得即时信道状态信息后可传送一段时间的字符才发生变化,此时用统计信道状态信息可以提高通信效率。而本实施例中,将前述即时信道状态信息和统计信道状态信息相结合,有利于确定出合理的码本集合,也有利于提高确定码本集合的效率。
应当注意的是,本实施例中,步骤401为可选的步骤。当网络设备需要初次建立码本集合或者重置码本集合时,该网络设备将执行步骤401。当该网络设备与终端设备之间的信道状态变化较小时,该网络设备可以直接使用历史确定的码本集合而不执行步骤401,此时,该网络设备可以直接执行步骤402。
402、该网络设备基于码本集合确定第一权值。
其中,该第一权值用于生成一级波束,该一级波束可以覆盖一个或多个终端设备,也可以理解为,一个或多个终端设备位于该一级波束的覆盖范围中。进一步地,该一级波束可以覆盖某一个小区中的一个或多个终端设备,也可以理解为,前述一个或多个终端设备位于某一个小区中的一级波束的覆盖范围中。此外,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。具体地,可以参阅前述步骤201中的相关介绍,此处不再赘述。
具体地,该网络设备可以通过如下步骤基于码本集合确定前述第一权值:
S1、该网络设备确定第一信号质量信息和第二信号质量信息。
其中,信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量。可选的,该信号质量信息可以为参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)或者其他能够反映该终端设备在该一级波束的覆盖范围内的信号质量的信息,具体此处不做限定。本实施例中,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息。应当理解的是,第一小区中不同的终端设备的第一信号质量信息可以不同,第二小区中不同的终端设备的第二信号质量信息也可以不同。
可选的,前述第一信号质量信息是基于该候选一级波束对应的码本和该第一信道状态信息确定的,前述第二信号质量信息是基于该候选一级波束对应的码本和该第二信道状态信息确定的。其中,第一信道状态信息和第二信道状态信息的解释可以参阅前述步骤401,此处不再赘述。
S2、该网络设备判断前述第一信号质量信息是否大于第一阈值,并且,判断前述第二信号质量信息是否小于第二阈值。
其中,第一阈值大于第二阈值。
S3、当该第一信号质量信息指示的信号质量大于第一阈值,且,该第二信号质量信息指示的信号质量小于第二阈值时,该网络设备确定该候选一级波束对应的码本为该第一权值。
本实施例中,由于第一阈值大于第二阈值,因此,当第一信号质量信息指示的信号质量大于第一阈值,可以说明该第一小区中的终端设备与该网络设备之间的信号质量较好;第二信号质量信息指示的信号质量小于第二阈值,可以说明该第二小区中的终端设备与该网络设备之间的信号质量较差。此时,该网络设备可以确定该候选一级波束可以给本小区(即第一小区)中的终端设备提供较优质的信号,而这样的优质信息不会给相邻小区(即与该第一小区相邻的第二小区)造成信号干扰。因此,该网络设备可以确定该候选一级波束对应的码本为第一权值。于是,该第一权值可以生成一级波束,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。
403、该网络设备基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息。
其中,该信号质量信息用于指示该一级波束的覆盖范围内的终端设备在该一级波束的覆盖范围内的信号质量。
应当理解的是,步骤403中的信号质量信息与前文步骤402中的第一信号质量信息和第二信号质量信息均不相同。由于,前述第一信号质量信息和第二信号质量信息并非基于第一权值确定的,因此,该网络设备需要基于该第一权值确定当前时刻一级波束的覆盖范围内的终端设备的信号质量信息。
具体地,该网络设备可以将信道状态信息投影到一级波束空间上,估算出该一级波束的覆盖范围内的终端设备的信号质量信息。
404、该网络设备基于该一个或多个终端设备的信号质量信息确定该第二权值。
本实施例中,当该网络设备确定了该一级波束的覆盖范围内的一个或多个终端设备的信号质量信息之后,该网络设备可以基于该一个或多个终端设备的信号质量信息确定该第二权值。
其中,该网络设备确定的第二权值是针对前述一个或多个终端设备中的某一个终端设备的。也可以理解为,该网络设备基于前述第一权值和该一级波束的覆盖范围内的一个或多个终端设备中的每个终端设备的信道状态信息,确定了至少一个第二权值。其中,前述至少一个第二权值中的每个第二权值对应一个终端设备,并且,这一个终端设备为前述一个或多个终端设备中的某一个终端设备。具体地,可以参阅前述步骤202中图3C对应的实施例中的相关描述,此处不再赘述。
在实际应用中,若多个终端设备的信道状态信息由m行n列的矩阵H表示,则该矩阵H中的每个元素表示信道系数,即第m个终端设备的天线到第n个网络设备的天线之间的信道系数。其中,m为大于或等于1的整数,n为大于或等于1的整数。若存在多个第一权值,则第一权值的集合可以由n行p列的矩阵W 1表示。其中,p是第一权值的个数,该p为大于等于1且小于等于n的整数。此时,可以定义等效信道为H e=HW 1,其中,H e为m行p列的矩阵。该网络设备可以基于前述等效信道H e采用迫零算法、最小均方误差(min mean square error,MMSE)算法等确定前述第二权值W ei,其中,该i为大于等于1且小于等于m的整数。在实际应用中,该网络设备可以采用一种或多种方式基于前述等效信道H e确定前述第二权值W ei,具体本申请实施例不做限定。
可选的,该网络设备可以先基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备,然后,再基于该第一权值和该目标终端设备的信号质量信息确定第二权值。其中,该目标终端设备的数量小于或等于前述一级波束的覆盖范围内的终端设备的数量。可选的,该目标终端设备的信号质量信息大于第三阈值。可选的,当前述一级波束的覆盖范围内的终端设备的某一个或多个终端设备的信号质量信息小于第四阈值时,则该网络设备可以确定除了前述信号质量信息小于第四阈值的终端设备以外的其他的终端设备为目标终端设备。
为便于理解,以图5为例进行介绍。假设,网络设备A确定的第一权值生成的一级波束为波束21’,此时,前述一级波束的覆盖范围内的一个或多个终端设备可以理解为是波束21’中的终端设备c、终端设备d和终端设备e。然后,该网络设备A基于该第一权值 和前述终端设备c的信道状态信息确定终端设备c的信号质量信息(即终端设备c在波束21’内的信号质量信息),该网络设备A基于该第一权值和前述终端设备d的信道状态信息确定终端设备d的信号质量信息(即终端设备d在波束21’内的信号质量信息),该网络设备A基于该第一权值和前述终端设备e的信道状态信息确定终端设备e的信号质量信息(即终端设备e在波束21’内的信号质量信息)。然后,该网络设备A可以基于前述终端设备c的信号质量信息、前述终端设备d的信号质量信息以及前述终端设备e的信号质量信息确定目标终端设备。在一种假设情况下,若终端设备c的信号质量信息大于第三阈值、前述终端设备d的信号质量信息大于第三阈值,则该网络设备A可以确定终端设备c和终端设备e为目标终端设备。在另一种假设情况下,若仅有终端设备d的信号质量信息小于第四阈值,则该网络设备A可以确定终端设备c和终端设备e为目标终端设备。然后,该网络设备A分别确定与前述终端设备c对应的第二权值和与前述终端设备e对应的第二权值。
可选的,该网络设备也可以先基于该一个或多个终端设备的信号质量信息和优先级信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备,然后,再基于该第一权值和该目标终端设备的信号质量信息确定第二权值。其中,该目标终端设备的数量小于或等于前述一级波束的覆盖范围内的终端设备的数量。该优先级信息指网络设备为终端设备确定发送波束的优先级,也可以理解为,网络设备在确定发送波束时,需要先满足部分终端设备的覆盖需求,再满足其他终端设备的覆盖需求。
可选的,该目标终端设备的信号质量信息大于第三阈值。可选的,当前述一级波束的覆盖范围内的终端设备的某一个或多个终端设备的信号质量信息小于第四阈值时,则该网络设备可以确定除了前述信号质量信息小于第四阈值的终端设备以外的其他的终端设备为目标终端设备。
在这样的实施方式中,进一步剔除了位于该一级波束的覆盖范围内的信号质量较差或者优先级较低的终端设备,该网络设备可以基于目标终端设备确定第二权值,有利于较少网络设备的计算量,也有利于提高第二权值的有效率,使得后续确定的发送权值生成的目标波束能给终端设备提供更好的信号覆盖。
405、该网络设备根据该第一权值和该第二权值确定发送权值。
该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
其中,该发送权值用于生成目标波束,该网络设备通过该目标波束给该目标波束的覆盖范围内的终端设备提供服务。由于,前述第二权值是针对目标终端设备的,因此,基于该第一权值和该第二权值确定的发送权值生成的目标波束也是针对这一个目标终端设备的。也就是说,该目标波束是用于对该目标终端设备进行服务的。并且,该目标终端设备位于前述一级波束的覆盖范围内。具体地,可以参阅前述步骤203中的相关描述,具体此处不再赘述。
在实际应用中,该网络设备可以采用如下公式确定前述发送权值:
W i=W 1W ei
其中,W 1表示元素为第一权值的矩阵,W ei表示元素为第二权值的矩阵,W i表示元素为发送权值的矩阵。
依然以前述图5为例进行介绍。假设,网络设备A基于前述第一权值生成波束21,并确定波束21’中的终端设备为终端设备c和终端设备e。然后,该网络设备A确定了第二权值3和第二权值4,其中,第二权值3对应终端设备c,第二权值4对应终端设备e。然后,该网络设备A基于前述第一权值和第二权值3可以确定发送权值3,该发送权值3生成的目标波束为波束21’1,该终端设备c位于该波束21’1中;该网络设备A基于前述第一权值和第二权值4可以确定发送权值4,该发送权值4生成的目标波束为波束21’2,该终端设备e位于该波束21’2中。
本实施例中,由于该网络设备确定的第一权值指示的一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠,并且,该网络设备又基于该第一权值进一步确定第二权值。又由于,该第二权值是受限于该第一权值的,因此,由前述第一权值和第二权值确定的发送权值也受限于前述第一权值,于是,该发送权值确定的目标波束也受限于前述一级波束。因此,在前述一级波束的覆盖范围与第二小区中的任意一个波束的覆盖范围不交叠的情况下,该目标波束可以避免与第二小区中的一级波束的覆盖范围交叠,即可以避免小区间干扰。此外,由于基于第一权值确定第二权值是在第一小区内独立进行的,因此,受第一小区外的终端设备的信道衰落的影响较小。因此,即使在第一小区外的终端设备的信道状态信息的精度不高的情况下,也能确定出合适的目标波束以避免小区间的干扰。
上面对本申请实施例所提出的干扰抑制方法进行了介绍,下面将对执行该干扰抑制方法涉及的网络设备的具体结构进行介绍。
如图6所示,本实施例提供了一种通信装置60的结构示意图。前述图2和图4所对应的方法实施例中的网络设备可以基于本实施例中图6所示的通信装置60的结构。此外,前述图1、图3A、图3B、图3C以及图5对应的示例中的网络设备A、网络设备B或网络设备C也可以基于本实施例中图6所示的通信装置60的结构。
该通信装置60包括至少一个处理器601、至少一个存储器602、至少一个收发器603、至少一个网络接口605和一个或多个天线604。处理器601、存储器602、收发器603和网络接口605通过连接装置相连,天线604与收发器603相连。其中,前述连接装置可包括各类接口、传输线或总线等,本实施例对此不做限定。
该处理器601可以用于对通信协议以及通信数据进行处理,以及对整个网络设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持该通信装置60执行前述实施例中所描述的动作。通信装置60可以包括基带处理器和中央处理器,其中,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信装置60进行控制,执行软件程序,处理软件程序的数据。如图6中的处理器601可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,通信装置60可以包括多个基带处理器以适应不同的网络制式,通信装置60可以包括多个中央处理器以增强其处理能 力,通信装置60的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
例如,该处理器601,用于基于码本集合确定第一权值,基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值,并根据该第一权值和该第二权值确定发送权值。其中,该第一权值用于生成一级波束,第一小区中的一个或多个终端设备位于该一级波束的覆盖范围内,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。此外,该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
又例如,该处理器601,还用于基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息,该信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量,然后,基于该一个或多个终端设备的信号质量信息确定该第二权值。
又例如,该处理器601,还用于基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备;然后,基于该第一权值和该目标终端设备的信号质量信息确定第二权值。
又例如,该处理器601,还用于基于统计信道状态信息确定该码本集合,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,该多个终端设备包括该第一小区中的至少一个终端设备和该第二小区中的至少一个终端设备。
又例如,该处理器601,还用于获取第一信道状态信息和第二信道状态信息,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的信道状态;然后,根据该第一信道状态信息和第二信道状态信息确定该码本集合。
又例如,该处理器601,还用于确定第一信号质量信息和第二信号质量信息,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息;然后,当该第一信号质量信息指示的信号质量大于第一阈值,且,该第二信号质量信息指示的信号质量小于第二阈值时,确定该候选一级波束对应的码本为该第一权值,该第一阈值大于该第二阈值。
其余方法步骤可以参阅前述图2和图4对应的实施例中的相关介绍,此处不再赘述。
本实施例中,该存储器602主要用于存储软件程序和数据。存储器602可以是独立存在,与处理器601相连。可选的,该存储器602可以和该处理器601集成于一体,例如集成于一个或多个芯片之内。其中,该存储器602能够存储执行本申请实施例的技术方案的数据和程序代码,例如,该存储器602可以存储前述码本集合、前述第一权值和前述各个终端设备的第二权值。前述程序代码可以由处理器601来控制执行,被执行的各类计算机程序代码也可被视为是处理器601的驱动程序。应当理解的是,本实施例中的图6仅示出 了一个存储器和一个处理器。但是,在实际应用中,该通信装置60可以存在多个处理器或多个存储器,具体此处不做限定。此外,该存储器602也可以称为存储介质或者存储设备等。该存储器602可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
本实施例中,该收发器603可以用于支持该通信装置60与其他网络设备(例如,当网络设备为前述图3A中的网络设备A时,其他网络设备可以为前述图3A中的网络设备B或网络设备C)之间射频信号的接收或者发送,收发器603可以与天线604相连。收发器603包括发射机Tx和接收机Rx。具体地,一个或多个天线604可以接收射频信号,该收发器603的接收机Rx用于从天线604接收前述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器601,以便处理器601对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器603中的发射机Tx还用于从处理器601接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线604发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,前述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,前述上混频处理和数模转换处理的先后顺序是可调整的。前述数字基带信号和数字中频信号可以统称为数字信号。
应当理解的是,前述收发器603也可以称为收发单元、收发机或收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、接收器、输入口或接收电路等,发送单元可以称为发射机、发射器、输出口或发射电路等。
此外,前述网络接口605用于使该通信装置60通过通信链路,与其它通信装置相连。具体地,该网络接口605可以包括该通信装置60与核心网网元之间的网络接口,例如S1接口;该网络接口605也可以包括该通信装置60和其他网络设备(例如其他网络设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
如图7所示,本实施例提供了一种通信装置60的结构示意图。前述图2和图4所对应的方法实施例中的网络设备、网络设备A、网络设备B或网络设备C可以基于本实施例中图7所示的通信装置70的结构。
其中,该通信装置70包括处理模块701、通信模块702和存储模块703。该通信装置70可以为前述图2和图4所对应的方法实施例中的网络设备、网络设备A、网络设备B或网络设备C的芯片。
其中,前述处理模块701可以为基带处理器或中央处理器。其中,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信装置70进行控制,执 行软件程序,处理软件程序的数据。前述处理模块701可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。
前述通信模块702可以是输入或者输出接口、管脚或者电路等。
前述存储模块703可以是寄存器、缓存或者随机存取存储器(random access memory,RAM)等,该存储模块703可以和处理模块701集成在一起;该存储模块703可以是只读存储器(read only memory,ROM)或者可存储静态信息和指令的其他类型的静态存储设备,存储模块703可以与处理模块701相独立。
在一种可能的设计中,该处理模块701可以包括指令,该指令可以在处理器上运行,使得该通信装置70执行上述实施例中网络设备所执行的方法。
在又一种可能的设计中,存储模块703上存有指令,该指令可在处理模块701上运行,使得该通信装置70执行上述实施例中接收端所执行的方法。可选的,前述存储模块703中还可以存储有数据。可选的,该处理模块701中也可以存储指令和/或数据。
具体地,处理模块701,用于基于码本集合确定第一权值,该第一权值用于生成一级波束,第一小区中的一个或多个终端设备位于该一级波束的覆盖范围内,该一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠。该处理模块701,还用于基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值。该处理模块701,还用于根据该第一权值和该第二权值确定发送权值,该发送权值用于生成目标波束,该一级波束的覆盖范围内的一个终端设备位于该目标波束的覆盖范围内。
在一种可选的实施方式中,该处理模块701,具体用于基于该第一权值和该一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定该一个或多个终端设备的信号质量信息,并且,基于该一个或多个终端设备的信号质量信息确定该第二权值,其中,该信号质量信息用于指示该终端设备在该一级波束的覆盖范围内的信号质量。
在另一种可选的实施方式中,该处理模块701,具体用于基于该一个或多个终端设备的信号质量信息从该一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备,并且,基于该第一权值和该目标终端设备的信号质量信息确定第二权值。
在另一种可选的实施方式中,该处理模块701,具体用于基于统计信道状态信息确定该码本集合,该统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,该多个终端设备包括该第一小区中的至少一个终端设备和该第二小区中的至少一个终端设备。
在另一种可选的实施方式中,该处理模块701,还用于获取第一信道状态信息和第二信道状态信息,并且,根据该第一信道状态信息和第二信道状态信息确定该码本集合,其中,该第一信道状态信息用于指示该第一小区中的一个或多个终端设备的信道状态,该第二信道状态信息用于指示该第二小区中的一个或多个终端设备的信道状态。
在另一种可选的实施方式中,该处理模块701,具体用于确定第一信号质量信息和第二信号质量信息,该第一信号质量信息为该第一小区中的一个或多个终端设备在该候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为该第二小区中的一个或多个终 端设备在该候选一级波束的覆盖范围内的信号质量信息。
该处理模块701,还用于当该第一信号质量信息指示的信号质量大于第一阈值,且,该第二信号质量信息指示的信号质量小于第二阈值时,确定该候选一级波束对应的码本为该第一权值,该第一阈值大于该第二阈值。
具体地,该通信模块702,用于获取前述信道状态信息、信号质量信息等。
其余可以参考上述实施例中网络设备所执行的步骤,此处不再赘述。
应当理解的是,前述网络设备可以存在与网络设备的方法或者流程的步骤对应的功能单元(means)。以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。
本申请实施例中的处理器可以包括但不限于以下至少一种:中央处理单元CPU、微处理器、数字信号处理器(digital signal processor,DSP)、微控制器(micro controller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个片上系统(system-on-a-chip,SoC),或者也可以作为一个特殊应用集成电路(application specific integrated circuit,ASIC)的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应当理解的是,本申请实施例中,不同的附图中相同的附图标记可以视为同一事物, 除在前述实施例中有特别说明的之外,前述各个附图之间相同的附图标记的解释可以相互引用。
应当理解的是,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应当理解的是,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解的是,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种干扰抑制方法,其特征在于,包括:
    基于码本集合确定第一权值,所述第一权值用于生成一级波束,第一小区中的一个或多个终端设备位于所述一级波束的覆盖范围内,所述一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠;
    基于所述第一权值和所述一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值;
    根据所述第一权值和所述第二权值确定发送权值,所述发送权值用于生成目标波束,所述一级波束的覆盖范围内的一个终端设备位于所述目标波束的覆盖范围内。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一权值和所述一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值,包括:
    基于所述第一权值和所述一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定所述一个或多个终端设备的信号质量信息,所述信号质量信息用于指示所述终端设备在所述一级波束的覆盖范围内的信号质量;
    基于所述一个或多个终端设备的信号质量信息确定所述第二权值。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述一个或多个终端设备的信号质量信息确定所述第二权值,包括:
    基于所述一个或多个终端设备的信号质量信息从所述一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备;
    基于所述第一权值和所述目标终端设备的信号质量信息确定第二权值。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述基于码本集合确定第一权值之前,所述方法还包括:
    基于统计信道状态信息确定所述码本集合,所述统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,所述多个终端设备包括所述第一小区中的至少一个终端设备和所述第二小区中的至少一个终端设备。
  5. 根据权利要求4所述的方法,其特征在于,所述基于统计信道状态信息确定所述码本集合,包括:
    获取第一信道状态信息和第二信道状态信息,所述第一信道状态信息用于指示所述第一小区中的一个或多个终端设备的信道状态,所述第二信道状态信息用于指示所述第二小区中的一个或多个终端设备的信道状态;
    根据所述第一信道状态信息和第二信道状态信息确定所述码本集合。
  6. 根据权利要求1至5中任意一项所述的方法,其特征在于,所述码本集合中的一个码本用于确定一个候选一级波束;
    所述基于码本集合确定第一权值,包括:
    确定第一信号质量信息和第二信号质量信息,所述第一信号质量信息为所述第一小区中的一个或多个终端设备在所述候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为所述第二小区中的一个或多个终端设备在所述候选一级波束的覆盖范围内的信号 质量信息;
    当所述第一信号质量信息指示的信号质量大于第一阈值,且,所述第二信号质量信息指示的信号质量小于第二阈值时,确定所述候选一级波束对应的码本为所述第一权值,所述第一阈值大于所述第二阈值。
  7. 一种通信装置,其特征在于,包括:
    第一确定模块,用于基于码本集合确定第一权值,所述第一权值用于生成一级波束,第一小区中的一个或多个终端设备位于所述一级波束的覆盖范围内,所述一级波束的覆盖范围与第二小区中的一级波束的覆盖范围不交叠;
    所述第一确定模块,还用于基于所述第一权值和所述一级波束的覆盖范围内的一个或多个终端设备的信道状态信息确定第二权值;
    所述第一确定模块,还用于根据所述第一权值和所述第二权值确定发送权值,所述发送权值用于生成目标波束,所述一级波束的覆盖范围内的一个终端设备位于所述目标波束的覆盖范围内。
  8. 根据权利要求7所述的通信装置,其特征在于,所述第一确定模块,具体用于:
    基于所述第一权值和所述一级波束的覆盖范围内的一个或多个终端设备的信道状态信息,确定所述一个或多个终端设备的信号质量信息,所述信号质量信息用于指示所述终端设备在所述一级波束的覆盖范围内的信号质量;
    基于所述一个或多个终端设备的信号质量信息确定所述第二权值。
  9. 根据权利要求8所述的通信装置,其特征在于,所述第一确定模块,具体用于:
    基于所述一个或多个终端设备的信号质量信息从所述一级波束的覆盖范围内的一个或多个终端设备中确定目标终端设备;
    基于所述第一权值和所述目标终端设备的信号质量信息确定第二权值。
  10. 根据权利要求7至9中任意一项所述的通信装置,其特征在于,所述通信装置还包括第二确定模块;
    所述第二确定模块,用于基于统计信道状态信息确定所述码本集合,所述统计信道状态信息用于指示预设时间范围内多个终端设备的信道状态,所述多个终端设备包括所述第一小区中的至少一个终端设备和所述第二小区中的至少一个终端设备。
  11. 根据权利要求10所述的通信装置,其特征在于,所述第二确定模块,具体用于:获取第一信道状态信息和第二信道状态信息,所述第一信道状态信息用于指示所述第一小区中的一个或多个终端设备的信道状态,所述第二信道状态信息用于指示所述第二小区中的一个或多个终端设备的信道状态;
    根据所述第一信道状态信息和第二信道状态信息确定所述码本集合。
  12. 根据权利要求7至11中任意一项所述的通信装置,其特征在于,所述第一确定模块,具体用于:
    确定第一信号质量信息和第二信号质量信息,所述第一信号质量信息为所述第一小区中的一个或多个终端设备在所述候选一级波束的覆盖范围内的信号质量信息,第二信号质量信息为所述第二小区中的一个或多个终端设备在所述候选一级波束的覆盖范围内的信号 质量信息;
    当所述第一信号质量信息指示的信号质量大于第一阈值,且,所述第二信号质量信息指示的信号质量小于第二阈值时,确定所述候选一级波束对应的码本为所述第一权值,所述第一阈值大于所述第二阈值。
  13. 一种通信装置,其特征在于,所述装置用于执行如权利要求1至6中任意一项所述的方法。
  14. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至6中任意一项所述的方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至6中任意一项所述的方法。
  16. 一种计算机程序产品,所述计算机程序产品包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至6中任意一项所述的方法。
  17. 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置执行如权利要求1至6中任意一项所述的方法。
PCT/CN2020/071644 2020-01-13 2020-01-13 一种干扰抑制方法以及相关装置 WO2021142562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071644 WO2021142562A1 (zh) 2020-01-13 2020-01-13 一种干扰抑制方法以及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071644 WO2021142562A1 (zh) 2020-01-13 2020-01-13 一种干扰抑制方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2021142562A1 true WO2021142562A1 (zh) 2021-07-22

Family

ID=76863424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071644 WO2021142562A1 (zh) 2020-01-13 2020-01-13 一种干扰抑制方法以及相关装置

Country Status (1)

Country Link
WO (1) WO2021142562A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646175A (zh) * 2009-08-07 2010-02-10 重庆邮电大学 多址系统中抑制波束之间交叠干扰的方法和系统
CN102868477A (zh) * 2011-07-05 2013-01-09 中兴通讯股份有限公司 一种基于分组波束的多用户预编码方法和装置
CN104521155A (zh) * 2012-07-31 2015-04-15 三星电子株式会社 在无线通信系统中使用波束成形的通信方法和设备
EP2953282A1 (en) * 2013-01-31 2015-12-09 NEC Corporation Terminal apparatus, base station apparatus and codebook sharing method in communication system
CN109150362A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646175A (zh) * 2009-08-07 2010-02-10 重庆邮电大学 多址系统中抑制波束之间交叠干扰的方法和系统
CN102868477A (zh) * 2011-07-05 2013-01-09 中兴通讯股份有限公司 一种基于分组波束的多用户预编码方法和装置
CN104521155A (zh) * 2012-07-31 2015-04-15 三星电子株式会社 在无线通信系统中使用波束成形的通信方法和设备
EP2953282A1 (en) * 2013-01-31 2015-12-09 NEC Corporation Terminal apparatus, base station apparatus and codebook sharing method in communication system
CN109150362A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 通信方法及装置

Similar Documents

Publication Publication Date Title
WO2018141261A1 (zh) 参考信号的配置方法、配置装置及通信节点
WO2021244427A1 (zh) 一种信道测量方法及装置
WO2020156059A1 (zh) 一种参考信号管理方法、装置及系统
WO2020192363A1 (zh) 一种通信方法及设备
KR20130094343A (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
US20210195572A1 (en) Resource management method and communications apparatus
US20230396388A1 (en) Signal communications method and apparatus
WO2021168852A1 (zh) 通信方法、装置及设备
CN110830202B (zh) 通信方法、装置和通信系统
WO2021052056A1 (zh) 一种资源调度方法以及相关设备
US20240098635A1 (en) Channel state information measurement method, and apparatus
WO2021008451A1 (zh) 一种多普勒频偏估计方法及通信装置
WO2022077387A1 (zh) 一种通信方法及通信装置
US20230034327A1 (en) Beam Alignment Method and Apparatus
WO2021142562A1 (zh) 一种干扰抑制方法以及相关装置
WO2022242475A1 (zh) 一种无线信道多径信息的确定方法、装置及相关设备
WO2021169831A1 (zh) 一种波束赋形方法以及相关装置
TWI745909B (zh) 一種定位測量值的確定方法、裝置、電子設備及電腦存儲介質
WO2022027352A1 (zh) 一种抑制远端干扰的方法、装置以及设备
WO2021155659A1 (zh) 一种上行参考信号发射方式确定方法、装置及系统
US11984939B2 (en) Methods and devices for inter-cell interference estimation
WO2018137698A1 (zh) 功率控制方法及装置
WO2024045823A1 (zh) 参考信号处理方法、装置及系统
WO2023231823A1 (zh) 一种通信方法及相关装置
WO2021163942A1 (zh) 一种干扰测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913325

Country of ref document: EP

Kind code of ref document: A1