WO2021169831A1 - 一种波束赋形方法以及相关装置 - Google Patents

一种波束赋形方法以及相关装置 Download PDF

Info

Publication number
WO2021169831A1
WO2021169831A1 PCT/CN2021/076695 CN2021076695W WO2021169831A1 WO 2021169831 A1 WO2021169831 A1 WO 2021169831A1 CN 2021076695 W CN2021076695 W CN 2021076695W WO 2021169831 A1 WO2021169831 A1 WO 2021169831A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
array
network device
phase value
column
Prior art date
Application number
PCT/CN2021/076695
Other languages
English (en)
French (fr)
Inventor
陈思雁
汪利标
郑忠亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021169831A1 publication Critical patent/WO2021169831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a beamforming method and related devices.
  • Beamforming refers to adjusting the parameters of the basic unit of the phase array so that signals at certain angles obtain constructive interference, while signals at other angles obtain destructive interference.
  • beamforming can concentrate the transmission energy in a specific direction, which can increase the transmission power in one direction while the transmission power in other directions is close to zero, so as to extend the communication distance in the desired direction and avoid The purpose of causing interference in other directions.
  • the beamforming includes digital beamforming (digital beamforming, DBF), analog beamforming (analog beamforming, ABF), and hybrid beamforming (hybrid digital and analog beamforming, HBF).
  • the hybrid beamforming HBF includes the digital beamforming DBF of the baseband part and the analog beamforming ABF of the antenna feed part.
  • the network equipment maps the weights of the beams for transmitting cell reference signals (cell reference signals, CRS) and the weights of the beams for transmitting service data to the same array to form the transmitted cell reference signals respectively.
  • CRS cell reference signals
  • CRS beams and beams for transmitting service data Since the aforementioned beam for transmitting the cell reference signal CRS and the beam for transmitting service data share the same array, when the analog weight of the beam for transmitting service data changes, the radiation direction of the beam for transmitting the cell reference signal CRS will be affected by the transmission. The impact of the business data beam changes.
  • the cell reference signal CRS received by some terminal equipment will be weakened, which will affect the accuracy of the channel sounding reference signal SRS that the terminal equipment feeds back to the network equipment. , which further affects the quality of the terminal equipment receiving the aforementioned service data.
  • the embodiments of the present application provide a beamforming method and related devices, which are used to reduce the influence of beam scanning on the quality of the terminal equipment receiving the cell reference signal CRS, thereby reducing the influence on the quality of the terminal equipment receiving service data.
  • an embodiment of the present application provides a beamforming method.
  • a network device determines a first beam based on a first signal and a second signal, wherein the phase value of the first signal is The difference between the phase values of the second signal is a fixed value, the first signal and the second signal come from different arrays in the array antenna connected to the network device, and the first beam is used to direct each of the first cells
  • Each terminal device sends the cell reference signal CRS.
  • the network device determines a second beam based on a third signal, the third signal is from a different time period than the first signal and the second signal, and the third signal is generated by at least one terminal in the first cell.
  • the channel sounding reference signal SRS returned by the device is determined.
  • the network device uses the second beam to send service data to the at least one terminal device in the first cell.
  • the radiation direction of the first beam is summed
  • the coverage will be fixed. It is also because the signal for determining the first beam and the signal for determining the second beam are from different periods of time. Therefore, when it is determined that the phase value of the third signal of the second beam changes, the coverage and radiation direction of the first beam will not be affected. Therefore, the quality of the cell reference signal CRS received by the terminal equipment will not be affected, thereby reducing the impact on the quality of the service data received by the terminal equipment.
  • the first signal comes from at least one column of the first array in the array antenna
  • the second signal comes from at least one column of the second array in the array antenna.
  • the first element and the second element share the same port channel, and a row of the first element and the second element further includes at least one row of third elements, and the third element is used to transmit the third signal.
  • the network device respectively maps the first signal, the second signal, and the third signal to a part of the array antenna.
  • the first signal is mapped to at least one row of first arrays
  • the second signal is mapped to at least one row of second arrays.
  • the foregoing first element of transmitting the first signal and the second element of transmitting the second signal are distributed at intervals.
  • the network device maps the first signal and the second signal to the spaced apart In two days.
  • there is a third array for transmitting a third signal between a row of first arrays and a row of second arrays that is, the network device maps the third signal to the third array and radiates it through the third array.
  • the element for transmitting the first signal i.e., the first element
  • the element for transmitting the second signal i.e., the second element
  • the element for transmitting the third signal i.e., the third element
  • the first period is also used to transmit the third signal
  • the second period is also used to transmit the third signal. Signal.
  • the aforementioned first element can transmit a third signal in addition to the aforementioned first signal
  • the aforementioned second element can transmit a third signal in addition to the aforementioned second signal.
  • the radiation power of the foregoing third signal can be increased, and therefore, the quality of the second beam transmission service data determined by the network device using the third signal can be improved.
  • the array antenna includes at least six arrays, and one array of the first array There is also at least one column of the first array or at least one column of the second array between the column and the second array.
  • the array antenna includes eight array elements ,
  • the first and fourth rows in the eight rows are the first row
  • the fifth row and the eighth row in the eight rows are the second row
  • the fourth row in the eight rows is the second row.
  • the second array, the third array, the sixth array, and the seventh array are the third array.
  • the array antenna includes six array elements , Among the six arrays, the first and third arrays are the first array, the fourth and sixth arrays are the second array, and the second and fifth arrays are the third array .
  • the third signal includes a fourth signal from the sixth array and a fourth signal from the seventh array.
  • the absolute value of the difference between the adjusted phase value of the first signal and the adjusted phase value of the second signal is the fixed value.
  • the network device when the array antenna is composed of eight arrays, when the signals in the sixth array and the seventh array change, the network device will determine the phase value of the first signal and the second signal. The phase value of is adjusted to ensure that the difference between the phase value of the first signal and the phase value of the second signal remains unchanged.
  • the network device Before determining the second beam based on the third signal, the method further includes: the network device receives at least one channel sounding reference signal SRS returned by the terminal device in the first cell; the network device determines the channel sounding reference signal SRS based on the channel sounding reference signal SRS Channel information between the network device and the terminal device; the network device determines the third signal based on the channel information.
  • an embodiment of the present application provides a communication device, which includes a processor, a memory, and a transceiver.
  • the memory is used to store the phase value of the first signal, the phase value of the second signal and the phase value of the third signal, and program codes.
  • the processor is configured to execute the foregoing program code to determine the first beam based on the first signal and the second signal, and to determine the second beam based on the third signal.
  • the processor is further configured to control the transceiver to use the second beam to send service data to the at least one terminal device in the first cell.
  • the difference between the phase value of the first signal and the phase value of the second signal is a fixed value.
  • the first signal and the second signal come from different arrays in the array antenna connected to the network device.
  • the first beam is used to send a cell reference signal CRS to each terminal device in the first cell.
  • the third signal and the first signal and the second signal come from different periods of time.
  • the third signal is determined by the channel sounding reference signal SRS returned by at least one terminal device in the first cell.
  • the radiation direction and coverage of the first beam The range will be fixed. It is also because the signal for determining the first beam and the signal for determining the second beam are from different periods of time. Therefore, when it is determined that the phase value of the third signal of the second beam changes, the coverage and radiation direction of the first beam will not be affected. Therefore, the quality of the cell reference signal CRS received by the terminal equipment will not be affected, thereby reducing the impact on the quality of the service data received by the terminal equipment.
  • the first signal comes from at least one column of the first array in the array antenna
  • the second signal comes from at least one column of the second array in the array antenna.
  • the first element and the second element share the same port channel, and a row of the first element and the second element further includes at least one row of third elements, and the third element is used to transmit the third signal.
  • the communication device respectively maps the first signal, the second signal, and the third signal to part of the array antenna.
  • the first signal is mapped to at least one row of first arrays
  • the second signal is mapped to at least one row of second arrays.
  • the foregoing first element of transmitting the first signal and the second element of transmitting the second signal are distributed at intervals.
  • the communication device maps the first signal and the second signal to the spaced apart In two days.
  • there is a third array for transmitting a third signal between a row of first arrays and a row of second arrays that is, the communication device maps the third signal to the third array and radiates it through the third array.
  • the element for transmitting the first signal i.e., the first element
  • the element for transmitting the second signal i.e., the second element
  • the element for transmitting the third signal i.e., the third element
  • the first period is also used to transmit the third signal
  • the second period is also used to transmit the third signal. Signal.
  • the aforementioned first element can transmit a third signal in addition to the aforementioned first signal
  • the aforementioned second element can transmit a third signal in addition to the aforementioned second signal.
  • the period of transmitting the third signal is increased, the radiation power of the aforementioned third signal can be increased. Therefore, the quality of the second beam transmission service data determined by the communication device using the third signal can be improved.
  • the array antenna includes at least six arrays, and one array of the first array There is also at least one column of the first array or at least one column of the second array between the column and the second array.
  • the array antenna includes eight array elements ,
  • the first and fourth rows in the eight rows are the first row
  • the fifth row and the eighth row in the eight rows are the second row
  • the fourth row in the eight rows is the second row.
  • the second array, the third array, the sixth array, and the seventh array are the third array.
  • the array antenna includes six array elements , Among the six arrays, the first and third arrays are the first array, the fourth and sixth arrays are the second array, and the second and fifth arrays are the third array .
  • the third signal includes a fourth signal from the sixth array and a fourth signal from the seventh array.
  • Five signals When the fourth signal and/or the fifth signal changes, the processor is also used to adjust the phase value of the first signal in the first array and the phase value of the second signal in the fourth array , The absolute value of the difference between the adjusted phase value of the first signal and the adjusted phase value of the second signal is the fixed value.
  • the communication device when the array antenna is composed of eight arrays, when the signals in the sixth array and the seventh array change, the communication device will determine the phase value of the first signal and the second signal. The phase value of is adjusted to ensure that the difference between the phase value of the first signal and the phase value of the second signal remains unchanged.
  • the transceiver And is also used to receive the channel sounding reference signal SRS returned by at least one terminal device in the first cell.
  • the processor is further configured to determine the channel information between the network device and the terminal device based on the channel sounding reference signal SRS, and determine the third signal based on the channel information.
  • the embodiments of the present application provide a communication device.
  • the communication device may be the network device in the foregoing embodiment, or may be a chip in the network device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor, and the transceiver module may be a transceiver;
  • the network device may also include a storage module, and the storage module may be a memory; the storage module is used to store instructions, the The processing module executes the instructions stored in the storage module, so that the network device executes the first aspect or the method in any one of the implementation manners of the first aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.;
  • the processing module executes the instructions stored in the storage module, so that the network device executes the method in the first aspect or any one of the implementations of the first aspect, and the storage module may be a storage module in the chip (for example, a register, The cache, etc.) may also be a storage module (for example, read-only memory, random access memory, etc.) located outside the chip in the access network device.
  • the present application provides a communication device, which may be an integrated circuit chip.
  • the integrated circuit chip includes a processor.
  • the processor is coupled with a memory, and the memory is used to store a program or instruction.
  • the communication device is caused to execute the method in the first aspect or any one of the implementation manners of the first aspect .
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in the foregoing first aspect or any one of the implementation manners of the first aspect .
  • the embodiments of the present application provide a computer-readable storage medium, including instructions, when the instructions are run on a computer, so that the computer executes the foregoing first aspect or any one of the implementation manners of the first aspect.
  • the method of introduction includes
  • the radiation direction and coverage of the first beam The range will be fixed. It is also because the signal for determining the first beam and the signal for determining the second beam are from different periods of time. Therefore, when it is determined that the phase value of the third signal of the second beam changes, the coverage and radiation direction of the first beam will not be affected. Therefore, the quality of the cell reference signal CRS received by the terminal equipment will not be affected, thereby reducing the impact on the quality of the service data received by the terminal equipment.
  • FIG. 1 is a schematic diagram of an application scenario of the beamforming method in an embodiment of this application
  • Figure 2 is a schematic diagram of an internal structure of a network device in an embodiment of the application.
  • FIG. 3 is a flowchart of a beamforming method in an embodiment of the application.
  • FIG. 4 is another flowchart of the beamforming method in an embodiment of the application.
  • FIG. 5A is a schematic diagram of an embodiment of an array antenna in an embodiment of this application.
  • FIG. 5B is a schematic diagram of another embodiment of the array antenna in the embodiment of this application.
  • 5C is a schematic diagram of another embodiment of the array antenna in the embodiment of this application.
  • FIG. 5D is a schematic diagram of another embodiment of the array antenna in the embodiment of this application.
  • FIG. 5E is another schematic diagram of the internal structure of a network device in an embodiment of this application.
  • Fig. 6 is a schematic diagram of an embodiment of a communication device in an embodiment of the application.
  • Fig. 7 is a schematic diagram of another embodiment of a communication device in an embodiment of the application.
  • the embodiments of the present application provide a beamforming method and related devices, which are used to reduce the influence of beam scanning on the quality of the terminal equipment receiving the cell reference signal CRS, thereby reducing the influence on the quality of the terminal equipment receiving service data.
  • a network device can send a cell reference signal CRS to a terminal device in a certain cell under the network device.
  • the terminal device can learn the network device currently serving the terminal device and the serving cell of the network device. Then, the terminal device can decide whether to camp in the current cell or switch to another cell based on the aforementioned cell reference signal CRS. If the terminal device determines to camp in the current cell, the terminal device will periodically send a channel sounding reference signal (SRS) to the network device.
  • SRS channel sounding reference signal
  • the network device may determine the location of the terminal device based on the channel sounding reference signal SRS, and send service data to the aforementioned terminal device.
  • the beam sent by the network device for sending service data will scan among multiple terminal devices. Since the beam for sending service data and the beam for sending the cell reference signal CRS share the same array, the cell reference signal CRS sent by the network device will be affected.
  • the hybrid beamforming solution is adopted, and the aforementioned influence can be greatly reduced by adjusting the weight value and the mapping method in the network device.
  • the network device in the embodiment of the present application may be a radio access network (radio access network, RAN) device.
  • the RAN device may be a base station or an access point, or a device that communicates with the terminal device through one or more cells on the air interface in the access network.
  • the network device can be used to convert received air frames and Internet protocol packets into each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment includes an evolved base station (evolutional node B, NodeB or eNB or e-NodeB) in a long term evolution LTE system or an evolved LTE system (long term evolution advanced, LTE-A).
  • the network device may be any one of the above-mentioned devices or a chip in the device, which is not specifically limited here. Whether as a device or as a chip, the network device can be manufactured, sold, or used as an independent product. In this embodiment and subsequent embodiments, only a network device is taken as an example for introduction.
  • the terminal devices in the embodiments of the present application include devices that provide users with voice and/or data connectivity.
  • they may include a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • it may include mobile phones, computers with mobile terminal equipment, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • the terminal device in the embodiment of the present application may be any one of the above-mentioned devices or a chip in the device, and the details are not limited here. Whether as a device or as a chip, the terminal device can be manufactured, sold or used as an independent product. In this embodiment and subsequent embodiments, only the terminal device is taken as an example for introduction.
  • the hybrid beamforming process mainly includes a digital beamforming phase and an analog beamforming phase.
  • the digital beamforming stage involves baseband processing modules and multiple radio frequency links; the hybrid beamforming stage involves multiple phase shifters and array antennas.
  • the baseband processing module is used to process baseband signals, for example, to determine the digital weights of the beams, and map different digital weights to different radio frequency links.
  • the radio frequency link is used to transmit radio frequency signals.
  • the phase shifter is used to adjust the phase value in each radio frequency signal, and can also be understood as adjusting the analog weight of the beam.
  • Array antenna refers to two or more single antennas working at the same frequency, fed and arranged in space according to certain requirements to form an antenna array, also called antenna array or antenna array.
  • the antenna radiating element that constitutes the array antenna is called an array element, also called an array element.
  • Each element of the array antenna can be connected with one or more phase shifters, and the phase value of the radio frequency signal transmitted to the element can be adjusted by adjusting the phase shifter.
  • the phase shifter By mapping radio frequency signals to part of the array antenna and adjusting part of the phase shifters, it can be ensured that the beam used to transmit the cell reference signal CRS does not change with the scanning of the service beam.
  • the steps performed by the network device in the beamforming method include the following:
  • the network device determines a first beam based on the first signal and the second signal.
  • the first signal and the second signal are both radio frequency signals.
  • the first signal comes from a certain array of the array antenna connected to the network device, and the second signal comes from another array of the array antenna.
  • the difference between the phase value of the first signal and the phase value of the second signal is a fixed value.
  • the phase value of the first signal at different moments may be different, and the phase value of the second signal at different moments may be different.
  • the weight of the beam includes a phase value and an amplitude value. In the embodiment of the present application, it mainly involves adjusting the phase value corresponding to the digital weight value in the aforementioned digital beamforming stage and the phase value corresponding to the analog weight value in the aforementioned analog beamforming stage.
  • the first beam is used to send a cell reference signal CRS to each terminal device in the first cell.
  • the first cell is a cell under the network device, and one or more terminal devices reside in the first cell.
  • the terminal device in the first cell can learn which cell the terminal device resides in based on the cell reference signal CRS .
  • the terminal device may further determine whether to camp in the first cell, or whether to switch to another cell.
  • the network device determines the second beam based on the third signal.
  • the third signal is also a radio frequency signal.
  • the third signal comes from a certain column or multiple arrays of the array antenna, and the third signal is from a different array than the first signal and the second signal.
  • the third signal is determined by the channel sounding reference signal SRS returned by at least one terminal device in the first cell.
  • the second beam will be directed to the aforementioned at least one terminal device.
  • the aforementioned at least one terminal device is located within the coverage area of the aforementioned second beam.
  • the third signal is determined by the channel sounding reference signal SRS returned by the first terminal device in the first cell
  • the second beam will point to the location where the first terminal device is located.
  • the first terminal device is located within the coverage area of the foregoing second beam.
  • the second beam will be directed to the location where the first terminal device is located.
  • both the first terminal device and the second terminal device are located within the coverage of the foregoing second beam.
  • the network device may determine multiple second beams at the same time.
  • the terminal devices in the coverage of different second beams are different.
  • the third signal of each second beam is determined based on the terminal device in the first cell.
  • the channel sounding reference signal SRS received by the network device is periodically sent by the terminal device. Therefore, the third signal will also change with time. The change in the third signal may cause a change in the coverage of the second beam. Therefore, the phenomenon that the second beam scans between different terminal devices over time can be presented, and this phenomenon is also called beam scanning.
  • the network device uses the second beam to send service data to at least one terminal device in the first cell.
  • the network device can send service data to each terminal device within the coverage of the second beam.
  • the network device may use different second beams to send service data to different terminal devices in the first cell. Because, the second beam is determined based on one or more terminal devices in the first cell. Therefore, the aforementioned one or more second beams can more accurately cover the terminal equipment in the first cell, which is beneficial to improve the quality of the terminal equipment in the first cell receiving the service data sent by the network equipment.
  • the radiation direction and coverage of the first beam The range will be fixed. Also, since the signal for determining the first beam and the signal for determining the second beam are from different arrays, when the phase value of the third signal for determining the second beam changes, the coverage and radiation of the first beam The direction will not be affected. Therefore, the quality of the cell reference signal CRS received by the terminal device will not be affected, thereby reducing the impact on the quality of the service data received by the terminal device.
  • the steps performed by the network device and the terminal device in the beamforming method include the following:
  • the network device determines the first beam based on the first signal and the second signal.
  • the first signal and the second signal come from different arrays in the array antenna connected to the network device.
  • the difference between the phase value of the first signal and the phase value of the second signal is a fixed value.
  • the first signal comes from at least one column of first elements in the array antenna.
  • the first element in the array antenna is used to transmit the aforementioned first signal, that is, the first signal is radiated from the first element through a phase shifter and an amplifier via a radio frequency link.
  • the second signal comes from at least one second element of the array antenna.
  • the second element in the array antenna is used to transmit the aforementioned second signal, that is, the second signal is radiated from the second element through a phase shifter and an amplifier via a radio frequency link.
  • the foregoing first period and the foregoing second period share the same port channel.
  • a row of the first array and a row of the second array also includes at least one row of the third array.
  • one or more rows of third arrays are arranged between a row of first arrays 501 and a row of second arrays 502.
  • the arrangement of the array elements in the array antenna reflects the mapping relationship of radio frequency signals on the array antenna. In other words, there is no difference in the structure of each element in the array antenna, and the difference is the radio frequency signal mapped to each element. Or it can be understood that the radio frequency signals emitted from different periods are different.
  • the foregoing mapping relationship may be stored in a virtual antenna mapping (VAM) table, and the VAM table is stored in the network device.
  • VAM virtual antenna mapping
  • the weight of the signal and the element in the array antenna corresponding to the signal are recorded in the VAM table.
  • the VAM table records the weight value of the first signal (including the phase value and amplitude value of the first signal) and the first array element in the array antenna
  • the network device can map the first signal to The first array element, that is, the first signal is radiated from the first array element using the phase value and amplitude value of the first signal.
  • the aforementioned third period is used to transmit a third signal.
  • the first signal is not transmitted for the third period
  • the second signal is not transmitted for the third period.
  • the third signal is determined by the network device based on the channel sounding reference signal SRS returned by the terminal device. For details, please refer to the relevant introduction in step 404 and step 405 below, which will not be repeated here.
  • a column of the first array and a column of the second array further includes at least one column of the first array or at least one column of the second array.
  • first periods for example, the first period 512
  • second periods for example, the second period 513
  • third periods between the first period 512 and the second period 514.
  • the array antenna includes at least six array elements.
  • the at least six arrays include at least one first array, at least one second array, and at least one third array.
  • the arrangement of the aforementioned array elements in the array antenna can ensure that the coverage of the first beam is not affected by the second beam, and at the same time can make the aforementioned second beam narrower and ensure that the second beam has a smaller sidelobe.
  • a waveform that is too wide may easily cause interference to adjacent cells under the network device (for example, a cell adjacent to the aforementioned first cell), and a waveform that is too narrow may easily cause coverage shrinkage, or cause damage to the first cell.
  • the signal is too weak and reduces the quality of the received cell reference signal CRS.
  • the array antenna includes eight array elements. As shown in FIG. 5C, the first array 521 and the fourth array 524 of the eight arrays are the first array, and the fifth array 525 and the eighth array 528 of the eight arrays are the second array. For a period, the second column 522, the third column 523, the sixth column 526, and the seventh column 527 among the eight columns are the third column. In this embodiment, while ensuring that the coverage of the first beam is not affected by the second beam, the aforementioned second beam can be more easily shaped into a wave width of about 65°.
  • the array antenna includes six array elements. As shown in Figure 5D, among the six arrays, the first array 531 and the third array 533 are the first array, the fourth array 534 and the sixth array 536 are the second array, and the second array 532 and the second array are the second array. Five rows of 535 is the third time.
  • the array antenna may also adopt twelve columns, sixteen columns, and more columns to meet the requirements of actual application scenarios, which is not specifically limited here.
  • there are multiple arrays in each of the aforementioned arrays and FIGS. 5A to 5D only show 3 arrays for ease of introduction.
  • an array of elements in the array antenna may include 6, 8, or 16 elements, which is not specifically limited here.
  • the aforementioned first period is also used to transmit the third signal
  • the aforementioned second period is also used to transmit the third signal.
  • the first array element 521 in FIG. 5C is also used to transmit the third signal (that is, the first array element 521 is used to transmit the first signal and the third signal)
  • the fifth array element 525 is also used to transmit the third signal ( That is, the fifth array element 525 is used to transmit the second signal and the third signal).
  • the fourth column element 524 in FIG. 5C is also used to transmit the third signal (that is, the fourth column element 524 is used to transmit the first signal and the third signal)
  • the eighth column element 528 is also used to transmit the third signal.
  • the eighth array 528 is used to transmit the second signal and the third signal.
  • the first array element 531 in FIG. 5D is also used to transmit the third signal (that is, the first array element 531 is used to transmit the first signal and the third signal), and the fourth array element 534 is also used to transmit the third signal. (That is, the fourth array 534 is used to transmit the second signal and the third signal).
  • the digital beam-formed radio frequency signal passes through a phase shifter to adjust the phase value, and then is mapped to the aforementioned array antenna, which is radiated by each element in the aforementioned array antenna to obtain The aforementioned first beam.
  • the first beam is used to transmit the cell reference signal CRS.
  • the network device uses the first beam to send a cell reference signal CRS to the terminal device.
  • the network device after the network device determines the first beam, the network device will use the first beam to send the cell reference signal CRS to each terminal device in the first cell.
  • the cell reference signal CRS can indicate to the terminal device the network device that provides services for the terminal device and which cell under the network device for the terminal device. Then, the terminal device can know which network device to return the channel sounding reference signal SRS to.
  • the cell reference signal CRS is used for downlink channel quality measurement, downlink channel estimation, and a reference for the terminal device to select a cell to camp on or select a cell for handover.
  • the terminal device sends a channel sounding reference signal SRS to the network device.
  • the terminal device After the terminal device receives the aforementioned cell reference signal CRS, the terminal device can determine the signal strength of the first cell based on the aforementioned cell reference signal CRS, so as to determine whether to camp on the current cell or switch to another cell. If the terminal device determines to reside in the aforementioned first cell, the terminal device can send a channel sounding reference signal SRS to the network device.
  • the channel sounding reference signal SRS is used to estimate the uplink channel and determine the downlink beamforming for the network device. Provide evidence.
  • the network device determines the third signal based on the channel sounding reference signal SRS returned by the terminal device.
  • the network device determines the channel information between the network device and the terminal device based on the channel sounding reference signal SRS.
  • the channel information may reflect the channel status or channel quality between the network device and the terminal device.
  • the channel information is equivalent channel matrix, channel quality information or channel state information.
  • the network device uses the channel sounding reference signal SRS to estimate the uplink channel quality of different frequency bands, and performs uplink channel recovery processing. Then, the network equipment determines the aforementioned channel information in combination with the TD-LTE channel reciprocity.
  • the channel reciprocity of TD-LTE means that the uplink and downlink of the TD-LTE system are transmitted on different time slots of the same frequency resource, so in a relatively short time (the coherence time of channel propagation), It is considered that the channel fading experienced by the uplink and downlink transmission signals is the same.
  • the network device determines the third signal based on the channel information. It can also be understood that the network device determines the phase value of the radio frequency signal and the mapping relationship between the radio frequency signal and each element in the array antenna based on the channel information.
  • the network device calculates the analog weight value and the digital weight value of the optimal service performance through the scheduling algorithm according to the foregoing channel information, that is, the analog weight value and the digital weight value of the foregoing third signal.
  • the phase value in the simulation weight can be adjusted by a phase shifter connected to each array.
  • mapping relationship between the aforementioned third signal and each element in the array antenna is recorded in the mapping table in the network device. Therefore, it can also be understood that the network device determines the mapping table of the third signal based on the aforementioned channel sounding reference signal SRS.
  • the network device determines the second beam based on the third signal.
  • the phase shifter When the third signal in the network equipment reaches the phase shifter via the radio frequency link, the phase shifter will adjust the aforementioned third signal according to the phase value corresponding to the analog weight, so that the third signal is radiated according to the The aforementioned digital weight and analog weight form the aforementioned second beam.
  • the third signal, the first signal and the second signal come from different periods of time. For details, please refer to the related descriptions of FIG. 5A to FIG. 5D, which will not be repeated here.
  • the network device uses the second beam to send service data to the terminal device.
  • step 406 is similar to the aforementioned step 303, and will not be repeated here.
  • step 403 to step 406 may be executed multiple times in a loop.
  • the network device will receive the channel sounding reference signal SRS from the terminal device at different times. Then, the network device can determine a different third signal based on the channel sounding reference signal SRS received at different times, and determine the second beam for sending service data at different times.
  • the network device will also adjust the phase value of the first signal and the phase value of the second signal, so that the phase value of the first signal is the same as the phase value of the second signal.
  • the difference of the phase value is the aforementioned fixed value. In turn, it can be ensured that the radiation direction and coverage of the first beam do not change.
  • the first array element 521 is used to transmit the first signal
  • the fifth array element 525 is used to transmit the second signal.
  • the difference between the phase value of the first signal transmitted by the first array element 521 and the phase value of the second signal transmitted by the fifth array element 525 is a fixed value.
  • the fourth array element 524 is used to transmit the first signal
  • the eighth array element 528 is used to transmit the second signal.
  • the difference between the phase value of the first signal transmitted by the fourth array element 524 and the phase value of the second signal transmitted by the eighth array element 528 is a fixed value.
  • the remaining third period is used to transmit the third signal.
  • the third signal includes a fourth signal from the sixth array 526 and a fifth signal from the seventh array 527.
  • the network device adjusts the phase value of the first signal in the first array 521 and the phase value of the second signal in the fourth array 524,
  • the absolute value of the difference between the adjusted phase value of the first signal and the adjusted phase value of the second signal is the fixed value.
  • phase value of each element in the array antenna is as shown in Table 1:
  • Fig. 5E the connection relationship between each array element and the phase shifter and the radio frequency link is shown in Fig. 5E.
  • the first array element 521 and the fifth array element 525 share the same radio frequency link.
  • the phase shifter 5211 connected to the first array element 521 is used to adjust the phase value corresponding to the analog weight of the aforementioned first signal
  • the phase shifter 5251 connected to the fifth array element 525 is used to adjust the phase value of the aforementioned second signal.
  • the phase value corresponding to the simulation weight The rest of the time, and so on, will not be repeated here.
  • the phase value in the foregoing Table 1 is the phase value corresponding to the simulation weight.
  • the phase shifter 5211 correspond to the first array element 521)
  • the phase shifter 5221 correspond to the second array element 522
  • the The phase shifter 5231 correspond to the third column element 523) and the phase shifter 5241 (corresponding to the fourth column element 524)
  • the phase shifter 5251 correspond to the fifth column element 525
  • the phase shifter 5261 Corresponding to the sixth column element 526
  • the phase shifter 5271 correspond to the seventh column element 527
  • the phase shifter 5281 correspond to the eighth column element 528
  • phase value of the first signal in the first array element 521 and the phase value of the second signal in the fifth array element 525 differ by 180°. Since the phase value of the fourth signal of the sixth array element 526 is 180°, the phase value of the fifth signal of the seventh array element 527 is 180°.
  • the network device can adjust the phase value of the first signal in the first array 521 from 0° to 180°, and at the same time, set the fifth column 525 The phase value of the first signal in is adjusted from 180° to 0°. Specifically, the network device may adjust the phase value corresponding to the digital weight of the first signal to 180°, and at the same time, adjust the phase shifter 5251 corresponding to the fifth array element 525 to 0°. At this time, the difference between the phase value of the first signal in the first array element 521 and the phase value of the second signal in the fifth array element 525 is still 180°.
  • phase shifters can also be adjusted to other values, which are not specifically limited here. It should also be understood that only one phase shifter is connected to one array in the example of FIG. 5E. However, in practical applications, a period of time can be connected to multiple phase shifters to expand the adjustment range of the phase shifters, which is not specifically limited here.
  • the signal for determining the first beam and the signal for determining the second beam are from different arrays, when the phase value of the third signal for determining the second beam changes, the value of the first signal The difference between the phase value and the phase value of the second signal remains unchanged. Therefore, the radiation direction and coverage of the first beam will remain unchanged. Therefore, the quality of the cell reference signal CRS received by the terminal equipment will not be affected, thereby reducing the impact on the quality of the service data received by the terminal equipment.
  • the beamforming method proposed in the embodiments of the present application has been introduced above, and the specific structure of the network equipment involved in executing the beamforming method will be introduced below.
  • this embodiment provides a schematic structural diagram of a communication device 60.
  • the network equipment in the method embodiments corresponding to FIG. 3 and FIG. 4 may be based on the structure of the communication device 60 shown in FIG. 6 in this embodiment.
  • the communication device 60 includes at least one processor 601, at least one memory 602, at least one transceiver 603, at least one network interface 605, and one or more antennas 604.
  • the processor 601, the memory 602, the transceiver 603, and the network interface 605 are connected by a connecting device, and the antenna 604 is connected with the transceiver 603.
  • the aforementioned connection device may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor 601 may be a baseband processor or a central processing unit (CPU), and the baseband processor and the CPU may be integrated or separated.
  • the processor 601 can be used to implement various functions for the communication device 60, for example, to process communication protocols and communication data, or to control the entire communication device 60, execute software programs, and process data of the software programs; Or it is used to assist in completing calculation and processing tasks, such as calculating the phase value of the aforementioned first signal, the aforementioned second signal, or the aforementioned third signal; or the processor 601 is used to implement one or more of the aforementioned functions. kind.
  • the memory 602 is mainly used to store software programs and data.
  • the memory 602 may exist independently and is connected to the processor 601.
  • the memory 602 may be integrated with the processor 601, for example, integrated in one or more chips.
  • the memory 602 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 601 controls the execution, and various types of computer program codes executed can also be regarded as drivers of the processor 601.
  • FIG. 6 in this embodiment only shows one memory and one processor.
  • the communication device 60 may have multiple processors or multiple memories, which are not specifically limited here.
  • the memory 602 may also be referred to as a storage medium or a storage device.
  • the memory 602 may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 603 may be used to support the reception or transmission of radio frequency signals between the communication device 60 and other network equipment, and the transceiver 603 may be connected to the antenna 604.
  • the transceiver 603 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 604 can receive radio frequency signals
  • the receiver Rx of the transceiver 603 is used to receive the aforementioned radio frequency signals from the antenna 604, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and transfer the digital signals.
  • the baseband signal or digital intermediate frequency signal is provided to the processor 601, so that the processor 601 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 603 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 601, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 604 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or multiple down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the sequence of the aforementioned down-mixing processing and analog-to-digital conversion processing is The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on modulated digital baseband signals or digital intermediate frequency signals to obtain radio frequency signals.
  • the order of precedence is adjustable.
  • the aforementioned digital baseband signal and digital intermediate frequency signal can be collectively referred to as a digital signal.
  • the aforementioned transceiver 603 may also be referred to as a transceiver unit, transceiver, or transceiver device.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit.
  • the transceiver unit includes a receiving unit and a transmitting unit. It can be called a receiver, a receiver, an input port, or a receiving circuit
  • the sending unit can be called a transmitter, a transmitter, an output port, or a transmitting circuit, etc.
  • the aforementioned antenna 604 refers to a device that converts high-frequency current or energy in the form of waveguides into electromagnetic waves and emits them in a specified direction or restores electromagnetic waves from a certain direction into high-frequency currents.
  • the antenna 604 mainly refers to an array antenna, which may also be called an antenna array or an antenna array.
  • the antenna radiating unit that constitutes the array antenna is called an array element, also called an array element.
  • the array antenna includes multiple elements. Specifically, the arrangement of the elements in the array antenna can be referred to the related introduction in the aforementioned FIG. 5A to FIG. 5D, which will not be repeated here.
  • the aforementioned network interface 605 is used to connect the communication device 60 with other communication devices through a communication link.
  • the network interface 605 may include a network interface between the communication device 60 and a core network element, such as an S1 interface; the network interface 605 may also include the communication device 60 and other network equipment (such as other network equipment or core Network interface between network elements), such as X2 or Xn interface.
  • this embodiment provides a schematic structural diagram of a communication device 70.
  • the network equipment in the method embodiments corresponding to FIG. 3 and FIG. 4 may be based on the structure of the communication device 70 shown in FIG. 7 in this embodiment.
  • the communication device 70 includes a processing unit 701, a communication unit 702, and a storage unit 703.
  • the communication device 70 may be the chip of the network device in the method embodiment corresponding to FIG. 3 and FIG. 4.
  • the aforementioned processing unit 701 may be a baseband processor or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire communication device 70, execute software programs, and process data of the software programs.
  • the aforementioned processing unit 701 can integrate the functions of a baseband processor and a central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the aforementioned communication unit 702 may be an input or output interface, pin or circuit, or the like.
  • the aforementioned storage unit 703 may be a register, a cache, a random access memory (RAM), etc.
  • the storage unit 703 may be integrated with the processing unit 701; the storage unit 703 may be a read-only memory (read only memory, ROM) or other types of static storage devices that can store static information and instructions.
  • the storage unit 703 may be independent of the processing unit 701.
  • the processing unit 701 may include instructions, which may run on a processor, so that the communication device 70 executes the method executed by the network device in the foregoing embodiment.
  • an instruction is stored on the storage unit 703, and the instruction can be executed on the processing unit 701, so that the communication device 70 executes the method executed by the receiving end in the foregoing embodiment.
  • the aforementioned storage unit 703 may also store data.
  • the processing unit 701 may also store instructions and/or data.
  • the processing unit 701 is configured to determine the first beam based on the first signal and the second signal.
  • the difference between the phase value of the first signal and the phase value of the second signal is a fixed value
  • the first signal and the second signal come from different arrays in the array antenna connected to the network device, and the first signal
  • the beam is used to send a cell reference signal CRS to each terminal device in the first cell.
  • the storage unit 703 is used to store the phase value of the first signal and the phase value of the second signal.
  • the processing unit 701 is further configured to determine a second beam based on a third signal, where the third signal and the first signal and the second signal come from different periods, and the third signal is generated by at least one of the first cells.
  • the channel sounding reference signal SRS returned by the terminal device is determined.
  • the storage unit 703 is also used to store the phase value of the third signal.
  • the communication unit 702 is configured to use the second beam to send service data to the at least one terminal device in the first cell.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, instead of dealing with the original
  • the implementation process of the application examples constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束赋形方法以及相关装置,在该方法中,网络设备基于第一信号与第二信号确定第一波束,并基于第三信号确定第二波束。其中,该第一信号的相位值与该第二信号的相位值之差为固定值,该第三信号与该第一信号和该第二信号来自不完全相同的阵子。此外,该第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS,该第二波束用于向第一小区中的至少一个终端设备发送业务数据。因此,不仅第一波束的辐射方向和覆盖范围将固定不变,而且,当确定第二波束的第三信号的相位值发生改变时,该第一波束的覆盖范围和辐射方向不会受到影响。因此,不会影响终端设备接收CRS的质量,进而降低对终端设备接收业务数据的质量的影响。

Description

一种波束赋形方法以及相关装置
本申请要求于2020年02月27日提交中国国家知识产权局、申请号为202010123879.4、发明名称为“一种波束赋形方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种波束赋形方法以及相关装置。
背景技术
波束赋形(beamforming,BF)指通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。在通信系统中,通过波束赋形能够将发射能量集中在特定方向上,可以使得某个方向的发射功率增大而其他方向上的发射功率接近于零,从而达到扩展期望方向的通信距离和避免对其它方向造成干扰的目的。该波束赋形包括数字波束赋形(digital beamforming,DBF)、模拟波束赋形(analog beamforming,ABF)和混合波束赋形(hybrid beamforming,hybrid digital and analog beamforming,HBF)。其中,混合波束赋形HBF包括基带部分的数字波束赋形DBF和天馈部分的模拟波束赋形ABF。
在LTE场景下的HBF架构中,网络设备将发送小区参考信号(cell reference signal,CRS)的波束的权值和传输业务数据的波束的权值映射到相同的阵子,以分别形成发送小区参考信号CRS的波束和传输业务数据的波束。由于,前述发送小区参考信号CRS的波束和传输业务数据的波束共用相同的阵子,因此,当传输业务数据的波束的模拟权值发生改变时,发送小区参考信号CRS的波束的辐射方向会受传输业务数据的波束的影响而发生改变。此时,由于,发送小区参考信号CRS的波束的辐射方向发生改变,部分终端设备收到的小区参考信号CRS将减弱,因此,将影响终端设备向网络设备反馈的信道探测参考信号SRS的准确率,进而影响该终端设备接收前述业务数据的质量。
发明内容
本申请实施例提供了一种波束赋形方法以及相关装置,用于降低波束扫描对终端设备接收小区参考信号CRS的质量的影响,进而降低对终端设备接收业务数据的质量的影响。
第一方面,本申请实施例提供了一种波束赋形方法,在该波束赋形方法中,网络设备基于第一信号与第二信号确定第一波束,其中,该第一信号的相位值与该第二信号的相位值之差为固定值,该第一信号与该第二信号来自与该网络设备相连的阵列天线中的不同列阵子,该第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS。然后,该网络设备基于第三信号确定第二波束,该第三信号与该第一信号和该第二信号来自不完全相同的阵子,该第三信号由该第一小区中的至少一个该终端设备返回的信道探测参考信号SRS 确定。然后,该网络设备采用该第二波束向该第一小区中的该至少一个该终端设备发送业务数据。
本申请实施例中,由于第一波束由第一信号和第二信号确定,并且,第一信号的相位值与第二信号的相位值之差为固定值,因此,第一波束的辐射方向和覆盖范围将固定不变。又由于,确定第一波束的信号和确定第二波束的信号来自不完全相同的阵子。因此,当确定第二波束的第三信号的相位值发生改变时,该第一波束的覆盖范围和辐射方向不会受到影响。因此,不会影响终端设备接收小区参考信号CRS的质量,进而降低对终端设备接收业务数据的质量的影响。
根据第一方面,本申请实施例第一方面的第一种实施方式中,该第一信号来自该阵列天线中的至少一列第一阵子,该第二信号来自该阵列天线中的至少一列第二阵子,该第一阵子与该第二阵子共用同一端口通道,一列该第一阵子与一列该第二阵子之间还包括至少一列第三阵子,该第三阵子用于发射该第三信号。
本实施方式中,提出网络设备分别将第一信号、第二信号和第三信号映射至阵列天线中的部分阵子。其中,第一信号映射至至少一列第一阵子中,第二信号映射至至少一列第二阵子中。此外,前述发射第一信号的第一阵子和发射第二信号的第二阵子是相间隔地分布地,也可以理解为,网络设备将第一信号和第二信号分别映射于相间隔地分布的两个阵子中。并且,进一步地提出一列第一阵子与一列第二阵子之间还存在用于发射第三信号的第三阵子,即网络设备将第三信号映射至第三阵子,通过第三阵子辐射出。在这样的实施方式中,由于发射第一信号的阵子(即第一阵子)、发射第二信号的阵子(即第二阵子)以及发射第三信号的阵子(即第三阵子)相邻分布但却不重合,也可以理解为,不同的信号采用不同的阵子发射出。因此,可以降低第三信号对第一信号和第二信号的影响,进而可以降低第三信号确定的第二波束对第一信号和第二信号确定的第一波束的影响。
根据第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中,该第一阵子还用于发射该第三信号,该第二阵子还用于发射该第三信号。
本实施方式中,提出前述第一阵子除了发射前述第一信号之外还可以发射第三信号,前述第二阵子除了发射前述第二信号之外还可以发射第三信号。在这样的实施方式中,由于增加了发射第三信号的阵子,可以增加前述第三信号的辐射功率,因此,可以提升网络设备利用第三信号确定的第二波束传输业务数据的质量。
根据第一方面的第一种实施方式或第一方面的第二种实施方式,本申请实施例第一方面的第三种实施方式中,该阵列天线包括至少六列阵子,一列该第一阵子与一列该第二阵子之间还包括至少一列该第一阵子或至少一列该第二阵子。
本实施方式中,提出各列第一阵子与各列第二阵子之间存在交叉,有利于前述第一信号与第二信号确定更好的第一波束。此外,结合前述第三阵子,也有利于使第三信号确定更好的第二波束。
根据第一方面的第一种实施方式至第一方面的第三种实施方式中的任意一种实施方式,本申请实施例第一方面的第四种实施方式中,该阵列天线包括八列阵子,该八列阵子中的第一列阵子和第四列阵子为该第一阵子,该八列阵子中的第五列阵子和第八列阵子为 该第二阵子,该八列阵子中的第二列阵子、第三列阵子、第六列阵子和第七列阵子为该第三阵子。
根据第一方面的第一种实施方式至第一方面的第三种实施方式中的任意一种实施方式,本申请实施例第一方面的第五种实施方式中,该阵列天线包括六列阵子,该六列阵子中的第一阵子和第三列阵子为该第一阵子,第四列阵子和第六列阵子为该第二阵子,第二列阵子和第五列阵子为该第三阵子。
根据第一方面的第四种实施方式,本申请实施例第一方面的第六种实施方式中,该第三信号包括来自该第六列阵子的第四信号和来自该第七列阵子的第五信号;当该第四信号和/或该第五信号发生改变时,该网络设备调整该第一列阵子中的第一信号的相位值和该第四列阵子中的第二信号的相位值,调整后的该第一信号的相位值与调整后的该第二信号的相位值之差的绝对值为该固定值。
本实施方式中,提出当阵列天线由八列阵子构成时,当其中的第六列阵子和第七列阵子中的信号发生改变时,网络设备将对前述第一信号的相位值和第二信号的相位值进行调整,以保证前述第一信号的相位值与前述第二信号的相位值的差值保持不变。
根据第一方面、第一方面的第一种实施方式至第一方面的第六种实施方式中的任意一种实施方式,本申请实施例第一方面的第七种实施方式中,该网络设备基于第三信号确定第二波束之前,该方法还包括:该网络设备接收该第一小区中的至少一个该终端设备返回的信道探测参考信号SRS;该网络设备基于该信道探测参考信号SRS确定该网络设备与该终端设备之间的信道信息;该网络设备基于该信道信息确定该第三信号。
第二方面,本申请实施例提供了一种通信装置,该通信装置包括处理器、存储器和收发器。其中,存储器用于存储第一信号的相位值、第二信号的相位值和第三信号的相位值,以及程序代码。处理器,用于执行前述程序代码基于第一信号与第二信号确定第一波束,基于第三信号确定第二波束。该处理器,还用于控制收发器采用该第二波束向该第一小区中的该至少一个该终端设备发送业务数据。
在本实施方式中,该第一信号的相位值与该第二信号的相位值之差为固定值。该第一信号与该第二信号来自与该网络设备相连的阵列天线中的不同列阵子。该第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS。此外,该第三信号与该第一信号和该第二信号来自不完全相同的阵子。该第三信号由该第一小区中的至少一个该终端设备返回的信道探测参考信号SRS确定。
本实施例中,由于第一波束由第一信号和第二信号确定,并且,第一信号的相位值与第二信号的相位值之差为固定值,因此,第一波束的辐射方向和覆盖范围将固定不变。又由于,确定第一波束的信号和确定第二波束的信号来自不完全相同的阵子。因此,当确定第二波束的第三信号的相位值发生改变时,该第一波束的覆盖范围和辐射方向不会受到影响。因此,不会影响终端设备接收小区参考信号CRS的质量,进而降低对终端设备接收业务数据的质量的影响。
根据第二方面,本申请实施例第二方面的第一种实施方式中,该第一信号来自该阵列天线中的至少一列第一阵子,该第二信号来自该阵列天线中的至少一列第二阵子,该第一 阵子与该第二阵子共用同一端口通道,一列该第一阵子与一列该第二阵子之间还包括至少一列第三阵子,该第三阵子用于发射该第三信号。
本实施方式中,提出通信装置分别将第一信号、第二信号和第三信号映射至阵列天线中的部分阵子。其中,第一信号映射至至少一列第一阵子中,第二信号映射至至少一列第二阵子中。此外,前述发射第一信号的第一阵子和发射第二信号的第二阵子是相间隔地分布地,也可以理解为,通信装置将第一信号和第二信号分别映射于相间隔地分布的两个阵子中。并且,进一步地提出一列第一阵子与一列第二阵子之间还存在用于发射第三信号的第三阵子,即通信装置将第三信号映射至第三阵子,通过第三阵子辐射出。在这样的实施方式中,由于发射第一信号的阵子(即第一阵子)、发射第二信号的阵子(即第二阵子)以及发射第三信号的阵子(即第三阵子)相邻分布但却不重合,也可以理解为,不同的信号采用不同的阵子发射出。因此,可以降低第三信号对第一信号和第二信号的影响,进而可以降低第三信号确定的第二波束对第一信号和第二信号确定的第一波束的影响。
根据第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式中,该第一阵子还用于发射该第三信号,该第二阵子还用于发射该第三信号。
本实施方式中,提出前述第一阵子除了发射前述第一信号之外还可以发射第三信号,前述第二阵子除了发射前述第二信号之外还可以发射第三信号。在这样的实施方式中,由于增加了发射第三信号的阵子,可以增加前述第三信号的辐射功率,因此,可以提升通信装置利用第三信号确定的第二波束传输业务数据的质量。
根据第二方面的第一种实施方式或第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式中,该阵列天线包括至少六列阵子,一列该第一阵子与一列该第二阵子之间还包括至少一列该第一阵子或至少一列该第二阵子。
本实施方式中,提出各列第一阵子与各列第二阵子之间存在交叉,有利于前述第一信号与第二信号确定更好的第一波束。此外,结合前述第三阵子,也有利于使第三信号确定更好的第二波束。
根据第二方面的第一种实施方式至第二方面的第三种实施方式中的任意一种实施方式,本申请实施例第二方面的第四种实施方式中,该阵列天线包括八列阵子,该八列阵子中的第一列阵子和第四列阵子为该第一阵子,该八列阵子中的第五列阵子和第八列阵子为该第二阵子,该八列阵子中的第二列阵子、第三列阵子、第六列阵子和第七列阵子为该第三阵子。
根据第二方面的第一种实施方式至第二方面的第三种实施方式中的任意一种实施方式,本申请实施例第二方面的第五种实施方式中,该阵列天线包括六列阵子,该六列阵子中的第一阵子和第三列阵子为该第一阵子,第四列阵子和第六列阵子为该第二阵子,第二列阵子和第五列阵子为该第三阵子。
根据第二方面的第四种实施方式,本申请实施例第二方面的第六种实施方式中,该第三信号包括来自该第六列阵子的第四信号和来自该第七列阵子的第五信号。当该第四信号和/或该第五信号发生改变时,该处理器还用于调整该第一列阵子中的第一信号的相位值和该第四列阵子中的第二信号的相位值,调整后的该第一信号的相位值与调整后的该第二信 号的相位值之差的绝对值为该固定值。
本实施方式中,提出当阵列天线由八列阵子构成时,当其中的第六列阵子和第七列阵子中的信号发生改变时,通信装置将对前述第一信号的相位值和第二信号的相位值进行调整,以保证前述第一信号的相位值与前述第二信号的相位值的差值保持不变。
根据第二方面、第二方面的第一种实施方式至第二方面的第六种实施方式中的任意一种实施方式,本申请实施例第二方面的第七种实施方式中,该收发器,还用于接收该第一小区中的至少一个该终端设备返回的信道探测参考信号SRS。该处理器,还用于基于该信道探测参考信号SRS确定该网络设备与该终端设备之间的信道信息,以及基于该信道信息确定该第三信号。
第三方面,本申请实施例提供了一种通信装置,该通信装置可以是前述实施方式中的网络设备,也可以是该网络设备内的芯片。该通信装置可以包括处理模块和收发模块。当该通信装置是网络设备时,该处理模块可以是处理器,该收发模块可以是收发器;该网络设备还可以包括存储模块,该存储模块可以是存储器;该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种实施方式中的方法。当该通信装置是网络设备内的芯片时,例如,该通信装置为该网络设备中的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种实施方式中的方法,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该接入网设备内的位于该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
第四方面,本申请提供了一种通信装置,该装置可以是集成电路芯片。该集成电路芯片包括处理器。该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行如第一方面或第一方面的任一种实施方式中的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如前述第一方面或第一方面的任一种实施方式所介绍的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,以使得计算机执行如前述第一方面或第一方面的任一种实施方式所介绍的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本实施例中,由于第一波束由第一信号和第二信号确定,并且,第一信号的相位值与第二信号的相位值之差为固定值,因此,第一波束的辐射方向和覆盖范围将固定不变。又由于,确定第一波束的信号和确定第二波束的信号来自不完全相同的阵子。因此,当确定第二波束的第三信号的相位值发生改变时,该第一波束的覆盖范围和辐射方向不会受到影响。因此,不会影响终端设备接收小区参考信号CRS的质量,进而降低对终端设备接收业务数据的质量的影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请实施例中波束赋形方法的一个应用场景示意图;
图2为本申请实施例中网络设备一个内部结构示意图;
图3为本申请实施例中波束赋形方法的一个流程图;
图4为本申请实施例中波束赋形方法的另一个流程图;
图5A为本申请实施例中阵列天线的一个实施例示意图;
图5B为本申请实施例中阵列天线的另一个实施例示意图;
图5C为本申请实施例中阵列天线的另一个实施例示意图;
图5D为本申请实施例中阵列天线的另一个实施例示意图;
图5E为本申请实施例中网络设备的另一个内部结构示意图;
图6为本申请实施例中通信装置的一个实施例示意图;
图7为本申请实施例中通信装置的另一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种波束赋形方法以及相关装置,用于降低波束扫描对终端设备接收小区参考信号CRS的质量的影响,进而降低对终端设备接收业务数据的质量的影响。
为便于理解,下面先对本申请实施例提出的波束赋形方法所适应的系统架构以及应用场景进行介绍:
本申请实施例提出的方案主要基于长期演进(long term evolution,LTE)技术。如图1所示,在LTE中,网络设备可以向该网络设备下的某一个小区中的终端设备发送小区参考信号CRS。终端设备在收到小区参考信号CRS之后,该终端设备便可获知当前为该终端设备提供服务的网络设备以及该网络设备的服务小区。然后,该终端设备可以基于前述小区参考信号CRS决策是否驻留在当前小区或者切换至其他小区。若该终端设备确定驻留在当前小区,则该终端设备将周期性地向该网络设备发送信道探测参考信号(sounding reference signal,SRS)。该网络设备可以基于该信道探测参考信号SRS确定该终端设备所在位置,并向前述终端设备发送业务数据。在此过程中,该网络设备发出的用于发送业务数据的波 束会在多个终端设备之间进行扫描。由于,发送业务数据的波束和发送小区参考信号CRS的波束共用相同的阵子,因此,网络设备发送的小区参考信号CRS将受到影响。而本申请实施例中,采用混合波束赋形的方案,通过调整网络设备中的权值和映射方式,可以大幅降低前述影响。
本申请实施例中的网络设备可以为无线接入网络(radio access network,RAN)设备。具体地,该RAN设备可以是基站或接入点,也可以是接入网中在空中接口上通过一个或多个小区与终端设备通信的设备。该网络设备可用于将收到的空中帧与网际协议分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空中接口的属性管理。例如,该网络设备包括长期演进LTE系统或演进的LTE系统(long term evolution advanced,LTE-A)中的演进型基站(evolutional node B,NodeB或eNB或e-NodeB)。
此外,该网络设备可以是上述任意一种设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该网络设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以网络设备为例进行介绍。
此外,本申请实施例中的终端设备,包括向用户提供语音和/或数据连通性的设备,例如,可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、用户单元(subscriber unit)、用户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话,具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。
本申请实施例中的终端设备可以是上述任意一种设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该终端设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以终端设备为例进行介绍。
为便于理解,下面先对混合波束赋形的流程进行介绍,具体如图2所示:
本实施例中,混合波束赋形流程主要包括数字波束赋形阶段和模拟波束赋形阶段。其中,数字波束赋形阶段涉及基带处理模块和多条射频链路;混合波束赋形阶段涉及多个移相器和阵列天线。其中,基带处理模块用于处理基带信号,例如,确定波束的数字权值,并将不同的数字权值映射到不同的射频链路中。射频链路用于传输射频信号。移相器,用于调整各路射频信号中的相位值,也可以理解为,调整波束的模拟权值。阵列天线指将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵或天线阵列。构成阵列天线的天线辐射单元称为阵元,也称阵子。该阵列天线的每个阵子可以与一个或多个移相器相连,通过调整移相器以调整传输至该阵子 的射频信号的相位值。本申请实施例中,通过将射频信号映射至阵列天线中的部分阵子,并调整部分移相器,可以确保用于发送小区参考信号CRS的波束不随业务波束的扫描而变化。
下面将基于前述场景对本实施例中波束赋形方法的主要流程进行介绍,如图3所示,该波束赋形方法中的网络设备执行的步骤包括如下:
301、网络设备基于第一信号与第二信号确定第一波束。
其中,该第一信号与该第二信号均为射频信号。第一信号来自与该网络设备相连的阵列天线中的某一列阵子,该第二信号来自该阵列天线中的另一列阵子。该第一信号的相位值与该第二信号的相位值之差为固定值。可选的,不同时刻的第一信号的相位值可以不同,不同时刻的第二信号的相位值可以不同。应当理解的是,波束的权值包括相位值和幅度值。本申请实施例中,主要涉及对前述数字波束赋形阶段中的数字权值对应的相位值和前述模拟波束赋形阶段中的模拟权值对应的相位值的调整。
此外,该第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS。该第一小区为该网络设备下的一个小区,该第一小区中驻留着一个或多个终端设备。该网络设备采用该第一波束向该第一小区中的每个终端设备发送小区参考信号CRS之后,该第一小区中的终端设备可以基于该小区参考信号CRS获知该终端设备驻留于哪个小区。并且,该终端设备可以进一步确定是否要驻留在该第一小区,或者,是否需要切换至其他小区。
302、网络设备基于第三信号确定第二波束。
其中,该第三信号也为射频信号。该第三信号来自该阵列天线的某一列或多列阵子,并且,该第三信号与该第一信号和该第二信号来自不完全相同的阵子。该第三信号由该第一小区中的至少一个终端设备返回的信道探测参考信号SRS确定。该第二波束将指向前述至少一个终端设备,也可以理解为,前述至少一个终端设备位于前述第二波束的覆盖范围内。例如,当该第三信号由该第一小区中的第一终端设备返回的信道探测参考信号SRS确定的时,则该第二波束将指向该第一终端设备所在的位置。也可以理解为,该第一终端设备位于前述第二波束的覆盖范围内。又例如,当该第三信号由该第一小区中的第一终端设备和第二终端设备返回的信道探测参考信号SRS确定的时,则该第二波束将指向由该第一终端设备所在的位置和该第二终端设备所在的位置构成的区域。此时,也可以理解为,该第一终端设备和该第二终端设备均位于前述第二波束的覆盖范围内。
可选的,该网络设备可以同时确定多个第二波束。不同的第二波束的覆盖范围内的终端设备不同。当网络设备确定多个第二波束时,确定每个第二波束的第三信号均基于该第一小区中的终端设备。
此外,由于该网络设备收到的信道探测参考信号SRS是终端设备周期性发送的。因此,该第三信号随着时间的变化也将产生变化。该第三信号的变化可以导致第二波束的覆盖范围的变化。于是,可以呈现出该第二波束随时间在不同终端设备之间扫描的现象,这种现象也别称为波束扫描。
303、网络设备采用该第二波束向该第一小区中的至少一个终端设备发送业务数据。
本实施例中,网络设备在确定了前述第二波束之后,该网络设备便可向该第二波束的覆盖范围内的各个终端设备发送业务数据。可选的,当该网络设备确定多个第二波束时,该网络设备可以采用不同的第二波束向该第一小区中的不同的终端设备发送业务数据。由于,该第二波束是基于第一小区中的某一个或多个终端设备确定的。因此,可以使前述一个或多个第二波束更准确地覆盖该第一小区中的终端设备,有利于提升该第一小区中的终端设备接收网络设备发送的业务数据的质量。
本实施例中,由于第一波束由第一信号和第二信号确定,并且,第一信号的相位值与第二信号的相位值之差为固定值,因此,第一波束的辐射方向和覆盖范围将固定不变。又由于,确定第一波束的信号和确定第二波束的信号来自不完全相同的阵子,因此,当确定第二波束的第三信号的相位值发生改变时,该第一波束的覆盖范围和辐射方向不会受到影响,因此,不会影响终端设备接收小区参考信号CRS的质量,进而降低对终端设备接收业务数据的质量的影响。
下面将基于前述实施例,对波束赋形方法进行进一步介绍,如图4所示,该波束赋形方法中的网络设备和终端设备执行的步骤包括如下:
401、网络设备基于第一信号与第二信号确定第一波束。
其中,第一信号与该第二信号来自与该网络设备相连的阵列天线中的不同列阵子。该第一信号的相位值与该第二信号的相位值之差为固定值。
具体地,该第一信号来自该阵列天线中的至少一列第一阵子。也可以理解为,该阵列天线中的第一阵子用于发射前述第一信号,即该第一信号经射频链路再通过移相器和放大器从该第一阵子辐射出。该第二信号来自该阵列天线中的至少一列第二阵子。类似的,也可以理解为,该阵列天线中的第二阵子用于发射前述第二信号,即该第二信号经射频链路再通过移相器和放大器从该第二阵子辐射出。可选的,前述第一阵子与前述第二阵子共用同一端口通道。
此外,一列该第一阵子与一列该第二阵子之间还包括至少一列第三阵子。以图5A为例,一列第一阵子501与一列第二阵子502之间设置有一列或多列第三阵子。应当理解的是,该阵列天线中的各列阵子的排布方式反映的是射频信号在阵列天线上的映射关系。也就是说,阵列天线中的各个阵子的结构并不存在差异,不同的是映射到各个阵子的射频信号。或者理解为,从不同阵子发射出的射频信号不同。前述映射关系可以存储于虚拟天线映射(virtual antenna mapping,VAM)表中,该VAM表存储于该网络设备中。该VAM表中记录有信号的权值和与该信号对应的阵列天线中的阵子。例如,若该VAM表记录有第一信号的权值(包括第一信号的相位值和幅度值)以及阵列天线中的第一列阵子,则网络设备可以基于该VAM表将第一信号映射至该第一列阵子,即该第一信号采用该第一信号的相位值和幅度值从该第一列阵子辐射出。
此外,前述第三阵子用于发射第三信号。可选的,该第三阵子不会发射第一信号,该第三阵子也不会发射第二信号。其中,该第三信号为网络设备基于终端设备返回的信道探测参考信号SRS确定的。具体请参阅后文步骤404和步骤405中的相关介绍,此处不再赘 述。
可选的,一列该第一阵子与一列该第二阵子之间还包括至少一列该第一阵子或至少一列该第二阵子。以图5B为例,第一阵子511和第二阵子513之间存在一个或多个第一阵子(例如,第一阵子512)以及一个或多个第三阵子。该第一阵子512和第二阵子514之间存在一个或多个第二阵子(例如,第二阵子513)以及一个或多个第三阵子。
本实施例中,该阵列天线包括至少六列阵子。该至少六列阵子包括至少一列第一阵子、至少一列第二阵子和至少一列第三阵子。前述各列阵子在阵列天线中的排布方式可以保证第一波束的覆盖范围不受第二波束的影响的同时,可以使前述第二波束较窄并保证第二波束具有较小的副瓣。在实际应用中,波形太宽容易对该网络设备下的相邻小区(例如,与前述第一小区相邻的小区)造成干扰,波形太窄容易造成覆盖收缩,或者导致本该第一小区的信号太弱而降低接收小区参考信号CRS的质量。
在一种可选的实施方式中,该阵列天线包括八列阵子。如图5C所示,该八列阵子中的第一列阵子521和第四列阵子524为该第一阵子,该八列阵子中的第五列阵子525和第八列阵子528为该第二阵子,该八列阵子中的第二列阵子522、第三列阵子523、第六列阵子526和第七列阵子527为该第三阵子。在这种实施方式中,在保证第一波束的覆盖范围不受第二波束的影响的同时,可以使前述第二波束更容易赋形为65°左右的波宽。
在另一种可选的实施方式中,该阵列天线包括六列阵子。如图5D所示,该六列阵子中的第一阵子531和第三列阵子533为第一阵子,第四列阵子534和第六列阵子536为第二阵子,第二列阵子532和第五列阵子535为第三阵子。
可选的,在实际应用中,该阵列天线还可以采用十二列、十六列以及更多列数以满足实际应用场景的需求,具体此处不做限定。此外,前述每列阵子中有多个阵子,图5A至图5D仅仅是为了便于介绍才仅示出了3个阵子。在实际应用中,阵列天线中的一列阵子可以包含6个、8个或16个阵子,具体此处不做限定。
可选的,前述第一阵子还用于发射该第三信号,前述第二阵子还用于发射该第三信号。例如,图5C中的第一列阵子521还用于发射第三信号(即第一列阵子521用于发射第一信号和第三信号),第五列阵子525还用于发射第三信号(即第五列阵子525用于发射第二信号和第三信号)。又例如,图5C中的第四列阵子524还用于发射第三信号(即第四列阵子524用于发射第一信号和第三信号),第八列阵子528还用于发射第三信号(即第八列阵子528用于发射第二信号和第三信号)。又例如,图5D中的第一列阵子531还用于发射第三信号(即第一列阵子531用于发射第一信号和第三信号),第四列阵子534还用于发射第三信号(即第四列阵子534用于发射第二信号和第三信号)。
本实施例中,基于前述射频信号的映射方式,经数字波束赋形的射频信号再经过移相器调整相位值,然后映射到前述阵列天线中,通过前述阵列天线中的各个阵子辐射出,得到前述第一波束。该第一波束用于发送小区参考信号CRS。
402、网络设备采用该第一波束向终端设备发送小区参考信号CRS。
本实施例中,当该网络设备确定第一波束之后,该网络设备将采用该第一波束向第一小区中的每个终端设备发送小区参考信号CRS。该小区参考信号CRS可以向该终端设备指 示为该终端设备提供服务的网络设备以及为该终端设备在该网络设备下的哪个小区。于是,该终端设备才可获知向哪个网络设备返回信道探测参考信号SRS。可选的,该小区参考信号CRS用于下行信道质量测量、下行信道估计,以及为终端设备选择小区驻留或选择小区切换做参考。
403、终端设备向该网络设备发送信道探测参考信号SRS。
终端设备在接收到前述小区参考信号CRS之后,该终端设备可以基于前述小区参考信号CRS确定该第一小区的信号强度,以便确定是驻留到当前小区还是切换至其他小区。若该终端设备确定驻留在前述第一小区,则该终端设备便可以向该网络设备发送信道探测参考信号SRS,该信道探测参考信号SRS用于估计上行信道,为网络设备确定下行波束赋形提供依据。
404、该网络设备基于该终端设备返回的信道探测参考信号SRS确定第三信号。
具体地,该网络设备基于该信道探测参考信号SRS确定该网络设备与该终端设备之间的信道信息。其中,该信道信息可以反映该网络设备与该终端设备之间的信道状态或信道质量。可选的,该信道信息为等效信道矩阵、信道质量信息或信道状态信息。
具体地,网络设备使用信道探测参考信号SRS估计不同频段的上行信道质量,并进行上行信道恢复处理。然后,该网络设备结合TD-LTE信道互易性确定前述信道信息。其中,TD-LTE的信道互易性,是指TD-LTE系统的上下行链路在相同的频率资源的不同时隙上传输,所以在相对短的时间内(信道传播的相干时间),可认为上下行链路的传输信号所经历的信道衰落是相同的。
然后,该网络设备基于该信道信息确定该第三信号。也可以理解为,该网络设备基于该信道信息确定射频信号的相位值,以及射频信号与阵列天线中各个阵子的映射关系。
具体地,网络设备根据前述信道信息通过调度算法计算出业务性能最优的模拟权值和数字权值,即前述第三信号的模拟权值和数字权值。其中,模拟权值中的相位值可以通过与各个阵子相连的移相器进行调整。
应当理解的是,前述第三信号与阵列天线中的各个阵子之间映射关系记录于该网络设备中的映射表中。因此,也可以理解为,该网络设备基于前述信道探测参考信号SRS确定该第三信号的映射表。
405、该网络设备基于第三信号确定第二波束。
网络设备中的第三信号经射频链路到达移相器时,该移相器将按照模拟权值对应的相位值调整前述第三信号,以使得该第三信号在辐射出第三阵子时按照前述数字权值和模拟权值形成前述第二波束。其中,该第三信号与该第一信号和该第二信号来自不完全相同的阵子。具体参阅前述图5A至图5D相关的描述,此处不再赘述。
406、该网络设备采用该第二波束向该终端设备发送业务数据。
本实施例中,步骤406与前述步骤303类似,此处不再赘述。
本实施例中,步骤403至步骤406可以循环执行多次。此时,该网络设备将在不同时刻接收来自该终端设备的信道探测参考信号SRS。然后,该网络设备可以基于不同时刻接收的信道探测参考信号SRS确定不同的第三信号,并确定出不同时刻发送业务数据的第二 波束。此时,若该第三信号的相位值发生改变,则该网络设备也将调整前述第一信号的相位值和第二信号的相位值,以使得前述第一信号的相位值与前述第二信号的相位值的差值为前述固定值。进而可以保证该第一波束的辐射方向和覆盖范围不产生变化。
为便于理解,以前述图5C为例进行介绍。其中,第一列阵子521用于发射第一信号,第五列阵子525用于发射第二信号。第一列阵子521发射的第一信号的相位值与第五列阵子525发射的第二信号的相位值之差为固定值。类似的,第四列阵子524用于发射第一信号,第八列阵子528用于发射第二信号。第四列阵子524发射的第一信号的相位值与第八列阵子528发射的第二信号的相位值之差为固定值。其余的第三阵子用于发射第三信号。
进一步地,该第三信号包括来自该第六列阵子526的第四信号和来自该第七列阵子527的第五信号。当该第四信号和/或该第五信号发生改变时,该网络设备调整该第一列阵子521中的第一信号的相位值和该第四列阵子524中的第二信号的相位值,以使得调整后的该第一信号的相位值与调整后的该第二信号的相位值之差的绝对值为该固定值。
例如,若在第一时刻,该阵列天线中每一列阵子的相位值,如表1所示:
表1
图5C中阵子的序号 521 522 523 524 525 526 527 528
相位值 180° 180° 180° 180°
其中,各列阵子与移相器和射频链路之间的连接关系如图5E所示。其中,第一列阵子521与第五列阵子525共用同一射频链路。与该第一列阵子521相连的移相器5211用于调整前述第一信号的模拟权值对应的相位值,与该第五列阵子525相连的移相器5251用于调整前述第二信号的模拟权值对应的相位值。其余阵子,以此类推,此处不再赘述。
前述表1中的相位值为模拟权值对应的相位值。在第一时刻,经基带处理模块处理后的四路射频信号在经过移相器时,移相器5211(对应第一列阵子521)、移相器5221(对应第二列阵子522)、移相器5231(对应第三列阵子523)以及移相器5241(对应第四列阵子524)均设置相位值为0°,移相器5251(对应第五列阵子525)、移相器5261(对应第六列阵子526)、移相器5271(对应第七列阵子527)以及移相器5281(对应第八列阵子528)均设置相位值为180°。其中,第一列阵子521中的第一信号的相位值与第五列阵子525中的第二信号的相位值之间相差180°。由于第六列阵子526的第四信号的相位值为180°,第七列阵子527的第五信号的相位值为180°。
在第二时刻,当将该第六列阵子526的第四信号的相位值为0°(即将移相器5261调整为0°),并且,将第七列阵子527的第五信号的相位值为0°(即将移相器5271调整为0°)时,该网络设备可以将第一列阵子521中的第一信号的相位值由0°调整为180°,同时,将第五列阵子525中的第一信号的相位值由180°调整为0°。具体地,该网络设备可以调整该第一信号的数字权值对应的相位值为180°,同时,调整第五列阵子525对应的移相器5251为0°。此时,该第一列阵子521中的第一信号的相位值与该第五列阵子525中的第二信号的相位值的差值依然为180°。
应当理解的是,前述示例仅列举了0°或180°,在实际应用中,前述各个移相器还可 以调整为其他数值,具体此处不做限定。还应理解的是,示例图5E中一个阵子仅连接了一个移相器。但是,在实际应用中,一个阵子可以与多个移相器相连,以扩大移相器的调整范围,具体此处不做限定。
本实施例中,由于,确定第一波束的信号和确定第二波束的信号来自不完全相同的阵子,因此,当确定第二波束的第三信号的相位值发生改变时,该第一信号的相位值与第二信号的相位值的差值依然保持不变,因此,第一波束的辐射方向和覆盖范围将固定不变。因此,不会影响终端设备接收小区参考信号CRS的质量,进而降低对终端设备接收业务数据的质量的影响。
上面对本申请实施例所提出的波束赋形方法进行了介绍,下面将对执行该波束赋形方法涉及的网络设备的具体结构进行介绍。
如图6所示,本实施例提供了一种通信装置60的结构示意图。前述图3和图4所对应的方法实施例中的网络设备可以基于本实施例中图6所示的通信装置60的结构。
该通信装置60包括至少一个处理器601、至少一个存储器602、至少一个收发器603、至少一个网络接口605和一个或多个天线604。其中,处理器601、存储器602、收发器603和网络接口605通过连接装置相连,天线604与收发器603相连。其中,前述连接装置可包括各类接口、传输线或总线等,本实施例对此不做限定。
该处理器601可以是基带处理器,也可以是中央处理单元(central processing unit,CPU),基带处理器和CPU可以集成在一起或者分开。该处理器601可以用于为该通信装置60实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个通信装置60进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如计算前述第一信号的相位值、前述第二信号的相位值或前述第三信号的相位值;或者处理器601用于实现上述功能中的一种或者多种。
本实施例中,该存储器602主要用于存储软件程序和数据。存储器602可以是独立存在,与处理器601相连。可选的,该存储器602可以和该处理器601集成于一体,例如集成于一个或多个芯片之内。其中,该存储器602能够存储执行本申请实施例的技术方案的程序代码,并由处理器601来控制执行,被执行的各类计算机程序代码也可被视为是处理器601的驱动程序。应当理解的是,本实施例中的图6仅示出了一个存储器和一个处理器。但是,在实际应用中,该通信装置60可以存在多个处理器或多个存储器,具体此处不做限定。此外,该存储器602也可以称为存储介质或者存储设备等。该存储器602可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
本实施例中,该收发器603可以用于支持该通信装置60与其他网络设备之间射频信号的接收或者发送,收发器603可以与天线604相连。收发器603包括发射机Tx和接收机Rx。具体地,一个或多个天线604可以接收射频信号,该收发器603的接收机Rx用于从天线604接收前述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器601,以便处理器601对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器603中的发射机 Tx还用于从处理器601接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线604发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,前述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,前述上混频处理和数模转换处理的先后顺序是可调整的。前述数字基带信号和数字中频信号可以统称为数字信号。
应当理解的是,前述收发器603也可以称为收发单元、收发机或收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、接收器、输入口或接收电路等,发送单元可以称为发射机、发射器、输出口或发射电路等。
还应理解的是,前述天线604指将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流的装置。该天线604主要指阵列天线,该阵列天线也可以被称为天线阵或天线阵列。其中,构成阵列天线的天线辐射单元被称为阵元,也被称阵子。该阵列天线中包括多个阵子。具体地,该阵列天线中的阵子的排布方式可以参阅前述图5A至图5D中的相关介绍,此处不再赘述。
此外,前述网络接口605用于使该通信装置60通过通信链路,与其它通信装置相连。具体地,该网络接口605可以包括该通信装置60与核心网网元之间的网络接口,例如S1接口;该网络接口605也可以包括该通信装置60和其他网络设备(例如其他网络设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
如图7所示,本实施例提供了一种通信装置70的结构示意图。前述图3和图4所对应的方法实施例中的网络设备可以基于本实施例中图7所示的通信装置70的结构。
其中,该通信装置70包括处理单元701、通信单元702和存储单元703。该通信装置70可以为前述图3和图4所对应的方法实施例中的网络设备的芯片。
其中,前述处理单元701可以为基带处理器或中央处理器。其中,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信装置70进行控制,执行软件程序,处理软件程序的数据。前述处理单元701可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。
前述通信单元702可以是输入或者输出接口、管脚或者电路等。
前述存储单元703可以是寄存器、缓存或者随机存取存储器(random access memory,RAM)等,该存储单元703可以和处理单元701集成在一起;该存储单元703可以是只读存储器(read only memory,ROM)或者可存储静态信息和指令的其他类型的静态存储设备,存储单元703可以与处理单元701相独立。
在一种可能的设计中,该处理单元701可以包括指令,该指令可以在处理器上运行,使得该通信装置70执行上述实施例中网络设备所执行的方法。
在又一种可能的设计中,存储单元703上存有指令,该指令可在处理单元701上运行,使得该通信装置70执行上述实施例中接收端所执行的方法。可选的,前述存储单元703中还可以存储有数据。可选的,该处理单元701中也可以存储指令和/或数据。
具体地,处理单元701,用于基于第一信号与第二信号确定第一波束。其中,该第一信号的相位值与该第二信号的相位值之差为固定值,该第一信号与该第二信号来自与该网络设备相连的阵列天线中的不同列阵子,该第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS。该存储单元703,用于存储该第一信号的相位值和该第二信号的相位值。
处理单元701,还用于基于第三信号确定第二波束,该第三信号与该第一信号和该第二信号来自不完全相同的阵子,该第三信号由该第一小区中的至少一个该终端设备返回的信道探测参考信号SRS确定。该存储单元703,还用于存储该第三信号的相位值。
该通信单元702,用于采用该第二波束向该第一小区中的该至少一个该终端设备发送业务数据。
其余可以参考上述实施例中网络设备所执行的步骤,此处不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应当理解的是,本申请实施例中,不同的附图中相同的附图标记可以视为同一事物,除在前述实施例中有特别说明的之外,前述各个附图之间相同的附图标记的解释可以相互引用。
应当理解的是,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应当理解的是,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解的是,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种波束赋形方法,其特征在于,包括:
    网络设备基于第一信号与第二信号确定第一波束,所述第一信号的相位值与所述第二信号的相位值之差为固定值,所述第一信号与所述第二信号来自与所述网络设备相连的阵列天线中的不同列阵子,所述第一波束用于向第一小区中的每个终端设备发送小区参考信号CRS;
    所述网络设备基于第三信号确定第二波束,所述第三信号与所述第一信号和所述第二信号来自不完全相同的阵子,所述第三信号由所述第一小区中的至少一个所述终端设备返回的信道探测参考信号SRS确定;
    所述网络设备采用所述第二波束向所述第一小区中的所述至少一个所述终端设备发送业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号来自所述阵列天线中的至少一列第一阵子,所述第二信号来自所述阵列天线中的至少一列第二阵子,所述第一阵子与所述第二阵子共用同一端口通道,一列所述第一阵子与一列所述第二阵子之间还包括至少一列第三阵子,所述第三阵子用于发射所述第三信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一阵子还用于发射所述第三信号,所述第二阵子还用于发射所述第三信号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述阵列天线包括至少六列阵子,一列所述第一阵子与一列所述第二阵子之间还包括至少一列所述第一阵子或至少一列所述第二阵子。
  5. 根据权利要求2至4中任意一项所述的方法,其特征在于,所述阵列天线包括八列阵子,所述八列阵子中的第一列阵子和第四列阵子为所述第一阵子,所述八列阵子中的第五列阵子和第八列阵子为所述第二阵子,所述八列阵子中的第二列阵子、第三列阵子、第六列阵子和第七列阵子为所述第三阵子。
  6. 根据权利要求2至4中任意一项所述的方法,其特征在于,所述阵列天线包括六列阵子,所述六列阵子中的第一阵子和第三列阵子为所述第一阵子,第四列阵子和第六列阵子为所述第二阵子,第二列阵子和第五列阵子为所述第三阵子。
  7. 根据权利要求5所述的方法,其特征在于,所述第三信号包括来自所述第六列阵子的第四信号和来自所述第七列阵子的第五信号;
    当所述第四信号和/或所述第五信号发生改变时,所述网络设备调整所述第一列阵子中的第一信号的相位值和所述第四列阵子中的第二信号的相位值,调整后的所述第一信号的相位值与调整后的所述第二信号的相位值之差的绝对值为所述固定值。
  8. 根据权利要求1至7中任意一项所述的方法,其特征在于,所述网络设备基于第三信号确定第二波束之前,所述方法还包括:
    所述网络设备接收所述第一小区中的至少一个所述终端设备返回的信道探测参考信号SRS;
    所述网络设备基于所述信道探测参考信号SRS确定所述网络设备与所述终端设备之间 的信道信息;
    所述网络设备基于所述信道信息确定所述第三信号。
  9. 一种通信装置,其特征在于,用于实现如权利要求1至8中任意一项所述的方法。
  10. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至8中任意一项所述的方法。
  11. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至8中任意一项所述的方法。
  12. 一种计算机程序产品,所述计算机程序产品包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至8中任意一项所述的方法。
  13. 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置执行如权利要求1至8中任意一项所述的方法。
PCT/CN2021/076695 2020-02-27 2021-02-18 一种波束赋形方法以及相关装置 WO2021169831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010123879.4 2020-02-27
CN202010123879.4A CN113315555B (zh) 2020-02-27 2020-02-27 一种波束赋形方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2021169831A1 true WO2021169831A1 (zh) 2021-09-02

Family

ID=77370335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076695 WO2021169831A1 (zh) 2020-02-27 2021-02-18 一种波束赋形方法以及相关装置

Country Status (2)

Country Link
CN (1) CN113315555B (zh)
WO (1) WO2021169831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207642A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 基于阵列分组的通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN105900474A (zh) * 2014-11-28 2016-08-24 华为技术有限公司 一种资源配置的方法、用户设备及基站
US20170230154A1 (en) * 2016-02-10 2017-08-10 Qualcomm Incorporated Multi-cast resource allocation by aggregation level
CN107408971A (zh) * 2015-02-20 2017-11-28 三星电子株式会社 信道状态信息参考信号
US20200001290A1 (en) * 2018-06-29 2020-01-02 Canon Kabushiki Kaisha Counting method, concentration measuring apparatus and concentration measuring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737507B2 (en) * 2008-11-03 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Method for transmitting of reference signals and determination of precoding matrices for multi-antenna transmission
WO2015156491A1 (en) * 2014-04-10 2015-10-15 Lg Electronics Inc. Method of transmitting a reference signal in a wireless communication system and apparatus therefor
WO2015190648A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Beam scanning method for hybrid beamforming in wireless communication system and apparatus therefor
WO2016189990A1 (ja) * 2015-05-25 2016-12-01 ソニー株式会社 無線通信装置、端末装置及び方法
CN106992805A (zh) * 2016-01-21 2017-07-28 株式会社Ntt都科摩 多天线传输方法、基站和用户终端
JP2020511801A (ja) * 2016-11-30 2020-04-16 華為技術有限公司Huawei Technologies Co.,Ltd. ビームフォーミング方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN105900474A (zh) * 2014-11-28 2016-08-24 华为技术有限公司 一种资源配置的方法、用户设备及基站
CN107408971A (zh) * 2015-02-20 2017-11-28 三星电子株式会社 信道状态信息参考信号
US20170230154A1 (en) * 2016-02-10 2017-08-10 Qualcomm Incorporated Multi-cast resource allocation by aggregation level
US20200001290A1 (en) * 2018-06-29 2020-01-02 Canon Kabushiki Kaisha Counting method, concentration measuring apparatus and concentration measuring system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Necessity of antenna calibration for broadcast channel", 3GPP DRAFT; R1-150450, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20150209 - 20150213, 30 January 2015 (2015-01-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050948663 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207642A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 基于阵列分组的通信方法和通信装置

Also Published As

Publication number Publication date
CN113315555B (zh) 2022-05-13
CN113315555A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
US10511370B2 (en) Method for beam management for wireless communication system with beamforming
WO2020088571A1 (zh) 一种信息传输方法、装置和设备
US10903888B2 (en) Configuration method and configuration device for reference signal and communication node
CN110235496A (zh) Ue辅助srs资源分配
WO2018137424A1 (zh) 上行测量参考信号的功率控制方法、网络设备及终端设备
US20200178231A1 (en) Method for indicating pdsch receiving information, data receiving method, and apparatus
KR20190034298A (ko) 랜덤 액세스 방법, 장치 및 시스템, 단말, 및 기지국
US11664876B2 (en) Method and device for training downlink beams
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
WO2021163941A1 (zh) 一种波束对训练方法及通信装置
WO2018145529A1 (zh) 一种数据传输方法及装置
WO2020048417A1 (zh) 扇区扫描方法及相关装置
US20230275639A1 (en) Precoding Method and Communication Apparatus
US11218203B1 (en) Coordinated dynamic analog beamformer
WO2018228356A1 (zh) 通道校正的方法和网络设备
WO2021169831A1 (zh) 一种波束赋形方法以及相关装置
US20190349940A1 (en) Power control method and apparatus
US11533094B2 (en) Systems and methods for providing forced full orthogonality for beams in a MU/MIMO radio system
WO2019100918A1 (zh) 一种信息指示方法和装置
WO2018099190A1 (zh) 一种数据传输方法、接收机及发射机
WO2021208742A1 (zh) 一种波束对准方法及装置
WO2022060260A1 (en) Downlink symbol-level precoding as part of multiuser miso communication
US20230403065A1 (en) Communication using a dual polarized antenna array
WO2023016116A1 (zh) 一种信号处理方法及相关装置
WO2024061012A1 (zh) 一种波束确定的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760856

Country of ref document: EP

Kind code of ref document: A1