WO2023207642A1 - 基于阵列分组的通信方法和通信装置 - Google Patents

基于阵列分组的通信方法和通信装置 Download PDF

Info

Publication number
WO2023207642A1
WO2023207642A1 PCT/CN2023/088544 CN2023088544W WO2023207642A1 WO 2023207642 A1 WO2023207642 A1 WO 2023207642A1 CN 2023088544 W CN2023088544 W CN 2023088544W WO 2023207642 A1 WO2023207642 A1 WO 2023207642A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
group
groups
antennas
signal
Prior art date
Application number
PCT/CN2023/088544
Other languages
English (en)
French (fr)
Inventor
赵淼
竺旭东
杨建强
杨晶
孙煜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207642A1 publication Critical patent/WO2023207642A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of communication, and in particular, to an array grouping-based communication method and communication device.
  • M-MIMO massive multi input multi output
  • RF radio frequency
  • hybrid beamforming is an effective method that can reduce baseband processing complexity and power consumption.
  • HBF technology is a two-stage beamforming technology: on the one hand, the base station uses a phase shifter to achieve the first level of dynamic simulated beamforming by changing the downtilt angle of the antenna, which can reduce the complexity of baseband processing through spatial dimensionality reduction; on the other hand, The second level of digital beamforming is implemented through baseband processing to achieve multi-user scheduling and inter-user interference suppression.
  • HBF technology relies on analog beamforming (or analog weighting) technology.
  • the currently used analog beamforming scheme has the problem of large scanning overhead. Therefore, it is necessary to study an analog beam scanning scheme with smaller scanning overhead.
  • the embodiments of the present application disclose a communication method and communication device based on array grouping.
  • embodiments of the present application provide a communication method based on array grouping.
  • the method can be executed by a second communication device or by a component of the second communication device (such as a processor, a chip, or a chip system, etc.) , can also be implemented by a logic module or software that can realize all or part of the functions of the second communication device; the method includes: receiving the first signal from the first communication device through M sets of simulation rights, at least one of the M sets of simulation rights The two groups of simulation weights are different, and M is an integer greater than or equal to 2; channel estimation is performed based on the received first signal, and M channel estimation results are obtained, and the M channel estimation results correspond to the M groups of simulation weights one-to-one; according to the The M channel estimation results are processed by using target simulation weights for signal reception or transmission, and the target simulation weights are obtained based on the M sets of simulation weights.
  • receiving the first signal from the first communication device through M sets of simulation rights can speed up the simulation compared with successively receiving signals from the first communication device through each group of simulation rights in the M sets of simulation rights.
  • the speed of beam scanning saves scanning resource overhead and improves the uplink and downlink capacity of the mobile communication network.
  • receiving the first signal from the first communication device through the M group of simulation rights includes: receiving the first signal from the first communication device through the M group of simulation rights within K scan cycles, K is an integer greater than 0 and less than M. For example, K is 1.
  • the first signal from the first communication device is received within K scanning periods through M sets of simulation rights. Compared with successively receiving the signal from the first communication device through each group of M groups of simulation rights, the speed of simulation beam scanning can be accelerated and the resource overhead of scanning can be saved.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, each phase shifter in the same group is controlled synchronously, and the phase shifters in different groups are independently controlled.
  • M groups of analog weights correspond to M groups of phase shifters one-to-one.
  • Each phase shifter in the same group is controlled synchronously, and phase shifters in different groups are independently controlled; through independent control, different For phase shifters between groups, the analog weight corresponding to each group of phase shifters can be configured independently.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, the phases corresponding to each phase shifter in the same group are the same, and the phases corresponding to the phase shifters in different groups are different.
  • the simulation weights corresponding to the phase shifters in different groups can be different, and the simulation weights corresponding to the phase shifters in the same group are the same.
  • the above-mentioned M sets of simulation weights correspond to (M1*M2) sets of antennas
  • the (M1*M2) sets of antennas are any of the following: the horizontal dimension includes a continuous M1 set of antennas, and the vertical dimension includes a continuous set of M1 antennas.
  • M2 group of antennas the horizontal dimension includes the continuous M1 group of antennas, and the vertical dimension includes the interleaved M2 group of antennas; the horizontal dimension includes the interleaved M1 group of antennas, and the vertical dimension includes the continuous M2 group of antennas; the horizontal dimension includes the interleaved M1 group of antennas,
  • the vertical dimension includes interleaved M2 groups of antennas; M1 and M2 are both integers greater than or equal to 1, and (M1*M2) is greater than or equal to M.
  • M groups of simulation weights correspond to (M1*M2) groups of antennas.
  • the signals received by each group of antennas in the (M1*M2) group of antennas are similar to the signals received by all antennas, ensuring that each group of antennas receives The signal can be used for channel estimation.
  • the target simulation right is one of the above-mentioned M groups of simulation rights.
  • the target simulation right is one of the M groups of simulation rights, and a group of better simulation rights can be quickly determined from the M groups of simulation rights as the target simulation rights.
  • the target simulation weight is a group in the weight codebook, and the M groups of simulation rights are included in the weight codebook.
  • the target simulation weight is a group in the weight codebook. Compared with selecting the simulation weight currently used for signal reception or transmission processing from the above-mentioned M groups of simulation weights, a more suitable signal can be obtained. Analog weights used in receive or transmit processing can improve beam detection accuracy.
  • the above target simulation weight is not included in the weight codebook.
  • the communication method based on array grouping provided in the first aspect is applied to the terminal device, and the target simulation right is not included in the weight codebook, which means that the target simulation right is not included in the weight codebook configured by the terminal device.
  • the array grouping-based communication method provided in the first aspect is applied to access network equipment. If the target simulation right is not included in the weight codebook, it means that the target simulation right is not included in the weight configured by the access network equipment. Value code book.
  • the target simulation weight is not included in the weight codebook.
  • the target simulation weight can be understood as a simulation weight that is more suitable for current signal reception or transmission processing than any simulation weight in the weight codebook. Therefore, It can improve the accuracy of beam detection and improve the quantification accuracy of simulation weights.
  • the M channel estimation results are channel estimation results assuming that the first signal has not passed through the phase shifters corresponding to the M sets of analog weights.
  • the target simulation weight is included in the weight codebook. Or, the target simulation weight is not included in the weight codebook.
  • the M channel estimation results are channel estimation results assuming that the first signal has not passed through the phase shifters corresponding to the M sets of simulation weights; according to the M channel estimation results, the target simulation weights are used for signal reception or transmission processing ; Can improve the accuracy of beam detection.
  • using the target simulation weight to perform signal reception or transmission processing based on the above M channel estimation results includes: determining M phase shifter level channel response matrices based on the above M channel estimation results, where The channel response matrices of M phase shifter levels correspond to the M channel estimation results one-to-one.
  • One of the channel response matrices of the M phase shifter levels corresponds to a group of M groups of phase shifters.
  • the channel response matrix according to the channel response matrix of the M phase shifter levels, it is determined to use the target simulation weight for signal reception or transmission processing; the target simulation weight is used for signal reception or transmission processing.
  • the channel response matrix of each phase shifter level can be understood as the channel response matrix corresponding to the group of phase shifters without analog weighting.
  • the target simulation weight is determined to be used for signal reception or transmission processing based on the channel response matrices of M phase shifter levels; this can improve the accuracy of beam detection.
  • determining the target analog weight to use for signal reception or transmission processing based on the channel response matrices of the M phase shifter levels includes: determining the weights based on the channel response matrices of the M phase shifter levels.
  • the quality measurement indicator corresponding to any simulation weight in the weight codebook is used to measure the quality of signal reception or transmission processing using this arbitrary simulation weight.
  • the weight codebook includes a target simulation right; according to the quality measurement index of each simulation right in the weight codebook, it is determined to use the target simulation right for signal reception or transmission processing.
  • the target simulation weight is determined to be used for signal reception or transmission processing based on the quality indicators of each simulation weight in the weight codebook; it can be accurately and quickly determined to be more suitable for current signal reception or transmission processing. Target simulation rights adopted.
  • determining the use of target analog weights for signal reception or transmission processing based on the channel response matrices of the M phase shifter levels includes: obtaining the first first step based on the channel response rectangles of the M phase shifter levels. Channel response matrix; perform matrix decomposition on the first channel response matrix, and construct target simulation weights based on the obtained feature vectors.
  • matrix decomposition is performed on the first channel response matrix, and the target simulation weight is constructed based on the obtained feature vector.
  • the target simulation weight is not limited to the existing weight codebook, but is calculated. Obtaining the simulation weight to be used in this way can improve the accuracy of beam detection and improve the quantification accuracy of the simulation weight.
  • determining the channel response matrices of the M phase shifter levels includes: obtaining a second channel response matrix, the second channel response matrix including the third channel response matrix.
  • the channel response matrix of the first simulation weight and the third channel response matrix pass through the channel response matrix of the second simulation weight, and the first simulation weight and the second simulation weight are included in M groups of simulation weights; according to the second channel response matrix and the simulation weight matrix to obtain a third channel response.
  • the simulation weight matrix is obtained based on two or more sets of simulation weights.
  • the third channel response matrix is included in the channel response matrices of the M phase shifter levels.
  • the third channel response (a phase shifter-level channel response matrix) is obtained based on the second channel response matrix and the simulation weight matrix; and then the channel response matrices of M phase shifter levels are used to determine the simulation method used. right.
  • the array grouping-based communication method provided in the first aspect is applied to a terminal device or a device in the terminal device, the above-mentioned first signal is a downlink signal (such as a pilot signal), and the above-mentioned first communication
  • the equipment is access network equipment.
  • the end device can achieve beam scanning faster.
  • the array grouping-based communication method provided in the first aspect is applied to access network equipment or a device in the access network equipment, and the above-mentioned first signal is an uplink signal (such as a pilot signal),
  • the above-mentioned first communication device is a terminal device.
  • the access network equipment can achieve beam scanning faster.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the first aspect.
  • the communication device may be a communication device (such as a mobile phone, a base station, a laptop computer, etc.), or It may be a component of a communication device (such as a processor, a chip, or a chip system, etc.), or it may be a logic module or software that can realize all or part of the functions of the communication device.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes an interface module and a processing module, wherein: the interface module is configured to receive the first signal from the first communication device through M sets of simulation rights, at least one of the M sets of simulation rights The two groups of simulation weights are different, and M is an integer greater than or equal to 2; the processing module is used to perform channel estimation based on the first signal received by the interface module to obtain M channel estimation results, and the M channel estimation results are consistent with the M group of simulations.
  • the weights correspond one to one; the processing module is also used to control the interface module to perform signal reception or transmission processing using the target simulation weights based on the M channel estimation results, and the target simulation weights are obtained based on the M groups of simulation weights.
  • the interface module is specifically configured to receive the first signal from the first communication device within K scan cycles through the M sets of simulation rights, where K is an integer greater than 0 and less than M.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, each phase shifter in the same group is controlled synchronously, and the phase shifters in different groups are independently controlled.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, the phases corresponding to each phase shifter in the same group are the same, and the phases corresponding to the phase shifters in different groups are different.
  • the above-mentioned M sets of simulation weights correspond to (M1*M2) sets of antennas
  • the (M1*M2) sets of antennas are any of the following: the horizontal dimension includes a continuous M1 set of antennas, and the vertical dimension includes a continuous set of M1 antennas.
  • M2 group of antennas the horizontal dimension includes the continuous M1 group of antennas, and the vertical dimension includes the interleaved M2 group of antennas; the horizontal dimension includes the interleaved M1 group of antennas, and the vertical dimension includes the continuous M2 group of antennas; the horizontal dimension includes the interleaved M1 group of antennas,
  • the vertical dimension includes interleaved M2 groups of antennas; M1 and M2 are both integers greater than or equal to 1, and (M1*M2) is greater than or equal to M.
  • the target simulation right is one of the M groups of simulation rights.
  • the target simulation weight is a group in the weight codebook, and the M groups of simulation rights are included in the weight codebook.
  • the above target simulation weight is not included in the weight codebook.
  • the M channel estimation results are channel estimation results assuming that the first signal has not passed through the phase shifters corresponding to the M sets of analog weights.
  • the processing module is specifically configured to determine channel response matrices of M phase shifter levels based on the above M channel estimation results, and the channel response matrices of the M phase shifter levels are consistent with the M channel response matrices.
  • the channel estimation results have a one-to-one correspondence.
  • One channel response matrix among the channel response matrices of the M phase shifter levels is a corresponding channel response matrix for a group of M groups of phase shifters; according to the channel response matrices of the M phase shifter levels
  • the channel response matrix determines the target simulation weight to be used for signal reception or transmission processing; the target simulation weight is used for signal reception or transmission processing.
  • the processing module is specifically configured to determine the quality index corresponding to each simulation weight in the weight codebook based on the channel response matrices of the M phase shifter levels.
  • the weight codebook The quality measurement index corresponding to any simulation right in is used to measure the quality of signal reception or transmission processing using this arbitrary simulation right.
  • the weight codebook includes the above target simulation weight; according to the weight codebook The merits and demerits of each simulation right are measured to determine the use of the target simulation right for signal reception or transmission processing.
  • the processing module is specifically configured to obtain a first channel response matrix based on the channel response rectangles of the M phase shifter levels; perform matrix decomposition on the first channel response matrix, and perform matrix decomposition according to the obtained Feature vectors construct target simulation weights.
  • the processing module is specifically configured to obtain a second channel response matrix.
  • the second channel response matrix includes a channel response matrix of the third channel response matrix after passing the first simulation weight and the third channel response matrix.
  • the first simulation weight and the second simulation weight are included in the M group of simulation weights; according to the second channel response matrix and the simulation weight matrix, a third channel response is obtained, and the simulation weight matrix is based on the two Obtained from one or more sets of simulation weights, the third channel response matrix is included in the channel response matrices of the M phase shifter levels.
  • the communication device provided in the second aspect is a terminal device or a device in the terminal device, and the above-mentioned first signal is a downlink signal.
  • the communication device provided in the second aspect is an access network device or a device in the access network device, and the first signal is an uplink signal.
  • the present application provides a communication device.
  • the communication device includes a processor.
  • the processor is coupled to a memory.
  • the memory is used to store programs or instructions.
  • the program or instructions are executed by the processor, the communication is enabled.
  • the device performs the method shown in the above first aspect or any possible implementation of the first aspect.
  • the process of sending information (or signals) in the above method can be understood as a process of outputting information based on instructions of the processor.
  • the processor In outputting information, the processor outputs the information to the transceiver for transmission by the transceiver. After the information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the processor receives incoming information
  • the transceiver receives the information and feeds it into the processor. Furthermore, after the transceiver receives the information, the information may need to undergo other processing before being input to the processor.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the processor may also be configured to execute a program stored in the memory.
  • the communication device performs the method shown in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the memory is located outside the communication device. In a possible implementation, the memory is located within the above communication device.
  • the processor and the memory may be integrated into one device, that is, the processor and the memory may be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals or send signals, etc.
  • the application provides another communication device.
  • the communication device includes a processing circuit and an interface circuit.
  • the interface circuit is used to obtain data or output data; the processing circuit is used to perform the above-mentioned first aspect or any of the first aspects. Possible implementations are shown with the corresponding methods.
  • the present application provides a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program includes program instructions. When executed, the program instructions cause the computer to perform the above-mentioned first aspect or the third aspect. Any possible implementation of the method shown on the one hand.
  • the present application provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program includes program instructions. When executed, the program instructions cause the computer to perform the above-mentioned first aspect or any possible method of the first aspect. Implement the method shown.
  • FIG. 1 is a schematic diagram of an HBF architecture provided by this application.
  • Figure 2 is a schematic diagram of a simulated beam scanning provided by this application.
  • Figure 3 is an example of a wireless communication system provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a signal processing flow provided by an embodiment of the present application.
  • FIGS. 6A, 6B, 6C, and 6D are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • FIGS 7A, 7B, and 7C are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • 8A, 8B, 8C, and 8D are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • Figure 9 is an interactive flow chart of an array grouping-based communication method provided by an embodiment of the present application.
  • Figure 10 is an interactive flow chart of another array grouping-based communication method provided by an embodiment of the present application.
  • Figure 11 is an interactive flow chart of another communication method based on array grouping provided by an embodiment of the present application.
  • Figure 12 is an interactive flow chart of another array grouping-based communication method provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device 1300 provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another communication device 140 provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another communication device 150 provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • HBF technology is a technology that can reduce baseband processing complexity and power consumption.
  • HBF technology a two-layer architecture of analog and digital will be used.
  • Figure 1 is a schematic diagram of an HBF architecture provided by this application.
  • the HBF architecture includes modules Analog digital (digital) two-layer architecture, digital BF stands for digital architecture.
  • the signal of the baseband processor will realize the beam forming of the digital part through the baseband port (digital forming shown in Figure 1), and then pass through the intermediate frequency channel, and then through
  • the processing of the analog shifter also known as analog weight/analog weighting/analog beam
  • completes the beamforming of the analog portion analog shaping shown in Figure 1).
  • FIG. 2 is a schematic diagram of a simulated beam scanning provided by this application.
  • the base station uses a set of analog weights to receive uplink signals (such as detection pilot signals) at each of K consecutive moments (i.e., T1 to TK moments).
  • the beam above each moment in Figure 2 It represents the signal received by the base station side at this time.
  • the multiple beams on the base station side represent the uplink signals received at different times using different simulation weights.
  • the base station obtains estimates of K channel responses from the base station to the terminal device through channel estimation for K consecutive moments.
  • Each channel response corresponds to a set of simulation weights; Then, based on the estimation of the K channel responses, the best simulation weight is used to receive (or transmit) uplink or downlink data. That is to say, only after the base station performs multiple simulation beam scans can the simulation right used for receiving (or transmitting) uplink or downlink data be determined.
  • Simulation weight, simulation weighting, simulation weight scan
  • Simulation weight represents the weight matrix in the simulation weighting process.
  • the weight matrix is composed of the phase corresponding to the shifter.
  • the types of simulation weights are limited.
  • the network side will pre-store all simulation weight combinations (ie, weight codebook), and only one of the simulation weights can be used at each time.
  • Simulation weighting represents the process of loading simulation weights, describing the simulation processing of the signal through the term shifter, which is equivalent to the process of multiplying the weight matrix.
  • Simulation weight scanning describes the process of using different simulation weights on the network side at different times, which is called the "scanning" behavior of simulation weights.
  • the communication method based on array grouping provided by this application can speed up the simulation beam scanning, save the resource overhead of scanning, and improve the uplink and downlink capacity of the cell of the mobile communication network. Furthermore, the communication method based on array grouping of the present application can also overcome the defects of limited accuracy and number of analog weights to a certain extent.
  • Figure 3 is an example of a wireless communication system provided by an embodiment of the present application.
  • the communication system includes: one or more terminal devices.
  • the terminal devices for example, base station
  • Figure 3 only takes one access network device as an example.
  • a wireless communication system may be composed of cells, each cell including one or more access network devices, and the access network devices provide communication services to multiple terminals.
  • Wireless communication systems can also perform point-to-point communication, such as communication between multiple terminals.
  • a terminal is a device with wireless sending and receiving functions.
  • the terminal can communicate with one or more core network (CN) devices (or core devices) via access network equipment (or access equipment) in the radio access network (RAN).
  • CN core network
  • RAN radio access network
  • Terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal may also be called terminal equipment or user equipment (UE), and may be a mobile phone (mobile phone), mobile station (MS), tablet computer (pad), or computer with wireless transceiver function.
  • terminals may include various handheld devices with wireless communication capabilities, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be a handheld device (handset) with wireless communication function, a vehicle-mounted device, a wearable device or a terminal in the Internet of Things, the Internet of Vehicles, any form of terminal in 5G and communication systems evolved after 5G, etc. This application is not limited to this.
  • the access network device can be any device that has wireless transceiver functions and can communicate with the terminal, such as a radio access network (RAN) node that connects the terminal to the wireless network.
  • RAN nodes include: macro base stations, micro base stations (also called small stations), relay stations, access points, gNBs, transmission reception points (TRP), evolved Node B, eNB), wireless network controller (radio network controller, RNC), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), WiFi access point (access point, AP), integrated access and backhaul (IAB), etc.
  • FIG. 4 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes: a baseband processing unit (BBU), a remote radio unit (RRU), and an antenna module.
  • the RRU can be replaced by an RF unit.
  • the antenna module can be called an antenna module or an antenna array.
  • the BBU can be a baseband processor.
  • the analog shifter in the RRU can control the antenna array in groups (that is, realize group control of the antenna array). For detailed description, see later.
  • the RRU and the antenna module are collectively called the active antenna processing unit (active antenna unit, AAU).
  • AAU active antenna unit
  • the communication device shown in the embodiment of the present application may also have more components or modules than shown in Figure 4 , which is not limited by the embodiment of the present application.
  • the software implementation of the communication device provided by the embodiment of the present application can be, but is not limited to, implemented on AAU, RRU, and BBU. The main functions of each module are described below:
  • Antenna module A component used to transmit or receive electromagnetic waves in a wireless communication device. It is used to convert analog signals into space electromagnetic waves or receive space electromagnetic waves into analog signals.
  • AAU Active antenna processing unit, which integrates the functions of both RRU and antenna module.
  • RRU completes the conversion of intermediate frequency signals into radio frequency signals and is connected to the antenna module through feeders.
  • BBU Digital processing of baseband signals, including digital beam transformation, coding modulation and other signal processing processes.
  • the communication device in Figure 4 is an access network device, such as a base station.
  • the data signal flow is passed from the BBU to the RRU, and then to the antenna module to send out air interface signals.
  • the data signal stream is received from the antenna module and passed to the BBU module through the RRU module for processing.
  • the communication device in Figure 4 is a terminal device, such as a mobile phone.
  • the data signal flow is passed from the BBU to the RRU, and then to the antenna module to send out air interface signals.
  • the data signal stream is received from the antenna module and passed to the BBU module through the RRU module for processing.
  • Figure 4 describes the structure of a communication device provided by an embodiment of the present application.
  • the communication method based on array grouping provided by this application is mainly used in signal processing processes that require fast and accurate implementation of analog beam scanning.
  • An example of a signal processing flow applicable to the array grouping-based communication method provided by this application will be introduced below with reference to the accompanying drawings.
  • FIG. 5 is a schematic diagram of a signal processing flow provided by an embodiment of the present application.
  • the dotted line box 501 shows the detection pilot branch
  • the dotted line box 502 shows the service data branch.
  • the sounding pilot branch can be understood as the access network equipment performing the analog weighting process and the channel estimation process based on the pilot signal (such as sounding reference signal (SRS)) from the terminal equipment.
  • the purpose of the access network equipment to perform the detection pilot branch is to determine the simulation weight to be used for signal transmission or reception processing through the simulation weighting process and the channel estimation process, that is, to implement the design process of the simulation weight.
  • simulation weight and simulation weight are the same concepts.
  • the detection pilot branch includes the following processing process: the access network equipment receives the pilot signal from the terminal equipment through the antenna; the antenna signals received by different groups of antennas are loaded with different simulation weights to obtain multiple groups of simulation weighted signals, in which the phase shift
  • the device realizes group control of the antenna; converts the analog weighted signal into a digital signal through AD sampling, and performs channel estimation (which can be called channel detection).
  • the service data branch can be understood as the access network equipment implementing the simulation weighting process according to the simulation weight determined by detecting the pilot branch, thereby realizing the transmission or reception of signals.
  • the purpose of the access network equipment to perform the service data branch is to send or receive signals.
  • a possible processing process of the service data branch is as follows: the access network device receives the data signal (carrying service data) from the terminal device through the antenna; the received data signal is loaded with the signal determined by detecting the pilot branch.
  • Analog weight is to apply the determined analog weight to the corresponding phase of the phase shifter; convert the analog weighted signal into a digital signal through AD sampling, and perform digital weighting.
  • Another possible processing process of the service data branch (corresponding to the signal transmission process) is as follows: the access network equipment generates a data signal according to the service data to be sent; digitally weights the data signal; and uses DA sampling to convert the digitally weighted
  • the signal is converted into an analog signal; the analog signal is loaded with an analog weight determined by detecting the pilot branch (analog weighting process), that is, the determined analog weight is applied to the phase corresponding to the phase shifter; the analog weighted analog signal is sent through the antenna.
  • Figure 5 takes access network equipment as an example to describe an example of a signal processing flow applicable to the array grouping-based communication method provided by this application. It should be understood that the terminal device can perform a signal processing process similar to that in Figure 5, which will not be described again here.
  • the main invention of this application is to realize receiving signals through multiple groups of analog rights at the same time through antenna grouping.
  • the antennas in the communication device are divided into multiple groups.
  • the antennas in different groups correspond to different simulation weights, and the antennas in the same group correspond to the same simulation weights.
  • the communication device can simultaneously pass multiple groups of simulation weights (each group The analog weight corresponds to one or more sets of antennas) to receive signals. Therefore, the communication device can receive signals through multiple sets of different analog weights during one analog beam scanning process.
  • the currently used analog beam scanning method uses a set of analog weights to receive signals at each of K consecutive moments (i.e., T1 to TK moments); where each moment can be understood as an analog beam scanning period. Or simulate a beam scanning process.
  • the communication method based on array grouping provided by this application can achieve the technical effect of receiving signals through K groups of different simulation rights in one simulation beam scanning cycle or one simulation beam scanning process, so it can speed up the speed of simulation beam scanning.
  • the communication device implements antenna grouping through phase shifters corresponding to each antenna, and each group of antennas corresponds to a group of phase shifters.
  • the phase shifters corresponding to the antennas in the same group have the same phase
  • the phase shifters corresponding to the antennas in different groups have different phases.
  • each antenna in the same group is controlled by the same phase shifter (corresponding to the same phase)
  • each antenna in a different group is controlled by a different phase shifter (corresponding to a different phase).
  • the M sets of analog weights used by the communication device correspond to the M sets of phase shifters one-to-one.
  • Each phase shifter in the same group is controlled synchronously, and the phase shifters in different groups are controlled independently. of.
  • the M sets of analog weights used by the communication device correspond to the M sets of phase shifters one-to-one.
  • the phases corresponding to each phase shifter in the same group are the same, and the phases corresponding to the phase shifters between different groups are the same. different.
  • the simulation weight corresponding to each group of phase shifters can be pre-configured (or fixed storage implementation), and can also be updated to different simulation weights.
  • the multi-antenna architecture in communication devices can be described as (Ver*Hor), that is, the two-dimensional antenna shape of vertical array * horizontal array.
  • Ver is an integer greater than or equal to 2
  • Hor is an integer greater than or equal to 2.
  • horizontal antennas i.e. horizontal dimensions
  • the number of represents the number of columns of the two-dimensional antenna diagram
  • the number of vertical antennas i.e. vertical dimensions
  • the number of antennas refers to the number of antennas for baseband processing, not the number of antennas at the shifter stage.
  • each vertical or horizontal position can contain multiple polarization antennas.
  • the communication device receives the first signal from the first communication device through M sets of analog rights.
  • the M sets of analog rights correspond to (M1*M2) sets of antennas.
  • the group of antennas is any of the following: the horizontal dimension includes a continuous M1 group of antennas, and the vertical dimension includes a continuous M2 group of antennas; the horizontal dimension includes a continuous M1 group of antennas, and the vertical dimension includes an interleaved M2 group of antennas; the horizontal dimension includes an interleaved M1 group of antennas group of antennas, the vertical dimension includes the continuous M2 group of antennas; the horizontal dimension includes the interleaved M1 group of antennas, and the vertical dimension includes the interleaved M2 group of antennas; the above M1 and M2 are both integers greater than or equal to 1, (M1*M2) is greater than or equal to M above.
  • the communication device is an access network device
  • the first communication device is a terminal device
  • the first signal is an uplink signal
  • the communication device is a terminal device
  • the first communication device is an access network device
  • the first signal is a downlink signal.
  • One set of simulation rights can correspond to one set of antennas or to multiple sets of antennas. That is, multiple sets of antennas may correspond to the same set of analog weights. It should be noted that the definition of the horizontal dimension including the continuous M1 group of antennas is: for antennas numbered from 1 to Hor, For the first group, And so on for the second group.
  • the definition of the M1 group of antennas including interweaving in the horizontal dimension is: for antennas numbered from 1 to Hor, ⁇ 1,1+M 1 ,1+2M 1 ...> is the first group, ⁇ 2,2+M 1 , 2+2M 1 ...> is the second group, and so on. It should be understood that for the vertical dimension including the continuous M2 group of antennas, the specific description of the grouping scheme is consistent with the horizontal dimension, as long as the number is changed to Ver; for the vertical dimension including the interleaved M2 group of antennas, the specific description of the grouping scheme It is consistent with the horizontal dimension, as long as the number is changed to Ver.
  • M 1 will not exceed Hor
  • M 2 will not exceed the number of Ver.
  • M1 and M2 are not limited to even numbers, and at least one of M1 and M2 is an integer greater than 1.
  • M1 is 3, M2 is 8, and M is 24.
  • M1 4, M2 is 7, and M is 28.
  • M1 1, M2 is 2, and M is 2.
  • the position of the item shifter dimension includes the vertical dimension or the horizontal dimension.
  • 6A, 6B, 6C, and 6D are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • 601 to 608 represent 8 phase shifters, and each " ⁇ " represents an antenna (for a phase shifter).
  • Antennas with the same shading are antennas of the same group.
  • the number of shifters is 8
  • the number of baseband processing modules is 4
  • the horizontal dimension includes 8 antennas (i.e. 12345678 in the horizontal dimension)
  • the vertical dimension (baseband channel processing dimension) includes 4 antennas (i.e. 1234 in the vertical dimension) ).
  • ⁇ 1,2,3, 4> is the first group
  • ⁇ 5,6,7,8> is the second group
  • ⁇ 1,2> is the first group
  • ⁇ 3,4> is the second group.
  • Figure 6B shows a situation where the horizontal dimension includes interleaved M1 groups of antennas, and the vertical dimension includes continuous M2 groups of antennas.
  • the horizontal dimension ⁇ 1,3,5 ,7> is the first group
  • ⁇ 2,4,6,8> is the second group
  • ⁇ 1,2> is the first group
  • ⁇ 3,4> is the second group.
  • Figure 6C shows a situation where the horizontal dimension includes a continuous M1 group of antennas and the vertical dimension includes an interleaved M2 group of antennas.
  • the antenna includes 2 consecutive groups of antennas (i.e.
  • FIG. 6D shows a situation in which the horizontal dimension includes an interleaved M1 group of antennas, and the vertical dimension includes an interleaved M2 group of antennas.
  • antennas in the same group use the same simulation weight.
  • Antennas in the same group use different analog weights.
  • any two groups of antennas in the four groups of antennas use different simulation weights. That is to say, the four groups of antennas in Figure 6A can correspond to four different groups of simulation weights, that is, each group of antennas corresponds to a group of simulation weights.
  • a group of simulation rights may include one simulation right, or may include two or more simulation rights, which is not limited in this application.
  • antennas in the same group use the same simulation weight
  • antennas in different groups use the same or different simulation weights.
  • the four groups of antennas are antenna group 1, antenna group 2, antenna group 3 and antenna group 4.
  • Antenna group 1 is the first group in the horizontal dimension and the first group in the vertical dimension.
  • antenna group 2 is the second group in the horizontal dimension and is the first group in the vertical dimension
  • antenna group 3 is the first group in the horizontal dimension and is the second group in the vertical dimension
  • antenna group 2 is the second group in the horizontal dimension In the second group in the vertical dimension
  • antenna group 1 and antenna group 4 correspond to the same group of simulation weights
  • antenna group 2 and antenna group 3 correspond to the same group of simulation weights.
  • the four groups of antennas in Figure 6A correspond to two groups of simulation weights. Take the four groups of antennas in Figure 6D as an example.
  • the four groups of antennas are antenna group 5, antenna group 6, antenna group 7 and antenna group 8.
  • Antenna group 5 is the first group in the horizontal dimension and the first group in the vertical dimension.
  • the antenna group 6 is the second group in the horizontal dimension and the first group in the vertical dimension
  • the antenna group 7 is the first group in the horizontal dimension and the second group in the vertical dimension
  • the antenna group 8 is the second group in the horizontal dimension.
  • antenna group 5 and antenna group 8 correspond to the same group of simulation weights
  • antenna group 6 and antenna group 7 correspond to the same group of simulation weights.
  • the four groups of antennas in Figure 6A correspond to two groups of simulation weights.
  • FIG. 7A, 7B, and 7C are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • 701 to 708 represent 8 phase shifters, and each " ⁇ " represents an antenna (for a phase shifter).
  • Antennas with the same shading are antennas of the same group.
  • the number of shifters is 8
  • the number of baseband processing modules is 4
  • the horizontal dimension includes 12 antennas (i.e. 12345678910 in the horizontal dimension )
  • the vertical dimension (baseband channel processing dimension) includes 4 antennas (i.e. 1234 in the vertical dimension).
  • FIG. 7A shows a situation in which the horizontal dimension includes a continuous M1 group of antennas and the vertical dimension includes a continuous M2 group of antennas.
  • ⁇ 1,2,3, 4> is the first group
  • ⁇ 5,6,7,8> is the second group
  • ⁇ 9,10,11,12> is the third group
  • ⁇ 1,2> is the first group
  • ⁇ 3,4> is the second group.
  • FIG. 7B shows a situation in which the horizontal dimension includes interleaved M1 groups of antennas, and the vertical dimension includes continuous M2 groups of antennas.
  • ⁇ 1,4,7 ,10> is the first group
  • ⁇ 2,5,8,11> is the second group
  • ⁇ 3,6,9,12> is the third group
  • the vertical dimension ⁇ 1,2> is the first group group
  • ⁇ 3,4> is the second group.
  • Figure 7C shows a situation where the horizontal dimension includes interleaved M1 groups of antennas, and the vertical dimension includes continuous M2 groups of antennas.
  • ⁇ 3,4,9,10> is the second group
  • ⁇ 5,6,11,12> is the third group
  • ⁇ 1,2> is the first group group
  • ⁇ 3,4> is the second group.
  • FIG. 8A, 8B, 8C, and 8D are schematic diagrams of examples of antenna grouping provided by embodiments of the present application.
  • 801 to 808 represent 8 phase shifters, and each " ⁇ " represents an antenna (for a phase shifter).
  • Antennas with the same shading are antennas of the same group.
  • the number of shifters is 12
  • the number of baseband processing modules is 6
  • the horizontal dimension includes 8 antennas (i.e. 12345678 in the horizontal dimension)
  • the vertical dimension (baseband channel processing dimension) includes 6 antennas (i.e. 123456 in the vertical dimension) ).
  • FIG. 8A shows a situation in which the horizontal dimension includes a continuous M1 group of antennas and the vertical dimension includes a continuous M2 group of antennas.
  • ⁇ 1,2,3, 4> the first group
  • ⁇ 5,6,7,8> is the second group
  • ⁇ 1,2> is the first group
  • ⁇ 3,4> is the second group
  • ⁇ 5, 6> for second Group shows a situation in which the horizontal dimension includes a continuous M1 group of antennas and the vertical dimension includes an interleaved M2 group of antennas.
  • Figure 8C shows a situation where the horizontal dimension includes interleaved M1 groups of antennas, and the vertical dimension includes continuous M2 groups of antennas.
  • the antenna includes 3 groups of antennas (i.e.
  • FIG. 8D shows a situation in which the horizontal dimension includes interleaved M1 groups of antennas, and the vertical dimension includes continuous M2 groups of antennas.
  • the antenna includes 3 groups of antennas (i.e.
  • ⁇ 1, 4, 7 ,11> is the first group
  • ⁇ 2,5,8,11> is the second group
  • ⁇ 3,6,9,12> is the third group
  • ⁇ 1,3> is the first group group
  • ⁇ 2,4> is the second group.
  • Figures 6A to 6D, Figures 7A to 7C, and Figures 8A to 8D only provide some examples of possible antenna grouping situations for this application, not all examples.
  • the horizontal dimension or the vertical dimension includes multiple consecutive groups. Antenna means that each group of antennas in the plurality of groups of antennas is located in a continuous area, see Figure 6A, Figure 6C, Figure 7A, Figure 7B, Figure 7C, Figure 8A, and Figure 8B.
  • multiple groups of antennas including interweaving in the horizontal or vertical dimensions means that one or more groups of antennas in the multiple groups of antennas are located in two or more different areas, see Figure 6B, Figure 6D, Figure 7B, and Figure 7C , Figure 8B, Figure 8C, Figure 8D.
  • this application does not limit the number of antennas in the horizontal dimension and the number of antennas in the vertical dimension, nor does it limit the specific form of any dimension including continuous multiple groups of antennas or interleaved multiple groups of antennas.
  • the horizontal or vertical dimensions include interleaved multiple groups of antennas, especially when both the horizontal and vertical dimensions include interleaved multiple groups of antennas, the signal received by each group of antennas can be regarded as a downsampling of the signal received by the entire antenna array, so each The signal reception of a group of antennas is almost the same as that of the entire antenna array.
  • the grouping method including multiple consecutive sets of antennas in any dimension is suitable for application scenarios with lower accuracy requirements.
  • Figure 9 is an interactive flow chart of an array grouping-based communication method provided by an embodiment of the present application. As shown in Figure 9, the method includes:
  • the second communication device receives the first signal from the first communication device through M sets of simulation rights.
  • the first communication device sends the first signal to the second communication device.
  • the second communication device may be the communication device in FIG. 4, and may perform the signal processing flow in FIG. 5.
  • At least two groups of the above M groups of simulation rights are different, and the above M is an integer greater than or equal to 2.
  • any two groups of simulation rights among the above M groups of simulation rights are different.
  • each group of simulation rights includes one or more simulation rights.
  • the difference between the two groups of simulation rights means that the simulation rights included in the two groups of simulation rights are not exactly the same. In other words, if two sets of simulation rights include exactly the same simulation rights, then the two sets of simulation rights are the same.
  • the first group of simulation rights and the second group of simulation rights each include only one simulation right.
  • the first group of simulation rights and the second group of simulation rights include the same simulation rights
  • the first group of simulation rights and the third group of simulation rights The two sets of simulation rights are the same; otherwise, the first group of simulation rights and the second group of simulation rights are different.
  • the first group of simulation rights includes simulation rights 1 and simulation rights 2
  • the second group of simulation rights includes simulation rights 3 and simulation rights 4; if simulation rights 1 and simulation rights 3 and simulation rights One of the simulated rights 4 is the same, and the simulated right 2 is the same as the other of the simulated rights 3 and 4, then the first group of simulated rights and the second group of simulated rights are the same, otherwise, the first group of simulated rights Unlike this second set of simulation rights.
  • the above-mentioned M groups of simulation weights correspond to the (M1*M2) group of antennas
  • the above-mentioned (M1*M2) group of antennas are any of the following: the horizontal dimension includes a continuous M1 group of antennas, and the vertical dimension includes a continuous M2 group of antennas;
  • the horizontal dimension includes the continuous M1 group of antennas, and the vertical dimension includes the interleaved M2 group of antennas;
  • the horizontal dimension includes the interleaved M1 group of antennas, and the vertical dimension includes the continuous M2 group of antennas;
  • the horizontal dimension includes the interleaved M1 group of antennas, and the vertical dimension includes the interleaved M2 group antenna;
  • the above M1 and M2 are both integers greater than or equal to 1, and (M1*M2) is greater than or equal to the above M.
  • the (M1*M2) group of antennas corresponding to the M group of simulation rights can be any one of Figures 6A to 6D, Figure 7A to Figure 7C, or Figure 8A to Figure 8D, or other antenna grouping methods, which are not covered by this application. limited.
  • (M1*M2) is equal to M, and any two groups of antennas in the (M1*M2) group of antennas corresponding to the M group of simulation weights have different simulation weights.
  • (M1*M2) is greater than M, and at least two groups of antennas in the (M1*M2) group of antennas corresponding to the M group of simulation weights have the same simulation weights.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, each phase shifter in the same group is controlled synchronously, and the phase shifters in different groups are independently controlled.
  • M groups of analog weights correspond to M groups of phase shifters one-to-one. Each phase shifter in the same group is controlled synchronously, and phase shifters in different groups are independently controlled; through independent control, different For phase shifters between groups, the analog weight corresponding to each group of phase shifters can be configured independently.
  • the above-mentioned M groups of analog weights correspond to M groups of phase shifters one-to-one, the phases corresponding to each phase shifter in the same group are the same, and the phases corresponding to the phase shifters in different groups are different.
  • the simulation weights corresponding to the phase shifters in different groups can be different, and the simulation weights corresponding to the phase shifters in the same group are the same.
  • the second communication device is a terminal device (such as a mobile phone), the first communication device is an access network device (such as a base station), and the first signal is a downlink signal.
  • the first down behavior is channel state information reference signal (CSI-RS), demodulation reference signal (demodulation reference signal, DRS), tracking reference signal (tracking reference signal, TRS), etc.
  • CSI-RS channel state information reference signal
  • DRS demodulation reference signal
  • TRS tracking reference signal
  • the second communication device is an access network device (such as a base station)
  • the first communication device is a terminal device (such as a base station)
  • the first signal is an uplink signal.
  • the first act detects reference pilot (sounding reference signal, SRS), etc.
  • the second communication device performs channel estimation based on the first signal and obtains M channel estimation results.
  • the above-mentioned M channel estimation results correspond to the above-mentioned M sets of simulation weights one-to-one.
  • the M group of simulation rights includes the first group of simulation rights, the second group of simulation rights, ..., the m-th group of simulation rights, ..., the M-th group of simulation rights.
  • the mth group of simulation rights in the M groups of simulation rights can be represented by W m , where m is an integer greater than 0 and m is less than or equal to M.
  • the second communication device performs channel estimation based on the first signal, and the M channel estimation results obtained may be: the second communication device receives the first signal from the first communication device through each group of the M groups of simulation rights. signal, perform channel estimation, and obtain M channel estimation results.
  • the second communication device uses each set of analog weights W m to receive the first signal from the first communication device, and performs channel estimation based on the signal received through each set of analog weights W m .
  • the channel estimation result obtained by the second communication device based on the signal received through the m-th group of simulation weights W m can be used express.
  • the above M channel estimation results may include
  • the channel estimation (or channel detection) method includes but is not limited to least squares (LS) estimation, minimum mean square error (MMSE) estimation, and other methods. Taking LS channel estimation as an example, the channel estimation process uses the received signal multiplied by the conjugate of the pilot signal to obtain the channel response matrix, which is the channel estimation result.
  • the first communication device uses the target simulation weight to perform signal reception or transmission processing based on the M channel estimation results.
  • steps 901 and 902 correspond to the sounding pilot branch in Figure 5
  • step 903 corresponds to the service data branch in Figure 5.
  • the second communication device can first determine the target simulation right to be used for signal reception or transmission processing, and then use the target simulation right. Simulate the right to perform signal reception or transmission processing.
  • Steps 901 and 902 are simulated beam scanning processes (also known as simulated weighting processes).
  • the second communication device can quickly implement simulated beam scanning and reduce time overhead.
  • the target simulation right may be the simulation right determined by the second communication device and suitable for current signal reception or transmission processing. Using target analog weights for signal reception or transmission processing can ensure the accuracy of analog beam scanning and even the quantization accuracy of the analog weights.
  • the target simulation right is one of the M groups of simulation rights.
  • the target simulation weight is a group in the weight codebook, and the M groups of simulation rights are included in the weight codebook.
  • the M channel estimation results are channel estimation results assuming that the first signal has not passed through the phase shifters corresponding to the M sets of analog weights.
  • receiving the first signal from the first communication device through M sets of simulation rights can speed up the simulation compared with successively receiving signals from the first communication device through each group of simulation rights in the M sets of simulation rights.
  • the speed of beam scanning saves scanning resource overhead and improves the uplink and downlink capacity of the mobile communication network.
  • Figure 10 is an interactive flow chart of another communication method based on array grouping provided by an embodiment of the present application.
  • the method interaction flow in Figure 10 is a possible implementation of the method described in Figure 9 .
  • the second communication device selects (determines) the simulation right to be used for signal reception or transmission processing from the M sets of simulation rights, and can quickly determine the current simulation right to be used with less computation.
  • the method includes:
  • the second communication device receives the first signal from the first communication device through M sets of simulation rights.
  • the first communication device sends the first signal to the second communication device.
  • step 1001 please refer to step 901.
  • the second communication device performs channel estimation based on the first signal and obtains M channel estimation results.
  • step 1002 For step 1002, please refer to step 902.
  • a possible implementation of step 1002 is as follows: use each group of simulation rights in the above-mentioned M groups of simulation rights to receive the first signal from the first communication device, and perform channel estimation based on the signals received through each group of simulation rights to obtain M channel estimation results.
  • the above-mentioned M sets of simulation weights correspond to M channel estimation results one-to-one.
  • a set of simulation weights corresponds to a channel estimation result.
  • the channel estimation result obtained by the second communication device based on the signal received through the m-th group of simulation weights W m can be used express.
  • the second communication device ranks the M sets of simulation weights corresponding to the M channel estimation results based on the M channel estimation results.
  • Step 1003 can be understood as: identifying the advantages and disadvantages of simulation weights based on each set of channel estimation results.
  • Solutions for identifying the quality of analog rights include but are not limited to sorting from large to small according to reference signal receiving power (RSRP), sorting from large to small according to signal to interference plus noise ratio (SINR), etc. .
  • the calculation methods of RSRP include but are not limited to calculation The power (modulus square), the calculation of SINR includes but is not limited to the ratio of RSRP and noise power, etc.
  • the index of the better (for example, optimal) simulation weight finally identified is k opt .
  • the better simulation right among the M simulation rights refers to any one of the F simulation rights ranked first in order of merit, where F is an integer less than M. Optionally, F is 1, so that the accuracy of simulated beam scanning is higher.
  • the second communication device uses the target simulation right to perform signal reception or transmission processing according to the ranking of the M groups of simulation rights.
  • the ranking of the above M sets of simulation rights is obtained by the second communication device executing step 1002.
  • the target simulation right may be a better simulation right among the M groups of simulation rights, for example, the optimal simulation right.
  • the channel estimation result obtained by the second communication device based on the signal received through the m-th group of simulation weights W m can be used express.
  • the above M channel estimation results may include
  • the second communication device may use the following formula to determine the index of the optimal simulation weight:
  • f x represents a functional relationship, including but not limited to:
  • C can represent a positive decimal, a negative decimal, or a channel parameter such as noise power, and s includes but is not limited to integers such as 2, -2, 1, -1. It should be understood that when C is a positive number, When C is a negative number, The ranking of each group of simulation weights can be determined through formula (1) and formula (2), and then the target simulation weight (such as the optimal simulation weight) is used for signal reception or transmission processing.
  • the second communication device uses the following formula to determine the optimal simulation weight index:
  • m is a value ranging from 1 to M.
  • Step 1104 can be understood as: the second communication device uses the better target simulation right to perform reception/transmission processing on the uplink or downlink service data channel at the next moment based on the identification of the simulation rights.
  • the second communication device uses the target simulation right to perform signal reception or transmission processing according to the ranking of the M groups of simulation rights, which can quickly determine the simulation right currently to be used, and requires less calculations.
  • Figure 11 is an interactive flow chart of another array grouping-based communication method provided by an embodiment of the present application.
  • the method interaction flow in Figure 11 is a possible implementation of the method described in Figure 9 .
  • the second communication device selects (determines) the simulation right to be used for signal reception or transmission processing from the weight codebook, compared with selecting the current signal reception or transmission processing from the above-mentioned M sets of simulation rights.
  • the simulation weight you can get the simulation weight that is more suitable for current signal reception or transmission processing, which can improve the beam detection accuracy.
  • the method includes:
  • the second communication device receives the first signal from the first communication device through M sets of simulation rights.
  • the first communication device sends the first signal to the second communication device.
  • step 1101 please refer to step 901.
  • the second communication device performs channel estimation based on the first signal and obtains M channel estimation results.
  • the above-mentioned M channel estimation results are channel estimation results assuming that the above-mentioned first signal has not passed through the phase shifters corresponding to the above-mentioned M sets of analog weights.
  • M group of analog weights correspond to M group of phase shifters one-to-one.
  • the above M channel estimation results may include H 1 , H 2 ,..., H m ,..., H M , where H 1 represents the channel estimation result corresponding to the first group of phase shifters in the M groups of phase shifters, and H m represents the channel estimation result corresponding to the mth group of phase shifters in the M groups of phase shifters, and so on.
  • step 1102 can be understood as: implementing channel reconstruction at the shifter level based on the channel estimation results of each group of simulation weights, that is, obtaining H 1 , H 2 ,..., H m ,..., H M .
  • step 1102 Taking the channel estimation based on the first signal to obtain H m as an example, a possible implementation of step 1102 is introduced below.
  • the second communication device performs channel estimation based on the first signal, and an example of obtaining H m is as follows:
  • the second communication device estimates the phase difference ⁇ k,m between H m and H k based on the angular position information of the second communication device.
  • H m represents the channel estimation result corresponding to the m-th group of term shifters in the M groups of phase shifters
  • H k represents the channel estimation result corresponding to the k-th group of term shifters in the M group of phase shifters
  • m and k both is an integer greater than 0 and less than M.
  • the angular position information may include a vertical angle of arrival (ZoA) and/or an angle of arrival (AoA) corresponding to the second communication device.
  • the method of estimating the phase difference between H m and H k can be obtained through classic methods of direction of arrival (DoA) estimation such as multiple signal classification (MUSIC).
  • DoA direction of arrival
  • DoA refers to the direction of arrival of the spatial signal (the direction angle of each signal arriving at the array reference element, referred to as the direction of arrival).
  • the basic principle of the MUSIC algorithm is to perform eigendecomposition on the covariance matrix of the array output data to obtain the signal subspace corresponding to the signal component and the noise subspace orthogonal to the signal component, and then use the orthogonality of the two subspaces to realize the signal Estimation of the incident direction.
  • the second communication device can estimate the value of any two channel estimation results based on the angular position information of the second communication device. phase difference between them.
  • ⁇ k,m represents the phase difference between H m and H k .
  • the second communication device can obtain the channel response matrix after analog weighting processing by executing step 1102. (a channel estimation result), where the simulation weighting process can be described by the following formula:
  • W k represents the simulation weight/simulation beam in the (N BB ⁇ N PS ) dimension
  • W k represents the kth group of simulation weights in the above-mentioned M groups of simulation weights.
  • N BB represents the air domain/antenna domain/beam domain dimension of baseband processing
  • N PS represents the air domain/antenna domain/beam domain dimension of item shifter processing.
  • "/" means or.
  • H m that is, the channel response matrix of the phase shifter stage corresponding to the m group of shifters
  • W k k group of simulation weights
  • the second communication device estimates the channel response matrix of H m through the simulation weights W 1 , W 2 ... W M based on the estimated phase difference ⁇ k,m between H m and H k .
  • W 1 represents the first group of simulation rights in the above-mentioned M groups of simulation rights
  • W 2 represents the second group of simulation rights in the above-mentioned M groups of simulation rights
  • W M represents the M-th group of simulation rights in the above-mentioned M groups of simulation rights.
  • the second communication device will and ⁇ k,m can be calculated by substituting into formula (6) It should be understood that the second communication device can estimate the channel response matrix of H m through the simulation weights W 1 , W 2 ...W M in a similar manner
  • the second communication device is based on The simulated weighted channel response is obtained as
  • the second communication device obtains H m based on H M ′ and the simulation weight matrix W M .
  • Simulation weight matrix W M [W 1 ; W 2 ...W M ], W M is a matrix with dimensions (M*N BB ) ⁇ N PS .
  • D represents the loading matrix, including but not limited to unit matrix, diagonal matrix, etc.
  • Formula (8) can be replaced by
  • the second communication device can obtain H 1 , H 2 ,..., H M in a similar way to obtain H m .
  • Hm can be regarded as the reconstructed channel response matrix of the mth group of phase shifters. It should be understood that the second communication device may reconstruct the channel response matrix of each group of phase shifters in a similar manner.
  • the second communication device uses the target simulation weight in the weight codebook to perform signal reception or transmission processing based on the M channel estimation results.
  • the above target simulation rights are obtained based on the above M sets of simulation rights.
  • the above-mentioned target simulation rights are a group of simulation rights in the weight codebook, and the above-mentioned M groups of simulation rights are included in the above-mentioned weight codebook.
  • Step 1103 can be understood as: the second communication device uses the better target simulation weight in the weight codebook to perform signal reception or transmission processing based on the M channel estimation results.
  • the second communication device calculates the optimal simulation weight index k opt in the weight codebook based on the M channel estimation results, and uses the optimal simulation weight in the uplink or downlink service data channel at the next moment (i.e. target simulation rights) for receive/send processing.
  • the optimal simulation weight index in the weight codebook of the second communication device The method includes but is not limited to using H m to combine with each simulation weight W k , and respectively detecting its maximum RSRP, SINR or correlation and other measurement quantities as the measurement index of the optimal simulation weight. Using H m combined with each simulation weight W k in the weight codebook, we can get The second communication device calculates the optimal analog weight index k opt in the weight codebook based on the M channel estimation results using the following formula:
  • f x represents a functional relationship, including but not limited to:
  • C can represent a positive decimal or a negative decimal, or channel parameters such as noise power.
  • the range of the summation term includes but is not limited to some or all of the index ranges from 1 to M. s includes but is not limited to 2, -2, 1, -1 and other integers.
  • the second communication device uses the following formula to determine the index of the optimal simulation weight:
  • W k is the simulation weight in the weight codebook.
  • the second communication device uses H m to combine with each simulation weight W k in the weight codebook to obtain
  • the second communication device selects (determines) the simulation right to be used for signal reception or transmission processing from the weight codebook, compared with selecting the current signal reception or transmission processing from the above-mentioned M sets of simulation rights.
  • the simulation weight you can get the simulation weight that is more suitable for current signal reception or transmission processing, which can improve the beam detection accuracy.
  • Figure 12 is an interactive flow chart of another array grouping-based communication method provided by an embodiment of the present application.
  • the method interaction flow in Figure 12 is a possible implementation of the method described in Figure 9.
  • the second communication device calculates the simulation weight to be used for signal reception or transmission processing, instead of selecting the simulation weight to be used from the existing weight codebook or simulation weight set, and can obtain a more suitable simulation weight.
  • the simulation weights currently used for signal reception or transmission processing i.e., more refined simulation weights
  • the method includes:
  • the second communication device receives the first signal from the first communication device through M sets of simulation rights.
  • the first communication device sends the first signal to the second communication device.
  • step 1101 please refer to step 901.
  • the second communication device performs channel estimation based on the first signal and obtains M channel estimation results.
  • the M channel estimation results may include H 1 , H 2 ,..., H m ,..., H M , where H 1 represents the channel estimation result corresponding to the first group of phase shifters in the M groups of phase shifters, and H m Indicates the channel estimation result corresponding to the mth group of phase shifters in the M groups of phase shifters, and so on.
  • the second communication device calculates the target simulation weight based on the M channel estimation results.
  • the second communication device performs matrix decomposition based on H ps , and constructs the target simulation weight based on the obtained feature vector.
  • a possible implementation method for the second communication device to perform matrix decomposition based on H ps is as follows: the second communication device uses the following formula to perform singular value decomposition (SVD) on H ps :
  • the rows of H ps are equal to the number of shifters N moni in the second communication device.
  • the second communications device may set the rows of H ps according to the number of shifters it employs.
  • a possible implementation method for the second communication device to perform matrix decomposition based on H ps is as follows: the second communication device uses the following formula to perform eigenvalue decomposition of H ps :
  • the rows of H ps are equal to the number of shifters in the second communication device.
  • the second communication device takes the first eigenvector of u to form the vector u opt of N moni *1, and splices it into The target simulation weight W opt of (N BB *N ps ):
  • W opt represents the calculated target simulation weight.
  • the accuracy of the target simulation weight is higher than the accuracy of the simulation weight in the weight codebook. That is to say, the second communication device can calculate a target simulation weight with higher accuracy based on the M channel estimation results. Using the target simulation weight for signal reception or transmission processing can improve the quantization accuracy of the phase shifter and provide the uplink of the system. Coverage performance.
  • the second communication device uses the target simulation right to perform signal reception or transmission processing.
  • the simulation beam measurement and optimization can be completed at one time, which can save the resource overhead of simulation beam scanning and improve the uplink and downlink of the mobile communication network. capacity.
  • the second communication device can calculate a target simulation weight with higher accuracy based on the M channel estimation results, using the target simulation weight for signal reception or transmission processing can improve the quantization accuracy of the item shifter and improve the up and down of the system. Row coverage performance.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided by an embodiment of the present application.
  • the communication device 1300 can correspondingly implement the functions or steps implemented by the first communication device in each of the above method embodiments.
  • the communication device may include a processing module 1310 and an interface module 1320.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 1310 and the interface module 1320 can be coupled with the storage unit.
  • the processing module 1310 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • the interface module 1320 may include a sending module and a receiving module.
  • the sending module can be a transmitter, and the receiving module can be a receiver.
  • the entity corresponding to the interface module 1320 may be a transceiver, a communication interface, or an antenna module.
  • the communication device 1300 may also include a BBU, an RRU and an antenna module, see Figure 4 .
  • the communication device 1300 can correspondingly implement the behaviors and functions of the second communication device in the above method embodiment.
  • the communication device 1300 may be a second communication device, or may be a component (such as a chip or circuit) used in the second communication device.
  • the interface module 1320 may, for example, be used to perform all receiving or sending operations performed by the second communication device in the embodiments of FIG. 9, FIG. 10, FIG. 11, and FIG. 12, such as step 901 in the embodiment shown in FIG. 9, Step 1001 in the embodiment shown in FIG. 10 , step 1101 in the embodiment shown in FIG. 11 , step 1201 in the embodiment shown in FIG. 12 , and/or other processes used to support the techniques described herein. .
  • the processing module 1310 is configured to perform all operations performed by the second communication device in the embodiments of FIG. 9, FIG. 10, FIG. 11, and FIG. 12 except for the sending and receiving operations, such as the steps in the embodiment shown in FIG. 9 902, step 903, step 1002, step 1003 and step 1004 in the embodiment shown in Figure 10, steps 1102 and step 1103 in the embodiment shown in Figure 11, steps 1202 and 1202 in the embodiment shown in Figure 12 Step 1203, step 1204.
  • FIG. 14 is a schematic structural diagram of another communication device 140 provided by an embodiment of the present application.
  • the communication device in Figure 14 may be the above-mentioned second communication device.
  • the communication device 140 includes at least one processor 1410 and a transceiver 1420 .
  • the processor 1410 and the transceiver 1420 may be used to perform functions or operations performed by the second communication device, and the like.
  • the processor 1410 can perform one of the following multiple operations: step 902 and step 903 in the embodiment shown in FIG. 9 , step 1002 , step 1003 , and step 1004 in the embodiment shown in FIG. 10 , and step 1004 in the embodiment shown in FIG. 11 Steps 1102 and 1103 in the embodiment, and steps 1202, 1203 and 1204 in the embodiment shown in Figure 12 .
  • the transceiver 1420 may, for example, perform one or more of the following operations: step 901 in the embodiment shown in Figure 9, step 1001 in the embodiment shown in Figure 10, step 1101 in the embodiment shown in Figure 11, Step 1201 in the embodiment shown in Figure 12 .
  • Transceiver 1420 is used to communicate with other devices/devices over transmission media.
  • the processor 1410 uses the transceiver 1420 to send and receive data and/or signaling, and is used to implement the method in the above method embodiment.
  • the processor 1410 can implement the function of the processing module 1310, and the transceiver 1420 can implement the function of the interface module 1320.
  • the communication device 140 may also include at least one memory 1430 for storing program instructions and/or data.
  • Memory 1430 and processor 1410 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 1410 may cooperate with memory 1430.
  • Processor 1410 may execute program instructions stored in memory 1430. At least one of the at least one memory may be included in the processor.
  • the communication device 140 also includes a BBU, an RRU and an antenna module.
  • the antenna module can be deployed on the transceiver.
  • connection medium between the above-mentioned transceiver 1420, processor 1410 and memory 1430 is not limited in the embodiment of the present application.
  • the memory 1430, the processor 1410 and the transceiver 1420 are connected through a bus 1440 in Figure 14.
  • the bus is represented by a thick line in Figure 14.
  • the connection between other components is only a schematic explanation. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Execute each method, step and logical block diagram disclosed in the embodiment of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • Figure 15 is a schematic structural diagram of another communication device 150 provided by an embodiment of the present application.
  • the communication device shown in FIG. 15 includes a logic circuit 1501 and an interface 1502 .
  • the processing module 1310 in Figure 13 can be implemented by the logic circuit 1501
  • the interface module 1320 in Figure 13 can be implemented by the interface 1502.
  • the logic circuit 1501 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1502 can be a communication interface, an input-output interface, etc.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit and interface may be used to perform the functions or operations performed by the above-mentioned second communication device, etc.
  • This application also provides a computer-readable storage medium, which stores computer programs or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the method of the above embodiments.
  • the computer program product includes instructions or computer programs. When the instructions or computer programs are run on a computer, the communication method in the above embodiment is executed.
  • This application also provides a communication system, including the above-mentioned first communication device and the above-mentioned second communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于阵列分组的通信方法和通信装置,该方法包括:通过M组模拟权接收来自第一通信设备的第一信号,该M组模拟权中的至少两组模拟权不同,M为大于或等于2的整数;根据该第一信号进行信道估计,得到M个信道估计结果,该M个信道估计结果与该M组模拟权一一对应;根据该M个信道估计结果,采用目标模拟权进行信号接收或发送处理,该目标模拟权基于该M组模拟权得到。本申请实施例中,通过M组模拟权接收来自第一通信设备的第一信号,与先后通过该M组模拟权中的每组模拟权接收来自第一通信设备的信号相比,可以加快模拟波束扫描的速度,节省扫描的资源开销,并提升移动通信网络的小区上下行容量。

Description

基于阵列分组的通信方法和通信装置
本申请要求于2022年04月24日提交中国专利局、申请号为202210435707.X、申请名称为“基于阵列分组的通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种基于阵列分组的通信方法和通信装置。
背景技术
作为5G关键技术之一,大规模天线(massive multi input multi output,M-MIMO)能够通过利用更多的空间自由度进一步提高系统容量。随着用户数目增长和小区容量速率的提升,M-MIMO存在非常广泛的应用。然而,随着天线数目的上涨,基站采用传统的全数字波束赋型系统就需要为每一个天线单元分配一个射频(radio frequency,RF)链,这会使得基站的功耗较高,并且增加基带处理复杂度。
采用混合波束成形(hybrid beamforming,HBF)是一种能够降低基带处理复杂度和功耗的有效方法。HBF技术是一种两级波束成形技术:一方面,基站利用移相器通过改变天线的下倾角实现第一级动态的模拟波束成形,能够通过空间降维降低基带处理复杂度;另一方面,第二级数字波束成形通过基带处理实现,从而达到多用户调度和用户间干扰抑制的目的。
HBF技术依赖于模拟波束赋型(或者称为模拟加权)技术。目前采用的模拟波束赋型方案存在扫描开销较大的问题,因此需要研究扫描开销较小的模拟波束扫描方案。
发明内容
本申请实施例公开了一种基于阵列分组的通信方法和通信装置。
第一方面,本申请实施例提供一种基于阵列分组的通信方法,该方法可以由第二通信设备执行,也可以由第二通信设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分第二通信设备的功能的逻辑模块或软件实现;该方法包括:通过M组模拟权接收来自第一通信设备的第一信号,该M组模拟权中的至少两组模拟权不同,M为大于或等于2的整数;根据接收的第一信号进行信道估计,得到M个信道估计结果,该M个信道估计结果与该M组模拟权一一对应;根据该M个信道估计结果,采用目标模拟权进行信号接收或发送处理,该目标模拟权基于该M组模拟权得到。
本申请实施例中,通过M组模拟权接收来自第一通信设备的第一信号,与先后通过该M组模拟权中的每组模拟权接收来自第一通信设备的信号相比,可以加快模拟波束扫描的速度,节省扫描的资源开销,并提升移动通信网络的小区上下行容量。
在一种可能的实现方式中,通过M组模拟权接收来自第一通信设备的第一信号包括:通过该M组模拟权在K个扫描周期内接收来自第一通信设备的第一信号,K为大于0且小于M的整数。例如,K为1。
在该实现方式中,通过M组模拟权在K个扫描周期内接收来自第一通信设备的第一信号, 与先后通过该M组模拟权中的每组模拟权接收来自第一通信设备的信号相比,可以加快模拟波束扫描的速度,节省扫描的资源开销。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。
在该实现方式中,M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的;通过独立的控制不同组间的移相器,可独立的配置每组移相器对应的模拟权。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。
在该实现方式中,可以使得不同组间的移相器对应的模拟权不同,同一组中的各移项器对应的模拟权相同。
在一种可能的实现方式中,上述M组模拟权对应(M1*M2)组天线,该(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;M1和M2均为大于等于1的整数,(M1*M2)大于或等于M。
在该实现方式中,M组模拟权对应(M1*M2)组天线,通过该(M1*M2)组天线中的每组天线接收的信号近似于采用全部天线接收的信号,保证每组天线接收的信号可用于信道估计。
在一种可能的实现方式中,目标模拟权为上述M组模拟权中的一组。
在该实现方式中,目标模拟权为M组模拟权中的一组,可快速地从该M组模拟权中确定一组较优的模拟权作为目标模拟权。
在一种可能的实现方式中,上述目标模拟权为权值码本中的一组,上述M组模拟权包含于该权值码本。
在该实现方式中,目标模拟权为权值码本中的一组,相比于从上述M组模拟权中选择当前进行信号接收或发送处理采用的模拟权,可以得到更适于当前进行信号接收或发送处理采用的模拟权,可提高波束探测精度。
在一种可能的实现方式中,上述目标模拟权未包含于权值码本。举例来说,第一方面提供的基于阵列分组的通信方法应用于终端设备,目标模拟权未包含于权值码本是指该目标模拟权未包含于终端设备配置的权值码本。又举例来说,第一方面提供的基于阵列分组的通信方法应用于接入网设备,目标模拟权未包含于权值码本是指该目标模拟权未包含于该接入网设备配置的权值码本。
在该实现方式中,目标模拟权未包含于权值码本,该目标模拟权可理解为比权值码本中的任意模拟权更适于当前进行信号接收或发送处理采用的模拟权,因此能够提高波束探测的精度,以及提升模拟权的量化精度。
在一种可能的实现方式中,上述M个信道估计结果为假定上述第一信号未经过上述M组模拟权对应的移相器的信道估计结果。可选的,目标模拟权包含于权值码本。或者,目标模拟权未包含于权值码本。
在该实现方式中,M个信道估计结果为假定第一信号未经过M组模拟权对应的移相器的信道估计结果;根据该M个信道估计结果,采用目标模拟权进行信号接收或发送处理;能够提高波束探测的精度。
在一种可能的实现方式中,根据上述M个信道估计结果,采用目标模拟权进行信号接收或发送处理包括:根据上述M个信道估计结果,确定M个移相器级别的信道响应矩阵,该M个移相器级别的信道响应矩阵与该M个信道估计结果一一对应,该M个移相器级别的信道响应矩阵中的一个信道响应矩阵为该M组移相器中的一组对应的信道响应矩阵;根据该M个移相器级别的信道响应矩阵,确定采用目标模拟权进行信号接收或发送处理;采用该目标模拟权进行信号接收或发送处理。每个移相器级别的信道响应矩阵可理解为该组移相器对应的未经过模拟权的信道响应矩阵。
在该实现方式中,根据M个移相器级别的信道响应矩阵,确定采用目标模拟权进行信号接收或发送处理;能够提高波束探测的精度。
在一种可能的实现方式中,根据M个移相器级别的信道响应矩阵,确定采用目标模拟权进行信号接收或发送处理包括:根据该M个移相器级别的信道响应矩阵,确定权值码本中的各模拟权对应的优劣衡量指标,该权值码本中的任意模拟权对应的优劣衡量指标用于衡量当前采用该任意模拟权进行信号接收或发送处理的优劣程度,该权值码本包括目标模拟权;根据该权值码本中的各模拟权的优劣衡量指标,确定采用目标模拟权进行信号接收或发送处理。
在该实现方式中,根据权值码本中的各模拟权的优劣衡量指标,确定采用目标模拟权进行信号接收或发送处理;可以准确、快速地确定更适于当前进行信号接收或发送处理采用的目标模拟权。
在一种可能的实现方式中,根据M个移相器级别的信道响应矩阵,确定采用目标模拟权进行信号接收或发送处理包括:根据该M个移相器级别的信道响应矩形,得到第一信道响应矩阵;对该第一信道响应矩阵进行矩阵分解,并根据得到的特征向量构建目标模拟权。
在该实现方式中,对第一信道响应矩阵进行矩阵分解,并根据得到的特征向量构建目标模拟权。可见,目标模拟权不限定于已有的权值码本,而是计算得到的。通过这种方式获得待采用的模拟权,能够提高波束探测的精度,以及提升模拟权的量化精度。
在一种可能的实现方式中,根据上述M个信道估计结果,确定M个移相器级别的信道响应矩阵包括:获取第二信道响应矩阵,该第二信道响应矩阵包括第三信道响应矩阵经过第一模拟权的信道响应矩阵和该第三信道响应矩阵经过第二模拟权的信道响应矩阵,该第一模拟权和该第二模拟权包含于M组模拟权;根据该第二信道响应矩阵和模拟权矩阵,得到第三信道响应,该模拟权矩阵基于两组或两组以上模拟权得到,该第三信道响应矩阵包含于该M个移相器级别的信道响应矩阵。
在该实现方式中,根据第二信道响应矩阵和模拟权矩阵,得到第三信道响应(一个移相器级别的信道响应矩阵);进而利用M个移相器级别的信道响应矩阵确定采用的模拟权。
在一种可能的实现方式中,第一方面提供的基于阵列分组的通信方法应用于终端设备或该终端设备中的装置,上述第一信号为下行信号(例如导频信号),上述第一通信设备为接入网设备。
在该实现方式中,终端设备可更快地实现波束扫描。
在一种可能的实现方式中,第一方面提供的基于阵列分组的通信方法应用于接入网设备或该接入网设备中的装置,上述第一信号为上行信号(例如导频信号),上述第一通信设备为终端设备。
在该实现方式中,接入网设备可更快地实现波束扫描。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。该通信装置可以是通信设备(例如手机、基站、笔记本电脑等),也可 以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括接口模块和处理模块,其中:接口模块,用于通过M组模拟权接收来自第一通信设备的第一信号,该M组模拟权中的至少两组模拟权不同,M为大于或等于2的整数;处理模块,用于根据接口模块接收的第一信号进行信道估计,得到M个信道估计结果,该M个信道估计结果与该M组模拟权一一对应;处理模块,还用于根据该M个信道估计结果,控制接口模块采用目标模拟权进行信号接收或发送处理,该目标模拟权基于该M组模拟权得到。
在一种可能的实现方式中,接口模块,具体用于通过上述M组模拟权在K个扫描周期内接收来自上述第一通信设备的第一信号,K为大于0且小于M的整数。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。
在一种可能的实现方式中,上述M组模拟权对应(M1*M2)组天线,该(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;M1和M2均为大于等于1的整数,(M1*M2)大于或等于M。
在一种可能的实现方式中,上述目标模拟权为上述M组模拟权中的一组。
在一种可能的实现方式中,上述目标模拟权为权值码本中的一组,上述M组模拟权包含于该权值码本。
在一种可能的实现方式中,上述目标模拟权未包含于权值码本。
在一种可能的实现方式中,上述M个信道估计结果为假定第一信号未经过上述M组模拟权对应的移相器的信道估计结果。
在一种可能的实现方式中,处理模块,具体用于根据上述M个信道估计结果,确定M个移相器级别的信道响应矩阵,该M个移相器级别的信道响应矩阵与该M个信道估计结果一一对应,该M个移相器级别的信道响应矩阵中的一个信道响应矩阵为该M组移相器中的一组对应的信道响应矩阵;根据该M个移相器级别的信道响应矩阵,确定采用目标模拟权进行信号接收或发送处理;采用该目标模拟权进行信号接收或发送处理。
在一种可能的实现方式中,处理模块,具体用于根据上述M个移相器级别的信道响应矩阵,确定权值码本中的各模拟权对应的优劣衡量指标,该权值码本中的任意模拟权对应的优劣衡量指标用于衡量当前采用该任意模拟权进行信号接收或发送处理的优劣程度,该权值码本包括上述目标模拟权;根据该权值码本中的各模拟权的优劣衡量指标,确定采用目标模拟权进行信号接收或发送处理。
在一种可能的实现方式中,处理模块,具体用于根据上述M个移相器级别的信道响应矩形,得到第一信道响应矩阵;对该第一信道响应矩阵进行矩阵分解,并根据得到的特征向量构建目标模拟权。
在一种可能的实现方式中,处理模块,具体用于获取第二信道响应矩阵,该第二信道响应矩阵包括第三信道响应矩阵经过第一模拟权的信道响应矩阵和该第三信道响应矩阵经过第 二模拟权的信道响应矩阵,该第一模拟权和该第二模拟权包含于M组模拟权;根据该第二信道响应矩阵和模拟权矩阵,得到第三信道响应,该模拟权矩阵基于两组或两组以上模拟权得到,该第三信道响应矩阵包含于上述M个移相器级别的信道响应矩阵。
在一种可能的实现方式中,第二方面提供的通信装置为终端设备或者终端设备中的装置,上述第一信号为下行信号。
在一种可能的实现方式中,第二方面提供的通信装置为接入网设备或者接入网设备中的装置,上述第一信号为上行信号。
关于第二方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,本申请提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式所示的方法。
本申请实施例中,在执行上述方法的过程中,上述方法中有关发送信息(或信号)的过程,可以理解为基于处理器的指令进行输出信息的过程。在输出信息时,处理器将信息输出给收发器,以便由收发器进行发射。该信息在由处理器输出之后,还可能需要进行其他的处理,然后到达收发器。类似的,处理器接收输入的信息时,收发器接收该信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和/或接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以一般性的理解为基于处理器的指令输出。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器等。例如,处理器还可以用于执行存储器中存储的程序,当该程序被执行时,使得该通信装置执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。
在一种可能的实现方式中,存储器位于上述通信装置之外。在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号等。
第四方面,本申请提供另一种通信装置,该通信装置包括处理电路和接口电路,该接口电路用于获取数据或输出数据;处理电路用于执行如上述第一方面或第一方面的任意可能的实现方式所示的相应的方法。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。
第六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请提供的一种HBF架构示意图;
图2为本申请提供的一种模拟波束扫描的示意图;
图3为本申请实施例提供的一种无线通信系统的示例;
图4为本申请实施例提供的一种通信装置的示意图;
图5为本申请实施例提供的一种信号处理流程的示意图;
图6A、图6B、图6C、图6D为本申请实施例提供的天线分组的示例的示意图;
图7A、图7B、图7C为本申请实施例提供的天线分组的示例的示意图;
图8A、图8B、图8C、图8D为本申请实施例提供的天线分组的示例的示意图;
图9为本申请实施例提供的一种基于阵列分组的通信方法交互流程图;
图10为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图;
图11为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图;
图12为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图;
图13为本申请实施例提供的一种通信装置1300的结构示意图;
图14为本申请实施例提供的另一种通信装置140的结构示意图;
图15为本申请实施例提供的另一种通信装置150的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。本申请中使用的术语“多个”是指两个或两个以上。
下面首先介绍本申请实施例中所涉及的术语和技术特征。
HBF技术:
HBF技术是一种能够降低基带处理复杂度和功耗的技术。在HBF技术中,会采用模拟与数字的两层架构。图1为本申请提供的一种HBF架构示意图。如图1所示,HBF架构包括模 拟和数字(digital)两层架构,digital BF表示数字架构,基带处理器的信号会通过基带端口实现数字部分的波束赋型(图1所示的数字赋型),进而通过中频通道,再经过模拟移项器的处理(也称为模拟权/模拟加权/模拟波束)完成模拟部分的波束赋型(图1所示的模拟赋型)。
HBF技术依赖模拟加权(或者称为模拟波束赋型)过程,需要进行多次的模拟权值扫描(或者说模拟波束扫描)。图2为本申请提供的一种模拟波束扫描的示意图。如图2所示,基站在连续K个时刻(即T1至TK时刻)中的每个时刻采用一组模拟权来接收上行信号(例如探测导频信号),图2中每个时刻上方的波束表示基站侧在该时刻接收的信号,基站侧的多个波束表示不同时刻采用不同模拟权接收的上行信号。当基站采用图2所示的方式进行模拟波束扫描时,该基站通过连续K个时刻的信道估计,获取该基站到终端设备的K个信道响应的估计,每个信道响应对应一组模拟权;然后,根据该K个信道响应的估计,采用最佳的模拟权来进行上行或下行数据的接收(或发送)。也就是说,基站进行多次模拟波束扫描之后,才能确定进行上行或下行数据的接收(或发送)采用的模拟权。
模拟权值、模拟加权、模拟权值扫描:
模拟权值:表示模拟加权过程中的权值矩阵,由移项器对应的相位来构成权值矩阵。一般而言,模拟权值的种类有限,网络侧会预存好所有的模拟权值组合(即权值码本),每个时刻只能使用其中一种模拟权值。
模拟加权:表示加载模拟权值的过程,描述信号通过移项器的模拟处理,等价进行了乘以权值矩阵的过程。
模拟权值扫描:描述网络侧在不同时刻采用不同的模拟权值的过程,称为模拟权值的“扫描”行为。
从上述描述可知,采用上述模拟波束扫描的方式,完成全部模拟权的波束扫描的时间被拉长K倍,K表示需要扫描的模拟波束个数,等效消耗了更多的时间上的资源。另外,由于终端设备的移动以及环境的波动,信道存在老化的影响,因此时间上资源的消耗的增加会造成对信道实时跟踪能力的下降,引起性能下降。此外,HBF技术依赖模拟加权,由于模拟权值存在精度与数目受限的缺陷,进一步影响到HBF技术的广泛应用。应理解,采用扫描开销较少的模拟波束扫描方案,可减少时间开销,并避免引起性能下降。因此,需要研究扫描开销较小的模拟波束扫描方案。本申请提供的基于阵列分组的通信方法,可加快模拟波束扫描的速度,节省扫描的资源开销,并提升移动通信网络的小区上下行容量。进一步的,本申请的基于阵列分组的通信方法,还可在一定程度上克服模拟权值存在精度与数目受限的缺陷。
下面结合附图介绍本申请提供的阵列分组的通信方法适用的通信系统。
图3为本申请实施例提供的一种无线通信系统的示例。如图3所示,该通信系统包括:一个或多个终端设备,图3中仅以2个终端设备为例,以及可为终端设备提供的通信服务的一个或多个接入网设备(例如基站),图3中仅以一个接入网设备为例。在一些实施例中,无线通信系统可以由小区组成,每个小区包含一个或多个接入网设备,接入网设备向多个终端提供通信服务。无线通信系统也可以进行点对点通信,如多个终端之间互相通信。
终端是一种具有无线收发功能的设备。终端可经无线接入网(radioaccess network,RAN)中的接入网设备(或者称为接入设备)与一个或多个核心网(core network,CN)设备(或者称为核心设备)进行通信。终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例中,终端也可以称为终端设备或者用户设备(user equipment,UE),可以是手机(mobile phone)、移动台(mobile station,MS)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实 (virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端、用户单元(subscriber unit)、蜂窝电话(cellular phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。终端可包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。可选的,终端可以是具有无线通信功能的手持设备(handset)、车载设备、可穿戴设备或物联网、车联网中的终端、5G以及5G之后演进的通信系统中的任意形态的终端等,本申请对此并不限定。
接入网设备可以是任意一种具有无线收发功能且能和终端通信的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例包括:宏基站、微基站(也称为小站)、中继站、接入点、gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、接入回传一体化(integrated access and backhaul,IAB)等。
下面结合附图介绍可实现本申请提供的阵列分组的通信方法的通信装置。
图4为本申请实施例提供的一种通信装置的示意图。如图4所示,该通信装置包括:基带处理单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)以及天线模块。RRU可替换为RF单元。天线模块可称为天馈模块或天线阵列。BBU可以是基带处理器。RRU中的模拟移项器可分组控制天线阵列(即实现天线阵列的分组控制),详细描述参见后文。RRU与天线模块合称为有源天线处理单元(active antenna unit,AAU)。可理解,本申请实施例示出的通信装置还可以具有比图4更多的部件或模块,本申请实施例对此不作限定。本申请实施例提供的通信装置的软件实现可以但不局限于在AAU、RRU、BBU上实现。下面描述各模块的主要功能如下:
天线模块:在无线通信装置中用来发射或接收电磁波的部件,用于将模拟信号转换为空间电磁波或者接收空间电磁波转换为模拟信号。
AAU:有源天线处理单元,集成了RRU和天线模块二者的功能。
RRU:完成中频信号到射频信号的变换,通过馈线与天线模块相连。
BBU:对于基带信号进行数字的处理,包括数字波束变换、编码调制等信号处理过程。
在一种可能的实现方式中,图4中的通信装置为接入网设备,例如基站。对于下行通道而言,数据信号流从BBU传递到RRU,再传递到天线模块进而发出空口信号。而对于上行通道而言,数据信号流从天线模块接收,通过RRU模块传递到BBU模块进行处理。
在一种可能的实现方式中,图4中的通信装置为终端设备,例如手机。对于上行通道而言,数据信号流从BBU传递到RRU,再传递到天线模块进而发出空口信号。而对于下行通道而言,数据信号流从天线模块接收,通过RRU模块传递到BBU模块进行处理。
图4描述了本申请实施例提供的通信装置的结构。本申请提供的基于阵列分组的通信方法主要应用于需要快速、准确地实现模拟波束扫描的信号处理流程。下面结合附图介绍本申请提供的基于阵列分组的通信方法适用的一种信号处理流程的示例。
图5为本申请实施例提供的一种信号处理流程的示意图。如图5所示,虚线框501中示出了探测导频分支,虚线框502中示出了业务数据分支。探测导频分支可理解为接入网设备根据来自终端设备的导频信号(例如探测参考导频(sounding reference signal,SRS))执行模拟加权过程和信道估计过程。接入网设备执行探测导频分支的目的是通过模拟加权过程和信道估计过程,确定进行信号发送或接收处理待采用的模拟权,即实现模拟权的设计过程。本申请中,模拟权和模拟权值是相同的概念。探测导频分支包括以下处理过程:接入网设备通过天线接收来自终端设备的导频信号;对不同组天线接收的天线信号加载不同的模拟权以得到多组模拟加权的信号,其中,移相器实现天线的分组控制;通过AD采样将模拟加权的信号转换为数字信号,并进行信道估计(可称为信道探测)。业务数据分支可理解为接入网设备根据通过探测导频分支确定的模拟权实现模拟加权过程,进而实现信号的发送或接收。接入网设备执行业务数据分支的目的是实现信号的发送或接收。业务数据分支一种可能的处理过程(对应于信号接收过程)如下:接入网设备通过天线接收来自终端设备的数据信号(承载业务数据);对接收的数据信号加载通过探测导频分支确定的模拟权(模拟加权过程),即将确定的模拟权应用于移相器对应的相位;通过AD采样将模拟加权的信号转换为数字信号,并进行数字的加权。业务数据分支另一种可能的处理过程(对应于信号发送过程)如下:接入网设备根据待发送的业务数据,生成数据信号;对该数据信号进行数字加权;通过DA采样将经过数字加权的信号转换为模拟信号;对该模拟信号加载通过探测导频分支确定的模拟权(模拟加权过程),即将确定的模拟权应用于移相器对应的相位;通过天线发送模拟加权后的模拟信号。
图5以接入网设备为例,描述了本申请提供的基于阵列分组的通信方法适用的一种信号处理流程的示例。应理解,终端设备可执行类似于图5中的信号处理流程,这里不作赘述。
本申请的主要发明点在于,通过天线分组的方式来实现同时通过多组模拟权接收信号。示例性的,通信装置中的天线被分为多组,不同组中的天线对应的模拟权不同,同一组中的天线对应的模拟权相同,该通信装置可同时通过多组模拟权(每组模拟权对应一组或多组天线)来接收信号。因此,通信装置在一次模拟波束扫描过程中就能通过多组不同的模拟权接收信号。参阅图2,目前采用的模拟波束扫描方式在连续K个时刻(即T1至TK时刻)中的每个时刻采用一组模拟权来接收信号;其中,每个时刻可理解为一个模拟波束扫描周期或一次模拟波束扫描过程。本申请提供的基于阵列分组的通信方法,在一个模拟波束扫描周期或一次模拟波束扫描过程就能达到通过K组不同的模拟权接收信号的技术效果,因此能够加快模拟波束扫描的速度。下面结合附图介绍本申请实施例提供的一些可能的天线分组方式。
本申请中,通信装置通过各天线对应的移项器来实现天线分组,每组天线对应一组移相器。可选的,同一组中的各天线对应的移相器对应的相位相同,不同组中的天线对应的移相器对应的相位不同。或者说,相同组中的各天线由相同的移相器(对应的相位相同)控制,不同组中的各天线由不同的移相器(对应的相位不同)控制。在一种可能的实现方式中,通信装置采用的M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。在一种可能的实现方式中,通信装置采用的M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。需要注意,每组移相器对应的模拟权可以为预先配置好的(或者说固定存储实现),同时也允许更新为不同的模拟权。
通信装置中的多天线架构可描述为(Ver*Hor),即垂直阵面*水平阵面,的二维天线形态。Ver为大于等于2的整数,Hor为大于等于2的整数。一般而言,水平天线(即水平维度) 的数目表示二维天线图的列数,垂直天线(即垂直维度)的数目表示二维天线图的行数。需要注意,天线数目是指基带处理的天线数目,不是移项器级的天线数目。对于多极化场景,则每个垂直或水平的位置上可包含多个极化天线。
本申请提供的基于阵列分组的通信方法中,通信装置通过M组模拟权接收来自第一通信设备的第一信号,该M组模拟权对应(M1*M2)组天线,上述(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;上述M1和M2均为大于等于1的整数,(M1*M2)大于或等于上述M。举例来说,通信装置为接入网设备,第一通信装置为终端设备,第一信号为上行信号。又举例来说,通信装置为终端设备,第一通信装置为接入网设备,第一信号为下行信号。一组模拟权可对应一组天线,也可以对应多组天线。也就是说,多组天线可对应于同一组模拟权。需要注意,水平维度包括连续的M1组天线的定义为:对于编号从1~Hor个天线而言,为第一组,为第二组依次类推。水平维度包括交织的M1组天线的定义为:对于编号从1~Hor个天线而言,<1,1+M1,1+2M1…>为第一组,<2,2+M1,2+2M1…>为第二组,依次类推。应理解,对于垂直维度包括连续的M2组天线而言,分组方案的具体描述与水平维度一致,只要编号更换为Ver即可;对于垂直维度包括交织的M2组天线而言,分组方案的具体描述与水平维度一致,只要编号更换为Ver即可。
在本申请实施例中,包括且不限于的分组数目为:M=16:M1=1,2,4,8,16,M2=16,8,4,2,1;M=8:M1=1,2,4,8,M2=8,4,2,1;M=4:M1=1,2,4,M2=4,2,1;M=2:M1=1,2,M2=2,1。其中M1不会超过Hor,M2不会超过Ver数目。本申请中,M1和M2不限定为偶数,M1和M2中的至少一个为大于1的整数。例如,M1为3,M2为8,M为24。又例如,M1为4,M2为7,M为28。又例如,M1为1,M2为2,M为2。
移项器维度所在的位置包括垂直维度或者水平维度。图6A、图6B、图6C、图6D为本申请实施例提供的天线分组的示例的示意图。图6A至图6D中,601至608表示8个移相器,每个“×”表示一个天线(对于移相器来说),底纹相同的天线为相同组的天线,移项器在垂直维度,移项器的数目为8,基带处理模块的数目为4,水平维度包括8个天线(即水平维度的①②③④⑤⑥⑦⑧),垂直维度(基带通道处理维度)包括4个天线(即垂直维度的①②③④)。图6A示出了水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线的情况。如图6A所示,天线在水平维度包括连续的2(即M1=2)组天线,在垂直维度包括连续的2组(M2=2),对于水平维度而言,<1,2,3,4>为第一组,<5,6,7,8>为第二组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组。图6B示出了水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线的情况。如图6B所示,天线在水平维度包括交织的2(即M1=2)组天线,在垂直维度包括连续的2组(M2=2)天线,对于水平维度而言,<1,3,5,7>为第一组,<2,4,6,8>为第二组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组。图6C示出了水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线的情况。如图6C所示,天线在水平维度包括连续的2(即M1=2)组天线,在垂直维度包括交织的2组(M2=2)天线,对于水平维度而言,<1,2,3,4>为第一组,<5,6,7,8>为第二组;对于垂直维度而言,<1,3>为第一组,<2,4>为第二组。图6D示出了水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线的情况。如图6D所示,天线在水平维度包括交织的2(即M1=2)组天线,在垂直维度包括交织的2组(M2=2)天线,对于水平维度而言,<1,3,5,7>为第一组,<2,4,6,8>为第二组;对于垂直维度而言,<1,3>为第一组,<2,4>为第二组。在一种可能的实现方式中,相同组中的天线采用的模拟权相同,不 同组中的天线采用的模拟权不同。以图6A中的4组天线为例,该4组天线中的任意两组天线采用的模拟权不同。也就是说,图6A中的4组天线可对应于4组不同的模拟权,即每组天线对应于一组模拟权。本申请中,一组模拟权可包括一个模拟权,也可以包括两个或两个以上模拟权,本申请不作限定。在一种可能的实现方式中,相同组中的天线采用的模拟权相同,不同组中的天线采用的模拟权相同或不同。以图6A中的4组天线为例,该4组天线分别为天线组1、天线组2、天线组3以及天线组4,天线组1在水平维度为第一组且在垂直维度为第一组,天线组2在水平维度为第二组且在垂直维度为第一组,天线组3在水平维度为第一组且在垂直维度为第二组,天线组2在水平维度为第二组且在垂直维度为第二组,天线组1和天线组4对应于同一组模拟权,天线组2和天线组3对应于同一组模拟权。也就是说,图6A中的4组天线对应于两组模拟权。以图6D中的4组天线为例,该4组天线分别为天线组5、天线组6、天线组7以及天线组8,天线组5在水平维度为第一组且在垂直维度为第一组,天线组6在水平维度为第二组且在垂直维度为第一组,天线组7在水平维度为第一组且在垂直维度为第二组,天线组8在水平维度为第二组且在垂直维度为第二组,天线组5和天线组8对应于同一组模拟权,天线组6和天线组7对应于同一组模拟权。也就是说,图6A中的4组天线对应于两组模拟权。上述仅介绍了多组天线中的一部分组采用相同的模拟权的部分示例,而不是全部示例。应理解,在不同的应用场景中,可根据实际需要配置多组天线采用相同的模拟权。
图7A、图7B、图7C为本申请实施例提供的天线分组的示例的示意图。图7A至图7C中,701至708表示8个移相器,每个“×”表示一个天线(对于移相器来说),底纹相同的天线为相同组的天线,移项器在垂直维度,移项器的数目为8,基带处理模块的数目为4,水平维度包括12个天线(即水平维度的①②③④⑤⑥⑦⑧⑨⑩ ),垂直维度(基带通道处理维度)包括4个天线(即垂直维度的①②③④)。图7A示出了水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线的情况。如图7A所示,天线在水平维度包括连续的3(即M1=3)组天线,在垂直维度包括连续的2组(M2=2),对于水平维度而言,<1,2,3,4>为第一组,<5,6,7,8>为第二组,<9,10,11,12>为第三组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组。图7B示出了水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线的情况。如图7B所示,天线在水平维度包括交织的3(即M1=3)组天线,在垂直维度包括连续的2组(M2=2)天线,对于水平维度而言,<1,4,7,10>为第一组,<2,5,8,11>为第二组,<3,6,9,12>为第三组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组。图7C示出了水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线的情况。如图7C所示,天线在水平维度包括交织的3(即M1=3)组天线,在垂直维度包括连续的2组(M2=2)天线,对于水平维度而言,<1,2,7,8>为第一组,<3,4,9,10>为第二组,<5,6,11,12>为第三组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组。
图8A、图8B、图8C、图8D为本申请实施例提供的天线分组的示例的示意图。图8A至图8D中,801至808表示8个移相器,每个“×”表示一个天线(对于移相器来说),底纹相同的天线为相同组的天线,移项器在垂直维度,移项器的数目为12,基带处理模块的数目为6,水平维度包括8个天线(即水平维度的①②③④⑤⑥⑦⑧),垂直维度(基带通道处理维度)包括6个天线(即垂直维度的①②③④⑤⑥)。图8A示出了水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线的情况。如图8A所示,天线在水平维度包括连续的2(即M1=2)组天线,在垂直维度包括连续的3组(M2=3),对于水平维度而言,<1,2,3,4>为第一组,<5,6,7,8>为第二组;对于垂直维度而言,<1,2>为第一组,<3,4>为第二组,<5,6>为第二 组。图8B示出了水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线的情况。如图8B所示,天线在水平维度包括连续的2(即M1=2)组天线,在垂直维度包括交织的3组(M2=3)天线,对于水平维度而言,<1,2,3,4>为第一组,<5,6,7,8>为第二组;对于垂直维度而言,<1,4>为第一组,<2,5>为第二组,<3,6>为第二组。图8C示出了水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线的情况。如图8C所示,天线在水平维度包括交织的3(即M1=3)组天线,在垂直维度连续交织的2组(M2=2)天线,对于水平维度而言,<1,2,7,8>为第一组,<3,4,9,10>为第二组,<5,6,11,12>为第三组;对于垂直维度而言,<1,3>为第一组,<2,4>为第二组。图8D示出了水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线的情况。如图8D所示,天线在水平维度包括交织的3(即M1=3)组天线,在垂直维度连续交织的2组(M2=2)天线,对于水平维度而言,<1,4,7,11>为第一组,<2,5,8,11>为第二组,<3,6,9,12>为第三组;对于垂直维度而言,<1,3>为第一组,<2,4>为第二组。
图6A至图6D、图7A至图7C以及图8A至图8D仅为本申请提供一些可能的天线分组情况的示例,而不是全部示例,本申请中,水平维度或垂直维度包括连续的多组天线是指该多组天线中每组天线位于一个连续区域,参阅图6A、图6C、图7A、图7B、图7C、图8A、图8B。本申请中,水平维度或垂直维度包括交织的多组天线是指该多组天线中一组或多组天线位于两个或两个以上不同区域,参阅图6B、图6D、图7B、图7C、图8B、图8C、图8D。应理解,本申请不限定水平维度的天线数目以及垂直维度的天线数目,也不限定任意维度包括连续的多组天线或者交织的多组天线的具体形式。当水平维度或垂直维度包括交织的多组天线,尤其是水平维度和垂直维度均包括交织的多组天线时,每组天线接收的信号可视为整个天线阵列接收的信号的降采样,因此每组天线的信号接收情况与整个天线阵列的信号接收情况几乎相同。应理解,整个天线阵列中的天线分组(即天线组的个数)越少,每组天线的信号接收情况与整个天线阵列的信号接收情况越接近;整个天线阵列中的天线分组(即天线组的个数)越多,每组天线的信号接收情况与整个天线阵列的信号接收情况差异越大,模拟波束的扫描效率越高。因此,在实际应用中,可根据实际需求,配置天线阵列的分组请求,以便满足不同场景的需求。某个维度包括连续的多组天线与交织的多组天线相比,每组天线的信号接收情况与整个天线阵列的信号接收情况差异较大,硬件电路较为简单。任意维度包括连续的多组天线的分组方式适用于对精度要求较低的应用场景。
前面介绍了一些可能的天线分组的示例,下面结合附图介绍本申请提供的基于阵列分组的通信方法。
图9为本申请实施例提供的一种基于阵列分组的通信方法交互流程图。如图9所示,该方法包括:
901、第二通信设备通过M组模拟权接收来自第一通信设备的第一信号。
相应的,第一通信设备向第二通信设备发送第一信号。第二通信设备可以是图4中的通信装置,并可执行图5中的信号处理流程。
上述M组模拟权中的至少两组模拟权不同,上述M为大于或等于2的整数。示例性的,上述M组模拟权中的任意两组模拟权不同。本申请中,每组模拟权包括一个或多个模拟权,两组模拟权不同是指该两组模拟权包括的模拟权不完全相同。或者说,若两组模拟权包括的各模拟权完全相同,则该两组模拟权相同。例如,第一组模拟权和第二组模拟权均仅包括一个模拟权,若该第一组模拟权和该第二组模拟权包括的模拟权相同,则该第一组模拟权和该第二组模拟权相同,否则,该第一组模拟权和该第二组模拟权不同。例如,第一组模拟权包括模拟权1和模拟权2,第二组模拟权包括模拟权3和模拟权4;若模拟权1与模拟权3和模 拟权4中的一个相同,且模拟权2与模拟权3和模拟权4中的另一个相同,则该第一组模拟权和该第二组模拟权相同,否则,该第一组模拟权和该第二组模拟权不同。示例性的,上述M组模拟权对应(M1*M2)组天线,上述(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;上述M1和M2均为大于等于1的整数,(M1*M2)大于或等于上述M。M组模拟权对应的(M1*M2)组天线可以是图6A至图6D、图7A至图7C、或者图8A至图8D中的任一种,还可以是其他天线分组方式,本申请不作限定。可选的,(M1*M2)等于M,M组模拟权对应的(M1*M2)组天线中任意两组天线对应的模拟权不同。可选的,(M1*M2)大于M,M组模拟权对应的(M1*M2)组天线中至少两组天线对应的模拟权相同。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。在该实现方式中,M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的;通过独立的控制不同组间的移相器,可独立的配置每组移相器对应的模拟权。
在一种可能的实现方式中,上述M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。在该实现方式中,可以使得不同组间的移相器对应的模拟权不同,同一组中的各移项器对应的模拟权相同。
在一种可能的实现方式中,第二通信设备为终端设备(例如手机),第一通信设备为接入网设备(例如基站),第一信号为下行信号。例如,第一下行为信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DRS)、跟踪参考信号(tracking reference signal,TRS)等。
在一种可能的实现方式中,第二通信设备为接入网设备(例如基站),第一通信设备为终端设备(例如基站),第一信号为上行信号。例如,第一下行为探测参考导频(sounding reference signal,SRS)等。
902、第二通信设备根据第一信号进行信道估计,得到M个信道估计结果。
上述M个信道估计结果与上述M组模拟权一一对应。M组模拟权包括第一组模拟权、第二组模拟权、…、第m组模拟权、…、第M组模拟权。该M组模拟权中的第m组模拟权可用Wm表示,m为大于0的整数,m小于或等于M。第二通信设备根据第一信号进行信道估计,得到M个信道估计结果可以是:第二通信设备根据通过上述M组模拟权中的每组模拟权接收来自第一通信设备的第一信号得到的信号,进行信道估计,得到M个信道估计结果。在一种可能的实现方式中,第二通信设备采用每组模拟权Wm接收来自第一通信设备的第一信号,并根据通过每组模拟权Wm接收到的信号进行信道估计。第二通信设备根据通过第m组模拟权Wm接收到的信号进行信道估计得到的信道估计结果可采用表示。上述M个信道估计结果可包括本申请中,信道估计(或者说信道探测)的方法包括且不限于最小二乘(least squares,LS)估计、最小均方误差(minimum mean square error,MMSE)估计等方式。以LS信道估计为例,信道估计的过程利用接收的信号乘以导频信号的共轭,从而获得信道响应矩阵,即信道估计结果。
903、第一通信设备根据M个信道估计结果,采用目标模拟权进行信号接收或发送处理。
上述目标模拟权基于上述M组模拟权得到。参阅图5,步骤901和步骤902对应于图5中的探测导频分支,步骤903对应于图5中的业务数据分支。应理解,第二通信装置通过执行图9中的方法流程可先确定进行信号接收或发送处理待采用的目标模拟权,再采用该目标 模拟权进行信号接收或发送处理。步骤901和步骤902为模拟波束扫描过程(或者称为模拟加权过程),第二通信设备通过执行步骤901和步骤902可快速地实现模拟波束扫描,减少时间开销。目标模拟权可以为第二通信设备确定的适于当前进行信号接收或发送处理,采用的模拟权。采用目标模拟权进行信号接收或发送处理可以保证模拟波束扫描的精度,甚至模拟权的量化精度。
在一种可能的实现方式中,上述目标模拟权为上述M组模拟权中的一组。
在一种可能的实现方式中,上述目标模拟权为权值码本中的一组,上述M组模拟权包含于上述权值码本。
在一种可能的实现方式中,上述M个信道估计结果为假定上述第一信号未经过上述M组模拟权对应的移相器的信道估计结果。
本申请实施例中,通过M组模拟权接收来自第一通信设备的第一信号,与先后通过该M组模拟权中的每组模拟权接收来自第一通信设备的信号相比,可以加快模拟波束扫描的速度,节省扫描的资源开销,并提升移动通信网络的小区上下行容量。
图10为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图。图10中的方法交互流程是图9描述的方法的一种可能的实现方式。在该实现方式中,第二通信设备从M组模拟权中选择(确定)进行信号接收或发送处理待采用的模拟权,可快速地确定当前待采用的模拟权,运算少。如图10所示,该方法包括:
1001、第二通信设备通过M组模拟权接收来自第一通信设备的第一信号。
相应的,第一通信设备向第二通信设备发送第一信号。步骤1001可参阅步骤901。
1002、第二通信设备根据第一信号进行信道估计,得到M个信道估计结果。
步骤1002可参阅步骤902。步骤1002一种可能的实现方式如下:采用上述M组模拟权中的每组模拟权接收来自第一通信设备的第一信号,并根据通过每组模拟权接收到的信号进行信道估计,得到M个信道估计结果。上述M组模拟权与M个信道估计结果一一对应。也就是说,一组模拟权对应于一个信道估计结果。第二通信设备根据通过第m组模拟权Wm接收到的信号进行信道估计得到的信道估计结果可采用表示。
1003、第二通信设备根据M个信道估计结果,对该M个信道估计结果对应的M组模拟权进行优劣排序。
步骤1003可理解为:根据每组信道估计结果,进行模拟权优劣的识别。模拟权的优劣识别方案包括且不限于按照参考信号功率(reference signal receiving power,RSRP)从大到小排序,按照信干噪比(signal to interference plus noise ratio,SINR)从大到小排序等。其中RSRP的计算方式包括且不限于计算的功率(模方),SINR的计算包括且不限于RSRP和噪声功率的比值等。最终识别到较优(例如最优)的模拟权的索引为kopt。本申请中,M个模拟权中的较优的模拟权是指按照优劣排序排在最前面的F个模拟权中的任一个,F为小于M的整数。可选的,F为1,这样模拟波束扫描的精度较高。
1004、第二通信设备根据M组模拟权的优劣排序,采用目标模拟权进行信号接收或发送处理。
上述M组模拟权的优劣排序是第二通信设备执行步骤1002得到的。目标模拟权可以是M组模拟权中的较优的模拟权,例如最优的模拟权。
第二通信设备根据通过第m组模拟权Wm接收到的信号进行信道估计得到的信道估计结果可采用表示。上述M个信道估计结果可包括在一种可能的实现方式中,第二通信设备在得到M个信道估计结果之后,可采用如下公式确定最优的模拟权的索引:
或者
其中,fx表示函数关系,包括且不限于:
其中,C可以表示正小数、负小数、或者噪声功率等信道参数,s包括且不限于2,-2,1,-1等整数。应理解,当C为正数时,当C为负数时, 通过公式(1)和公式(2)可确定每组模拟权的优劣排序,进而采用目标模拟权(例如最优的模拟权)进行信号接收或发送处理。
以RSRP排序为例,第二通信设备采用如下公式确定最优的模拟权的索引:
其中,m为取值为1至M。
步骤1104可理解为:第二通信设备根据模拟权的优劣识别情况,在下一个时刻的上行或下行业务数据信道采用较优的目标模拟权进行接收/发送处理。
本申请实施例中,第二通信设备根据M组模拟权的优劣排序,采用目标模拟权进行信号接收或发送处理,可快速地确定当前待采用的模拟权,运算少。
图11为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图。图11中的方法交互流程是图9描述的方法的一种可能的实现方式。在该实现方式中,第二通信设备从权值码本中选择(确定)进行信号接收或发送处理待采用的模拟权,相比于从上述M组模拟权中选择当前进行信号接收或发送处理采用的模拟权,可以得到更适于当前进行信号接收或发送处理采用的模拟权,能够提高波束探测精度。如图11所示,该方法包括:
1101、第二通信设备通过M组模拟权接收来自第一通信设备的第一信号。
相应的,第一通信设备向第二通信设备发送第一信号。步骤1101可参阅步骤901。
1102、第二通信设备根据第一信号进行信道估计,得到M个信道估计结果。
上述M个信道估计结果为假定上述第一信号未经过上述M组模拟权对应的移相器的信道估计结果。M组模拟权与M组移相器一一对应。上述M个信道估计结果可包括H1、H2、…、Hm、…、HM,其中,H1表示该M组移相器中的第1组移项器对应的信道估计结果,Hm表示该M组移相器中的第m组移项器对应的信道估计结果,以此类推。示例性的,H1表示该M组移相器中的第1组移项器对应的移相器级的信道响应矩阵,Hm表示该M组移相器中的第m组移项器对应的移相器级的信道响应矩阵,以此类推。在该示例中,步骤1102可理解为:依据每组模拟权的信道估计结果,实现移项器级别的信道重构,即得到H1、H2、…、Hm、…、HM
下面以根据第一信号进行信道估计,得到Hm为例,介绍步骤1102一种可能的实现方式。
第二通信设备根据第一信号进行信道估计,得到Hm的举例如下:
1)、第二通信设备根据第二通信设备的角度位置信息,预估Hm和Hk之间的相位差αk,m
Hm表示该M组移相器中的第m组移项器对应的信道估计结果,Hk表示该M组移相器中的第k组移项器对应的信道估计结果,m和k均为大于0且小于M的整数。角度位置信息可包括第二通信设备对应的垂直到达角(zenith angle of arrival,ZoA)和/或到达角(angle of arrival,AoA)。预估Hm和Hk之间的相位差的方式可以通过波达方向估计(direction of arrival,DoA)的经典方法如多重信号分类(multiple signal classification,MUSIC)可以获取得到。DoA是指空间信号的到达方向(各个信号到达阵列参考阵元的方向角,简称波达方向)。MUSIC算法的基本原理是把阵列输出数据的协方差矩阵进行特征分解,得到与信号分量相对应的信号子空间和与信号分量正交的噪声子空间,然后利用两个子空间的正交性实现信号的入射方向估计。应理解,第二通信设备可根据第二通信设备的角度位置信息,预估任意两个信道估计结果之 间的相位差。Hm和Hk之间的关系可采用如下公式表示:
Hm=Hkαk,m   (4);
其中,αk,m表示Hm和Hk之间的相位差。
在一种可能的实现方式中,第二通信设备通过执行步骤1102,可以获得经过了模拟加权处理后的信道响应矩阵(一个信道估计结果),其中模拟加权的过程可用如下公式描述:
其中,Wk表示(NBB×NPS)维度的模拟权/模拟波束,Wk表示上述M组模拟权中的第k组模拟权。表示NBB维度的基带处理级信道响应矩阵,表示M个信道估计结果中对应于上述M组模拟权中的第k组模拟权的信道估计结果。或者说,表示上述M组模拟权中的第k组模拟权对应的信道响应矩阵。NBB表示基带处理的空域/天线域/波束域维度,NPS表示移项器处理的空域/天线域/波束域维度。本申请中,“/”表示或者。
结合上面公式(4)和公式(5)可以获得信道模型关系:
定义为新的变量,表示Hm(即第m组移项器对应的移相器级的信道响应矩阵)经过Wk(第k组模拟权)的信道矩阵(可通过求解估计得到该信道矩阵系数)。
2)、第二通信设备根据预估的Hm和Hk之间的相位差αk,m,估计Hm经过模拟权W1,W2…WM的信道响应矩阵
W1表示上述M组模拟权中的第一组模拟权,W2表示上述M组模拟权中的第二组模拟权,WM表示上述M组模拟权中的第M组模拟权。表示Hm经过模拟权W1的信道响应矩阵,表示Hm经过模拟权W2的信道响应矩阵,表示Hm经过模拟权WM的信道响应矩阵。第二通信设备将和αk,m代入公式(6)可计算得到应理解,第二通信设备可采用类似的方式估计Hm经过模拟权W1,W2…WM的信道响应矩阵
3)、第二通信设备根据得到经过模拟权的信道响应为
4)、第二通信设备根据HM′和模拟权矩阵WM,得到Hm
模拟权矩阵WM=[W1;W2…WM],WM是维度为(M*NBB)×NPS的矩阵。HM′、WM以及Hm对应的信道响应的矩阵模型满足如下公式:
HM′=WM×Hm  (7);
第二通信设备根据HM′和模拟权矩阵WM,得到Hm的方式包括且不限于LS估计、MMSE估计。以LS估计方法为例,第二通信设备根据HM′和模拟权矩阵WM,计算得到Hm一种可能的公式如下:
Hm=(WM+D)-1HM′   (8);
其中,D表示加载矩阵,包括且不限于单位阵,对角阵等。公式(8)可替换为同理,第二通信设备可通过类似于得到Hm的方式,得到H1、H2、…、HM。Hm可视为重构的第m组移相器的信道响应矩阵。应理解,第二通信设备可采用类似的方式重构每组移相器的信道响应矩阵。
1103、第二通信设备根据M个信道估计结果,采用权值码本中的目标模拟权进行信号接收或发送处理。
上述目标模拟权基于上述M组模拟权得到。上述目标模拟权为权值码本中的一组模拟权,上述M组模拟权包含于上述权值码本。
步骤1103可理解为:第二通信设备根据M个信道估计结果,采用权值码本中较优的目标模拟权进行信号接收或发送处理。示例性的,第二通信设备根据M个信道估计结果,计算出权值码本中最优的模拟权索引kopt,在下一个时刻的上行或下行业务数据信道采用该最优的模拟权(即目标模拟权)进行接收/发送处理。第二通信设备权值码本中最优的模拟权索引 的方法包括且不限于利用Hm与每个模拟权Wk组合,分别探测其最大的RSRP、SINR或者相关性等测量量作为最优模拟权的衡量指标。利用Hm与权值码本中的每个模拟权Wk组合,可得到第二通信设备根据M个信道估计结果,计算出权值码本中最优的模拟权索引kopt可采用如下公式:
或者
其中fx表示函数关系,包括且不限于:
其中,C可以表示正小数或者负小数,或者噪声功率等信道参数,求和项的范围包括且不限于1~M中的部分或者全部索引范围,s包括且不限于2,-2,1,-1等整数。
在一种可能的实现方式中,第二通信设备采用如下公式确定最优的模拟权的索引:
其中,Wk为权值码本中的模拟权。第二通信设备利用Hm与权值码本中的每个模拟权Wk组合,可得到
本申请实施例中,第二通信设备从权值码本中选择(确定)进行信号接收或发送处理待采用的模拟权,相比于从上述M组模拟权中选择当前进行信号接收或发送处理采用的模拟权,可以得到更适于当前进行信号接收或发送处理采用的模拟权,能够提高波束探测精度。
图12为本申请实施例提供的另一种基于阵列分组的通信方法交互流程图。图12中的方法交互流程是图9描述的方法的一种可能的实现方式。在该实现方式中,第二通信设备计算进行信号接收或发送处理待采用的模拟权,而不是从已有的权值码本或模拟权集合中选择待采用的模拟权,可以得到更适于当前进行信号接收或发送处理采用的模拟权(即更精细的模拟权),能够提高波束探测精度,并提高模拟权的量化精度。如图12所示,该方法包括:
1201、第二通信设备通过M组模拟权接收来自第一通信设备的第一信号。
相应的,第一通信设备向第二通信设备发送第一信号。步骤1101可参阅步骤901。
1202、第二通信设备根据第一信号进行信道估计,得到M个信道估计结果。
步骤1202可参阅步骤1102。M个信道估计结果可包括H1、H2、…、Hm、…、HM,其中,H1表示该M组移相器中的第1组移项器对应的信道估计结果,Hm表示该M组移相器中的第m组移项器对应的信道估计结果,以此类推。
1203、第二通信设备根据M个信道估计结果,计算得到目标模拟权。
第二通信设备根据M个信道估计结果,计算得到目标模拟权的一个举例如下:
1)、第二通信设备根据M个信道估计结果进行组间合并,得到信道响应矩阵Hps;其中,Hps=[H1,H2,…HM]。
2)、第二通信设备根据Hps进行矩阵分解,并根据得到的特征向量构建目标模拟权。
第二通信设备根据Hps进行矩阵分解可能的实现方式如下:第二通信设备采用如下公式对Hps进行奇异值分解(singular value decomposition,SVD):
其中,Hps的行等于第二通信设备中的移项器的数目Nmoni。第二通信设备可按照其采用的移项器的数目来设置Hps的行。
第二通信设备根据Hps进行矩阵分解可能的实现方式如下:第二通信设备采用如下公式对Hps进行特征值分解:
其中,Hps的行等于第二通信设备中的移项器的数目。
3)、第二通信设备取u的第一个特征向量构成Nmoni*1的向量uopt,按照如下方式拼接成 (NBB*Nps)的目标模拟权Wopt
Wopt表示计算得到的目标模拟权。目标模拟权的精度高于权值码本中的模拟权的精度。也就是说,第二通信设备根据M个信道估计结果,可计算得到精度更高的目标模拟权,采用目标模拟权进行信号接收或发送处理可提升移相器的量化精度,并提供系统的上行覆盖性能。
1204、第二通信设备采用目标模拟权进行信号接收或发送处理。
本申请实施例中,通过对天线阵面进行分组(划分为M组)的划分设计,一次性完成模拟波束测量与寻优,可节省模拟波束扫描的资源开销,提升移动通信网络的小区上下行容量。另外,由于第二通信设备根据M个信道估计结果,可计算得到精度更高的目标模拟权,因此采用目标模拟权进行信号接收或发送处理,能够提升移项器量化精度,以及提升系统的上下行覆盖性能。
下面结合附图介绍可实施本申请实施例提供的基于阵列分组的通信方法的通信装置的结构。
图13为本申请实施例提供的一种通信装置1300的结构示意图。该通信装置1300可以对应实现上述各个方法实施例中第一通信设备实现的功能或者步骤。该通信装置可以包括处理模块1310和接口模块1320。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1310和接口模块1320可以与该存储单元耦合,例如,处理模块1310可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如,接口模块1320可包括发送模块和接收模块。发送模块可以是发射机,接收模块可以是接收机。接口模块1320对应的实体可以是收发器,也可以是通信接口,也可以是天线模块。可选的,通信装置1300还可包括BBU、RRU以及天线模块,参阅图4。
在一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中第二通信设备的行为和功能。例如通信装置1300可以为第二通信设备,也可以为应用于第二通信设备中的部件(例如芯片或者电路)。接口模块1320例如可以用于执行图9、图10、图11、图12的实施例中由第二通信设备所执行的全部接收或发送操作,例如图9所示的实施例中的步骤901,图10所示的实施例中的步骤1001,图11所示的实施例中的步骤1101,图12所示的实施例中的步骤1201,和/或用于支持本文所描述的技术的其它过程。处理模块1310用于执行图9、图10、图11、图12的实施例中中由第二通信设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的步骤902、步骤903,图10所示的实施例中的步骤1002、步骤1003、步骤1004,图11所示的实施例中的步骤1102、步骤1103,图12所示的实施例中的步骤1202、步骤1203、步骤1204。
图14为本申请实施例提供的另一种通信装置140的结构示意图。图14中的通信装置可以是上述第二通信设备。
如图14所示,该通信装置140包括至少一个处理器1410和收发器1420。
在本申请的另一些实施例中,处理器1410和收发器1420可以用于执行第二通信设备执行的功能或操作等。处理器1410例如可执行如下一项多项操作:图9所示的实施例中的步骤902、步骤903,图10所示的实施例中的步骤1002、步骤1003、步骤1004,图11所示的实施例中的步骤1102、步骤1103,图12所示的实施例中的步骤1202、步骤1203、步骤1204。 收发器1420例如可执行如下一项或多项操作:图9所示的实施例中的步骤901,图10所示的实施例中的步骤1001,图11所示的实施例中的步骤1101,图12所示的实施例中的步骤1201。
收发器1420用于通过传输介质和其他设备/装置进行通信。处理器1410利用收发器1420收发数据和/或信令,并用于实现上述方法实施例中的方法。处理器1410可实现处理模块1310的功能,收发器1420可实现接口模块1320的功能。
可选的,通信装置140还可以包括至少一个存储器1430,用于存储程序指令和/或数据。存储器1430和处理器1410耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1410可能和存储器1430协同操作。处理器1410可能执行存储器1430中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
可选的,通信装置140还包括BBU、RRU以及天线模块。天线模块可部署于收发器。
本申请实施例中不限定上述收发器1420、处理器1410以及存储器1430之间的具体连接介质。本申请实施例在图14中以存储器1430、处理器1410以及收发器1420之间通过总线1440连接,总线在图14中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
图15为本申请实施例提供的另一种通信装置150的结构示意图。如图15所示,图15所示的通信装置包括逻辑电路1501和接口1502。图13中的处理模块1310可以用逻辑电路1501实现,图13中的接口模块1320可以用接口1502实现。其中,该逻辑电路1501可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1502可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该逻辑电路和接口可用于执行上述第二通信设备执行的功能或操作等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行上述实施例的方法。
本申请还提供一种计算机程序产品,该计算机程序产品包括指令或计算机程序,当该指令或计算机程序在计算机上运行时,使得上述实施例中的通信方法被执行。
本申请还提供一种通信系统,包括上述第一通信设备和上述第二通信设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以上述权利要求的保护范围为准。

Claims (21)

  1. 一种基于阵列分组的通信方法,其特征在于,包括:
    通过M组模拟权接收来自第一通信设备的第一信号,所述M组模拟权中的至少两组模拟权不同,所述M为大于或等于2的整数;
    根据所述第一信号进行信道估计,得到M个信道估计结果,所述M个信道估计结果与所述M组模拟权一一对应;
    根据所述M个信道估计结果,采用目标模拟权进行信号接收或发送处理,所述目标模拟权基于所述M组模拟权得到。
  2. 根据权利要求1所述的方法,其特征在于,所述M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。
  3. 根据权利要求1所述的方法,其特征在于,所述M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述M组模拟权对应(M1*M2)组天线,所述(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;所述M1和M2均为大于等于1的整数,(M1*M2)大于或等于所述M。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述目标模拟权为所述M组模拟权中的一组。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述目标模拟权为权值码本中的一组,所述M组模拟权包含于所述权值码本。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述M个信道估计结果为假定所述第一信号未经过所述M组模拟权对应的移相器的信道估计结果。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法应用于终端设备或所述终端设备中的装置,所述第一信号为下行信号,所述第一通信设备为接入网设备。
  9. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法应用于接入网设备或所述接入网设备中的装置,所述第一信号为上行信号,所述第一通信设备为终端设备。
  10. 一种通信装置,其特征在于,包括:
    接口模块,用于通过M组模拟权接收来自第一通信设备的第一信号,所述M组模拟权中的至少两组模拟权不同,所述M为大于或等于2的整数;
    处理模块,用于根据所述第一信号进行信道估计,得到M个信道估计结果,所述M个信道估计结果与所述M组模拟权一一对应;
    所述处理模块,用于根据所述M个信道估计结果,控制所述接口模块采用目标模拟权进行信号接收或发送处理,所述目标模拟权基于所述M组模拟权得到。
  11. 根据权利要求10所述的装置,其特征在于,所述M组模拟权与M组移相器一一对应,同一组内的各移相器是同步控制的,不同组间的移相器是独立控制的。
  12. 根据权利要求10所述的装置,其特征在于,所述M组模拟权与M组移相器一一对应,同一组内的各移相器对应的相位相同,不同组间的移相器对应的相位不同。
  13. 根据权利要求10至12任一项所述的装置,其特征在于,所述M组模拟权对应(M1*M2) 组天线,所述(M1*M2)组天线为以下任一种:水平维度包括连续的M1组天线,垂直维度包括连续的M2组天线;水平维度包括连续的M1组天线,垂直维度包括交织的M2组天线;水平维度包括交织的M1组天线,垂直维度包括连续的M2组天线;水平维度包括交织的M1组天线,垂直维度包括交织的M2组天线;所述M1和M2均为大于等于1的整数,(M1*M2)大于或等于所述M。
  14. 根据权利要求10至13任一项所述的装置,其特征在于,所述目标模拟权为所述M组模拟权中的一组。
  15. 根据权利要求10至13任一项所述的装置,其特征在于,所述目标模拟权为权值码本中的一组,所述M组模拟权包含于所述权值码本。
  16. 根据权利要求10至14任一项所述的装置,其特征在于,所述M个信道估计结果为假定所述第一信号未经过所述M组模拟权对应的移相器的信道估计结果。
  17. 根据权利要求10至15任一项所述的装置,其特征在于,所述通信装置为终端设备或者终端设备中的装置,所述第一信号为下行信号。
  18. 根据权利要求10至15任一项所述的装置,其特征在于,所述通信装置为接入网设备或者接入网设备中的装置,所述第一信号为上行信号。
  19. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述通信装置执行如权利要求1至9中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时使得计算机执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时使得计算机执行如权利要求1至9中任一项所述的方法。
PCT/CN2023/088544 2022-04-24 2023-04-15 基于阵列分组的通信方法和通信装置 WO2023207642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210435707.XA CN116980007A (zh) 2022-04-24 2022-04-24 基于阵列分组的通信方法和通信装置
CN202210435707.X 2022-04-24

Publications (1)

Publication Number Publication Date
WO2023207642A1 true WO2023207642A1 (zh) 2023-11-02

Family

ID=88473614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088544 WO2023207642A1 (zh) 2022-04-24 2023-04-15 基于阵列分组的通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116980007A (zh)
WO (1) WO2023207642A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921423A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种确定模拟波束的方法和设备
WO2021169831A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 一种波束赋形方法以及相关装置
US11115136B1 (en) * 2020-07-10 2021-09-07 Lg Electronics Inc. Method for calibrating an array antenna in a wireless communication system and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921423A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种确定模拟波束的方法和设备
WO2021169831A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 一种波束赋形方法以及相关装置
US11115136B1 (en) * 2020-07-10 2021-09-07 Lg Electronics Inc. Method for calibrating an array antenna in a wireless communication system and apparatus thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Hybrid Beamforming for Massive MIMO", 3GPP TSG RAN WG1 #85, R1-164893, 13 May 2016 (2016-05-13), pages 1 - 5, XP051096831 *

Also Published As

Publication number Publication date
CN116980007A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US9270022B2 (en) Method, apparatus and system of antenna array dynamic configuration
US9124314B2 (en) Method and device for delivering service data
US20220021426A1 (en) Method and an apparatus for a transmission scheme
US9853705B2 (en) Communication system, base station, mobile station, and reception quality determination method
US10833736B2 (en) Hybrid beamforming method for beam-based cooperative transmission, and apparatus for the same
KR20050004605A (ko) 서브-어레이 그루핑된 적응 배열 안테나들을 이용하여빔형성 및 다이버시티 이득을 제공하는 무선 페이딩 채널복조기, 이를 구비한 이동 통신 수신 시스템 및 그 방법
CN113258980B (zh) 一种无线通信系统信息传输速率优化方法及装置
US20160134015A1 (en) Antenna directivity control system
JP6860069B2 (ja) 無線装置及び無線通信方法
CN103905105A (zh) 一种双流波束赋形方法和装置
US11917670B2 (en) Physical layer protocol data unit directional transmission
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
CN110024303A (zh) 用于发送信息的方法和设备
CN106160806B (zh) 无线通信系统中执行干扰协调的方法和设备
WO2024027394A1 (zh) 一种通信方法及装置
WO2023207642A1 (zh) 基于阵列分组的通信方法和通信装置
CN107888243B (zh) 一种波束训练方法、终端及基站
EP4191893A1 (en) Data transmission method and device, wireless communication system, and storage medium
CN110535579A (zh) 下行数据的传输方法、网络设备及终端
CN111418162A (zh) 利用参考权重向量的ue特定的波束映射
WO2019003298A1 (ja) 下位無線基地局、上位無線基地局および無線基地局システム
CN115244863A (zh) 更新的方法和通信装置
WO2023020034A1 (zh) 一种权值确定方法及装置
WO2024000603A1 (en) Probing signal selection
WO2023185434A1 (zh) 一种数据传输方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795075

Country of ref document: EP

Kind code of ref document: A1