WO2023185434A1 - 一种数据传输方法以及装置 - Google Patents

一种数据传输方法以及装置 Download PDF

Info

Publication number
WO2023185434A1
WO2023185434A1 PCT/CN2023/081061 CN2023081061W WO2023185434A1 WO 2023185434 A1 WO2023185434 A1 WO 2023185434A1 CN 2023081061 W CN2023081061 W CN 2023081061W WO 2023185434 A1 WO2023185434 A1 WO 2023185434A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight matrix
unequal
matrix
power
terminal
Prior art date
Application number
PCT/CN2023/081061
Other languages
English (en)
French (fr)
Inventor
张晴川
周加铳
朱孝龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185434A1 publication Critical patent/WO2023185434A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a data transmission method and device.
  • MIMO Multiple-antenna multiple-input multiple-output
  • 5G and 4G communication systems uses multiple antennas equipped on the base station side and the terminal side to independently send signals on multiple antennas at the transmitting end.
  • multiple antennas are used at the receiving end to receive and restore the original information. This can be done without increasing the bandwidth or total transmit power. In this case, it greatly increases the data throughput and transmission distance of the system, and provides the most powerful multi-antenna beamforming capability and multi-user spatial division multiplexing capability.
  • MIMO technology is also prone to interference between multiple antennas.
  • FDD MIMO frequency division duplexing
  • MU multi-user zero-forcing precoding algorithm
  • MU zero-forcing precoding algorithm
  • channel information under FDD relies on user measurement reporting, which is limited by terminal capabilities and codebook accuracy.
  • the accuracy of channel information is difficult to guarantee, which greatly restricts This affects the performance of MIMO, resulting in the MU zero-forcing precoding algorithm having poor ability to combat channel information inaccuracies.
  • Channel information inaccuracies seriously affect the accuracy of MU precoding weights, resulting in inter-user interference that cannot be completely suppressed.
  • Embodiments of the present application provide a data transmission method and device for improving power utilization and improving data transmission quality.
  • the first aspect of the embodiment of the present application provides a data transmission method, including: receiving a first precoding matrix indication PMI from a terminal, the first PMI indicating a first weight matrix; determining a second weight based on the first weight matrix matrix; determine the unequal power weight matrix based on the unequal coefficient matrix and the second weight matrix; send data to the terminal based on the unequal power weight matrix.
  • the execution subject is a network device.
  • the network device determines the second weight matrix according to the first weight matrix indicated by the first PMI fed back by the terminal, and then converts the second weight matrix into an unequal matrix according to the unequal coefficient matrix.
  • the power weight matrix allows network equipment to send data of unequal power on different radio frequency channels, providing power utilization and achieving better beam side lobes, thereby better combating performance losses caused by inaccurate channel information. , improve the quality of data transmission.
  • the above step of determining the unequal power weight matrix based on the unequal coefficient matrix and the second weight matrix includes: determining the unequal power based on the unequal coefficient matrix, the equivalent smoothing factor and the second weight matrix. weight matrix.
  • an equivalent smoothing factor is added to maximize the useful signal of the zero-forcing solution and improve the signal transmission quality.
  • the method further includes: when the network load is in an idle state, the unequal power weight The radio frequency channel corresponding to the power weight value in the value matrix that is lower than the preset threshold is closed.
  • the radio frequency channels corresponding to the power weights in the unequal power weight matrix whose power weights are less than the preset threshold are turned off, and the channels with the smallest power are turned off first until the remaining high-power channels meet the power requirements. So far, most of the channels can be closed to improve the energy saving effect.
  • the unequal power weight matrix is a power weight matrix with high distribution in the middle and low distribution on both sides.
  • the second aspect of the embodiments of the present application provides a data transmission device that can implement the method in the above first aspect or any possible implementation of the first aspect.
  • the device includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be implemented by software and/or hardware.
  • the device may be, for example, a network device, a chip, a chip system, a processor, etc. that supports the network device to implement the above method, or a logic module or software that can realize all or part of the network device functions.
  • the third aspect of the embodiment of the present application provides a computer device, including: a processor, the processor is coupled to a memory, and the memory is used to store instructions. When the instructions are executed by the processor, the computer device implements the first aspect. Or the method in any possible implementation of the first aspect.
  • the computer device may be, for example, a network device, or may be a chip or chip system that supports the network device to implement the above method.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by a processor, the first aspect or any possibility of the first aspect is realized. Methods provided by the implementation.
  • the fifth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is executed on a computer, the first aspect or any possible implementation of the first aspect is realized. method provided.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • Embodiments of the present application provide a data transmission method and device for improving power utilization and improving data transmission quality.
  • exemplary means "serving as an example, example, or illustrative.” Any embodiment described herein as “exemplary” is not necessarily to be construed as superior or superior to other embodiments.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), a fifth generation (5th Generation, 5G) next generation base station (next generation NodeB, gNB) in the mobile communication system, next generation base station in the sixth generation (6th generation, 6G) mobile communication system, base station in the future mobile communication system or WiFi system Access node, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node. It can be understood that all or part of the functions of the radio access network equipment in this application can also be implemented through software functions running on hardware, or through virtualization functions instantiated on a platform (such as a cloud platform). The embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment. For convenience of description, the following description takes a base station as an example of a radio access network device.
  • the terminal may also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • the terminal can be a mobile phone, a tablet, a computer with wireless transceiver functions, a wearable device, a vehicle, a drone, a helicopter, an airplane, a ship, a machine Robots, robotic arms, smart home devices, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem here including the base station function can be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the base station sends downlink signals (such as synchronization signals, downlink reference signals, etc.) or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends uplink signals (such as uplink reference signals) or uplink information to the base station.
  • the information is carried on the uplink channel.
  • MIMO Multiple-antenna multiple-input multiple-output
  • 5G and 4G communication systems uses multiple antennas equipped on the base station side and the terminal side to independently send signals on multiple antennas at the transmitting end.
  • multiple antennas are used at the receiving end to receive and restore the original information. This can be done without increasing the bandwidth or total transmit power.
  • the data throughput and transmission distance of the system are greatly increased, and the most powerful multi-antenna beam forming capability and multi-user spatial division multiplexing capability are provided.
  • MIMO technology is also prone to interference between multiple antennas, affecting communication quality.
  • FDD MIMO frequency division duplexing
  • MU multi-user zero-forcing precoding algorithm
  • MU zero-forcing precoding algorithm
  • channel information under FDD relies on user measurement reporting, which is limited by terminal capabilities and codebook accuracy.
  • the accuracy of channel information is difficult to guarantee, which greatly restricts This affects the performance of MIMO, resulting in the MU zero-forcing precoding algorithm having poor ability to combat channel information inaccuracies.
  • Channel information inaccuracies seriously affect the accuracy of MU precoding weights, resulting in inter-user interference that cannot be completely suppressed.
  • embodiments of the present application provide a data transmission method, which is as follows.
  • Figure 2 is a schematic flow chart of a data transmission method provided by an embodiment of the present application.
  • the method includes:
  • Step 201 The terminal sends a first precoding matrix indicator (PMI) to the network device.
  • PMI precoding matrix indicator
  • the network device receives the first PMI from the terminal, and the first PMI indicates the first weight matrix.
  • the network device sends downlink data and downlink reference signals, and the terminal receives the downlink data sent by the network device, and can feedback to the network device whether the downlink data is successfully received.
  • the terminal can also use the downlink reference signal sent by the network device to measure downlink channel quality, and feed back relevant measurement information to the network device.
  • the terminal can send uplink data and uplink reference signals to the network device.
  • the network device receives the uplink data sent by the terminal and can indicate to the terminal whether the uplink data is received successfully.
  • the network device can also use the uplink reference signal sent by the terminal to perform channel estimation and channel measurement.
  • the network device can send the reference signal (CSI reference signal, CSI-RS) in the channel state information (CSI) to the terminal for the terminal to obtain the channel state information.
  • the network device can weight the CRS based on the preset weight. By using the preset weight, the beam gain can be increased and the reference signal reception quality of the terminal can be improved.
  • the terminal may determine the first weight based on it, and feed back the first PMI indicating the first weight to the network device.
  • Step 202 The network device determines the second weight matrix based on the first weight matrix.
  • the network device may obtain the first weight matrix according to the first PMI, and determine the second weight matrix based on the first weight matrix.
  • W 2 represents the second weight matrix
  • W 1 represents the first weight matrix.
  • Step 203 The network device determines the unequal power weight matrix based on the unequal coefficient matrix and the second weight matrix.
  • the radio frequency channels of the network equipment implement unequal power power amplifiers, and under the limit of the total power of all radio frequency channels, unequal power signal transmission is realized for different radio frequency channels.
  • Embodiments of the present application may use elements in the unequal coefficient matrix to define elements in the second weight matrix to represent unequal powers of radio frequency channels. Specifically, after the network device determines the second weight matrix, the unequal power weight matrix of this solution can be determined through the unequal coefficient matrix.
  • the unequal coefficient matrix is the unequal power weight matrix
  • W NEP represents an unequal power (non-equal power, NEP) precoding matrix
  • the sum of the squares of the elements in each row cannot exceed the respective channel power
  • Pi represents the radio frequency power coefficient of the i-th radio frequency channel.
  • y represents the signal received by the terminal
  • H represents the channel through which the data passes
  • x represents the data sent
  • n represents the signal The interference and noise experienced by a signal as it passes through the channel.
  • channel H can be obtained from the first weight matrix W 1 , which W 1 reflects the estimate of channel H, Represents the conjugate transpose of a matrix, satisfying Right now
  • each diagonal element can make Normalize the energy of each column of To make the transmit power of each channel meet its maximum power limit, so as to achieve zero forcing of unequal power MU of the channels on the base station side, the above two steps of processing can be expressed by multiplying by a diagonal matrix ⁇ .
  • the unequal power weight matrix is a power weight matrix with high distribution in the middle and low distribution on both sides.
  • Figure 3 is a schematic diagram of an antenna provided in an embodiment of this application:
  • MIMO antennas are usually arranged in N horizontal columns and M vertical rows.
  • Unequal power can be implemented on horizontal or vertical channels.
  • a new equivalent smoothing factor ⁇ , ⁇ [0,1] can also be introduced, such that
  • can take a typical value of 0.5, or it can be optimized to maximize the useful signal of the zero-forcing solution:
  • channel shutdown can be used to save energy consumption.
  • the traditional MIMO channel After the traditional MIMO channel is turned off, its power and beamforming capabilities decrease year-on-year. And to ensure basic network coverage, it is necessary to ensure a The power limit that needs to be maintained makes it difficult to achieve a more complete channel shutdown, which limits the energy-saving effect during idle times.
  • the embodiments of this application can close the radio frequency channels corresponding to the power weights in W NEP whose power weights are less than the preset threshold, and prioritize the channels with the smallest power until the remaining high-power channels meet the power requirements. partial channels to improve energy saving effect.
  • the 400W MIMO module ensures basic user access when the network is idle, such as ensuring a module power of 160W. This will prevent the reception quality of the cell broadcast signal from declining and will not affect user access.
  • the channel with the smallest power is turned off first until the remaining high-power channels meet the power demand.
  • the power weight matrix does not need to be high in the middle and low on both sides.
  • Step 204 The network device sends data to the terminal based on the unequal power weight matrix.
  • the network device after the network device determines the unequal power weight matrix, it can use the determined unequal power weight matrix to weight the service data to be sent to the terminal, and then send the weighted service data to the terminal.
  • the terminal can determine the unequal power weight matrix based on the demodulation reference signal (DMRS) between the base station and the terminal, and then process the received signal y according to the unequal power weight matrix to obtain the received data.
  • DMRS demodulation reference signal
  • the technical solution of the embodiment of the present application determines the second weight matrix according to the first weight matrix indicated by the first PMI fed back by the terminal, and then converts the second weight matrix into an unequal power weight matrix according to the unequal coefficient matrix. , allowing network equipment to send data of unequal power on different radio frequency channels, providing power utilization and achieving better beam side lobes, thereby better combating performance losses caused by inaccurate channel information and improving data transmission quality.
  • the data transmission method is described above, and the device for executing the method is described below.
  • FIG 4 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the device 40 includes:
  • the receiving unit 401 is configured to receive a first precoding matrix indicator PMI from the terminal, where the first PMI indicates a first weight matrix.
  • the determining unit 402 is configured to determine the second weight matrix based on the first weight matrix, and determine the unequal power weight matrix based on the unequal coefficient matrix and the second weight matrix.
  • the sending unit 403 is used to send data to the terminal based on the unequal power weight matrix.
  • the determination unit 402 is specifically configured to: determine the unequal power weight matrix based on the unequal coefficient matrix, the equivalent smoothing factor and the second weight matrix.
  • the device 40 also includes a shutdown unit 404, which is specifically configured to: when the network load is in an idle state, shut down channels corresponding to power weights in the unequal power weight matrix that are lower than a preset threshold. .
  • the unequal power weight matrix is a power weight matrix with high distribution in the middle and low distribution on both sides.
  • the receiving unit 401 of the device 40 is used to perform step 201 in the method embodiment of Figure 2, and the determining unit of the device 40 402 is used to perform step 202 and step 203 in the method embodiment of Figure 2, and the sending unit 403 of the device 40 is used to perform step 204 and step 205 in the method embodiment of Figure 2, which will not be described again here.
  • Figure 5 shows a possible logical structure diagram of a computer device 50 provided for an embodiment of the present application.
  • Computer device 50 includes: processor 501, communication interface 502, storage system 503, and bus 504.
  • the processor 501, the communication interface 502 and the storage system 503 are connected to each other through a bus 504.
  • the processor 501 is used to control and manage the actions of the computer device 50.
  • the processor 501 is used to execute the steps performed by the network device in the method embodiment of FIG. 2.
  • the communication interface 502 is used to support the computer device 50 to communicate.
  • Storage system 503 is used to store program codes and data of the computer device 50 .
  • the processor 501 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field-programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor 501 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 504 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the transceiver unit 502 in the device 50 is equivalent to the communication interface 502 in the computer device 50
  • the processing unit 501 in the device 50 is equivalent to the processor 501 in the computer device 50 .
  • the computer device 50 of this embodiment may correspond to the network device in the above-mentioned method embodiment of FIG. 2, and the communication interface 502 in the computer device 50 may implement the functions and/or features of the network device in the above-mentioned method embodiment of FIG. 2.
  • the various implementation steps are not repeated here for the sake of brevity.
  • each unit in the device can be a separate processing element, or it can be integrated and implemented in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, and a certain processing element of the device can call and execute the unit. Function.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software calling through the processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASICs), or one or Multiple microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general processor, such as a central processing unit (CPU) or other possible to call the program's handler.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • a computer-readable storage medium is also provided.
  • Computer-executable instructions are stored in the computer-readable storage medium.
  • the processor of the device executes the computer-executed instructions
  • the device executes the above method embodiment. The method executed by the network device.
  • a computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium.
  • the processor of the device executes the computer execution instruction
  • the device executes the method executed by the network device in the above method embodiment.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输方法以及装置。本申请实施例方法包括:根据终端反馈的第一PMI指示的第一权值矩阵确定第二权值矩阵,然后根据不等系数矩阵将该第二权值矩阵转换为不等功率权值矩阵,使得网络设备可以在不同的射频通道上发送不等功率的数据,提供功率利用率,并达到更好的波束副瓣,从而更好的对抗信道信息不准带来的性能损失,提高数据传输质量。

Description

一种数据传输方法以及装置
本申请要求于2022年3月31日提交中国国家知识产权局,申请号为202210346687.9、申请名称为“一种数据传输方法以及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种数据传输方法以及装置。
背景技术
多天线多输入多输出(multiple-in multiple-out,MIMO)技术是当前5G以及4G通信系统的关键技术。它利用了基站侧和终端侧配备的多个天线,在发射端的多个天线上各自独立发送信号,同时在接收端用多个天线接收并恢复原信息,可以在不需要增加带宽或总发送功率的情况下,大幅地增加系统的数据吞吐量及发送距离,且提供了最为强大的多天线波束赋形能力以及多用户空分复用能力,但是MIMO技术多天线之间也容易产生干扰。
常规的频分双工(frequency division duplexing,FDD)MIMO联合常规的多天线算法,例如多用户(multi-user,MU)迫零预编码算法(基于配对用户的信道信息,通过一个线性预编码矩阵,理论上完全消除多用户间干扰的一种方法),但是,FDD下的信道信息依赖于用户测量上报,受限于终端能力以及码本精度,信道信息的准确性难以保证,这就大大制约了MIMO的性能表现,导致MU迫零预编码算法对抗信道信息不准的能力较差,信道信息不准严重影响了MU预编码权值的精度,导致用户间干扰无法被完全抑制。
发明内容
本申请实施例提供了一种数据传输方法以及装置,用于提供功率利用率,以及提供数据传输质量。
本申请实施例第一方面提供了一种数据传输方法,包括:接收来自终端的第一预编码矩阵指示PMI,第一PMI指示第一权值矩阵;基于第一权值矩阵确定第二权值矩阵;基于不等系数矩阵和第二权值矩阵确定不等功率权值矩阵;基于不等功率权值矩阵向终端发送数据。
上述方面中,执行主体为网络设备,网络设备根据终端反馈的第一PMI指示的第一权值矩阵确定第二权值矩阵,然后根据不等系数矩阵将该第二权值矩阵转换为不等功率权值矩阵,使得网络设备可以在不同的射频通道上发送不等功率的数据,提供功率利用率,并达到更好的波束副瓣,从而更好的对抗信道信息不准带来的性能损失,提高数据传输质量。
一种可能的实施方式中,上述步骤基于不等系数矩阵和第二权值矩阵确定不等功率权值矩阵包括:基于不等系数矩阵、等效平滑因子和第二权值矩阵确定不等功率权值矩阵。
上述可能的实施方式中,加入一个等效平滑因子,使得迫零解的有用信号最大化,提高信号传输质量。
一种可能的实施方式中,该方法还包括:当网络负载处于闲时状态时,将不等功率权 值矩阵中低于预设阈值的功率权值对应的射频通道关闭。
上述可能的实施方式中,将不等功率权值矩阵中功率权值小于预设阈值的功率权值对应的射频通道关闭,优先关断功率最小的通道,直至剩下的高功率通道满足功率需求为止,则可以关闭大部分的通道,提高节能效果。
一种可能的实施方式中,不等功率权值矩阵为中间高、两边低分布的功率权值矩阵。
本申请实施例第二方面提供了一种数据传输装置,可以实现上述第一方面或第一方面中任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。该装置例如可以为网络设备,也可以为支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
本申请实施例第三方面提供了一种计算机设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该计算机设备实现上述第一方面或第一方面中任一种可能的实施方式中的方法。该计算机设备例如可以为网络设备,也可以为支持网络设备实现上述方法的芯片或芯片系统等。
本申请实施例第四方面提供了一种计算机可读存储介质,该计算机可读存储介质中保存有指令,当该指令被处理器执行时,实现前述第一方面或第一方面任一种可能的实施方式提供的方法。
本申请实施例第五方面提供了一种计算机程序产品,计算机程序产品中包括计算机程序代码,当该计算机程序代码在计算机上执行时,实现前述第一方面或第一方面任一种可能的实施方式提供的方法。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种数据传输方法的流程示意图;
图3为本申请实施例提供的天线示意图;
图4为本申请实施例提供的一种数据传输装置的结构示意图;
图5为本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
本申请实施例提供了一种数据传输方法以及装置,用于提供功率利用率,以及提供数据传输质量。
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。 此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备(本申请中有时也称为网络设备)可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机 器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号(如同步信号、下行参考信号等)或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号(如上行参考信号)或上行信息,上行信息承载在上行信道上。
多天线多输入多输出(multiple-in multiple-out,MIMO)技术是当前5G以及4G通信系统的关键技术。它利用了基站侧和终端侧配备的多个天线,在发射端的多个天线上各自独立发送信号,同时在接收端用多个天线接收并恢复原信息,可以在不需要增加带宽或总发送功率的情况下,大幅地增加系统的数据吞吐量及发送距离,且提供了最为强大的多天线波束赋形能力以及多用户空分复用能力。但是MIMO技术多天线之间也容易产生干扰,影响通信质量。
常规的频分双工(frequency division duplexing,FDD)MIMO联合常规的多天线算法,例如多用户(multi-user,MU)迫零预编码算法(基于配对用户的信道信息,通过一个线性预编码矩阵,理论上完全消除多用户间干扰的一种方法),但是,FDD下的信道信息依赖于用户测量上报,受限于终端能力以及码本精度,信道信息的准确性难以保证,这就大大制约了MIMO的性能表现,导致MU迫零预编码算法对抗信道信息不准的能力较差,信道信息不准严重影响了MU预编码权值的精度,导致用户间干扰无法被完全抑制。
为解决上述问题,本申请实施例提供了一种数据传输方法,该方法如下所述。
请参阅图2,如图2所示为本申请实施例提供的一种数据传输方法的流程示意图,该方法包括:
步骤201.终端向网络设备发送第一预编码矩阵指示(precoding matrix indicator,PMI),相应的,网络设备接收来自终端的第一PMI,第一PMI指示第一权值矩阵。
本申请实施例中,网络设备进行下行数据的发送和下行参考信号的发送,终端接收网络设备发送的下行数据,并且可以向网络设备反馈下行数据是否接收成功。终端还可以利用网络设备发送的下行参考信号进行下行信道质量测量,并且把相关测量信息反馈给网络设备。终端可以向给网络设备发送上行数据以及上行参考信号,网络设备接收终端发送的上行数据,并且可以向终端指示上行数据是否接收成功。网络设备还可以利用终端发送的上行参考信号进行信道估计以及信道测量。
网络设备可以向终端发送信道状态信息(channel state information,CSI)中的参考信号(CSI reference signal,CSI-RS),用于终端获取信道状态信息。网络设备可以基于预设权值对该CRS进行加权,通过预设权值,可以提升波束增益,提升终端的参考信号接收质量。终端接收到该CSI-RS后,可以基于它进行第一权值的确定,并将指示该第一权值的第一PMI反馈给网络设备。
步骤202.网络设备基于第一权值矩阵确定第二权值矩阵。
本实施例中,网络设备在接收到第一PMI后,可根据第一PMI获得第一权值矩阵,并基于该第一权值矩阵确定第二权值矩阵。其中,本申请实施例用W2表示第二权值矩阵,W1为第一权值矩阵。
步骤203.网络设备基于不等系数矩阵和第二权值矩阵确定不等功率权值矩阵。
本实施例中,网络设备的射频通道实现不等功率功放,在所有射频通道总功率的限制下,对不同的射频通道,实现不等功率的信号传输。本申请实施例可以以不等系数矩阵中的元素对于第二权值矩阵中的元素进行限定,来表示射频通道的不等功率。具体的,当网络设备确定第二权值矩阵后,即可以通过该不等系数矩阵确定本方案的不等功率权值矩阵。
其中,不等系数矩阵该不等功率权值矩阵,则WNEP代表不等功率(non-equal power,NEP)预编码矩阵,每一行元素的平方和不能超过各自的通道功率。令
其中,不等系数矩阵
Pi表示第i个射频通道的射频功率系数。
进一步改写信号模型:
其中,y表示终端接收到的信号,H表示数据经过的信道,x表示发送的数据,n表示信 号经过信道时经历的干扰和噪声。
上面的过程,我们称为等效信道化处理,转化为一个等效信道下的等功率模型,可以使用常规迫零:
其中,信道H可以由第一权值矩阵W1得到,该W1反映了对信道H的估计,表示矩阵的共轭转置,满足
再将原始信道代回去,则:
最终的解还需要进行列归一和基于通道功率限制的权值归一化处理, 其中,Ψ为一个对角阵,首先每个对角元可使得的每一列能量归一化,再将得到的列归一矩阵的每一行元素求平方和,得到a1,…,ai,则整个矩阵乘以使得每个通道的发送功率满足其最大功率限制,以实现基站侧的通道不等功率MU迫零,上述两步处理都可以用乘以一个对角阵Ψ的处理方式来表示。
其中,不等功率权值矩阵为中间高、两边低分布的功率权值矩阵。请参照图3,图3为本申请实施例提供的天线示意图:
MIMO的天线通常呈水平N列,垂直M行的排列,不等功率可以实现在水平维或者垂直维的通道上,这里以水平维为例,假设有水平8列天线对应8个通道,模块400W最大功率,那么通道不等功率的分布情况可以是
[P1 P2…P8]=[6.5 8.5 15 20 20 15 8.5 6.5]瓦
或者
[P1 P2…P8]=[10 10 10 20 20 10 10 10]瓦
以及其他类似的分布,它们都满足中间高,两边低的功率分布原则。
本申请实施例中,在确定不等功率权值矩阵时,还可以引入一个新的等效平滑因子α,α∈[0,1],使得
其中,α可以取典型取值0.5,也可以按照使得迫零解的有用信号最大化,进行寻优得到:
以使得信号能量最大化,提高信号传输质量。
在节能上,当网络负载处于闲时状态时,可以采用通道关断来节能能耗。传统MIMO通道关断后,其功率以及波束赋形能力都同比下降。且为保证基本的网络覆盖,需保证一个 需要维持的功率限制,因此难以做到较为彻底的通道关断,制约了闲时的节能效果。本申请实施例可以将WNEP中功率权值小于预设阈值的功率权值对应的射频通道关闭,优先关断功率最小的通道,直至剩下的高功率通道满足功率需求为止,则可以关闭大部分的通道,提高节能效果。
示例性的,400W MIMO模块在网络闲时为保证基本的用户接入,如保证160W的模块功率,这样可以使得小区广播信号的接收质量不下降,不影响用户的接入。
根据该功率限制,我们优先关断功率较小的通道,例如在
[P1 P2…P8]=[6.5 8.5 15 20 20 15 8.5 6.5]
的通道不等功率分布下,优先关断功率最小的通道,直至剩下的高功率通道满足功率需求为止。这个例子中,可以关断6.5W、8.5W、15W的6x2x2=24个通道,剩余8个20W的高功率通道,可以满足节能的基本功率要求。其中,对于闲时关闭射频通道的方案中,功率权值矩阵可以不按照中间高,两边低的方式。
步骤204.网络设备基于不等功率权值矩阵向终端发送数据。
本申请实施例中,网络设备确定不等功率权值矩阵之后,可以利用确定出的不等功率权值矩阵对待发送给终端的业务数据进行加权,然后将加权处理后的业务数据发送给终端。终端可以基于基站和终端间的解调参考信号(demodulatin reference signal,DMRS)确定不等功率权值矩阵,再根据该不等功率权值矩阵对接收到的信号y进行处理,得到接收数据。
本申请实施例的技术方案通过根据终端反馈的第一PMI指示的第一权值矩阵确定第二权值矩阵,然后根据不等系数矩阵将该第二权值矩阵转换为不等功率权值矩阵,使得网络设备可以在不同的射频通道上发送不等功率的数据,提供功率利用率,并达到更好的波束副瓣,从而更好的对抗信道信息不准带来的性能损失,提高数据传输质量。
上面讲述了数据传输方法,下面对执行该方法的装置进行描述。
请参阅图4,如图4所示为本申请实施例提供的一种数据传输装置的结构示意图,该装置40包括:
接收单元401,用于接收来自终端的第一预编码矩阵指示PMI,第一PMI指示第一权值矩阵.
确定单元402,用于基于第一权值矩阵确定第二权值矩阵,基于不等系数矩阵和第二权值矩阵确定不等功率权值矩阵。
发送单元403,用于基于不等功率权值矩阵向终端发送数据。
可选的,确定单元402具体用于:基于不等系数矩阵、等效平滑因子和第二权值矩阵确定不等功率权值矩阵
可选的,装置40还包括关闭单元404,该关闭单元404具体用于:当网络负载处于闲时状态时,将不等功率权值矩阵中低于预设阈值的功率权值对应的信道关闭。
可选的,不等功率权值矩阵为中间高、两边低分布的功率权值矩阵。
装置40的接收单元401用于执行图2方法实施例中的步骤201,装置40的确定单元 402用于执行图2方法实施例中的步骤202和步骤203,装置40的发送单元403用于执行图2方法实施例中的步骤204和步骤205,此处不再赘述。
图5所示,为本申请的实施例提供的计算机设备50的一种可能的逻辑结构示意图。计算机设备50包括:处理器501、通信接口502、存储系统503以及总线504。处理器501、通信接口502以及存储系统503通过总线504相互连接。在本申请的实施例中,处理器501用于对计算机设备50的动作进行控制管理,例如,处理器501用于执行图2的方法实施例中网络设备所执行的步骤。通信接口502用于支持计算机设备50进行通信。存储系统503,用于存储计算机设备50的程序代码和数据。
其中,处理器501可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器501也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置50中的收发单元502相当于计算机设备50中的通信接口502,装置50中的处理单元501相当于计算机设备50中的处理器501。
本实施例的计算机设备50可对应于上述图2方法实施例中的网络设备,该计算机设备50中的通信接口502可以实现上述图2方法实施例中的网络设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可 以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在本申请的另一个实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中网络设备所执行的方法。
在本申请的另一个实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中网络设备所执行的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (11)

  1. 一种数据传输方法,其特征在于,包括:
    接收来自终端的第一预编码矩阵指示PMI,所述第一PMI指示第一权值矩阵;
    基于所述第一权值矩阵确定第二权值矩阵;
    基于不等系数矩阵和所述第二权值矩阵确定不等功率权值矩阵;
    基于所述不等功率权值矩阵向所述终端发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述基于不等系数矩阵和所述第二权值矩阵确定不等功率权值矩阵包括:
    基于所述不等系数矩阵、等效平滑因子和所述第二权值矩阵确定所述不等功率权值矩阵。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当网络负载处于闲时状态时,将所述不等功率权值矩阵中低于预设阈值的功率权值对应的射频通道关闭。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述不等功率权值矩阵为中间高、两边低分布的功率权值矩阵。
  5. 一种数据传输装置,其特征在于,包括:
    接收单元,用于接收来自终端的第一预编码矩阵指示PMI,所述第一PMI指示第一权值矩阵;
    确定单元,用于基于所述第一权值矩阵确定第二权值矩阵,基于不等系数矩阵和所述第二权值矩阵确定不等功率权值矩阵;
    发送单元,用于基于所述不等功率权值矩阵向所述终端发送数据。
  6. 根据权利要求5所述的装置,其特征在于,所述确定单元具体用于:
    基于所述不等系数矩阵、等效平滑因子和所述第二权值矩阵确定所述不等功率权值矩阵。
  7. 根据权利要求5或6所述的装置,其特征在于,所述装置还包括关闭单元,所述关闭单元具体用于:
    当网络负载处于闲时状态时,将所述不等功率权值矩阵中低于预设阈值的功率权值对应的信道关闭。
  8. 根据权利要求5-7任一项所述的装置,其特征在于,所述不等功率权值矩阵为中间高、两边低分布的功率权值矩阵。
  9. 一种计算机设备,其特征在于,包括:处理器,所述处理器与存储器耦合,
    所述处理器用于执行所述存储器中存储的指令,使得所述计算机设备执行如权利要求1至4中任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被处理器执行时,实现如权利要求1至4中任一项所述的方法。
  11. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,实现如权利要求1至4中任一项 所述的方法。
PCT/CN2023/081061 2022-03-31 2023-03-13 一种数据传输方法以及装置 WO2023185434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346687.9 2022-03-31
CN202210346687.9A CN116938294A (zh) 2022-03-31 2022-03-31 一种数据传输方法以及装置

Publications (1)

Publication Number Publication Date
WO2023185434A1 true WO2023185434A1 (zh) 2023-10-05

Family

ID=88198955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081061 WO2023185434A1 (zh) 2022-03-31 2023-03-13 一种数据传输方法以及装置

Country Status (2)

Country Link
CN (1) CN116938294A (zh)
WO (1) WO2023185434A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备
CN109565323A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中发送/接收信道状态信息的方法及其装置
CN112217550A (zh) * 2019-07-12 2021-01-12 华为技术有限公司 预编码处理方法和装置
US20210359731A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Precoding techniques for wireless communications
WO2021238634A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种下行预编码方法、装置及基站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备
CN109196789A (zh) * 2016-08-19 2019-01-11 华为技术有限公司 一种下行传输方法及网络设备
CN109565323A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中发送/接收信道状态信息的方法及其装置
CN112217550A (zh) * 2019-07-12 2021-01-12 华为技术有限公司 预编码处理方法和装置
US20210359731A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Precoding techniques for wireless communications
WO2021238634A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种下行预编码方法、装置及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROADCOM CORP.: "Techniques for CSI Feedback Enhancement", 3GPP TSG RAN WG1 MEETING #72 R1-130093, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 February 2013 (2013-02-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP009550113 *

Also Published As

Publication number Publication date
CN116938294A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US20230318668A1 (en) Wireless communication method and wireless communication device
US9906281B2 (en) MU-MIMO transmission method in wireless LAN system
US9615309B2 (en) System and method for Wi-Fi downlink-uplink protocol design for uplink interference alignment
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
WO2021249515A1 (zh) 信道信息反馈方法、通信装置及存储介质
WO2021089046A1 (en) Method and apparatus for channel state information feedback for joint transmission
EP3360263A1 (en) Techniques to reduce radiated power for mimo wireless systems
US20230164004A1 (en) Channel parameter obtaining method and apparatus
WO2019042258A1 (zh) 一种csi-rs测量反馈方法及设备
US20240030981A1 (en) Channel state information feedback method and communication apparatus
WO2020083186A1 (zh) 电子设备、通信方法以及介质
CN106341168B (zh) 预编码方法、信息发送方法、及其装置
WO2023185434A1 (zh) 一种数据传输方法以及装置
US20220416866A1 (en) Channel state information feedback method and communications apparatus
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
WO2011136473A2 (en) Method for avoiding interference in wireless communication system and apparatus for the same
WO2017132977A1 (zh) 一种降低系统干扰的方法及装置
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
Huang et al. Large system analysis of power minimization in multiuser MISO downlink with transmit-side channel correlation
WO2023020034A1 (zh) 一种权值确定方法及装置
WO2019023828A1 (zh) 一种jt预编码权值矩阵的生成方法、装置及系统
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
US20240162947A1 (en) Communication method and apparatus
WO2023222021A1 (zh) 一种信道测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777811

Country of ref document: EP

Kind code of ref document: A1