WO2023020034A1 - 一种权值确定方法及装置 - Google Patents

一种权值确定方法及装置 Download PDF

Info

Publication number
WO2023020034A1
WO2023020034A1 PCT/CN2022/092147 CN2022092147W WO2023020034A1 WO 2023020034 A1 WO2023020034 A1 WO 2023020034A1 CN 2022092147 W CN2022092147 W CN 2022092147W WO 2023020034 A1 WO2023020034 A1 WO 2023020034A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
terminal
channel state
transmission weight
state parameter
Prior art date
Application number
PCT/CN2022/092147
Other languages
English (en)
French (fr)
Inventor
文敏
楼群芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023020034A1 publication Critical patent/WO2023020034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present application relates to the technical field of wireless communication, and in particular, to a weight determination method and device.
  • the rate of cell-edge users is an important indicator that affects user experience in the network, while co-channel interference and signal energy are key factors that determine the performance of edge users. Since user performance mainly depends on the signal-to-interference-plus-noise ratio ( signal to interference plus noise ratio, SINR), so how to reduce the interference received by cell edge users and increase signal power is an important topic in the research of wireless communication algorithms.
  • SINR signal to interference plus noise ratio
  • multi-cell coordinated multiple input multiple output (MIMO) precoding is a physical layer technology solution to improve edge user experience and increase the average cell capacity at the same time.
  • multiple transmission and reception points TRP
  • TRP transmission and reception points
  • BBU baseband unit
  • the BBU centrally calculates the transmission weights on each TRP, and then distributes the transmission weights on each TRP to corresponding TRPs, so that each TRP performs data transmission on the air interface based on the transmission weights.
  • the embodiment of the present application provides a weight determination method and device. Compared with the case where the transmission weight of each TRP is processed in a centralized manner on the BBU, it is easy to produce a situation with high computational complexity.
  • the weight determination method and device use Because the transmission weight is determined through distributed processing among different TRPs, the calculation complexity of the transmission weight is reduced, thereby improving communication efficiency.
  • the communication system applied in this application includes multiple TRPs, wherein one TRP can be connected to one or more terminals, and is used to provide services for the connected terminals.
  • the multiple TRPs including at least the first TRP and the second TRP as an example, the implementation process of the first TRP and the implementation process of the second TRP will be introduced from various aspects.
  • the downlink data may include at least one item of downlink signal, downlink information, downlink message, downlink signaling, etc. sent by the first TRP or the second TRP to the terminal through the downlink channel, which is not limited here.
  • the downlink data of the terminal that is weighted by the first TRP based on the first transmission weight and the downlink data of the terminal that is weighted by the second TRP based on the second transmission weight may be the same downlink data, or may be different. downlink data.
  • the channel state parameter may also be used as one of the basis for determining the transmission weight value.
  • the source of the channel state parameter will be described in detail below.
  • the method further includes: the first TRP receives channel state information from the second TRP, and the first TRP determines a second channel state parameter of the terminal in the second TRP based on the channel state information,
  • the second channel state parameter is a parameter of a channel state between the terminal and the second TRP.
  • the first TRP acquires a first channel state parameter of the terminal in the first TRP, where the first channel state parameter is a parameter of a channel state between the terminal and the first TRP.
  • the channel state parameter is determined through information exchanged between different TRPs, and the channel state parameter is included in the transmission weight information.
  • the method further includes: the first TRP determines a second channel state parameter of the terminal in the second TRP based on the transmission weight information, and the second channel state parameter is the distance between the terminal and the second TRP. parameters of the channel state.
  • the first TRP acquires a first channel state parameter of the terminal in the first TRP, where the first channel state parameter is a parameter of a channel state between the terminal and the first TRP.
  • the first TRP determining the first transmission weight of the terminal in the first TRP based on the second transmission weight includes: the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission The weight determines the first transmission weight of the terminal in the first TRP.
  • the first TRP determines the first transmission right of the terminal in the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission weight
  • the value process specifically includes: the first TRP determines an equalization parameter based on the first channel state parameter and the second channel state parameter. Then, the first TRP determines the first transmission weight of the terminal in the first TRP based on the equalization parameter and the second transmission weight.
  • the first TRP may also use the interference parameter as one of the basis for determining the equalization parameter.
  • the interference parameter is the interference covariance matrix of other terminals except the terminal, so that the interference parameter reflects the relevant characteristics of the downlink channel state of other terminals to a certain extent, so that the first TRP determines the first TRP based on the interference parameter.
  • a second aspect of the embodiments of the present application provides a communications device, which can implement the method in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by software and/or hardware.
  • the device may be the first TRP, or the device may be a component (such as a processor, a chip, or a chip system, etc.) in the first TRP, or the device may also be a logical modules or software.
  • the third aspect of the embodiment of the present application provides a communication device, including at least one processor, and the at least one processor is coupled to a memory;
  • the at least one processor is configured to execute the program or the instruction, so that the device implements the method in the aforementioned first aspect or any possible implementation manner of the first aspect.
  • a sixth aspect of the embodiments of the present application provides a chip system, where the chip system includes at least one processor, configured to implement the functions involved in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the chip system may further include a memory, and the memory is used to store instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit for inputting or outputting instructions and/or data.
  • the second TRP is configured to send transmission weight information to the first TRP, where the transmission weight information is used to indicate a second transmission weight of the terminal in the second TRP;
  • the first TRP is configured to receive the transmission weight information from the second TRP, and determine the second transmission weight based on the transmission weight information, where the second transmission weight is the downlink data of the terminal in the The weighting parameter of the second TRP;
  • the first TRP is further configured to determine a first transmission weight of the terminal in the first TRP based on the second transmission weight, where the first transmission weight is a weight of downlink data of the terminal in the first TRP parameter;
  • the first TRP is also used to send downlink data to the terminal based on the first transmission weight.
  • the second TPR is also used to send channel state information to the first TRP, where the channel state information is used to indicate a second channel state parameter of the terminal in the second TRP;
  • the first TRP is further configured to receive the channel state information from the second TRP, and determine a second channel state parameter of the terminal in the second TRP based on the channel state information, where the second channel state parameter is the terminal A parameter of the channel state with the second TRP;
  • the first TRP is also used to acquire a first channel state parameter of the terminal in the first TRP, where the first channel state parameter is a channel state parameter between the terminal and the first TRP;
  • the first TRP used to determine the first transmission weight of the terminal in the first TRP based on the second transmission weight includes:
  • the first TRP is used to determine the first transmission weight of the terminal in the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission weight.
  • the transmission weight information is also a second channel state parameter of the terminal in the second TRP;
  • the first TRP is further configured to determine a second channel state parameter of the terminal in the second TRP based on the transmission weight information, where the second channel state parameter is a channel state between the terminal and the second TRP parameters;
  • the first TRP used to determine the first transmission weight of the terminal in the first TRP based on the second transmission weight includes:
  • the first TRP is used to determine, based on the first channel state parameter, the second channel state parameter, and the second transmission weight value, that the terminal in the first TRP A launch weight includes:
  • the first TRP is used to determine an equalization parameter based on the first channel state parameter and the second channel state parameter;
  • the first TRP is used to determine the first transmission weight of the terminal in the first TRP based on the equalization parameter and the second transmission weight.
  • the first TRP used to determine an equalization parameter based on the first channel state parameter and the second channel state parameter includes:
  • the first TRP is used to determine the equalization parameter based on the first channel state parameter, the second channel state parameter and an interference parameter, where the interference parameter is an interference covariance matrix of other terminals except the terminal.
  • sending in this application may also be referred to as “output”, and “receiving” may also be referred to as “input”.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a BBU and a TRP in a communication system provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of providing a communication service for a user terminal (user terminal, UE) by multiple TRPs provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the centralized weight calculation process provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a weight determination method provided in an embodiment of the present application.
  • FIG. 6 is another schematic diagram of multiple TRPs providing communication services for a UE according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of an iterative process in the weight determination method provided in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the distributed weight calculation process provided by the embodiment of the present application.
  • FIG. 11 is another schematic diagram of a communication device provided by an embodiment of the present application.
  • the terminal may communicate with one or more core networks or the Internet via a radio access network (radio access network, RAN).
  • the terminal can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone), a computer or a data card, for example, it can be a portable, pocket, hand-held, computer built-in or vehicle-mounted mobile phone device.
  • a terminal may be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), tablet computer (Pad), computer with wireless transceiver function and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Pad tablet computer
  • Network device it can be a device in a wireless network, for example, a network device can be a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network, and can be called a wireless access network.
  • RAN radio access network
  • a network access device may generally also be referred to as a base station.
  • RAN equipment are: new generation base station (generation Node B, gNodeB), transmission reception point (transmission reception point, TRP), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B, or home Node B , HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wi-Fi) access point (access point, AP), etc.
  • the network device may include a centralized unit (centralized unit, CU) node and/or a distributed unit (distributed unit, DU) node.
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF), a user plane function (user plane function, UPF) or a session management function (session management function, SMF) etc.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system.
  • control node of the cooperative set is a BBU
  • one BBU can be connected to multiple TRPs, so as to implement a large-scale cooperative area through multiple TRPs.
  • system and “network” in this application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items. For example "at least one of A, B or C” includes A, B, C, AB, AC, BC or ABC. And, unless otherwise specified, ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • Pre-configuration refers to the configuration information or configuration parameters negotiated by the communication node with other communication nodes in advance. Applications are not limited to this.
  • [E 1 E 2 ] can be used to represent matrix E 1 and matrix E 2 for splicing.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (which may also be understood as a network device introduced above, such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (which may also be understood It is the terminal equipment introduced above, such as 120a-120j in FIG. 1).
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • radio access network device in this application may also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • a platform such as a cloud platform.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description.
  • the base station and the terminal may be fixed or mobile.
  • Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted, on water, and on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the roles of the base station and the terminal can be relative.
  • the helicopter or UAV 120i in FIG. base station For example, the helicopter or UAV 120i in FIG. base station.
  • base station 110a 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • Communication between base stations and terminals, between base stations, and between terminals can be performed through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum. Communication may be performed through a frequency spectrum below 6 gigahertz (gigahertz, GHz), or may be performed through a frequency spectrum above 6 GHz, or may be performed using both a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, or can be performed by a device including the terminal function.
  • the base station sends a downlink signal (or downlink information) to the terminal, and the downlink signal (or downlink information) is carried on the downlink channel.
  • the terminal sends an uplink signal (or uplink information) to the base station, and the uplink signal (or uplink information) is carried on the uplink channel.
  • the base station in the radio access network 100 may be implemented in the form of a baseband unit (baseband unit, BBU) and a TRP.
  • BBU baseband unit
  • the base station includes a BBU and multiple TRPs.
  • the present application does not limit the number of multiple TRPs connected to the BBU, and the connection mode between the BBU and the TRP (for example, wired connection and/or wireless connection).
  • the interface between the BBU and a TRP may be a public radio interface (the common public radio interface, CPRI) or an open base station architecture initiative (OBSAI).
  • FIG. 2 different hexagonal grids show the service range of different TRPs.
  • Service range can also be referred to as signal coverage, service area, communication range, etc.
  • the service range corresponding to the TRP shown in FIG. 2 is an example of one or more hexagonal grids.
  • the shape of the service range can also be a rectangle, a circle, etc., or the service range The shape of can also be an irregular shape, which is not limited here.
  • the service range of the TRP may include at least one of the three grids.
  • the TRP may be connected to the BBU in a wired manner, so as to communicate between the TRP and the BBU based on the wired manner.
  • the TRP may also be connected to the BBU in a wireless manner, so as to facilitate communication between the TRP and the BBU based on the wireless manner.
  • the service scopes of different TRPs may overlap.
  • different TRPs can provide services for terminals located in the overlapping service range.
  • the rate of the user at the edge of the cell is an important indicator that affects the user experience in the network, and the same-channel interference and signal energy are the key factors that determine the performance of the edge user. Since the user performance mainly depends on the signal and Signal to interference plus noise ratio (SINR), so how to reduce the interference received by users at the edge of the cell and improve the signal power is an important topic in the research of wireless communication algorithms.
  • SINR Signal to interference plus noise ratio
  • Multi-cell cooperative MIMO precoding is a physical layer technology solution to improve the edge user experience and increase the average capacity of the cell at the same time.
  • multiple TRPs can be connected to the BBU for summarizing the information transmission of the TRPs to the BBU.
  • the BBU centrally calculates the transmission weights on each TRP, and then distributes the transmission weights on each TRP to corresponding TRPs, so that each TRP performs data transmission on the air interface based on the transmission weights.
  • FIG. 3 the terminal is UE as an example for illustration.
  • the number of TRPs is 2 (that is, TRP1 and TRP2), and the number of UEs is 3 (that is, UE1, UE2 and UE3) as an example.
  • the set of TRP1 and TRP2 may be called a cooperative set of multiple UEs.
  • UE1 is located in the off-centre area of TRP1's service range. It is generally considered that UE1 is not located at the cell edge of TRP1.
  • the communication quality between UE1 and TRP1 is good, and multi-cell coordinated communication can be performed without other TRPs.
  • UE1 has a serving TRP (that is, TRP1 ) in this scenario, but does not have a cooperative TRP.
  • UE2 is located in the edge area of the service range of TRP1. It is generally considered that UE2 is located at the cell edge of TRP1.
  • the communication quality between UE2 and TRP1 is poor, and multi-cell coordinated communication can be performed through other TRPs.
  • UE2 is located not only in the service range of TRP1 but also in the service range of TRP2 . Therefore, the multi-cell coordinated communication service can be performed for UE2 through TRP1 and TRP2 . That is, UE2 has a serving TRP (namely TRP1 ) and also has a cooperative TRP (namely TRP2 ), and provides services for UE2 through joint transmission of the serving TRP and the cooperative TRP.
  • UE3 is located in an edge area of the service range of TRP2. It is generally considered that UE3 is located at the cell edge of TRP2.
  • the communication quality between UE3 and TRP2 is poor, and multi-cell coordinated communication can be performed through other TRPs.
  • UE3 is not only located in the service range of TRP2, but also in the service range of TRP1. Therefore, the multi-cell coordinated communication service can be performed for UE3 through TRP1 and TRP2. That is, in addition to the serving TRP (namely TRP2), UE3 also has a cooperative TRP (namely TRP1), and provides services for UE3 through joint transmission of the serving TRP and the cooperative TRP.
  • TRP1 cooperative TRP
  • the multi-cell cooperation is realized through joint transmission between TRPs (that is, TRP1 and TRP2), and the interference between TRPs is converted into The useful signal, while enhancing the signal, reduces the interference, thereby improving the SINR of UE2.
  • Joint transmission between TRPs may mean that the serving TRP and cooperative TRP of the terminal perform precoding processing on the data symbols to be sent to the terminal based on the transmission weights from the BBU, obtain the symbols to be sent and send them to the terminal on the air interface.
  • Performing precoding processing on data symbols based on transmission weights may also be expressed as performing weighting processing on data symbols based on transmission weights.
  • the BBU can obtain the channel information between multiple terminals and multiple TRPs within the service range of multiple TRPs, and design the cooperative precoding weights of multiple TRPs according to the channel information.
  • the cooperative precoding weight is used to perform weighting processing on the data to be transmitted, so that the gain of multiple TRP joint signal combination and the gain of multiple TRP joint interference suppression can be obtained.
  • the weight determination process of multi-cell cooperative MIMO precoding is processed in a centralized manner in the BBU, and FIG. 4 is an implementation example of the processing process.
  • the six rows of the matrix respectively represent the channel information measured by six TRPs
  • the solid line rectangle represents that the TRP corresponding to the row receives the channel information reported by the terminal corresponding to the column, indicating that the The TRP is the service TRP or cooperative TRP of the terminal corresponding to the column.
  • the dotted rectangle represents that the TRP corresponding to the row has not received the channel information reported by the terminal corresponding to the column (or it is understood that the terminal corresponding to the column has not reported the channel information to the TRP corresponding to the row), indicating that the TRP is neither the service of the terminal corresponding to the column
  • the TRP is also not the cooperative TRP of the terminal corresponding to the column.
  • the first row of the channel matrix on the left side of Fig. 4 as an example.
  • This row includes a solid-line rectangle in the first column and seven dotted-line rectangles in the second to eighth columns, indicating that the terminal corresponding to the first column has reported channel information to the TRP corresponding to the first row, and the second column to The terminals corresponding to the eighth column do not report channel information to the TRP corresponding to the first row.
  • the first column of the channel matrix on the left side of FIG. 4 as an example.
  • This column includes three solid-line rectangles from the first row to the third row and three dotted-line rectangles from the fourth row to the sixth row, indicating that the terminal corresponding to the first column corresponds to the three rectangles corresponding to the first row to the third row.
  • TRPs report channel information, but the terminal corresponding to the first column does not report channel information to the three TRPs respectively corresponding to the fourth row to the sixth row.
  • the number of data streams represents the number of data symbols that are space-division multiplexed on the same time-frequency domain resource.
  • the weight matrix w obtained by the BBU can be expressed as the weighting matrix on the right side of Figure 4, where each row in the weighting matrix on the right side of Figure 4 corresponds to a TRP, and each column corresponds to a terminal.
  • the BBU sends each row of emission weights to the TRP corresponding to the row, wherein the multiple solid rectangles in each row represent the emission weights obtained by the TRP corresponding to the row, and each solid rectangle also corresponds to the column
  • the transmission weight of the corresponding terminal Correspondingly, for a terminal corresponding to a certain column, the transmitting weight of the terminal is expressed as a solid matrix of the column.
  • channel matrices of multiple terminals corresponding to multiple TRPs need to be used as a basis for centralized weight calculation.
  • the BBU still needs to process it in the centralized processing process.
  • the weight matrix w obtained by the BBU even if a certain TRP is neither a service TRP of a certain terminal nor a cooperative TRP of a certain terminal, the weight matrix w obtained by the BBU also includes the TRP pair The emission weight of this terminal.
  • the terminal may have communication connections with some TRPs in the cooperation set.
  • the terminal may have communication connections with some TRPs in the cooperation set.
  • the TRP will not communicate with the terminal, so that the TRP will not be based on the transmission weight sent by the BBU Weighting processing is performed on the downlink data of the terminal. This results in some unused invalid data in the weight matrix w, which will cause unnecessary calculation process and communication process consumption for the invalid data, affecting communication efficiency.
  • the embodiment of the present application provides a weight determination method and device, which are used to determine transmission weights through distributed processing among different TRPs, so that the calculation complexity of transmission weights can be reduced, thereby improving communication. efficiency.
  • the distributed multi-cell multi-user cooperative precoding weights are designed on the TRP side based on the maximum capacity criterion, and the overall computational complexity and bandwidth are reduced while the performance approaches the optimal weight , Reduce fronthaul overhead, and have good architecture scalability, so as to realize an easy-to-deploy multi-cell MIMO cooperative system.
  • centralized processing means that the process of determining multiple transmission weights is obtained through processing by a certain processing node (eg, BBU).
  • Distributed processing means that the determination process of multiple transmission weights is obtained through processing by multiple processing nodes (for example, multiple TRPs).
  • the communication system applied in this application has a cooperative set composed of multiple TRPs.
  • the TRP in the cooperative set can be connected to one or more terminals, and is used to provide services for the connected terminals.
  • the implementation process of the first TRP and the implementation process of the second TRP will be introduced below by taking the cooperation set including at least the first TRP and the second TRP as an example.
  • the cooperation set includes the first TRP and the second TRP as an example for illustration, and the cooperation set may also include more TRPs, such as the third TRP, the fourth TRP or other TRPs , is not limited here.
  • FIG. 5 is a schematic diagram of a weight determination method provided in this application.
  • the first TRP, the second TRP, and the terminal are taken as the execution subjects of the interaction demonstration to illustrate the method, but the present application does not limit the execution subjects of the interaction demonstration.
  • the first TRP in FIG. 5 may also be a chip, a chip system, or a processor that supports the first TRP to implement the method, and may also be a logic module or software that can realize all or part of the functions of the first TRP.
  • the second TRP in FIG. 5 may also be a chip, a chip system, or a processor that supports the second TRP to implement the method, and may also be a logic module or software that can realize all or part of the functions of the second TRP.
  • the terminal in FIG. 5 may also be a chip, a chip system, or a processor that supports the terminal to implement the method, and may also be a logic module or software that can realize all or part of the terminal functions.
  • the method shown in Fig. 5 includes steps S101, S102, S103 and S104. Each step will be described below.
  • the second TRP sends transmission weight information to the first TRP.
  • the first TRP receives the transmit weight information from the second TRP.
  • the transmission weight information is used to indicate a second transmission weight of the terminal in the second TRP, and the second transmission weight is a weighting parameter of downlink data of the terminal in the second TRP. That is, when the second TRP has downlink data of the terminal that needs to be sent to the terminal, it needs to perform weight processing on the downlink data based on the second transmission weight and then send the downlink data to the terminal.
  • the transmission weight information sent by the second TRP is information obtained by the second TRP processing the second transmission weight or an index value corresponding to the second transmission weight, and the processing may include scrambling, One or more of encryption, compression, modulation or coding, etc., not limited here.
  • the first TRP and the second TRP belong to the same coordination set, and there may be many different connection modes among multiple TRPs in the coordination set.
  • the communication interface between TRP1 and TRP2 may be an internal data exchange protocol (internal data exchange, IDX) interconnection interface.
  • IDX internal data exchange protocol
  • the communication interface between TRP1 and TRP2 may be connected to the wired transmission interface on the main control board of each site through a general-purpose or dedicated switch, such as CPRI or OBSAI.
  • the communication between TRP1 and TRP2 is performed based on other communication interfaces in other connection manners, which is not limited here.
  • the first TRP determines a second transmission weight based on the transmission weight information.
  • the first TRP determines the second transmission weight of the terminal in the second TRP based on the transmission weight information obtained in step S101.
  • the first TRP processes the transmission weight information to obtain the second transmission weight or an index value corresponding to the second transmission weight.
  • the processing may include one or more of descrambling, decryption, decompression, demodulation, or decoding.
  • the first TRP may also The weight corresponding to the index value is determined from the mapping relationship obtained based on the pre-configuration method or the configuration method of the BBU, the core network element, etc., and the corresponding weight value is determined as the second transmission weight value.
  • the first TRP determines the first transmission weight based on the second transmission weight.
  • the first TRP determines the first transmission weight of the terminal in the first TRP based on the second transmission weight obtained in step S102.
  • the first TRP may determine a first transmission weight based on the second transmission weight and the mapping relationship.
  • the first TRP may obtain the mapping relationship based on a preconfigured manner or a configured manner such as a BBU or a core network element.
  • the channel state parameter may also be used as one of the basis for determining the transmission weight value.
  • the source of the channel state parameter will be described below.
  • the channel state parameter is determined through information exchanged between different TRPs, and the exchanged information is different from the transmission weight information.
  • the method further includes: the second TRP sends channel state information to the first TRP.
  • the first TRP receives channel state information from the second TRP, where the channel state information is used to indicate a second channel state parameter of the terminal in the second TRP, where the second channel state parameter is the The parameter of the channel state between the second TRP is used to reflect the spatial propagation characteristics of the uplink channel between the terminal and the second TRP to a certain extent.
  • the first TRP acquires the first channel state parameter of the terminal in the first TRP, the first channel state parameter is a parameter of the channel state between the terminal and the first TRP, and is used to reflect to a certain extent The spatial propagation characteristics of the uplink channel between the terminal and the first TRP are obtained. Thereafter, in step S103, the first TRP determines the first transmission weight of the terminal in the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission weight.
  • the spatial propagation characteristics mentioned in this application may include Doppler shift (doppler shift), Doppler spread (doppler spread), average channel delay (average delay), delay spread (delay spread), spatial rx parameter, or one or more of other features.
  • the first channel state parameter may specifically be a parameter of an uplink channel state between the terminal and the first TRP. Since the uplink channel and the downlink channel between the terminal and the TRP have channel reciprocity, therefore, The first channel state parameter may also reflect the downlink channel state between the terminal and the first TRP to a certain extent. Similarly, the second channel state parameter may reflect the downlink channel state between the terminal and the second TRP to a certain extent.
  • the first TRP obtains the second channel state parameter and the second transmission weight of the terminal at the second TRP.
  • the channel state parameter (including the first channel state parameter and the second channel state parameter) is used as one of the basis for determining the first transmission weight, so that the first transmission weight can reflect the channel state parameter indicated by the channel state parameter to a certain extent
  • the correlation characteristic of the actual channel state between the terminal and the TRP further improves the communication efficiency between the subsequent first TRP and the terminal based on the first transmission weight.
  • the second TRP can send the changed part of the parameters to the first TRP without sending the unchanged part parameters, so that the first TRP uses some of the parameters used in the last execution of step S103, thereby saving overhead.
  • the channel state parameter is determined through information exchanged between different TRPs, and the channel state parameter is included in the above transmission weight information.
  • the transmission weight information received by the first TRP in step S101 may also indicate the second channel state parameter of the terminal in the second TRP, and the second channel state parameter is the information between the terminal and the second TRP.
  • the parameter of the channel state between the TRPs is used to reflect the spatial propagation characteristics of the uplink channel between the terminal and the second TRP to a certain extent.
  • the method further includes: the first TRP obtains the first channel state parameter of the terminal in the first TRP, and the first channel state parameter is the channel state between the terminal and the first TRP The parameter is used to reflect the spatial propagation characteristics of the uplink channel between the terminal and the first TRP to a certain extent.
  • the first TRP determines the first transmission weight of the terminal in the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission weight.
  • the first TRP can obtain the second channel state parameter and the second transmission weight of the terminal in the second TRP.
  • the channel state information (including the first channel state information and the second channel state information) is used as one of the basis for determining the first transmission weight, so that the first transmission weight can reflect the channel state information indicated by the channel state information to a certain extent.
  • the correlation characteristic of the actual channel state between the terminal and the TRP further improves the communication efficiency between the subsequent first TRP and the terminal based on the first transmission weight.
  • the first TRP can determine the second channel state parameter and the second transmission weight through a single interaction process in step S103. Second emission weight. Therefore, since multiple interaction processes are not required, signaling overhead and processing delay are saved, and communication efficiency is improved.
  • the first TRP firstly obtains the first channel state parameter and the second channel state parameter based on the first channel state parameter and The second channel state parameter determines an equalization parameter. Then, the first TRP determines the first transmission weight of the terminal in the first TRP based on the equalization parameter and the second transmission weight.
  • the terminal equalization parameter can also be expressed as a downlink receiving equalization matrix, which can generally be recorded as a matrix A i (the subscript indicates the number of the terminal).
  • the first TRP may first determine the equalization parameter according to the channel state parameters (including the first channel state parameter and the second channel state parameter), wherein the equalization parameter is the first TRP
  • the parameters of the downlink channel state between the terminal and multiple TRPs are estimated/predicted according to the channel state parameters, so that the equalization parameters can reflect the relationship between the terminal and multiple TRPs to a certain extent. Correlation characteristics (such as signal energy, noise energy, etc.) of the downlink channel state between TRPs.
  • the first TRP determines the first transmission weight based on the equalization parameter.
  • the equalization parameter is a parameter estimated/predicted by the first TRP according to the channel state parameter, and the downlink channel state reflected by the equalization parameter may not be completely consistent with the actual downlink channel state between the terminal device and multiple TRPs. conform to. Wherein, when the effect of the estimation/prediction is good, the equalization parameter can accurately reflect the actual downlink channel state between the terminal and multiple TRPs (including the first TRP and the second TRP).
  • the equalization parameter may not accurately reflect the actual downlink channel state between the terminal and multiple TRPs (including the first TRP and the second TRP), but the equalization parameter also The downlink channel state can be reflected to a certain extent, so that the first transmission weight determined based on the equalization parameter also has the ability to partially reflect the correlation characteristics of the downlink channel state between the terminal and multiple TRPs.
  • the process for the first TRP to determine the equalization parameter based on the first channel state parameter and the second channel state parameter specifically includes: the first TRP is based on the first channel state parameter, the second The channel state parameter and the interference parameter determine the equalization parameter, where the interference parameter is an interference covariance matrix of other terminals except the terminal.
  • the interference covariance matrix may reflect the interference direction or interference energy of other terminals.
  • the basis for determining the interference parameter includes one or more of the following:
  • the relevant information of the interfering terminal determined by the first TRP (such as the transmission weight of the interfering terminal in the first TRP, the channel state parameters of the interfering terminal in the first TRP, etc.); or,
  • Information related to the interfering terminal from the second TRP (such as the transmission weight of the interfering terminal in the second TRP, the channel state parameters of the interfering terminal in the second TRP, etc.); or,
  • the first TRP may also use the interference parameter as one of the basis for determining the equalization parameter.
  • the interference parameter is the interference covariance matrix of other terminals except the terminal, so that the equalization parameter reflects the relevant characteristics of the downlink channel state of other terminals to a certain extent, so that the first TRP determines the first TRP based on the equalization parameter
  • the communication efficiency between the subsequent first TRP and the terminal based on the first transmission weight is further improved.
  • the terminal refers to one or more terminals that have a communication connection with the first TRP among the terminals that provide communication services in the cooperative set that includes the first TRP and the second TRP, and also It may be called the home transmitting terminal of the first TRP.
  • “Other terminals other than this terminal” refers to terminals that do not have a communication connection with the first TRP among the terminals that provide communication services in the cooperative set that includes the first TRP and the second TRP, and can also be called is the interfering terminal of the first TRP.
  • the terminal is described as a home transmitting terminal, and “terminals other than this terminal” are described as interfering terminals. The two types of terminals will be described below by taking the cooperative set including the first TRP, the second TRP, and the third TRP in FIG. 6 as an implementation example.
  • the cooperation set including the first TRP, the second TRP and the third TRP provides services for multiple terminals (including UE0, UE1 and UE2).
  • the second TRP in FIG. 6 sends transmission weight information to the first TRP based on the connection in step S101, and correspondingly, the first TRP receives transmission weight information from the second TRP based on the connection in step S101.
  • the first TRP and the second TRP may also send and receive other data based on the connection, for example, the first TRP and the second TRP may also send and receive channel state information, equalization parameters and other information of the terminal's channel state parameters based on the connection.
  • different terminals may be connected to different TRPs among multiple TRPs.
  • the connection between a terminal and a TRP is shown by a one-way arrow in the figure, and data can be sent and received between a TRP and a terminal based on the communication connection.
  • the first TRP may be a serving TRP of UE0
  • the first TRP and the second TRP are the (home) transmission TRP of UE0
  • the first TRP is the (home) serving TRP of UE0
  • the second TRP is the cooperation TRP of UE0.
  • the second TRP may be the serving TRP of UE1.
  • UE1 is the home transmitting terminal of the first TRP and the second TRP
  • UE1 is the interfering terminal of the third TRP.
  • the first TRP and the second TRP are UE1's (home) transmission TRP
  • the second TRP is UE1's (home) serving TRP
  • the first TRP is UE1's cooperation TRP.
  • the third TRP may be a serving TRP of UE2.
  • UE2 is the home transmitting terminal of the second TRP and the third TRP
  • UE2 is the interfering terminal of the first TRP.
  • the second TRP and the third TRP are UE2's (home) transmission TRP
  • the third TRP is UE2's (home) serving TRP
  • the second TRP is UE2's cooperation TRP.
  • each TRP and each UE in FIG. 6 can also be described through Table 1 and Table 2.
  • the Home service terminal home transmitting terminal jamming terminal first TRP UE0 UE0 and UE1 UE2 Second TRP UE1 UE0, UE1, and UE2 none third TRP UE2 UE2 UE0 and UE1
  • the cooperation set can also be divided into the current working set and other working sets, for example:
  • the current working set includes TRPs that have a communication connection with UE0 (for example, the first TRP and the second TRP), and other working sets include TRPs that do not have a communication connection with UE0 (for example, the third TRP).
  • the current working set includes TRPs (for example, the first TRP and the second TRP) that have a communication connection with UE1.
  • TRPs for example, the first TRP and the second TRP
  • the current working set includes TRPs that have a communication connection with UE2 (for example, the second TRP and the third TRP), and other working sets include TRPs that do not have a communication connection with UE2 (for example, the first TRP).
  • the first TRP sends downlink data to the terminal based on the first transmission weight.
  • step S104 the first TRP sends downlink data to the terminal based on the first transmission weight obtained in step S103.
  • the terminal receives downlink data from the first TRP in step S104.
  • the downlink data may include at least one item of downlink signal, downlink information, downlink message, downlink signaling, etc. sent by the first TRP or the second TRP to the terminal through the downlink channel, which is not limited here.
  • the downlink data of the terminal that is weighted by the first TRP based on the first transmission weight and the downlink data of the terminal that is weighted by the second TRP based on the second transmission weight may be the same downlink data, or may be different. downlink data.
  • the first TRP may use relevant parameters as the basis for the determination process in addition to the second transmission weight in step S102.
  • the basis of the process for example, the first channel state parameter, the second channel state parameter, the equalization parameter, and the like.
  • the second TRP before the second TRP sends transmission weight information to the first TRP, there is a process for the second TRP to determine the second transmission weight, and the process for determining the second transmission weight can also refer to this implementation process,
  • the second TRP may also use one or more of the first channel state parameter, the second channel state parameter, and the equalization parameter as the determination basis in the process of determining the second transmission weight value, and the present application no longer repeat.
  • interaction refers to sending (or called output) or reception (or called input).
  • the first TRP mentioned in step S103 receives the channel state information from the second TRP (or the first TRP receives the transmission weight information containing the second channel state parameter from the second TRP ) in the implementation process, it can be obtained through the following interaction examples in the scenario shown in FIG. 6 .
  • each TRP shown in FIG. 6 measures the uplink signal (such as a sounding reference signal, SRS) of the home transmitting terminal, each TRP performs uplink channel measurement according to the SRS sent by the home transmitting terminal, and obtains the uplink channel and communicate the measurement results to other TRPs in the collaboration set.
  • the measurement result obtained by the first TRP may be the first channel state parameter mentioned above, and, based on the interaction process, the measurement result received by the first TRP from the second TRP may be the second channel state parameter mentioned above .
  • UE0's cooperation set T 0 is the first TRP and the second TRP, which is denoted as T 0 ⁇ ⁇ 0,1 ⁇ (representing the TRPs contained in the cooperation set corresponding to UE0, for example, the cooperation set includes The first TRP numbered 0 and the second TRP numbered 1).
  • the cooperation set T 1 of UE1 is the first TRP and the second TRP, which is denoted as T 1 ⁇ ⁇ 0,1 ⁇ (indicating the TRPs included in the cooperation set corresponding to UE1, for example, the cooperation set includes the first TRP numbered 0 and a second TRP numbered 1).
  • the cooperation set T 2 of UE2 is the second TRP and the third TRP, denoted as T 2 ⁇ ⁇ 1,2 ⁇ (representing the TRPs contained in the cooperation set corresponding to UE2, for example, the cooperation set includes the second TRP numbered 1 and the third TRP numbered 1).
  • T transmitting antennas
  • R receiving antennas
  • L L is an integer greater than 0
  • L L is an integer greater than 0
  • H p,i is the channel state parameter obtained by measuring the channel of user i on TRP p
  • H p,i ⁇ CR ⁇ T .
  • each TRP exchanges the measured channel information of the home transmitting terminal to other TRPs that have communication connections with the terminal.
  • the process of each TRP exchanging the channel information of the home transmitting terminal includes:
  • the uplink channel information of UE 1 is measured as H 1,1 , and H 1,1 is exchanged to the first TRP.
  • the uplink channel information of UE 2 is measured as H 1,2 , and H 1,2 is exchanged to the third TRP.
  • each TRP in addition to exchanging the channel information of the transmitting terminal, each TRP can also exchange the channel information of the interfering terminal:
  • H 0,0 and H 1,0 are respectively exchanged to the third TRP, so that the third TRP obtains the interfering terminal (ie UE0) measured by the first TRP channel information.
  • H 2,2 is exchanged with the first TRP, so that the first TRP obtains the channel information of the interfering terminal (ie, UE2).
  • the second TRP may determine the initial transmission weight of the terminal according to the aforementioned channel information of the interacted terminal, and determine the initial transmission weight as the second transmission weight.
  • the second TRP may first determine the initial transmission weight value of the terminal through the aforementioned channel information of the interacted terminal, and then, the second TRP performs an iterative update process based on the initial transmission weight value to determine the second transmission weight value. weight.
  • the second TRP determines the initial transmission weight as the second transmission weight, since there is no need to perform an iterative update process, it can reduce the interaction caused by the iterative process. overhead and reduce processing delays.
  • the second TRP performs iterative update based on the initial transmission weight to determine the second transmission weight, since the iteration parameters used in the iterative update process include not only
  • the initial transmission weight of the terminal also includes parameters of the terminal from other TRPs (for example, the initial transmission weight of the terminal in other TRPs, the transmission weights obtained by iteration of the terminal in other TRPs, etc.), such that The second transmission weight determined based on the iterative update process can reflect the communication characteristics of the terminal in the multiple TRPs to a certain extent, and improve the communication quality of the cooperative service provided by the cooperative set where the multiple TRPs belong to the terminal.
  • the following describes the process in which the second TRP first determines the initial transmission weight through the aforementioned channel information of the interacted terminal.
  • the TRP determines the initial transmission weight of the home transmitting terminal.
  • the process of determining the initial transmission weight of the home transmitting terminal in the second TRP with the second TRP is as follows Example to illustrate.
  • the second TRP determines the initial transmission weights of the home transmitting terminals (including UE0, UE1 and UE2) in the second TRP.
  • the second TRP obtains the channel information of the terminal (including the home transmitting terminal and possible interfering terminals) based on the foregoing measurement process and the interaction process. Thereafter, after the second TRP can process the channel information of the terminal (such as matrix splicing), perform singular value decomposition (singular value decomposition, SVD) to obtain the SVD result (the SVD result can be expressed as matrix U, matrix S and matrix V, Wherein, U represents the left singular matrix, S represents the singular value matrix, and V represents the eigenvector matrix), based on the SVD result, the initial transmission weight of the downlink data belonging to the transmitting terminal in the second TRP is obtained.
  • singular value decomposition singular value decomposition
  • the process of communicating terminal channel information between different TRPs includes:
  • the uplink channel information of UE 0 For the first TRP in FIG. 6 , measure the uplink channel information of UE 0 as H 0,0 , and exchange H 0,0 to the second TRP.
  • the uplink channel information of UE 1 is measured as H 0,1 , and H 0,1 is exchanged to the second TRP.
  • the uplink channel information of UE 1 is measured as H 1,1 , and H 1,1 is exchanged to the first TRP.
  • the uplink channel information of UE 2 is measured as H 1,2 , and H 1,2 is exchanged to the third TRP.
  • each TRP in addition to exchanging the channel information of the transmitting terminal, each TRP can also exchange the channel information of the interfering terminal:
  • H 0,0 and H 1,0 are respectively exchanged to the third TRP, so that the third TRP obtains the interfering terminal (ie UE0) measured by the first TRP channel information.
  • H 2,2 is exchanged with the first TRP, so that the first TRP obtains the channel information of the interfering terminal (ie, UE2).
  • the second TRP can obtain the following information:
  • the channel information associated with UE0 includes: H 0,0 , which is the uplink channel information of UE0 obtained by the first TRP measurement; H 1,0 , which is the uplink channel information of UE0 obtained by the second TRP measurement.
  • the channel information associated with UE1 includes: H 0,1 , that is, the uplink channel information of UE1 obtained from the first TRP measurement.
  • H 1,1 is the uplink channel information of UE1 obtained by the second TRP measurement.
  • the channel information associated with UE2 includes: H 1,2 , that is, the uplink channel information of UE2 obtained by the second TRP measurement.
  • H 2,2 is the uplink channel information of UE2 obtained by the third TRP measurement.
  • the second TRP can obtain the following information based on SVD processing:
  • the subscripts of the matrix U, the matrix S, and the matrix V represent the numbers of the UEs (for example, the subscript 0 represents UE0, the subscript 1 represents UE1, and the subscript 2 represents UE2).
  • the rear T (T is the number of transmitting antennas of the first TRP or the second TRP) in the column of the front L (L is the number of data streams of UE0) of the matrix V 0 , here the number of transmitting antennas of the first TRP and the second TRP are all T as an example)
  • the initial transmission weight of the downlink data of UE0 in the second TRP is denoted as (Wherein, a superscript value of 0 indicates that the weight is the initial transmission weight, a first subscript value of 1 indicates the second TRP, and a second subscript value of 0 indicates UE0, the same below).
  • the last T row in the first L (L is the number of data streams of UE1) columns of matrix V1 is the initial transmission weight of the downlink data of UE1 in the second TRP, which is denoted as
  • the first T row in the first L (L is the number of data streams of UE2) columns of the matrix V2 is the initial transmission weight of the downlink data of UE2 in the second TRP, which is denoted as
  • the first TRP may also perform SVD processing on the channel information of the interacted terminal to determine the initial transmission weight of the home transmitting terminal. That is, the first TRP can also refer to the implementation process of determining the initial transmission weight of the second TRP above, and determine that the downlink data of UE0 is in the initial transmission weight of the first TRP (that is, the first T rows in the first L columns of the matrix V 0 ), recorded as And, the initial transmission weight of UE1's downlink data in the first TRP (that is, the first T rows in the first L columns of matrix V 1 ), denoted as
  • the third TRP may also perform SVD processing on the channel information of the interacted terminal to determine the initial transmission weight of the home transmitting terminal. That is, the third TRP can also refer to the implementation process of determining the initial transmission weight value of the second TRP above, and determine that the initial transmission weight value of the UE2's downlink data in the third TRP (that is, the last T rows in the first L columns of the matrix V2 ), recorded as
  • the TRP determines the initial transmission weight of the home service terminal, and here the process of determining the initial transmission weight of the home service terminal in the second TRP with reference to FIG. 6 Take this as an example.
  • the second TRP determines the initial transmission weight of the home service terminal (including UE1) in the second TRP.
  • the second TRP obtains the channel information of the terminal (including the home transmitting terminal and possible interfering terminals) based on the foregoing measurement process and the interaction process. Thereafter, after the second TRP can process the channel information of the terminal (such as matrix splicing), SVD is performed to obtain the SVD result (the SVD result can be expressed as a matrix U, a matrix S, and a matrix V, where U represents a left singular matrix, and S Represents the singular value matrix, V represents the eigenvector matrix), based on the SVD result, the initial transmission weight of the downlink data of the home service terminal (ie UE1) in the second TRP is obtained.
  • the SVD result can be expressed as a matrix U, a matrix S, and a matrix V, where U represents a left singular matrix, and S Represents the singular value matrix, V represents the eigenvector matrix
  • the process of communicating terminal channel information between different TRPs includes:
  • the uplink channel information of UE 0 For the first TRP in FIG. 6 , measure the uplink channel information of UE 0 as H 0,0 , and exchange H 0,0 to the second TRP.
  • the uplink channel information of UE 1 is measured as H 0,1 , and H 0,1 is exchanged to the second TRP.
  • the uplink channel information of UE 1 is measured as H 1,1 , and H 1,1 is exchanged to the first TRP.
  • the uplink channel information of UE 2 is measured as H 1,2 , and H 1,2 is exchanged to the third TRP.
  • each TRP in addition to exchanging the channel information of the transmitting terminal, each TRP can also exchange the channel information of the interfering terminal:
  • H 0,0 and H 1,0 are respectively exchanged to the third TRP, so that the third TRP obtains the interfering terminal (ie UE0) measured by the first TRP channel information.
  • H 2,2 is exchanged with the first TRP, so that the first TRP obtains the channel information of the interfering terminal (ie, UE2).
  • the second TRP can obtain the following channel information related to the home service terminal UE1, including: H 0,1 , namely the uplink channel information of UE1 measured by the first TRP.
  • H 1,1 is the uplink channel information of UE1 obtained by the second TRP measurement.
  • the second TRP can be obtained based on SVD processing, and for the uplink channel information of UE1, satisfy:
  • the subscripts of the matrix U, the matrix S, and the matrix V represent the numbers of the UEs (for example, the subscript 0 represents UE0, the subscript 1 represents UE1, and the subscript 2 represents UE2).
  • the first L (L is the number of data streams of UE1) columns in the matrix V1 is the initial transmission weight of the downlink data of UE1 in the second TRP, which is denoted as
  • the first TRP may also perform SVD processing on the channel information of the interacted terminals to obtain a matrix V 0 to determine the initial transmission weight of the home serving terminal. That is, the first TRP may also refer to the implementation process of determining the initial transmission weight by the second TRP to obtain the matrix V 0 .
  • the first T row in the first L columns of the matrix V0 is the initial transmission weight of UE0's downlink data in the first TRP, which is denoted as
  • the last T row in the first L (L is the number of data streams of UE1 ) columns of the matrix V0 is the initial transmission weight of the downlink data of UE0 in the second TRP.
  • the first TRP sends to the second TRP information indicating the initial transmission weight of the downlink data of UE0 in the second TRP, so that the second TRP obtains the initial transmission weight of the downlink data of UE0 in the second TRP (that is, ).
  • the third TRP may also perform SVD processing on the channel information of the interacted terminals to obtain a matrix V 2 to determine the initial transmission weight of the home serving terminal. That is, the third TRP may also refer to the implementation process of determining the initial transmission weight by the second TRP to obtain the matrix V 2 .
  • the last T row in the first L columns of the matrix V2 is the initial transmission weight of UE2's downlink data in the third TRP, which is denoted as
  • the first T rows in the first L (L is the number of data streams of UE1) columns of the matrix V2 are used as the initial transmission weights of the downlink data of UE2 in the second TRP.
  • the third TRP sends to the second TRP information indicating the initial transmission weight of the UE2's downlink data at the second TRP, so that the second TRP obtains the initial transmission weight of the UE2's downlink data at the second TRP (i.e. ).
  • the second TRP may determine the number of iterations based on a pre-configured manner, and the second TRP may also be based on other devices (such as BBU or first TRP) to determine the number of iterations, the second TRP may also determine the number of iterations based on other methods, which is not limited here. Since the number of iterations can be one or n times (n is an integer greater than 1), the iterative process with the number of iterations once and the iterative process with the number of iterations n times will be respectively described as examples.
  • the implementation scenario shown in FIG. 6 is taken as an example for description.
  • the input is the initial emission weight obtained in the preceding steps, and after iterative processing, the obtained processing result can be used as the second emission weight, and the emission weight is sent to the first TRP in step S101 value information to indicate the second transmit weight.
  • the second emission weight Mode 1 that satisfies the following formula:
  • the superscript 1 means is the iteration result of the first iteration
  • the subscript i represents the home transmitting terminal i (including UE0, UE1 and UE2)
  • the subscript 1 represents the second TRP
  • T i represents the cooperative set where terminal i is located
  • the subscript q ⁇ T i Indicates that the TRP numbered q is the TRP in the cooperative set where the terminal i is located.
  • the subscript q ⁇ 1 indicates that the TRP numbered q is different from the second TRP.
  • T represents the number of transmit antennas of the second TRP
  • L represents the number of data streams of the transmit terminal belonging to the second TRP.
  • R 1 represents the uplink and downlink channel parameters of the home transmitting terminal of the second TRP.
  • R 1 may represent an uplink channel state between the second TRP and the home transmitting terminal of the second TRP and a downlink channel state between the second TRP and the home transmitting terminal of the second TRP.
  • represents a power adjustment (power adjustment) parameter of the antenna power of the second TRP.
  • I represents the identity matrix (that is, a matrix with all 1s on the diagonal and all 0s on the rest).
  • H 1,i represents the uplink channel information of the terminal i in the second TRP.
  • a i represents an equalization parameter of terminal i (for example, a downlink reception equalization matrix).
  • R 1,q represents the uplink and downlink channel information of the home transmitting terminal of the second TRP and the uplink and downlink channel information of the home transmitting terminal of the TRP numbered q.
  • R 1,q can represent, for example, the state of the uplink channel between the second TRP and the home transmitting terminal of the second TRP and the state of the downlink channel between the second TRP and the home transmitting terminal of the second TRP, and the TRP numbered q and The state of the uplink channel between the home transmitting terminal of the TRP numbered q and the state of the downlink channel between the TRP numbered q and the home transmitting terminal of the TRP numbered q.
  • the R1 used to represent the uplink and downlink channel information of the home transmitting terminal of the second TRP satisfies:
  • the subscript U 1 represents the set of home transmitting terminals of the second TRP (including UE0, UE1 and UE2), and j ⁇ U 1 indicates that terminal j is a terminal in the set of home transmitting terminals of the second TRP (including UE0, UE1 or UE2).
  • a j represents an equalization parameter of terminal j (for example, a downlink reception equalization matrix).
  • H 1,j represents uplink channel information of terminal j in the second TRP.
  • R 1,q used to represent the uplink and downlink channel information of the home transmitting terminal of the second TRP and the home and uplink channel information of the TRP in the cooperating set where terminal i is located satisfies:
  • the subscript U 1 represents the set of home transmitting terminals of the second TRP (including UE0, UE1 and UE2)
  • the subscript U q represents the set of home transmitting terminals of the TRP numbered q
  • j ⁇ U 1 ⁇ U q represents Terminal j is the terminal in the intersection of set U 1 and set U q .
  • H q,j represents the uplink channel information of the terminal j in the TRP numbered q.
  • a i is implemented based on minimum mean square error-interference rejection combining (minimum mean square error interference rejection combining, MMSE-IRC), A i satisfies:
  • U 1 represents the set of home transmitting terminals of the second TRP (including UE0, UE1 and UE2), and j ⁇ U 1 indicates that terminal j is a terminal in the set of home transmitting terminals of the second TRP (including UE0 , UE1 or UE2).
  • H i represents uplink channel information of terminal i.
  • H i is uplink channel information H 1,i of terminal i in the second TRP.
  • H i is obtained by performing matrix splicing according to the uplink channel information H 1,i of the terminal i in the second TRP and the uplink channel information H q,i of the terminal i in the TRP numbered q.
  • H j represents uplink channel information of terminal j.
  • H j is uplink channel information H 1,j of terminal j in the second TRP.
  • H j is obtained by performing matrix splicing according to the uplink channel information H 1,j of the terminal j in the second TRP and the uplink channel information H q,j of the terminal j in the TRP numbered q.
  • ⁇ 2 represents the noise factor
  • I represents the identity matrix (that is, a matrix with all 1s on the diagonal and all 0s on the rest).
  • terminal i is a certain terminal (such as UE0, UE1 or UE2) in the set of home transmitting terminals of the second TRP
  • terminal j is a terminal in the set of home transmitting terminals of the second TRP (including UE0, UE1 and UE2).
  • the implementation process shown in mode 1 can be simplified so that the second emission weight Mode 2 that satisfies the following formula:
  • the definition of other relevant parameters in the second way reference may be made to the description of the aforementioned way one.
  • the difference is that the second transmission weight value of the downlink data of the terminal i in the second TRP is defined as one of the basis for determining the second transmission weight value in the iterative process
  • a TRP numbered q is a TRP in the TRP set corresponding to the BBU to which the second TRP belongs.
  • the second transmission weight of the downlink data of terminal i in the second TRP is related to the TRPs in the TRP set corresponding to the BBU to which the second TRP belongs, and the TRPs outside the TRP set corresponding to the BBU to which the second TRP belongs It is irrelevant, which can reduce the amount of data exchanged between different TRPs during the processing.
  • the second TRP can interact with the TRPs in the TRP set corresponding to the belonging BBU to determine the second transmission weight, and increase the second TRP to determine the second transmission weight. Processing efficiency, reducing processing delay.
  • the implementation process shown in mode 1 or mode 2 can be simplified, so that in the process of processing the second transmission weight, the above-mentioned parameters R 1,q satisfy the mode 3 shown in the following formula:
  • the difference is that the relevant information of the terminal j different from the terminal i is ignored (or called, the difference is that the relevant information of the terminal j different from the terminal i is ignored. as 0, that is, ignoring the influence of terminals other than terminal i (that is, terminal j), it can also be understood that the relevant information of terminal j satisfies:
  • the home transmitting terminal of the second TRP is regarded as only including terminal i, so that R 1,q can be simplified. Therefore, the processing process of the second transmission weight is simplified to a certain extent, and the processing delay is reduced.
  • the implementation process shown in mode 1 or mode 2 can be simplified, so that during the processing of the second emission weight, R 1,q satisfies:
  • the second TRP under certain working conditions (for example, the second TRP considers that the interaction delay is large, and if the second TRP considers that the calculation complexity is high), the second TRP can ignore the relevant information associated with the terminal i obtained through the interaction (or expressed as , do not use the relevant information associated with terminal i obtained through interaction). Therefore, the processing process of the second transmission weight is simplified to a certain extent, and the processing delay is reduced.
  • the interaction manner of the initial transmission weights exchanged between different TRPs may be in parallel manner.
  • the initial transmission weights from other multiple TRPs are received during the iterative process, and W (that is, the transmission weights) is performed based on the initial transmission weights of other multiple TRPs.
  • the calculated result of the second TRP is the second transmission weight.
  • the second TRP receives the initial transmission weights from the first TRP and the third TRP, and performs processing based on the initial transmission weights from the first TRP and the third TRP to determine to obtain the first TRP Two launch weights.
  • the interaction manner of the initial transmission weights exchanged between different TRPs may be a serial manner.
  • the initial transmission weight value from a certain TRP is received during the iterative process, and W (that is, the transmission weight value) is calculated based on the initial transmission weight value of the TRP,
  • the calculated result of the second TRP is the second transmit weight.
  • the second TRP receives the initial transmission weight from the first TRP, and performs processing based on the initial transmission weight from the first TRP to determine to obtain the second transmission weight.
  • n is an integer greater than 1, for example, n is 3, 4, 5, 7, 10, etc.
  • the implementation scenario shown in FIG. 6 is taken as an example for description.
  • the input is the emission weight value obtained by the n-1 iteration, after iterative processing, the processing result obtained can be used as the second emission weight value, and is sent to the first TRP in step S101 Transmit weight information is sent to indicate the second transmit weight.
  • the second emission weight Mode 4 that satisfies the following formula:
  • the second TRP may use the result obtained in the nth iteration process as the second transmission weight, and send transmission weight information to the first TRP in step S101 to indicate the second transmission weight.
  • the parameter A i may also be updated during the iterative process.
  • a i when performing an update of A i , A i may be updated after the kth (k is an integer greater than 0 and less than n) iteration, and the k+1th iteration process to the nth iteration The updated A i is used in the iteration process.
  • a i when multiple updates of A i are performed, A i may be updated after every x iterations, and the updated A i may be used to participate in the iteration before the next update of A i .
  • x is an integer greater than 0 and less than n, and x can be a fixed value or a variable.
  • the second TRP may set the value of x on the basis of considering performance and power consumption.
  • x can be set to is a smaller value, so as to determine the second transmission weight through fewer iterations.
  • x can be set to a larger value, so as to pass A multiple number of iterations is used to determine the second transmission weight.
  • x is a fixed value as an example for illustration.
  • a i is updated after the second iteration, the fourth iteration, the sixth iteration, and the eighth iteration respectively, respectively get And, in the third and fourth iterations using Participate in the iterative process, used in iteration 5 and iteration 6 Participate in the iterative process, used in iteration 7 and iteration 8 Participate in the iterative process, used in the ninth and tenth iterations Participate in an iterative process.
  • the channel matrix of the terminal channel information obtained by TRP measurement is shown.
  • the processing result obtained in the distributed processing process is shown in the right figure of FIG. 9 , and the weighting matrix obtained by each TRP is a weighting matrix obtained according to the sparseness characteristic of the connection between each terminal and the TRP. That is, when the terminal does not report channel information to a certain TRP, the TRP does not need to process the terminal during the distributed processing.
  • the transmission right matrix obtained by distributed processing if a certain TRP is neither a service TRP of a certain terminal nor a cooperative TRP of a certain terminal, the transmission right of the TRP to the terminal is not included in the transmission right matrix value, saving costs.
  • some or all embodiments of the weight determination method provided by this application through the distributed weight calculation process, better air interface performance can be achieved, and since there is no need to deploy a new centralized processing unit, the complexity of the centralized processing shown in Figure 4 above will be reduced.
  • the channel information of the home transmitting terminal is exchanged among the TRPs, there is no need to transmit the channel information in multiple TRPs to the BBU, so that the bandwidth requirement for the interaction is reduced.
  • each TPR since each TPR only needs to send the data and weights of the home transmitting terminal, and when a certain TRP is neither a serving TRP of a certain terminal nor a cooperative TRP of a certain terminal, there is no need to send the TRP
  • the transmission weight of the terminal can reduce the amount of information transmission.
  • the distributed processing among multiple TRPs does not need to increase the specifications of the processing units on a large scale, so that the architecture has better scalability.
  • the communication device 1000 includes a processing module 1001 and an interface module 1002;
  • the processing module 1001 and the interface module 1002 specifically execute the following process.
  • the interface module 1002 is configured to receive transmission weight information from the second TRP;
  • the processing module 1001 is configured to determine the second transmission weight based on the transmission weight information, where the second transmission weight is a weighting parameter of the terminal's downlink data in the second TRP;
  • the processing module 1001 is further configured to determine a first transmission weight of the terminal in the first TRP based on the second transmission weight, where the first transmission weight is a weight of downlink data of the terminal in the first TRP parameter;
  • the processing module 1001 is further configured to control the interface module 1002 to send downlink data to the terminal based on the first transmission weight.
  • the interface module 1002 is also configured to receive channel state information from the second TRP;
  • the processing module 1001 is further configured to determine a second channel state parameter of the terminal in the second TRP based on the channel state information, where the second channel state parameter is a channel state parameter between the terminal and the second TRP;
  • the processing module 1001 is further configured to acquire a first channel state parameter of the terminal in the first TRP, where the first channel state parameter is a channel state parameter between the terminal and the first TRP;
  • the processing module 1001 is configured to determine the first transmission weight of the terminal in the first TRP based on the second transmission weight includes: the processing module 1001 is configured to base the first channel state parameter, the second channel state parameter and The second transmission weight determines the first transmission weight of the terminal in the first TRP.
  • the processing module 1001 is further configured to determine a second channel state parameter of the terminal in the second TRP based on the transmission weight information, where the second channel state parameter is a channel state between the terminal and the second TRP parameters;
  • the processing module 1001 is further configured to acquire a first channel state parameter of the terminal in the first TRP, where the first channel state parameter is a channel state parameter between the terminal and the first TRP;
  • the processing module 1001 is configured to determine the first transmission weight of the terminal in the first TRP based on the second transmission weight includes: the processing module 1001 is configured to base the first channel state parameter, the second channel state parameter and The second transmission weight determines the first transmission weight of the terminal in the first TRP.
  • the processing module 1001 is configured to determine the first transmission weight of the terminal in the first TRP based on the first channel state parameter, the second channel state parameter and the second transmission weight include:
  • the processing module 1001 is configured to determine an equalization parameter based on the first channel state parameter and the second channel state parameter;
  • the processing module 1001 is configured to determine a first transmission weight of the terminal in the first TRP based on the equalization parameter and the second transmission weight.
  • the processing module 1001 is configured to determine an equalization parameter based on the first channel state parameter and the second channel state parameter including:
  • the processing module 1001 is configured to determine the equalization parameter based on the first channel state parameter, the second channel state parameter and an interference parameter, where the interference parameter is an interference covariance matrix of other terminals except the terminal.
  • FIG. 11 is a schematic structural diagram of the communication device involved in the above-mentioned embodiment provided by the embodiment of the present application.
  • the communication device may specifically be the first TRP or the second TRP in the above-mentioned embodiment, wherein the communication device
  • the structure can refer to the structure shown in Figure 11.
  • the communication device includes at least one processor 1111 and at least one network interface 1114 . Further optionally, the communication device further includes at least one memory 1112 , at least one transceiver 1113 and one or more antennas 1115 .
  • the processor 1111, the memory 1112, the transceiver 1113 are connected to the network interface 1114, for example, through a bus. In this embodiment of the application, the connection may include various interfaces, transmission lines or buses, which are not limited in this embodiment.
  • the antenna 1115 is connected to the transceiver 1113 .
  • the network interface 1114 is used to enable the communication device to communicate with other communication devices through a communication link.
  • the network interface 1114 may include a network interface between the communication device and the core network equipment, such as an S1 interface, and the network interface may include a network interface between the communication device and other communication devices (such as other TRPs, other network equipment or core network equipment) , such as X2 or Xn interface.
  • the network interface 1114 may include a network interface between the communication device and the core network equipment, such as an S1 interface, and the network interface may include a network interface between the communication device and other communication devices (such as other TRPs, other network equipment or core network equipment) , such as X2 or Xn interface.
  • the processor 1111 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs, for example, to support the communication device to perform the actions described in the embodiments.
  • the communication device may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal equipment, execute software programs, and process data of the software programs.
  • the processor 1111 in FIG. 11 can integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • Memory is primarily used to store software programs and data.
  • the memory 1112 may exist independently and be connected to the processor 1111 .
  • the memory 1112 may be integrated with the processor 1111, for example, integrated into one chip.
  • the memory 1112 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 1111 , and various types of computer program codes to be executed can also be regarded as drivers for the processor 1111 .
  • Figure 11 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 1113 may be used to support receiving or sending radio frequency signals between the communication device and the terminal, and the transceiver 1113 may be connected to the antenna 1115 .
  • the transceiver 1113 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1115 can receive radio frequency signals
  • the receiver Rx of the transceiver 1113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband
  • the signal or digital intermediate frequency signal is provided to the processor 1111, so that the processor 1111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a The radio frequency signal is transmitted by one or more antennas 1115 .
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of the down-mixing processing and analog-to-digital conversion processing The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The sequence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver 1113 may also be called a transceiver unit, a transceiver, a transceiver device, an interface module, and the like.
  • the device used to realize the receiving function in the transceiver unit can be regarded as a receiving unit
  • the device used to realize the sending function in the transceiver unit can be regarded as a sending unit, that is, the transceiver unit includes a receiving unit and a sending unit, and the receiving unit also It can be called receiver, input port, receiving circuit, etc., and the sending unit can be called transmitter, transmitter, or transmitting circuit, etc.
  • the communication device shown in FIG. 11 can be specifically used to implement the steps implemented by the first TRP or the second TRP in the foregoing method embodiments, and realize the technical effects corresponding to the first TRP or the second TRP.
  • the specific implementation manners of the communication device reference may be made to the descriptions in the foregoing method embodiments, and details will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the communication device (implemented by the first TRP) as in the foregoing embodiments. ) the method described in the possible implementation.
  • the embodiment of the present application also provides a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the communication device (implemented by the second TRP) as in the foregoing embodiments. ) the method described in the possible implementation.
  • the embodiment of the present application also provides a computer program product (or computer program) storing one or more computers.
  • the processor executes the above-mentioned communication device (when implemented by the first TRP ) methods of possible implementations.
  • the embodiment of the present application also provides a computer program product that stores one or more computers.
  • the processor executes the method in a possible implementation manner of the above-mentioned communication device (when implemented through the second TRP) .
  • An embodiment of the present application further provides a system-on-a-chip, including at least one processor, configured to support a terminal device in implementing functions involved in a possible implementation manner of the communication apparatus (when implemented through the first TRP).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application also provides a system-on-a-chip, which includes at least one processor, configured to support the network device to implement the functions involved in the possible implementation manners of the above-mentioned communication device (when implemented through the second TRP).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory, and the memory is used for storing necessary program instructions and data of the network device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices, where the network device may specifically be the network device in the foregoing method embodiments.
  • An embodiment of the present application further provides a communication system, where the network system architecture includes the communication device (including the first TRP and the second TRP) in any of the foregoing embodiments.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are schematic.
  • the division of the units is a logical function division.
  • there may be other division methods for example, multiple units or components can be combined or integrated.
  • to another system or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application that contributes substantially or all or part of the technical solution may be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种权值确定方法及装置,用于在不同传输接收点(transmission reception point,TRP)之间通过分布式处理的方式确定发射权值,使得发射权值的计算复杂度得以降低,从而提升通信效率。在该方法中,第一TRP接收来自第二TRP的发射权值信息,并且,第一TRP基于该发射权值信息确定终端在该第二TRP的第二发射权值,其中,第二发射权值为该终端的下行数据在该第二TRP的加权参数;第一TRP基于该第二发射权值确定该终端在该第一TRP的第一发射权值,其中,第一发射权值为该终端的下行数据在该第一TRP的加权参数;第一TRP基于该第一发射权值向该终端发送下行数据。

Description

一种权值确定方法及装置
本申请要求于2021年08月20日提交中国国家知识产权局,申请号为202110962805.4,发明名称为“一种权值确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种权值确定方法及装置。
背景技术
在无线通信网络中,小区边缘用户的速率是影响网络中用户体验的重要指标,而同频干扰以及信号能量是决定边缘用户性能的关键因素,由于用户性能主要取决于信号与干扰加噪声比(signal to interference plus noise ratio,SINR),因此如何降低小区边缘用户受到的干扰以及提升信号功率是无线通信算法中研究的重要课题。
目前,多小区协作多输入多输出(multiple input multiple output,MIMO)预编码是一种提升边缘用户体验,同时增加小区平均容量的物理层技术解决方案。在多小区协作MIMO预编码实现过程中,可以将多个传输接收点(transmission and reception point,TRP)连接到基带单元(baseband unit,BBU),用于将多个TRP的信息传输汇总至BBU。由BBU集中计算各个TRP上的发射权值,然后将各TRP上的发射权值分发到相应的TRP,使得各个TRP基于该发射权值在空口上进行数据发送。
然而,由于各个TRP的发射权值的计算过程是在BBU上集中处理的,在TRP数量较多的场景中,需要针对网络中所有TRP的发射权值在BBU上进行集中计算,使得该计算过程的复杂度较高。
发明内容
本申请实施例提供了一种权值确定方法及装置,相比于各个TRP的发射权值在BBU上集中式处理时,容易产生计算复杂度较高的情况,该权值确定方法及装置用于在不同TRP之间通过分布式处理的方式确定发射权值,使得发射权值的计算复杂度得以降低,从而提升通信效率。
本申请所应用的通信系统包括多个TRP,其中,一个TRP可以连接一个或多个终端,用于为所连接的终端提供服务。下面将以该多个TRP至少包括第一TRP和第二TRP为例,通过多个方面对第一TRP的实现过程和第二TRP的实现过程进行介绍。
本申请实施例第一方面提供了一种权值确定方法,该方法由第一TRP执行,或者,该方法由第一TRP中的部分组件(例如处理器、芯片、或芯片系统等)执行,或者该方法还可以由能实现全部或部分第一TRP功能的逻辑模块或软件实现。在第一方面及其可能的实现方式中,以该权值确定方法由第一TRP执行为例进行描述。在该方法中,第一TRP接收来自第二TRP的发射权值信息,并且,第一TRP基于该发射权值信息确定终端在该第二TRP的第二发射权值,其中,第二发射权值为该终端的下行数据在该第二TRP的加权参数。第 一TRP基于该第二发射权值确定该终端在该第一TRP的第一发射权值,其中,第一发射权值为该终端的下行数据在该第一TRP的加权参数。第一TRP基于该第一发射权值向该终端发送下行数据。
需要说明的是,下行数据可以包括第一TRP或第二TRP通过下行信道向终端发送的下行信号,下行信息,下行消息,下行信令等至少一项,此处不做限定。此外,第一TRP基于第一发射权值进行加权处理的该终端的下行数据与第二TRP基于第二发射权值进行加权处理的该终端的下行数据可以是相同的下行数据,也可以是不同的下行数据。
基于上述技术方案,第一TRP基于第二发射权值确定第一发射权值,即第一TRP通过与第二TRP交互的方式,基于终端的下行数据在该第二TRP的加权参数确定终端的下行数据在该第一TRP的加权参数。此后,第一TRP基于该第一发射权值向该终端发送下行数据。其中,相比于各个TRP的发射权值在BBU上集中式处理时,容易产生计算复杂度较高的情况。该方法在不同TRP之间通过分布式处理的方式确定发射权值,使得发射权值的计算复杂度得以降低,从而提升通信效率。
在第一方面中,在第一TRP和第二TRP之间通过分布式处理的方式确定发射权值的过程中,还可以将信道状态参数作为发射权值的确定依据之一。下面将针对该信道状态参数的来源进行详细描述。
实现方式一,该信道状态参数通过不同TRP之间所交互的信息所确定,并且,该交互的信息不同于发射权值信息。
在实现方式一中,该方法还包括:第一TRP接收来自该第二TRP的信道状态信息,并且,第一TRP基于该信道状态信息确定该终端在该第二TRP的第二信道状态参数,第二信道状态参数为该终端与该第二TRP之间的信道状态的参数。此外,该第一TRP获取该终端在该第一TRP的第一信道状态参数,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数。此后,第一TRP基于该第二发射权值确定该终端在该第一TRP的第一发射权值的过程具体包括:第一TRP基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
基于上述技术方案,第一TRP与第二TRP之间通过信息交互,使得第一TRP得到终端在第二TRP的第二信道状态参数和第二发射权值。其中,将信道状态信息(包括第一信道状态信息和第二信道状态信息)作为第一发射权值的确定依据之一,使得第一发射权值能在一定程度上反映信道状态信息所指示的终端与TRP之间的实际下行信道状态的相关特性,进一步提升后续第一TRP基于该第一发射权值与终端之间的通信效率。
实现方式二,该信道状态参数通过不同TRP之间所交互的信息所确定,并且,该信道状态参数包含于发射权值信息中。
在实现方式二中,该方法还包括:第一TRP基于该发射权值信息确定该终端在该第二TRP的第二信道状态参数,第二信道状态参数为该终端与该第二TRP之间的信道状态的参数。第一TRP获取该终端在该第一TRP的第一信道状态参数,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数。此后,第一TRP基于该第二发射权值确定该终端在该第一TRP的第一发射权值包括:第一TRP基于该第一信道状态参数,该第二信道状态 参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
基于上述技术方案,第一TRP与第二TRP之间通过该发射权值信息的交互,可以使得第一TRP得到终端在第二TRP的第二信道状态参数和第二发射权值。其中,将信道状态参数(包括第一信道状态参数和第二信道状态参数)作为第一发射权值的确定依据之一,使得第一发射权值能在一定程度上反映信道状态信息所指示的终端与TRP之间的实际下行信道状态的相关特性,进一步提升后续第一TRP基于该第一发射权值与终端之间的通信效率。
在第一方面的一种可能的实现方式中,第一TRP基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP的第一发射权值的过程具体包括:第一TRP基于该第一信道状态参数和该第二信道状态参数确定均衡参数。然后,第一TRP基于该均衡参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
基于上述技术方案,第一TRP在确定第一发射权值的过程中,具体可以首先依据信道状态参数(包括第一信道状态参数和第二信道状态参数)确定均衡参数,其中,该均衡参数为第一TRP根据该信道状态参数预估/预测得到的终端与多个TRP(包括第一TRP和第二TRP)之间的下行信道状态的参数,使得该均衡参数在一定程度上可以反映出终端与多个TRP之间下行信道状态的相关特性。相应的,第一TRP再基于该均衡参数所确定的用于向终端设备发送下行数据的第一发射权值也可以在一定程度上反映出终端与多个TRP之间的下行信道状态的相关特性,以提升第一TRP基于该第一发射权值与终端之间的通信效率。
此外,由于终端与TRP之间的上行信道和下行信道具备信道互易性这一特征,因此,该均衡参数也可以在一定程度上反映出终端与多个TRP(包括第一TRP和第二TRP)之间的上行信道状态的相关特征,故通过该均衡参数也可以对上行通信的性能进行优化。
在第一方面的一种可能的实现方式中,第一TRP基于该第一信道状态参数和该第二信道状态参数确定均衡参数的过程具体包括:该第一TRP基于该第一信道状态参数,该第二信道状态参数和干扰参数确定该均衡参数,其中,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵。
基于上述技术方案,第一TRP在确定均衡参数的过程中,还可以将干扰参数作为该均衡参数的确定依据之一。其中,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵,使得该干扰参数在一定程度上反映其他终端的下行信道状态的相关特性,从而,第一TRP基于该干扰参数所确定第一发射权值之后,进一步提升后续第一TRP基于该第一发射权值与终端之间的通信效率。
本申请实施例第二方面提供了一种通信装置,该装置可以实现上述第一方面或第一方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为第一TRP,或者,该装置可以为第一TRP中的组件(例如处理器、芯片、或芯片系统等),或者该装置还可以为能实现全部或部分第一TRP功能的逻辑模块或软件。
本申请实施例第三方面提供了一种通信装置,包括至少一个处理器,该至少一个处理器与存储器耦合;
该存储器用于存储程序或指令;
该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式中的方法。
本申请实施例第四方面提供一种计算机可读存储介质,该可读存储介质存储有指令,当指令被执行时,使得计算机执行如上述第一方面或第一方面任意一种可能的实现方式的方法。
本申请实施例第五方面提供一种计算机程序产品(或称计算机程序),该计算机程序产品包括计算机程序代码,计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面任意一种可能实现方式的方法。
本申请实施例第六方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器用于保存指令和/或数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,该芯片系统还包括接口电路,该接口电路用于输入或输出指令和/或数据。
本申请实施例第七方面提供了一种通信系统,该通信系统包括第一通信装置和第二通信装置。其中,第一通信装置为第一TRP,或者该第一通信装置为第一TRP中的部件(例如处理器、芯片、或芯片系统等),或者该第一通信装置还可以为能实现全部或部分第一TRP功能的逻辑模块或软件。第二通信装置为第二TRP,或者该第二通信装置为第二TRP中的部件(例如处理器、芯片、或芯片系统等),或者该第二通信装置还可以为能实现全部或部分第二TRP功能的逻辑模块或软件。在第七方面及其可能的实现方式中,以该第一通信装置为第一TRP且第二通信装置为第二TRP为例进行描述。
在第七方面的一种可能的实现方式中,
该第二TRP,用于向第一TRP发送发射权值信息,该发射权值信息用于指示终端在该第二TRP的第二发射权值;
该第一TRP,用于接收来自该第二TRP的该发射权值信息,并基于该发射权值信息确定该第二发射权值,其中,该第二发射权值为终端的下行数据在该第二TRP的加权参数;
该第一TRP,还用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值,其中,该第一发射权值为终端的下行数据在该第一TRP的加权参数;
该第一TRP,还用于基于该第一发射权值向该终端发送下行数据。
在第七方面的一种可能的实现方式中,
该第二TPR,还用于向该第一TRP发送信道状态信息,该信道状态信息用于指示该终端在该第二TRP的第二信道状态参数;
该第一TRP,还用于接收来自该第二TRP的该信道状态信息,并基于该信道状态信息确定终端在第二TRP的第二信道状态参数,其中,该第二信道状态参数为该终端与该第二TRP之间的信道状态的参数;
该第一TRP,还用于获取该终端在该第一TRP的第一信道状态参数,其中,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数;
该第一TRP用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值包括:
该第一TRP用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
在第七方面的一种可能的实现方式中,该发射权值信息还为该终端在该第二TRP的第二信道状态参数;
该第一TRP,还用于基于该发射权值信息确定该终端在该第二TRP的第二信道状态参数,其中,该第二信道状态参数为该终端与该第二TRP之间的信道状态的参数;
该第一TRP,还用于获取该终端在该第一TRP的第一信道状态参数,其中,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数;
该第一TRP用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值包括:
该第一TRP用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
在第七方面的一种可能的实现方式中,该第一TRP用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP的第一发射权值包括:
该第一TRP用于基于该第一信道状态参数和该第二信道状态参数确定均衡参数;
该第一TRP用于基于该均衡参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
在第七方面的一种可能的实现方式中,该第一TRP用于基于该第一信道状态参数和该第二信道状态参数确定均衡参数包括:
该第一TRP用于基于该第一信道状态参数,该第二信道状态参数和干扰参数确定该均衡参数,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵。
其中,第二方面至第七方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面以及第一方面中不同实现方式所带来的技术效果,在此不再赘述。
应理解,本申请中的“发送”也可以称为“输出”,“接收”也可以称为“输入”。
从以上技术方案可以看出,第一TRP基于来自于第二TRP的第二发射权值确定终端在该第一TRP中的第一发射权值,即第一TRP通过与第二TRP交互的方式,基于终端的下行数据在该第二TRP的加权参数确定终端的下行数据在该第一TRP的加权参数;此后,第一TRP基于该第一发射权值向该终端发送下行数据。其中,相比于各个TRP的发射权值在BBU上集中式处理时,容易产生计算复杂度较高的情况。该方法在不同TRP之间通过分布式处理的方式确定发射权值,使得发射权值的计算复杂度得以降低,从而提升通信效率。
附图说明
图1为本申请实施例提供的通信系统的一个示意图;
图2为本申请实施例提供的通信系统中,BBU和TRP的一个示意图;
图3为本申请实施例提供的多TRP为用户终端(user terminal,UE)提供通信服务的一个示意图;
图4为本申请实施例提供的集中式权值计算过程的一个示意图;
图5为本申请实施例提供的权值确定方法的一个示意图;
图6为本申请实施例提供的多TRP为UE提供通信服务的另一个示意图;
图7为本申请实施例提供的权值确定方法中迭代过程的一个示意图;
图8为本申请实施例提供的权值确定方法中迭代过程的另一个示意图;
图9为本申请实施例提供的分布式权值计算过程的一个示意图;
图10为本申请实施例提供的通信装置的一个示意图;
图11为本申请实施例提供的通信装置的另一个示意图。
具体实施方式
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备(或称为终端、用户、用户终端、终端用户、用户设备等):可以是能够与网络设备进行通信的无线终端设备,无线终端设备可以是向用户提供语音和/或数据的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信。终端可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机或数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,终端可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。终端也可以称为系统、订阅单元(subscriber unit)、订阅站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,第五代(5 th generation,5G)通信系统中的终端设备或者未来演进的网络中的终端设备等。
此外,本申请所涉及的终端可以广泛应用于各种场景,例如,设备到设备(devicetodevice,D2D)、车物(vehicleto everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),可以称为无线接入网设备,一般也可以称为基站。目前,一些RAN设备的举例为:新一代基站(generation  Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和/或分布单元(distributed unit,DU)节点。
此外,网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)或会话管理功能(session management function,SMF)等。
可以理解,网络设备还可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。
(3)多点协作传输:下行传输中,终端设备可以与至少一个网络设备通信,即终端设备可以接收多个网络设备的数据,该传输模式被称为协作多点(coordinated multiple points,CoMP)传输/接收。其中,至少一个网络设备组成一个协作集为该终端设备提供服务。协作集内的网络设备可以各自连接不同的控制节点(例如,该控制节点可以为BBU,CU节点等),各个控制节点之间可以进行信息交互,比如交互调度策略信息以达成协作传输的目的。或者,协作集内的网络设备连接同一个控制节点,该控制节点接收协作集内的网络设备收集的终端设备上报的信道状态相关信息(比如信道状态信息(channel state information,CSI)或者参考信号接收功率(reference signal receiving power,RSRP)等),并根据协作集内终端设备的信道状态相关信息对协作集内的终端设备进行统一调度,再将调度策略交互给与其连接的网络设备。
需要说明的是,在协作集的控制节点为BBU时,一个BBU可连接至多个TRP,以通过多个TRP实现一个大范围的协同区域。
此外,由协作集提供通信服务的终端可以分为归属服务终端(或称为归属服务用户)和归属发射终端(或称为归属发射用户,归属发送用户等),下面将分别进行介绍:
归属服务终端,指的是终端基于下行测量信号进行测量得到测量结果(例如参考信号接收功率(reference signal receiving power,RSPR),参考信号接收质量(reference signal receiving quality,RSRQ),接收信号强度指示(received signal strength indicator,RSSI),SINR等,此处以RSRP为例),并根据测量结果确定一个或多个TRP作为服务TRP,该终端为该服务TRP的归属服务终端。例如终端可以根据预定义的规则确定具有最优RSRP对应的TRP作为该终端的服务TRP,该终端为该TRP的归属服务终端。
归属发射终端:终端在一个或多个TRP上有数据需要发送或接收时,则该一个或多个TRP为该终端的发射TRP,该终端为该一个或多个TRP(中任意一个TRP)的归属发射终端。
由上述定义可知,在协作集中,终端可以存在一个或多个发射TRP。并且,当该终端的发射TRP的数量为一个时,该终端的发射TRP即为该终端的服务TRP。当该终端的发射TRP的数量为多个时,该终端的多个发射TRP中的某一个发射TRP(例如具有最优RSRP对应的发射TRP)为该终端的服务TRP,而其他的TRP为该终端的协作TRP。
(4)预编码技术:网络设备可以在已知信道状态的情况下,借助与信道资源相匹配的发射权值(也可称为发权、加权参数、预编码矩阵或预编码向量)对待发送信号进行处理,使得经过预编码处理后的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,例如可实现多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)技术。
应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。
(5)本申请中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B或C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
(6)配置与预配置:
本申请中,配置是指通信节点通过消息或信令将配置信息或配置参数发送给其他通信节点。
预配置是指通信节点预先与其他通信节点协商好配置信息或配置参数,也可以是指标准协议预先规定的配置信息或配置参数,还可以是预先存储在通信节点的配置信息或配置参数,本申请对此不做限定。
可选的,通信节点可以为终端,其他通信节点可以为网络设备(例如TRP、基站、BBU、核心网网元等)。
可选的,通信节点可以为TRP,其他通信节点可以为上一级的网络设备(例如BBU、核心网网元等)。
进一步地,这些取值和参数,是可以变化或更新的。
(7)本申请涉及的数学符号的相关定义:
1、E H表示矩阵E的共轭转置。
2、E -1表示矩阵E的逆。
3、E∈A×B表示矩阵E的维度为A×B。
4、E∈C A×B中,“C”表示矩阵E中的元素为复数,“A×B”用于表示矩阵E的维度为A×B。
5、矩阵拼接,指的是将维度为A×B的一个矩阵与维度为C×D的另一个矩阵进行拼接,得到一个新的矩阵。例如,在A=C时,可以在矩阵的行的维度上进行拼接,得到维度为A×(B+D)的新的矩阵。又如,在B=D时,可以在矩阵的列的维度上进行拼接,得到维度为(A+C)×B的新的矩阵。
例如,[E 1 E 2]可以用于表示矩阵E 1和矩阵E 2进行拼接。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请的实施例应用的通信系统1000的架构示意图。
如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(也可理解为前文所介绍的一种网络设备,如图1中的110a和110b),还可以包括至少一个终端(也可理解为前文所介绍的终端设备,如图1中的120a-120j)。此外,无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,以基站作为无线接入网设备的例子进行描述。
本申请中,基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载,也可以部署在水面上,还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站。但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能 也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号(或下行信息),下行信号(或下行信息)承载在下行信道上。终端向基站发送上行信号(或上行信息),上行信号(或上行信息)承载在上行信道上。
图1所示通信系统1000中,无线接入网100中的基站可以通过基带单元(baseband unit,BBU)和TRP的形式来实现。
如图2所示,在该示例中,基站包括一个BBU与多个TRP。需要说明的是,本申请对BBU所连接的多个TRP的数量,以及BBU与TRP之间的连接方式(例如可以为有线连接和/或无线连接)并不做限制。例如,BBU跟一个TRP之间的接口可以为公共无线接口(the common public radio interface,CPRI)或开放式基站架构(open base station architecture initiative,OBSAI)等。
在图2中,不同六边形网格示出了不同TRP的服务范围。服务范围也可以称为信号覆盖范围,服务区域,通信范围等。需要说明的是,图2所示的TRP对应的服务范围为一个或多个六边形网格为示例,实际应用中,该服务范围的形状也可以是矩形、圆形等,或者该服务范围的形状也可以是不规则形状,此处不做限定。
示例性的,在图2中,若某一个TRP处于三个相邻三个网格的中心点,则该TRP的服务范围可以包括该三个网格中的至少一个。TRP可以通过有线的方式连接至BBU,以便于TRP与BBU之间基于该有线的方式进行通信。或者,TRP也可以通过无线的方式连接至BBU,以便于TRP与BBU之间基于该无线的方式进行通信。
图2所示示例中,不同TRP的服务范围有可能存在重叠。此时,不同TRP可以为位于该重叠服务范围的终端提供服务。
终端与基站之间的无线通信过程中,小区边缘用户的速率是影响网络中用户体验的重要指标,而同频干扰以及信号能量是决定边缘用户性能的关键因素,由于用户性能主要取决于信号与干扰加噪声比(signal to interference plus noise ratio,SINR),因此如何降低小区边缘用户受到的干扰以及提升信号功率是无线通信算法中研究的重要课题。
多小区协作MIMO预编码是一种提升边缘用户体验,同时增加小区平均容量的物理层技术解决方案。在多小区协作MIMO预编码实现过程中,可以将多个TRP连接到BBU,用于将TRP的信息传输汇总至BBU。由BBU集中计算各个TRP上的发射权值,然后将各TRP上的发射权值分发到相应的TRP,使得各个TRP基于该发射权值在空口上进行数据发送。
下面将以图3和图4为例介绍多小区协作MIMO预编码的实现过程。在图3中,以终端为UE作为示例进行说明。
如图3所示,为多个TRP与多个UE之间的通信场景。该场景中以TRP数量为2(即TRP1和TRP2),UE数量为3作为示例(即UE1,UE2和UE3)。其中,TRP1和TRP2的集合可以称为多个UE的协作集。
下面将对图3所示各个UE的通信过程进行示例性说明。
例如,UE1处于TRP1服务范围的偏中心区域,一般认为UE1不是位于TRP1的小区边 缘,UE1与TRP1之间的通信质量较好,可以无需通过其它TRP进行多小区协作通信。如图3所示,UE1在该场景中具备服务TRP(即TRP1),而不具备协作TRP。
又如,UE2处于TRP1服务范围的偏边缘区域,一般认为UE2位于TRP1的小区边缘,UE2与TRP1之间的通信质量较差,可以通过其它TRP进行多小区协作通信。如图3所示,UE2既位于TRP1的服务范围,也位于TRP2的服务范围,因此,可以通过TRP1和TRP2为UE2进行多小区协作通信服务。即,UE2具备服务TRP(即TRP1),也具备协作TRP(即TRP2),通过服务TRP和协作TRP的联合传输为UE2提供服务。
又如,UE3处于TRP2服务范围的偏边缘区域,一般认为UE3位于TRP2的小区边缘,UE3与TRP2之间的通信质量较差,可以通过其它TRP进行多小区协作通信。如图3所示,UE3除了位于TRP2的服务范围之外,还位于TRP1的服务范围,因此,可以通过TRP1和TRP2为UE3进行多小区协作通信服务。即,UE3具备服务TRP(即TRP2)之外,还具备协作TRP(即TRP1),通过服务TRP和协作TRP的联合传输为UE3提供服务。
具体地,以图3所示的UE2的通信过程为例。在图3所示通信场景中应用多小区协作MIMO预编码时,针对边缘区域的终端(即UE2),通过TRP间(即TRP1和TRP2)联合发送实现多小区协作,将TRP间的干扰转换为有用信号,在增强信号的同时,降低了干扰,从而提高UE2的SINR。
TRP间的联合发送,可以指该终端的服务TRP和协作TRP基于来自于BBU的发射权值对待向该终端发送的数据符号进行预编码处理,得到待发送符号并在空口上向该终端发送。基于发射权值对数据符号进行预编码处理,也可以表述为基于发射权值对数据符号进行加权处理。
其中,BBU可以获取多个TRP的服务范围内多个终端与多个TRP之间的信道信息,根据该信道信息设计多个TRP的协作预编码权值,通过该协作预编码权值的设计以及多个TRP发送数据时采用该协作预编码权值对待发送数据进行加权处理,可以获得多TRP联合信号合并的增益和多TRP联合干扰抑制的增益。
此外,多小区协作MIMO预编码的权值确定过程是在BBU中以集中式的方式处理的,图4为该处理过程的一个实现示例。
如图4所示,图4左侧示意了TRP测量得到的终端信道信息的信道矩阵。图4右侧示意了BBU基于左侧的信道矩阵进行集中式权值计算得到的TRP上的发射权值矩阵(简称为发权矩阵)。在信道矩阵中,每一行分别代表一个TRP测量终端的上行信道得到的信道信息,每一列分别代表一个终端。
具体地,在图4左侧的信道矩阵中,矩阵的六行分别表示六个TRP测量得到的信道信息,实线矩形代表该行对应的TRP接收到该列对应终端上报的信道信息,表示该TRP为该列对应终端的服务TRP或协作TRP。虚线矩形代表该行对应的TRP未接收到该列对应终端上报的信道信息(或者理解为该列对应终端未上报信道信息给该行对应的TRP),表示该TRP既不是该列对应终端的服务TRP也不是该列对应终端的协作TRP。
例如,以图4左侧的信道矩阵的第一行为例。该行中包括第一列的一个实线矩形和第二列至第八列的七个虚线矩形,表示第一列对应的终端向第一行对应的TRP上报了信道信 息,而第二列至第八列分别对应的终端未向第一行对应的TRP上报信道信息。
又如,以图4左侧的信道矩阵的第一列为例。该列中包括第一行至第三行的三个实线矩形和第四行至第六行的三个虚线矩形,表示第一列对应的终端向第一行至第三行分别对应的三个TRP上报了信道信息,而第一列对应的终端未向第四行至第六行分别对应的三个TRP上报信道信息。
本申请中,数据流数表示在一个相同的时频域资源上进行空分复用的数据符号的数量。经过上述图4示意的实现过程,BBU得到的权值矩阵w可以表示为图4右侧的发权矩阵,其中,在图4右侧的发权矩阵中的每一行对应一个TRP,每一列对应一个终端。并且,BBU将每一行发射权值分别发送给该行对应的TRP,其中,每一行中的多个实心矩形表示该行对应的TRP得到的发射权值,且每一个实心矩形也对应于该列对应的终端的发射权值。相应的,对于某一列对应的终端而言,该终端的发射权值表示为该列的实心矩阵。
通过前述实现过程的介绍可以看出,由于该实现过程中需要将多个TRP对应的多个终端的信道矩阵都作为集中式权值计算的依据。如图4左侧所示信道矩阵所示,即使终端未向TRP上报信道信息,BBU在集中式处理过程中也需要进行处理。使得BBU处理得到的权值矩阵w中,即使某一TRP既不是某个终端的服务TRP也不是某个终端的协作TRP的情况下,BBU所得到的权值矩阵w中也包含有该TRP对该终端的发射权值。
但是,由于终端在协作集中关联的TRP具备稀疏性,即该终端可能与协作集中的部分TRP存在通信连接。此时,某一TRP既不是某个终端的服务TRP也不是该终端的协作TRP的情况下,该TRP并不会与该终端进行通信,使得该TRP并不会基于BBU所发送的发射权值对该终端的下行数据进行加权处理。这就导致该权值矩阵w存在部分用不上的无效数据,针对该无效数据会产生不必要的计算过程和通信过程的消耗,影响通信效率。
此外,在上述实现过程中可以发现,在BBU上进行集中式权值计算的过程至少还存在如下缺点:
1)由于各个TRP的发射权值的计算过程都是在BBU上集中处理,在TRP数量较多的场景中,需要针对网络中各个TRP对应的所有终端在BBU上进行集中计算,使得该计算过程的复杂度较高。并且实际部署困难,需要以BBU为单位部署高性能集中处理器。
2)由于上述无效数据的存在,使得各TRP与BBU之间的交互数据量较大,对TRP和BBU之间的交互带宽要求高。此外,各TRP上给所有终端发送的数据量和权值需要的带宽流量较大,影响通信效率。
3)架构的扩展性差,如果要进一步扩大协作集的协作范围,则整体的成本将增加非常明显。
为此,本申请实施例提供了一种权值确定方法及装置,用于在不同TRP之间通过分布式处理的方式确定发射权值,使得发射权值的计算复杂度得以降低,从而提升通信效率。此外,本申请的部分实施例中,在TRP侧基于最大化容量准则,设计分布式多小区多用户协作预编码权值,在性能逼近最优权值的同时,降低整体的计算复杂度和带宽、减小前传开销,同时具有较好的架构扩展性,以实现易部署的多小区MIMO协作系统。
需要说明的是,本申请中,集中式处理指的是多个发射权值的确定过程是通过某一个处理节点(例如BBU)处理得到。分布式处理指的是多个发射权值的确定过程是通过多个处理节点(例如多个TRP)处理得到。
由前述描述内容可知,本申请所应用的通信系统具备多个TRP所组成的协作集。其中,协作集中的TRP可以连接一个或多个终端,用于为所连接的终端提供服务。下面将以该协作集至少包括第一TRP和第二TRP为例,对第一TRP的实现过程和第二TRP的实现过程进行介绍。
需要说明的是,后续实施例中仅以该协作集包括第一TRP和第二TRP作为示例进行说明,该协作集还可以包括更多的TRP,例如第三TRP,第四TRP或者是其他TRP,此处不做限定。
请参阅图5,为本申请提供的一种权值确定方法的一个示意图。
需要说明的是,图5中以第一TRP、第二TRP和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图5中的第一TRP也可以是支持该第一TRP实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分第一TRP功能的逻辑模块或软件。图5中的第二TRP也可以是支持该第二TRP实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分第二TRP功能的逻辑模块或软件。图5中的终端也可以是支持该终端实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。
图5示意的方法包括步骤S101、S102、S103和S104。下面将分别介绍各个步骤。
S101.第二TRP向第一TRP发送发射权值信息。相应地,第一TRP接收来自第二TRP的该发射权值信息。
该发射权值信息用于指示终端在该第二TRP的第二发射权值,第二发射权值为该终端的下行数据在该第二TRP的加权参数。即第二TRP有该终端的下行数据需要向该终端发送时,需要基于该第二发射权值对下行数据进行加权处理之后向终端发送。
可选地,上述第二TRP发送的发射权值信息为第二TRP对该第二发射权值或与该第二发射权值对应的索引值进行处理得到的信息,该处理可以包括加扰、加密、压缩、调制或编码等中的一项或多项,此处不做限定。
需要说明的是,本实施例及后续实施例中,第一TRP和第二TRP归属于同一协作集,而在协作集中的多个TRP之间可能存在多种不同的连接方式。例如,TRP1和TRP2通过有线的方式连接至BBU时,TRP1和TRP2之间的通信接口可以为内部数据交换协议(internal data exchange,IDX)互联接口。又如,TRP1和TRP2之间的通信接口可以是通过通用或者专用交换机,连接各站址主控板上的有线传输接口,例如CPRI或OBSAI等。或者是,TRP1和TRP2之间基于其他的连接方式中的其他通信接口进行通信,此处不做限定。
S102.第一TRP基于发射权值信息确定第二发射权值。
本实施例中,第一TRP基于步骤S101得到的发射权值信息,确定该终端在第二TRP的第二发射权值。
可选地,第一TRP对该发射权值信息进行处理,以得到该第二发射权值或与该第二发射权值对应的索引值。其中,该处理过程可以包括解扰、解密、解压缩、解调或解码等中的一项或多项。
可选的,在步骤S102中,当第一TRP对该发射权值信息进行处理,以得到该第二发射权值或与该第二发射权值对应的索引值之后,第一TRP还可以在基于预配置的方式,或者BBU、核心网网元等配置的方式获取得到的映射关系中确定该索引值对应的权值,并将该对应的权值确定为第二发射权值。
S103.第一TRP基于第二发射权值确定第一发射权值。
本实施例中,第一TRP基于步骤S102得到的第二发射权值,确定该终端在第一TRP的第一发射权值。
具体的,第二发射权值与第一发射权值之间存在映射关系,其中,该映射关系可以通过多种形式实现,例如表格映射、公式换算等。第一TRP在步骤S103中,可以基于该第二发射权值和该映射关系确定第一发射权值。
可选的,第一TRP可以基于预配置的方式或者BBU、核心网网元等配置的方式获得该映射关系。
在步骤S103中,在第一TRP和第二TRP之间通过分布式处理的方式确定发射权值的过程中,还可以将信道状态参数作为发射权值的确定依据之一。下面将针对该信道状态参数的来源进行描述。
实现方式一,该信道状态参数通过不同TRP之间所交互的信息所确定,并且,该交互的信息不同于发射权值信息。
在实现方式一中,在步骤S103之前,该方法还包括:第二TRP向第一TRP发送信道状态信息。相应地,第一TRP接收来自该第二TRP的信道状态信息,该信道状态信息用于指示该终端在该第二TRP的第二信道状态参数,其中,第二信道状态参数为该终端与该第二TRP之间的信道状态的参数,用于在一定程度上反映出该终端与第二TRP之间的上行信道的空间传播特性。并且,该第一TRP获取该终端在该第一TRP的第一信道状态参数,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数,用于在一定程度上反映出该终端与第一TRP之间的上行信道的空间传播特性。此后,在步骤S103中,第一TRP基于该第一信道状态参数、该第二信道状态参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
需要说明的是,本申请中所提及的空间传播特性可以包括多普勒偏移(doppler shift)、多普勒扩展(doppler spread)、平均信道时延(average delay)、时延扩展(delay spread)、空间接收参数(spatial rx parameter)或其它特性中的一项或多项。
此外,本申请中,第一信道状态参数具体可以为该终端与该第一TRP之间的上行信道状态的参数,由于终端与TRP之间的上行信道和下行信道具备信道互易性,因此,该第一信道状态参数也可以在一定程度上,反映终端与第一TRP之间的下行信道状态。类似的,第二信道状态参数也可以在一定程度上,反映终端与第二TRP之间的下行信道状态。
第一TRP与第二TRP之间通过信息交互,使得第一TRP得到终端在第二TRP的第二信道状态参数和第二发射权值。其中,将信道状态参数(包括第一信道状态参数和第二信道状态参数)作为第一发射权值的确定依据之一,使得第一发射权值能在一定程度上反映信道状态参数所指示的终端与TRP之间的实际信道状态的相关特性,进一步提升后续第一TRP 基于该第一发射权值与终端之间的通信效率。
在实现方式一中,在第一TRP多次执行步骤S103的过程中,在某一次执行过程中,第二TRP可以将发生改变的部分参数发送给第一TRP,而无需发送未发生改变的部分参数,使得第一TRP沿用上一次执行步骤S103的过程中所使用的部分参数,从而节省开销。
实现方式二,该信道状态参数通过不同TRP之间所交互的信息所确定,并且,该信道状态参数包含于上述发射权值信息中。
在实现方式二中,第一TRP在步骤S101中接收得到的发射权值信息还可以指示该终端在该第二TRP的第二信道状态参数,该第二信道状态参数为该终端与该第二TRP之间的信道状态的参数,用于在一定程度上反映出该终端与第二TRP之间的上行信道的空间传播特性。其中,在步骤S103之前,该方法还包括:第一TRP获取该终端在该第一TRP的第一信道状态参数,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数,用于在一定程度上反映出该终端与第一TRP之间的上行信道的空间传播特性。此后,在步骤S103中,第一TRP基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
第一TRP与第二TRP之间通过该发射权值信息的交互,就可以使得第一TRP得到终端在第二TRP的第二信道状态参数和第二发射权值。其中,将信道状态信息(包括第一信道状态信息和第二信道状态信息)作为第一发射权值的确定依据之一,使得第一发射权值能在一定程度上反映信道状态信息所指示的终端与TRP之间的实际信道状态的相关特性,进一步提升后续第一TRP基于该第一发射权值与终端之间的通信效率。
在实现方式二中,由于第二信道状态参数和第二发射权值均承载于发射权值信息中,使得第一TRP在步骤S103中通过单次的交互过程即可确定第二信道状态参数和第二发射权值。从而,由于无需多次的交互过程,节省了信令开销和处理时延,提升通信效率。
进一步的,第一TRP基于上述实现方式一或上述实现方式二得到第一信道状态参数和第二信道状态参数之后,在步骤S103的实现过程中,第一TRP首先基于该第一信道状态参数和该第二信道状态参数确定均衡参数。然后,第一TRP基于该均衡参数和该第二发射权值确定该终端在该第一TRP中的该第一发射权值。
可选的,终端均衡参数也可以表述为下行接收均衡矩阵,一般可以记为矩阵A i(下标表示该终端的编号)。
具体地,第一TRP在确定第一发射权值的过程中,可以首先依据信道状态参数(包括第一信道状态参数和第二信道状态参数)确定均衡参数,其中,该均衡参数为第一TRP根据该信道状态参数预估/预测得到的终端与多个TRP(包括第一TRP和第二TRP)之间的下行信道状态的参数,使得该均衡参数在一定程度上可以反映出终端与多个TRP之间下行信道状态的相关特性(例如信号能量、噪声能量等)。此后,第一TRP再基于该均衡参数确定第一发射权值。
需要说明的是,均衡参数是第一TRP根据该信道状态参数预估/预测得到的参数,该均 衡参数所反映的下行信道状态不一定与终端设备与多个TRP之间实际的下行信道状态完全符合。其中,当该预估/预测的效果较好时,该均衡参数能够准确地反映终端与多个TRP(包括第一TRP和第二TRP)之间的实际的下行信道状态。当该预估/预测的效果较差时,该均衡参数有可能无法准确地反映终端与多个TRP(包括第一TRP和第二TRP)之间的实际的下行信道状态,但是该均衡参数也可以在一定程度上反映出该下行信道状态,使得基于该均衡参数所确定的第一发射权值也具备部分反映出终端与多个TRP之间下行信道状态的相关特性的能力。
在一种可能的实现方式中,上述第一TRP基于该第一信道状态参数和该第二信道状态参数确定均衡参数的过程具体包括:该第一TRP基于该第一信道状态参数,该第二信道状态参数和干扰参数确定该均衡参数,其中,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵。该干扰协方差矩阵例如可以反映出其他终端的干扰方向或干扰能量。
可选的,该干扰参数的确定依据包括以下一项或多项:
第一TRP所确定的干扰终端的相关信息(例如干扰终端在第一TRP的发射权值、干扰终端在第一TRP的信道状态参数等);或,
来自第二TRP的干扰终端的相关信息(例如干扰终端在第二TRP的发射权值、干扰终端在第二TRP的信道状态参数等);或,
来自BBU(或核心网网元或其他设备)的干扰参数。
具体地,第一TRP在确定均衡参数的过程中,还可以将干扰参数作为该均衡参数的确定依据之一。其中,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵,使得该均衡参数在一定程度上反映其他终端的下行信道状态的相关特性,从而,第一TRP基于该均衡参数所确定第一发射权值之后,进一步提升后续第一TRP基于该第一发射权值与终端之间的通信效率。
需要说明的是,“该终端”指的是在包含有第一TRP和第二TRP的协作集中,该协作集提供通信服务的终端中与第一TRP存在通信连接的一个或多个终端,也可称为第一TRP的归属发射终端。“除该终端以外的其他终端”指的是在包含有第一TRP和第二TRP的协作集中,该协作集提供通信服务的终端中,与第一TRP不存在通信连接的终端,也可称为第一TRP的干扰终端。为了便于描述,下文中将“该终端”描述为归属发射终端,将“除该终端以外的其他终端”描述为干扰终端。下面将以图6中,协作集包括第一TRP、第二TRP和第三TRP作为实现示例,对这两种终端进行说明。
如图6所示,包含第一TRP、第二TRP和第三TRP的协作集为多个终端(包括UE0,UE1和UE2)提供服务。
在图6中,不同TRP之间存在有线或无线的通信连接,如图中双向箭头所示,不同TRP之间可以基于该通信连接收发信息。例如,图6中的第二TRP在步骤S101中基于该连接向第一TRP发送发射权值信息,相应的,第一TRP在步骤S101中基于该连接接收来自第二TRP发送的发射权值信息。可选的,第一TRP和第二TRP还可能基于该连接收发其他数据,例如第一TRP和第二TRP还可能基于该连接收发终端的信道状态参数的信道状态信息、均衡参数及其他信息。
在图6中,不同终端可能连接至多个TRP中的不同TRP,终端与TRP之间的连接如图中单向箭头所示,TRP与终端之间可以基于该通信连接收发数据。
对于UE0,由于UE0分别与第一TRP和第二TRP存在通信连接,而UE0与第三TRP不存在通信连接,且UE0靠近于第一TRP(第一TRP可以为UE0的服务TRP)。此时,UE0为第一TRP和第二TRP的归属发射终端,且UE0为第三TRP的干扰终端。相应的,第一TRP和第二TRP为UE0的(归属)发射TRP,第一TRP为UE0的(归属)服务TRP,第二TRP为UE0的协作TRP。
对于UE1,由于UE1分别与第一TRP和第二TRP存在通信连接,且UE1靠近于第二TRP(第二TRP可以为UE1的服务TRP)。此时,UE1为第一TRP和第二TRP的归属发射终端,且UE1为第三TRP的干扰终端。相应的,第一TRP和第二TRP为UE1的(归属)发射TRP,第二TRP为UE1的(归属)服务TRP,第一TRP为UE1的协作TRP。
对于UE2,由于UE2分别与第二TRP和第三TRP存在通信连接,而UE2与第一TRP不存在通信连接,且UE2靠近于第三TRP(第三TRP可以为UE2的服务TRP)。此时,UE2为第二TRP和第三TRP的归属发射终端,且UE2为第一TRP的干扰终端。相应的,第二TRP和第三TRP为UE2的(归属)发射TRP,第三TRP为UE2的(归属)服务TRP,第二TRP为UE2的协作TRP。
图6中各个TRP与各个UE之间的关系也可以通过表1和表2进行描述。
表1
Figure PCTCN2022092147-appb-000001
表2
  归属服务终端 归属发射终端 干扰终端
第一TRP UE0 UE0和UE1 UE2
第二TRP UE1 UE0、UE1和UE2
第三TRP UE2 UE2 UE0和UE1
此外,在图6中,针对每一个终端而言,协作集还可以划分为当前工作集和其他工作集,例如:
对于UE0,当前工作集包含与UE0存在通信连接TRP(例如第一TRP和第二TRP),其他工作集包含与UE0不存在通信连接的TRP(例如第三TRP)。
对于UE1,当前工作集包含与UE1存在通信连接TRP(例如第一TRP和第二TRP)。
对于UE2,当前工作集包含与UE2存在通信连接TRP(例如第二TRP和第三TRP),其他工作集包含与UE2不存在通信连接的TRP(例如第一TRP)。
S104.第一TRP基于第一发射权值向终端发送下行数据。
本实施例中,第一TRP在步骤S104中,基于步骤S103得到的第一发射权值向该终端发送下行数据。相应的,该终端在步骤S104中接收得到来自该第一TRP的下行数据。
具体地,第一TRP在步骤S104中,基于步骤S103得到的第一发射权值对待发送数据进行加权处理(或称为预编码处理),得到该下行数据,并且在空口上向该终端发送下行数据。
需要说明的是,下行数据可以包括第一TRP或第二TRP通过下行信道向终端发送的下行信号,下行信息,下行消息,下行信令等至少一项,此处不做限定。此外,第一TRP基于第一发射权值进行加权处理的该终端的下行数据与第二TRP基于第二发射权值进行加权处理的该终端的下行数据可以是相同的下行数据,也可以是不同的下行数据。
如上述对步骤S103的描述,第一TRP在确定第一发射权值的过程中,除了将步骤S102中的第二发射权值作为该确定过程的依据之外,还可以将相关参数作为该确定过程的依据,例如第一信道状态参数、第二信道状态参数、均衡参数等。类似的,步骤S101中,第二TRP向第一TRP发送发射权值信息之前,存在第二TRP确定第二发射权值的过程,而确定第二发射权值的过程也可以参考该实现过程,例如,第二TRP也可以将该第一信道状态参数、第二信道状态参数、均衡参数中的一项或多项作为确定第二发射权值的过程中的确定依据,本申请对此不再赘述。
下面将通过结合图6具体的实现场景,对图5中的步骤进行进一步地示例性描述。需要说明的是,在后文实施例中,交互指的是发送(或称为输出),或者接收(或称为输入)。
在一种可能的实现方式中,步骤S103所提及的第一TRP接收来自第二TRP的信道状态信息(或第一TRP接收来自第二TRP的包含有第二信道状态参数的发射权值信息)的实现过程中,具体可以通过图6所示场景中的下述交互示例得到。
示例性的,图6所示的各TRP测量归属发射终端的上行信号(例如探测参考信号(sounding reference signal,SRS)),各个TRP根据归属发射终端所发送的SRS进行上行信道测量,得到上行信道的测量结果,并将测量结果交互给协作集中的其他TRP。第一TRP进行测量得到的测量结果可以为前述提及的第一信道状态参数,并且,基于该交互过程,第一TRP接收来自第二TRP的测量结果可以为前述提及的第二信道状态参数。
例如,以图6所示场景实现作为示例。在图6中,UE0的协作集T 0为第一TRP和第二TRP,记为T 0∈{0,1}(表示UE0对应的协作集所包含的TRP,例如,该协作集包括编号为0的第一TRP以及编号为1的第二TRP)。UE1的协作集T 1为第一TRP和第二TRP,记为T 1∈{0,1}(表示UE1对应的协作集所包含的TRP,例如,该协作集包括编号为0的第一TRP和编号为1的第二TRP)。UE2的协作集T 2为第二TRP和第三TRP,记为T 2∈{1,2}(表示UE2对应的协作集所包含的TRP,例如,该协作集包括编号为1的第二TRP以及编号为1的第三TRP)。此外,在图6所示场景下,假设不同TRP的发射天线数相等,均为T(T为大于0的整数)。不同UE的接收天线数相等,均为R(R为大于0的整数)。不同UE的数据流数相等,均为L(L为大于0的整数)。
其中,各TRP测量归属发射终端的上行信道,得到的TRP p(编号p包括编号0、编号1和编号2)与UE i(i=0,1或2)之间的信道信息记为H p,i。其中,H p,i为TRP p上对于用户i的信道进行测量得到的信道状态参数,且H p,i∈C R×T。此后,各个TRP将测量得到的归属发射终端的信道信息交互给与该终端存在通信连接的其他TRP。示例性的如前述表2所示各个TRP与归属发射终端之间的对应关系,各个TRP交互归属发射终端的信道信息的过程包括:
对于图6中的第一TRP,测量UE 0的上行信道信息记为H 0,0,并将H 0,0交互给第二TRP。测量UE 1的上行信道信息记为H 0,1,并将H 0,1交互给第二TRP。
对于图6中的第二TRP,测量UE 0的上行信道信息记为H 1,0,并将H 1,0交互给第一TRP。测量UE 1的上行信道信息记为H 1,1,并将H 1,1交互给第一TRP。测量UE 2的上行信道信息记为H 1,2,并将H 1,2交互给第三TRP。
对于图6中的第三TRP,测量UE 2的上行信道记为H 2,2,并将H 2,2交互给第二TRP。
可选的,如前述表2所示各个TRP与干扰终端之间的对应关系,各个TRP除了交互归属发射终端的信道信息之外,还可以交互干扰终端的信道信息:
例如:对于图6中的第一TRP和第二TRP,分别将H 0,0和H 1,0交互给第三TRP,使得第三TRP获取得到第一TRP测量得到的干扰终端(即UE0)的信道信息。
又如:对于图6中的第一TRP和第二TRP,分别将H 0,1和H 1,1交互给第三TRP,使得第三TRP获取得到干扰终端(即UE1)的信道信息。
又如:对于图6中的第三TRP,将H 2,2交互给第一TRP,使得第一TRP获取得到干扰终端(即UE2)的信道信息。
在一种可能的实现方式中,步骤S101所提及的第一TRP接收来自第二TRP的发射权值信息(该发射权值信息用于指示终端在该第二TRP的第二发射权值)之前,该第二TRP还可以通过多种实现方式确定(或生成)第二发射权值。
例如,第二TRP在步骤S101之前,可以通过前述所交互的终端的信道信息确定终端的初始发射权值,并将该初始发射权值确定为第二发射权值。或者,第二TRP在步骤S101之前,可以通过前述所交互的终端的信道信息首先确定终端的初始发射权值,然后,第二TRP基于初始发射权值进行迭代更新的过程,以确定第二发射权值。
在一种实现方式中,第二TRP在步骤S101之前,将该初始发射权值确定为第二发射权值的过程中,由于无需执行迭代更新的过程,可以减少迭代过程中进行交互而导致的开销,减少处理时延。
在另一种实现方式中,第二TRP在步骤S101之前,基于初始发射权值进行迭代更新以确定第二发射权值的过程中,由于在执行迭代更新的过程中所采用的迭代参数不仅包含该终端的初始发射权值,还包括来自于其他TRP的该终端的参数(例如,该终端在其他TRP的初始发射权值、该终端在其他TRP中进行迭代得到的发射权值等),使得基于迭代更新的过程所确定的第二发射权值可以在一定程度上体现终端在多个TRP中的通信特性,提升多个TRP所在的协作集为该终端所提供的协作服务的通信质量。
下面对第二TRP通过前述所交互的终端的信道信息首先确定初始发射权值的过程进行描述。
在一种确定初始发射权值的实现方式中,TRP确定归属发射终端的初始发射权值,此处结合图6以第二TRP确定第二TRP中的归属发射终端的初始发射权值的过程为例进行说明。
例如,在图6所示场景中,第二TRP确定第二TRP中的归属发射终端(包括UE0、UE1和UE2)的初始发射权值。
由前述描述可知,第二TRP基于前述测量过程以及交互的过程得到终端(包括归属发射终端,以及可能存在的干扰终端)的信道信息。此后,第二TRP可以将终端的信道信息进行处理(例如矩阵拼接)后,进行奇异值分解(singular value decomposition,SVD)得到SVD结果(该SVD结果可以表示为矩阵U、矩阵S和矩阵V,其中,U表示左奇异矩阵,S表示奇异值矩阵,V表示特征向量矩阵),基于SVD结果得到归属发射终端的下行数据在第二TRP的初始发射权值。
如前所述,在图6所示场景中,不同TRP之间交互的终端的信道信息的过程包括:
对于图6中的第一TRP,测量UE 0的上行信道信息记为H 0,0,并将H 0,0交互给第二TRP。测量UE 1的上行信道信息记为H 0,1,并将H 0,1交互给第二TRP。
对于图6中的第二TRP,测量UE 0的上行信道信息记为H 1,0,并将H 1,0交互给第一TRP。测量UE 1的上行信道信息记为H 1,1,并将H 1,1交互给第一TRP。测量UE 2的上行信道信息记为H 1,2,并将H 1,2交互给第三TRP。
对于图6中的第三TRP,测量UE 2的上行信道记为H 2,2,并将H 2,2交互给第二TRP。
可选的,如前述表2所示各个TRP与干扰终端之间的对应关系,各个TRP除了交互归属发射终端的信道信息之外,还可以交互干扰终端的信道信息:
例如:对于图6中的第一TRP和第二TRP,分别将H 0,0和H 1,0交互给第三TRP,使得第三TRP获取得到第一TRP测量得到的干扰终端(即UE0)的信道信息。
又如:对于图6中的第一TRP和第二TRP,分别将H 0,1和H 1,1交互给第三TRP,使得第三TRP获取得到干扰终端(即UE1)的信道信息。
又如:对于图6中的第三TRP,将H 2,2交互给第一TRP,使得第一TRP获取得到干扰终端(即UE2)的信道信息。
基于上述交互的终端的信道信息,第二TRP可以得到如下信息:
关联于UE0的信道信息,包括:H 0,0,即第一TRP测量得到的UE0的上行信道信息;H 1,0,即第二TRP测量得到的UE0的上行信道信息。
关联于UE1的信道信息,包括:H 0,1,即第一TRP测量得到的UE1的上行信道信息。H 1,1,即第二TRP测量得到的UE1的上行信道信息。
关联于UE2的信道信息,包括:H 1,2,即第二TRP测量得到的UE2的上行信道信息。H 2,2,即第三TRP测量得到的UE2的上行信道信息。
相应的,第二TRP基于SVD处理可以得到如下信息:
对于UE0的上行信道信息,满足:
Figure PCTCN2022092147-appb-000002
对于UE1的上行信道信息,满足:
Figure PCTCN2022092147-appb-000003
对于UE2的上行信道信息,满足:
Figure PCTCN2022092147-appb-000004
其中,矩阵U、矩阵S和矩阵V的下标表示UE的编号(例如,下标0表示UE0,下标1表示UE1,下标2表示UE2)。其中,矩阵V 0的前L(L为UE0的数据流数)列中的后T(T为第一TRP或第二TRP的发射天线数,此处以第一TRP和第二TRP的发射天线数均为T为例)行为UE0的下行数据在第二TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000005
(其中,上标取值为0表示该权值为初始发射权值,第一位下标取值为1表示第二TRP,第二位下标取值为0表示UE0,下同)。矩阵V 1的前L(L为UE1的数据流数)列中的后T行为UE1的下行数据在第二TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000006
矩阵V 2的前L(L为UE2的数据流数)列中的前T行为UE2的下行数据在第二TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000007
类似的,第一TRP在步骤S101之前,也可以通过前述所交互的终端的信道信息进行SVD处理,以确定归属发射终端的初始发射权值。即,第一TRP也可以参考上述第二TRP确定初始发射权值的实现过程,确定出UE0的下行数据在第一TRP的初始发射权值(即矩阵V 0的前L列中的前T行),记为
Figure PCTCN2022092147-appb-000008
以及,UE1的下行数据在第一TRP的初始发射权值(即矩阵V 1的前L列中的前T行),记为
Figure PCTCN2022092147-appb-000009
类似的,第三TRP在步骤S101之前,也可以通过前述所交互的终端的信道信息进行SVD处理,以确定归属发射终端的初始发射权值。即,第三TRP也可以参考上述第二TRP确定初始发射权值的实现过程,确定出UE2的下行数据在第三TRP的初始发射权值(即矩阵V 2的前L列中的后T行),记为
Figure PCTCN2022092147-appb-000010
在另一种确定初始发射权值的实现方式中,TRP确定归属服务终端的初始发射权值,此处结合图6以第二TRP确定第二TRP中的归属服务终端的初始发射权值的过程为例进行说明。在图6所示场景中,第二TRP确定第二TRP中的归属服务终端(包括UE1)的初始发射权值。
由前述描述可知,第二TRP基于前述测量过程以及交互的过程得到终端(包括归属发射终端,以及可能存在的干扰终端)的信道信息。此后,第二TRP可以将终端的信道信息进行处理(例如矩阵拼接)后,进行SVD得到SVD结果(该SVD结果可以表示为矩阵U、矩阵S和矩阵V,其中,U表示左奇异矩阵,S表示奇异值矩阵,V表示特征向量矩阵),基于SVD结果得到归属服务终端(即UE1)的下行数据在第二TRP的初始发射权值。
如前所述,在图6所示场景中,不同TRP之间交互的终端的信道信息的过程包括:
对于图6中的第一TRP,测量UE 0的上行信道信息记为H 0,0,并将H 0,0交互给第二TRP。测量UE 1的上行信道信息记为H 0,1,并将H 0,1交互给第二TRP。
对于图6中的第二TRP,测量UE 0的上行信道信息记为H 1,0,并将H 1,0交互给第一TRP。测量UE 1的上行信道信息记为H 1,1,并将H 1,1交互给第一TRP。测量UE 2的上行信道信息记为H 1,2,并将H 1,2交互给第三TRP。
对于图6中的第三TRP,测量UE 2的上行信道记为H 2,2,并将H 2,2交互给第二TRP。
可选的,如前述表2所示各个TRP与干扰终端之间的对应关系,各个TRP除了交互归属发射终端的信道信息之外,还可以交互干扰终端的信道信息:
例如:对于图6中的第一TRP和第二TRP,分别将H 0,0和H 1,0交互给第三TRP,使得第三TRP获取得到第一TRP测量得到的干扰终端(即UE0)的信道信息。
又如:对于图6中的第一TRP和第二TRP,分别将H 0,1和H 1,1交互给第三TRP,使得第三TRP获取得到干扰终端(即UE1)的信道信息。
又如:对于图6中的第三TRP,将H 2,2交互给第一TRP,使得第一TRP获取得到干扰终端(即UE2)的信道信息。
基于上述交互的终端的信道信息,第二TRP可以得到如下关联于归属服务终端UE1的信道信息,包括:H 0,1,即第一TRP测量得到的UE1的上行信道信息。H 1,1,即第二TRP测量得到的UE1的上行信道信息。相应的,第二TRP基于SVD处理可以得到,对于UE1的上行信道信息,满足:
Figure PCTCN2022092147-appb-000011
其中,矩阵U、矩阵S和矩阵V的下标表示UE的编号(例如,下标0表示UE0,下标1表示UE1,下标2表示UE2)。其中,矩阵V 1的前L(L为UE1的数据流数)列中的后T行为UE1的下行数据在第二TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000012
类似的,第一TRP在步骤S101之前,也可以通过前述所交互的终端的信道信息进行SVD处理得到矩阵V 0,以确定归属服务终端的初始发射权值。即,第一TRP也可以参考上述第二TRP确定初始发射权值的实现过程,得到矩阵V 0。其中,矩阵V 0的前L列中的前T行为UE0的下行数据在第一TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000013
可选的,矩阵V 0的前L(L为UE1的数据流数)列中的后T行为UE0的下行数据在第二TRP的初始发射权值。第一TRP向第二TRP发送用于指示该UE0的下行数据在第二TRP的初始发射权值的信息,以使得第二TRP得到UE0的下行数据在第二TRP的初始发射权值(即
Figure PCTCN2022092147-appb-000014
)。
类似的,第三TRP在步骤S101之前,也可以通过前述所交互的终端的信道信息进行SVD处理得到矩阵V 2,以确定归属服务终端的初始发射权值。即,第三TRP也可以参考上述第二TRP确定初始发射权值的实现过程,得到矩阵V 2。其中,矩阵V 2的前L列中的后T行为UE2的下行数据在第三TRP的初始发射权值,记为
Figure PCTCN2022092147-appb-000015
可选的,矩阵V 2的前L(L为UE1的数据流数)列中的前T行作为UE2的下行数据在第二TRP的初始发射权值。第三TRP向第二TRP发送用于指示该UE2的下行数据在第二TRP的初始发射权值的信息,以使得第二TRP得到UE2的下行数据在第二TRP的初始发射权值(即
Figure PCTCN2022092147-appb-000016
)。
基于前述第二TRP确定初始发射权值(
Figure PCTCN2022092147-appb-000017
Figure PCTCN2022092147-appb-000018
)的实现过程的描述,下面结合图6对第二TRP基于初始发射权值进行迭代更新,以确定第二发射权值的过程进行示例性描述。
在一种可能的基于初始发射权值确定第二发射权值的实现方式中,第二TRP可以基于预配置的方式确定迭代次数,第二TRP也可以基于其他设备(例如BBU或第一TRP)的指示以确定迭代次数,第二TRP还可以基于其他方式确定该迭代次数,此处不做限定。由于该迭代次数可以为一次或n次(n为大于1的整数),下面将分别对迭代次数为一次的迭代过程,以及迭代次数为n次的迭代过程分别进行示例性描述。
示例性的,迭代次数为一次时,以图6所示实现场景为例进行描述。第二TRP在第一次迭代过程中,输入为前述步骤得到的初始发射权值,经过迭代处理,得到的处理结果可以作为第二发射权值,并在步骤S101中向第一TRP发送发射权值信息以指示该第二发射权值。
例如,在第一次迭代过程中,第二发射权值
Figure PCTCN2022092147-appb-000019
满足下式示意的方式一:
Figure PCTCN2022092147-appb-000020
Figure PCTCN2022092147-appb-000021
其中,
Figure PCTCN2022092147-appb-000022
的上标1表示
Figure PCTCN2022092147-appb-000023
为第一次迭代的迭代结果,下标i表示归属发射终端i(包括UE0、UE1和UE2),下标1表示第二TRP,T i表示终端i所在的协作集,下标q∈T i表示编号为q的TRP为终端i所在协作集中的TRP。下标q≠1表示编号为q的TRP不同于第二TRP。T表示第二TRP的发射天线数,L表示第二TRP的归属发射终端的数据流数。上式中各参数的含义总结如下:
Figure PCTCN2022092147-appb-000024
表示终端i的下行数据在第二TRP中经过第一次迭代得到的第二发射权值。
R 1,表示第二TRP的归属发射终端的上下行信道参数。
R 1例如可以表征第二TRP与第二TRP的归属发射终端之间的上行信道状态和第二TRP与第二TRP的归属发射终端之间的下行信道状态。
ρ,表示第二TRP的天线功率的功率调整(power adjustment)参数。
I,表示单位矩阵(即对角线全1,其余全0的矩阵)。
H 1,i,表示终端i在第二TRP的上行信道信息。
A i,表示终端i的均衡参数(例如下行接收均衡矩阵)。
R 1,q,表示第二TRP的归属发射终端的上下行信道信息以及编号为q的TRP的归属发射终端的上下行信道信息。
R 1,q例如可以表征第二TRP与第二TRP的归属发射终端之间的上行信道状态和第二TRP与第二TRP的归属发射终端之间的下行信道状态,以及编号为q的TRP与编号为q的TRP的归属发射终端之间的上行信道状态和编号为q的TRP与编号为q的TRP的归属发射终端之间的下行信道状态。
Figure PCTCN2022092147-appb-000025
表示终端i的下行数据在编号为q的TRP的初始发射权值。
此外,用于表示第二TRP的归属发射终端的上下行信道信息的R 1满足:
Figure PCTCN2022092147-appb-000026
其中,下标U 1表示第二TRP的归属发射终端的集合(包括UE0、UE1和UE2),j∈U 1表示终端j为第二TRP的归属发射终端的集合中的终端(包括UE0、UE1或UE2)。
A j,表示终端j的均衡参数(例如下行接收均衡矩阵)。
H 1,j,表示终端j在第二TRP的上行信道信息。
此外,用于表示第二TRP的归属发射终端的上下行信道信息以及终端i所在协作集中的TRP的归属发射终端的上下行信道信息的R 1,q满足:
Figure PCTCN2022092147-appb-000027
其中,下标U 1表示第二TRP的归属发射终端的集合(包括UE0、UE1和UE2),下标U q表示编号为q的TRP的归属发射终端的集合,j∈U 1∩U q表示终端j为集合U 1与集合U q的交集中的终端。
H q,j,表示终端j在编号为q的TRP的上行信道信息。
可选的,A i基于最小均方误差-干扰抑制合并(minimum mean square error interference rejection combining,MMSE-IRC)实现时,A i满足:
Figure PCTCN2022092147-appb-000028
或,A i基于最小均方误差-最大比合并(minimum mean square error-maximum ratio combining,MMSE-MRC)实现时,A i满足:
Figure PCTCN2022092147-appb-000029
或,A i基于最大比合并(maximum ratio combining,MRC)实现时,A i满足:
Figure PCTCN2022092147-appb-000030
其中,终端i的均衡参数(例如下行接收均衡矩阵)A i的多种实现过程中,上式中各参数的含义总结如下:
j∈U 1中,U 1表示第二TRP的归属发射终端的集合(包括UE0、UE1和UE2),j∈U 1表示终端j为第二TRP的归属发射终端的集合中的终端(包括UE0、UE1或UE2)。
H i,表示终端i的上行信道信息。
例如,H i是终端i在第二TRP的上行信道信息H 1,i
例如,H i是根据终端i在第二TRP的上行信道信息H 1,i,以及,终端i在编号为q的TRP的上行信道信息H q,i进行矩阵拼接获得的。
Figure PCTCN2022092147-appb-000031
表示终端i的初始发射权值。
例如,
Figure PCTCN2022092147-appb-000032
是终端i在第二TRP的初始发射权值
Figure PCTCN2022092147-appb-000033
例如,
Figure PCTCN2022092147-appb-000034
是根据终端i在第二TRP的初始发射权值
Figure PCTCN2022092147-appb-000035
以及,终端i在编号为q的TRP的上行信道信息
Figure PCTCN2022092147-appb-000036
进行矩阵拼接获得的。
H j,表示终端j的上行信道信息。
例如,H j是终端j在第二TRP的上行信道信息H 1,j
例如,H j是根据终端j在第二TRP的上行信道信息H 1,j,以及,终端j在编号为q的TRP的上行信道信息H q,j进行矩阵拼接获得的。
Figure PCTCN2022092147-appb-000037
表示终端j的初始发射权值。
例如,
Figure PCTCN2022092147-appb-000038
是终端j在第二TRP的初始发射权值
Figure PCTCN2022092147-appb-000039
例如,
Figure PCTCN2022092147-appb-000040
是根据终端j在第二TRP的初始发射权值
Figure PCTCN2022092147-appb-000041
以及,终端j在编号为q的TRP的上行信道信息
Figure PCTCN2022092147-appb-000042
进行矩阵拼接获得的。
σ 2表示噪声系数,I表示单位矩阵(即对角线全1,其余全0的矩阵)。
在上述H i
Figure PCTCN2022092147-appb-000043
H j
Figure PCTCN2022092147-appb-000044
的参数含义中,终端i为第二TRP的归属发射终端的集合中的某一个终端(例如UE0、UE1或UE2),终端j为第二TRP的归属发射终端的集合中的终端(包括UE0、UE1和UE2)。
可选的,在第一次迭代过程中,可以对方式一所示实现过程进行简化,使得第二发射权值
Figure PCTCN2022092147-appb-000045
满足下式示意的方式二:
Figure PCTCN2022092147-appb-000046
其中,
Figure PCTCN2022092147-appb-000047
表示与第二TRP连接至同一个BBU的多个TRP的集合(以图6为例,第一TRP、第二TRP和第三TRP连接至同一个BBU的情况下,
Figure PCTCN2022092147-appb-000048
表示该BBU所连接的TRP集合,即第一TRP、第二TRP和第三TRP),
Figure PCTCN2022092147-appb-000049
表示编号为q的TRP为与第二TRP连接至同一个的BBU的多个TRP的集合中的TRP。此外,方式二中的其他相关参数的定义可以参考前述方式一的描述。
与前述方式一的实现过程相比,在方式二中,区别在于限定终端i的下行数据在第二TRP中的第二发射权值在该迭代过程中,作为第二发射权值的确定依据之一的编号为q的TRP为第二TRP归属的BBU对应的TRP集合中的TRP。换言之,终端i的下行数据在第二TRP中的第二发射权值与第二TRP归属的BBU对应的TRP集合中的TRP有关,而与第二TRP归属的BBU对应的TRP集合之外的TRP无关,可以降低该处理过程中不同TRP之间所交互的数据量。从而,考虑到时延、带宽等问题的影响,使得第二TRP与归属的BBU对应的TRP集合中的TRP进行交互即可确定第二发射权值,提升第二TRP确定第二发射权值的处理效率,降低处理时延。
又如,在第一次迭代过程中,可以对方式一或方式二所示实现过程进行简化,使得第二发射权值的处理过程中,上述参数R 1,q满足下式示意的方式三:
Figure PCTCN2022092147-appb-000050
与前述方式一或方式二的实现过程相比,在方式三中,区别在于忽略了不同于终端i的终端j的相关信息(或称为,区别在于将不同于终端i的终端j的相关信息视为0,即忽略终端i以外的终端(即终端j)的影响),也可以理解为终端j的相关信息满足:
Figure PCTCN2022092147-appb-000051
换言之,在方式三中,将第二TRP的归属发射终端视为仅包括终端i,使得R 1,q得以简化。从而,在一定程度上对第二发射权值的处理过程进行简化,减低处理时延。
又如,在第一次迭代过程中,可以对方式一或方式二所示实现过程进行简化,使得第二发射权值的处理过程中,R 1,q满足:
R 1,q=0;
换言之,第二TRP在某些工作状态(例如第二TRP认为交互时延大,又如第二TRP认为计算复杂度高)下,可忽略交互获得的关联于终端i的相关信息(或表述为,不使用交互获得的关联于终端i的相关信息)。从而,在一定程度上对第二发射权值的处理过程进行简化,减低处理时延。
在一种可能的实现方式中,如图7所示,第一次迭代的实现过程中,不同TRP之间所交互的初始发射权值的交互方式可以为并行方式。换言之,对于多个TRP中的某一个TRP而言,在该迭代过程中接收来自其他多个TRP的初始发射权值,并且基于其他多个TRP的初始发射权值进行W(即发射权值)计算,第二TRP经过计算得到的计算结果即为第二发射权值。例如,第二TRP在图7所示实现过程中,接收来自第一TRP和第三TRP的初始发射权值,并基于来自第一TRP和第三TRP的初始发射权值进行处理以确定得到第二发射权值。
在一种可能的实现方式中,如图8所示,第一次迭代的实现过程中,不同TRP之间所交互的初始发射权值的交互方式可以为串行方式。换言之,对于多个TRP中的某一个TRP而言, 在该迭代过程中接收来自某一个TRP的初始发射权值,并且基于该个TRP的初始发射权值进行W(即发射权值)计算,第二TRP经过计算得到的计算结果即为第二发射权值。例如,第二TRP在图8所示实现过程中,接收来自第一TRP的初始发射权值,并基于来自第一TRP的初始发射权值进行处理以确定得到第二发射权值。
示例性的,迭代次数为n次(n为大于1的整数,例如n为3、4、5、7、10等)时,以图6所示实现场景为例进行描述。第二TRP在第n次迭代过程中,输入为第n-1次迭代得到的发射权值,经过迭代处理,得到的处理结果可以作为第二发射权值,并在步骤S101中向第一TRP发送发射权值信息以指示该第二发射权值。
例如,在第n次迭代过程中,第二发射权值
Figure PCTCN2022092147-appb-000052
满足下式示意的方式四:
Figure PCTCN2022092147-appb-000053
Figure PCTCN2022092147-appb-000054
其中,
Figure PCTCN2022092147-appb-000055
的上标n表示第n次迭代,
Figure PCTCN2022092147-appb-000056
的上标n-1表示第n-1次迭代。
Figure PCTCN2022092147-appb-000057
表示终端i的下行数据在第二TRP中经过第n次迭代得到的第二发射权值。
Figure PCTCN2022092147-appb-000058
表示终端i的下行数据在编号为q的TRP中经过第n-1次迭代得到的发射权值。
此外,方式四中的其他相关参数的定义可以参考前述方式一的描述。
其中,在第n次迭代过程中,当n取值为1时,可以通过前述迭代次数为一次的迭代过程实现。当n取值为2时,可以将前述迭代次数为一次的迭代过程得到的结果作为第二次迭代的迭代过程的输入,得到第二次迭代过程的结果。以此类推,当n取值为其他取值时,可以将迭代次数为n-1次的迭代过程得到的结果作为第n次迭代的迭代过程的输入,得到第n次迭代过程得到的结果。其中,第二TRP可以将第n次迭代过程得到的结果作为第二发射权值,并在步骤S101中向第一TRP发送发射权值信息以指示该第二发射权值。
在一种可能的实现过程中,当迭代次数n取值为大于1时,还可以在迭代处理过程中对参数A i进行更新。
可选的,当执行一次A i的更新时,可以在第k(k为大于0且小于n的整数)次迭代之后对A i进行更新,并且,在第k+1次迭代过程至第n次迭代过程中使用更新后的A i
可选的,当执行多次A i的更新时,可以每间隔x次迭代之后对A i进行更新,并且,使用更新后的A i参与下次A i更新之前的迭代。其中,x为大于0且小于n的整数,且x可以为固定值,也可以为变量。
其中,当x为变量时,第二TRP可以在考虑性能和功耗的基础上而设置x的取值。
例如,当第二TRP接入的终端数量较多的情况下或第二TRP由于需要运行某些运算要求较高的业务导致运算能力受限的情况下,为了降低通信时延,可以将x设置为较小的取值,以通过较少次数的迭代过程确定第二发射权值。
又如,当第二TRP接入的终端数量较少的情况下或第二TRP的运算能力富余的情况下,为了提升迭代的优化效果,可以将x设置为较大的取值,以通过较多次数的迭代过程确定第二发射权值。
此处以x为固定值为例进行说明。
例如,当n取值为10,且x为固定值且取值为2时,分别在第二次迭代、第四次迭代、第六次迭代、第八次迭代之后对A i进行更新,分别得到
Figure PCTCN2022092147-appb-000059
并且,在第三次迭代和第四次迭代中使用
Figure PCTCN2022092147-appb-000060
参与迭代过程,在第五次迭代和第六次迭代中使用
Figure PCTCN2022092147-appb-000061
参与迭代过程,在第七次迭代和第八次迭代中使用
Figure PCTCN2022092147-appb-000062
参与迭代过程,在第九次迭代和第十次迭代中使用
Figure PCTCN2022092147-appb-000063
参与迭代过程。
例如,当基于MMSE-IRC获得均衡参数时,第x次迭代之后,对A i进行更新的过程满足:
Figure PCTCN2022092147-appb-000064
或,基于MMSE-MRC获得均衡参数时,第x次迭代之后,对A i进行更新的过程满足:
Figure PCTCN2022092147-appb-000065
或,基于MRC获得均衡参数时,第x次迭代之后,对A i进行更新的过程满足:
Figure PCTCN2022092147-appb-000066
其中,
Figure PCTCN2022092147-appb-000067
的上标x表示在第x次迭代过程得到的结果。此外,相关参数的定义可以参考前述方式一的描述。
由上述实施例可得,在图5至图8所示实现过程中,利用各终端与TRP联接的稀疏特性(每个用户只是关联若干TRP),通过TRP间的局部交互,将集中式预编码权值涉及的大维复杂运算分摊到各个TRP上进行小维度运算,降低了权值计算的复杂度。此外,在降低计算复杂度的基础上,以多轮迭代交互的分布式处理方式达到集中式预编码权值计算的性能。
上述分布式的实现过程可以用图9进行示例。
如图9左图所示,示意了TRP测量得到的终端信道信息的信道矩阵。该分布式处理过程所得到的处理结果如图9右图所示,每个TRP所得到的发权矩阵是根据各终端与TRP联接的稀疏特性而得到的发权矩阵。即在终端未向某一个TRP上报信道信息时,分布式处理过程中,该TRP无需对该终端进行处理。使得分布式处理得到的发权矩阵中,某一TRP既不是某个终端的服务TRP也不是某个终端的协作TRP的情况下,该发权矩阵中不包含有该TRP对该终端的发射权值,节省开销。
综上所述,针对集中式多小区协作MIMO预编码技术问题,如高计算复杂度、交互带宽大、前传流量大、扩展性差等问题,本申请提供的权值确定方法的部分或全部实施例中,通过分布式的权值计算过程,可以实现较优的空口性能,并且由于不需要新增部署集中处理单元,相比前述图4所示集中式处理的复杂度会降低。在一些实施例中,由于各TRP间交互归属发射终端的信道信息,而无需将多个TRP中的信道信息传输至BBU,使得交互带宽要求得以降低。
在一些实施例中,由于各TPR只需发送归属发射终端的数据和权值,而在某一TRP既不是某个终端的服务TRP也不是某个终端的协作TRP的情况下,无需发送该TRP对该终端的发射权值,可以降低信息传输量。
在一些实施例中,当协作集的协同区域扩大时,通过多个TRP之间分布式处理的方式无需大规模提升处理单元的规格,使得架构扩展性较好。
上面从方法的角度对本申请的相关实施例进行了介绍,下面从装置的角度对本申请进行说明。
请参阅图10,本申请实施例提供了一种通信装置,该通信装置1000可以实现上述方法实施例中第一TRP或第二TRP的功能,因此也能实现上述方法实施例所具备的有益效果。
该通信装置1000包括处理模块1001和接口模块1002;
当该通信装置1000执行前述方法实施例中的第一TRP所对应的方法时,处理模块1001和接口模块1002具体执行如下过程。
该接口模块1002,用于接收来自第二TRP的发射权值信息;
该处理模块1001,用于基于该发射权值信息确定该第二发射权值,其中,该第二发射权值为终端的下行数据在该第二TRP的加权参数;
该处理模块1001,还用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值,其中,该第一发射权值为终端的下行数据在该第一TRP的加权参数;
该处理模块1001,还用于基于该第一发射权值控制该接口模块1002向该终端发送下行数据。
在一种可能的实现方式中,
该接口模块1002,还用于接收来自该第二TRP的信道状态信息;
该处理模块1001,还用于基于该信道状态信息确定终端在第二TRP的第二信道状态参数,其中,该第二信道状态参数为该终端与该第二TRP之间的信道状态的参数;
该处理模块1001,还用于获取该终端在该第一TRP的第一信道状态参数,其中,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数;
该处理模块1001用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值包括:该处理模块1001用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP的第一发射权值。
在一种可能的实现方式中,
该处理模块1001,还用于基于该发射权值信息确定该终端在该第二TRP的第二信道状态参数,其中,该第二信道状态参数为该终端与该第二TRP之间的信道状态的参数;
该处理模块1001,还用于获取该终端在该第一TRP的第一信道状态参数,其中,该第一信道状态参数为该终端与该第一TRP之间的信道状态的参数;
该处理模块1001用于基于该第二发射权值确定该终端在该第一TRP的第一发射权值包括:该处理模块1001用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP的第一发射权值。
在一种可能的实现方式中,该处理模块1001用于基于该第一信道状态参数,该第二信道状态参数和该第二发射权值确定该终端在该第一TRP的第一发射权值包括:
该处理模块1001用于基于该第一信道状态参数和该第二信道状态参数确定均衡参数;
该处理模块1001用于基于该均衡参数和该第二发射权值确定该终端在该第一TRP的第一发射权值。
在一种可能的实现方式中,该处理模块1001用于基于该第一信道状态参数和该第二信道状态参数确定均衡参数包括:
该处理模块1001用于基于该第一信道状态参数,该第二信道状态参数和干扰参数确定该均衡参数,该干扰参数为除该终端以外的其他终端的干扰协方差矩阵。
需要说明的是,上述通信装置1000的单元的信息执行过程及相应的技术效果等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图11,为本申请的实施例提供的上述实施例中所涉及的通信装置的结构示意图,该通信装置具体可以为上述实施例中的第一TRP或者第二TRP,其中,该通信装置的结构可以参考图11所示的结构。
通信装置包括至少一个处理器1111以及至少一个网络接口1114。进一步可选的,该通信装置还包括至少一个存储器1112、至少一个收发器1113和一个或多个天线1115。处理器1111、存储器1112、收发器1113和网络接口1114相连,例如通过总线相连,在本申请实施例中,该连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线1115与收发器1113相连。网络接口1114用于使得通信装置通过通信链路,与其它通信设备通信。例如网络接口1114可以包括通信装置与核心网设备之间的网络接口,例如S1接口,网络接口可以包括通信装置和其他通信装置(例如其他TRP,其他网络设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
处理器1111主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信装置执行实施例中所描述的动作。通信装置可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器1111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器1112可以是独立存在,与处理器1111相连。可选的,存储器1112可以和处理器1111集成在一起,例如集成在一个芯片之内。其中,存储器1112能够存储执行本申请实施例的技术方案的程序代码,并由处理器1111来控制执行,被执行的各类计算机程序代码也可被视为是处理器1111的驱动程序。
图11仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于 同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器1113可以用于支持通信装置与终端之间射频信号的接收或者发送,收发器1113可以与天线1115相连。收发器1113包括发射机Tx和接收机Rx。具体地,一个或多个天线1115可以接收射频信号,该收发器1113的接收机Rx用于从天线接收该射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给该处理器1111,以便处理器1111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1113中的发射机Tx还用于从处理器1111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1115发送该射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,该下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,该上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器1113也可以称为收发单元、收发机、收发装置、接口模块等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是,图11所示通信装置具体可以用于实现前述方法实施例中第一TRP或第二TRP所实现的步骤,并实现第一TRP或第二TRP对应的技术效果,图11所示通信装置的具体实现方式,均可以参考前述的各个方法实施例中的叙述,此处不再一一赘述。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过第一TRP实现时)可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过第二TRP实现时)可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过第一TRP实现时)可能实现方式的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品,当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过第二TRP实现时)可能实现方式的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持终端设备实现上述通信装置(通过第一TRP实现时)可能的实现方式中所涉及的功能。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数 据。在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持网络设备实现上述通信装置(通过第二TRP实现时)可能的实现方式中所涉0及的功能。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存该网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,其中,该网络设备具体可以为前述方法实施例中网络设备。
本申请实施例还提供了一种通信系统,该网络系统架构包括上述任一实施例中的通信装置(包括第一TRP和第二TRP)。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例是示意性的,例如,所述单元的划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种通信方法,其特征在于,所述方法应用于第一传输接收点TRP,所述方法包括:
    接收来自第二TRP的发射权值信息;
    基于所述发射权值信息确定终端在所述第二TRP的第二发射权值,其中,所述第二发射权值为所述终端的下行数据在所述第二TRP的加权参数;
    基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值,其中,所述第一发射权值为所述终端的下行数据在所述第一TRP的加权参数;
    基于所述第一发射权值向所述终端发送下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二TRP的信道状态信息;
    基于所述信道状态信息确定所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述发射权值信息确定所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    基于所述第一信道状态参数和所述第二信道状态参数确定均衡参数;
    基于所述均衡参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述第一信道状态参数和所述第二信道状态参数确定均衡参数包括:
    基于所述第一信道状态参数,所述第二信道状态参数和干扰参数确定所述均衡参数,所述干扰参数为除所述终端以外的其他终端的干扰协方差矩阵。
  6. 一种通信装置,其特征在于,所述装置为第一传输接收点TRP,或所述装置应用于第一TRP,所述装置包括接口模块和处理模块;
    所述接口模块,用于接收来自第二TRP的发射权值信息;
    所述处理模块,用于基于所述发射权值信息确定终端在所述第二TRP的第二发射权值,其中,所述第二发射权值为所述终端的下行数据在所述第二TRP的加权参数;
    所述处理模块,还用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值,其中,所述第一发射权值为所述终端的下行数据在所述第一TRP的加权参数;
    所述处理模块,还用于基于所述第一发射权值控制所述接口模块向所述终端发送下行数据。
  7. 根据权利要求6所述的装置,其特征在于,
    所述接口模块,还用于接收来自所述第二TRP的信道状态信息;
    所述处理模块,还用于基于所述信道状态信息确定所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    所述处理模块,还用于获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述处理模块用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述处理模块用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值。
  8. 根据权利要求6所述的装置,其特征在于,
    所述处理模块,还用于基于所述发射权值信息确定所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    所述处理模块,还用于获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述处理模块用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述处理模块用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值。
  9. 根据权利要求7或8所述的装置,其特征在于,所述处理模块用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述处理模块用于基于所述第一信道状态参数和所述第二信道状态参数确定均衡参数;
    所述处理模块用于基于所述均衡参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值。
  10. 根据权利要求9所述的装置,其特征在于,所述处理模块用于基于所述第一信道状态参数,所述第二信道状态参数确定均衡参数包括:
    所述处理模块用于基于所述第一信道状态参数,所述第二信道状态参数和干扰参数确 定所述均衡参数,所述干扰参数为除所述终端以外的其他终端的干扰协方差矩阵。
  11. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与存储器耦合,
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求1至5中任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,所述可读存储介质存储有指令,当所述指令被计算机执行时,实现权利要求1至5中任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,所述程序产品包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至5中任一项所述的方法。
  14. 一种通信系统,其特征在于,所述通信系统包括第一传输接收点TRP和第二TRP;
    所述第二TRP,用于向所述第一TRP发送发射权值信息,所述发射权值信息用于指示终端在所述第二TRP的第二发射权值,其中,所述第二发射权值为所述终端的下行数据在所述第二TRP的加权参数;
    所述第一TRP,用于接收来自所述第二TRP的所述发射权值信息,并基于所述发射权值信息确定所述终端在所述第二TRP的所述第二发射权值;
    所述第一TRP,还用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值,其中,所述第一发射权值为所述终端的下行数据在所述第一TRP的加权参数;
    所述第一TRP,还用于基于所述第一发射权值向所述终端发送下行数据。
  15. 根据权利要求14所述的系统,其特征在于,
    所述第二TPR,还用于向所述第一TRP发送信道状态信息,所述信道状态信息用于指示所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    所述第一TRP,还用于接收来自所述第二TRP的所述信道状态信息,并基于所述信道状态信息确定所述第二信道状态参数;
    所述第一TRP,还用于获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述第一TRP用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述第一TRP用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  16. 根据权利要求14所述的系统,其特征在于,
    所述第一TRP,还用于基于所述发射权值信息确定所述终端在所述第二TRP的第二信道状态参数,其中,所述第二信道状态参数为所述终端与所述第二TRP之间的信道状态的参数;
    所述第一TRP,还用于获取所述终端在所述第一TRP的第一信道状态参数,其中,所述第一信道状态参数为所述终端与所述第一TRP之间的信道状态的参数;
    所述第一TRP用于基于所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述第一TRP用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  17. 根据权利要求15或16所述的系统,其特征在于,所述第一TRP用于基于所述第一信道状态参数,所述第二信道状态参数和所述第二发射权值确定所述终端在所述第一TRP的第一发射权值包括:
    所述第一TRP用于基于所述第一信道状态参数和所述第二信道状态参数确定均衡参数;
    所述第一TRP用于基于所述均衡参数和所述第二发射权值确定所述终端在所述第一TRP的所述第一发射权值。
  18. 根据权利要求17所述的系统,其特征在于,所述第一TRP用于基于所述第一信道状态参数和所述第二信道状态参数确定均衡参数包括:
    所述第一TRP用于基于所述第一信道状态参数,所述第二信道状态参数和干扰参数确定所述均衡参数,所述干扰参数为除所述终端以外的其他终端的干扰协方差矩阵。
PCT/CN2022/092147 2021-08-20 2022-05-11 一种权值确定方法及装置 WO2023020034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110962805.4 2021-08-20
CN202110962805.4A CN115942359A (zh) 2021-08-20 2021-08-20 一种权值确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023020034A1 true WO2023020034A1 (zh) 2023-02-23

Family

ID=85239985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092147 WO2023020034A1 (zh) 2021-08-20 2022-05-11 一种权值确定方法及装置

Country Status (2)

Country Link
CN (1) CN115942359A (zh)
WO (1) WO2023020034A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474900A (zh) * 2009-07-10 2012-05-23 三星电子株式会社 移动站、基站和移动站的操作方法
CN102780520A (zh) * 2011-05-13 2012-11-14 富士通株式会社 从多个发送站进行波束成形
US20150092684A1 (en) * 2013-09-27 2015-04-02 Alcatel-Lucent Methods and systems for distributed coordination
CN111435897A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 信息传输的方法和通信装置
WO2021159480A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Csi reference resource for tdm based multiple transmission reception transmissions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474900A (zh) * 2009-07-10 2012-05-23 三星电子株式会社 移动站、基站和移动站的操作方法
CN102780520A (zh) * 2011-05-13 2012-11-14 富士通株式会社 从多个发送站进行波束成形
US20150092684A1 (en) * 2013-09-27 2015-04-02 Alcatel-Lucent Methods and systems for distributed coordination
CN111435897A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 信息传输的方法和通信装置
WO2021159480A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Csi reference resource for tdm based multiple transmission reception transmissions

Also Published As

Publication number Publication date
CN115942359A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US10320464B2 (en) Joint channel correction method, related apparatus, and system
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
CN102882570B (zh) 移动通信网络下设备间通信的最优收发联合处理方法
WO2018223933A1 (zh) 一种基于3d mimo的无线传输的方法及装置
Hou et al. Investigation of massive MIMO in dense small cell deployment for 5G
WO2024027394A1 (zh) 一种通信方法及装置
CN105846870B (zh) 用于多输入多输出无线通信系统的装置和方法
US20230019630A1 (en) Update Method and Communications Apparatus
Xia et al. Bandwidth allocation in heterogeneous networks with wireless backhaul
Cao et al. From ORAN to Cell-Free RAN: Architecture, performance analysis, testbeds and trials
WO2023020034A1 (zh) 一种权值确定方法及装置
WO2022022216A1 (zh) 一种信道测量方法和通信装置
WO2022012256A1 (zh) 通信的方法及通信装置
WO2020211736A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022120855A1 (zh) 确定参考信号序列的方法及装置
WO2011136473A2 (en) Method for avoiding interference in wireless communication system and apparatus for the same
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
CN113972934B (zh) 数据发送方法、装置、系统及可读存储介质
WO2022067824A1 (zh) 信号传输方法及相关装置
WO2022083307A1 (zh) 信道测量的方法及通信装置
WO2023185434A1 (zh) 一种数据传输方法以及装置
WO2023024967A1 (zh) 资源配置方法及装置
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression
WO2022165668A1 (zh) 一种进行预编码的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE