WO2020211736A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2020211736A1
WO2020211736A1 PCT/CN2020/084604 CN2020084604W WO2020211736A1 WO 2020211736 A1 WO2020211736 A1 WO 2020211736A1 CN 2020084604 W CN2020084604 W CN 2020084604W WO 2020211736 A1 WO2020211736 A1 WO 2020211736A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
channel
sub
matrices
matrix
Prior art date
Application number
PCT/CN2020/084604
Other languages
English (en)
French (fr)
Inventor
周郑颐
王昭诚
葛宁
曹建飞
Original Assignee
索尼公司
周郑颐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 周郑颐 filed Critical 索尼公司
Priority to CN202080028138.6A priority Critical patent/CN113678388A/zh
Priority to US17/601,956 priority patent/US20220190995A1/en
Publication of WO2020211736A1 publication Critical patent/WO2020211736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present disclosure generally relates to wireless communication systems and methods, and specifically relates to techniques for canceling interference.
  • duplex technology there is a time division duplex (TDD) mode.
  • TDD mode the same frequency band can be used for uplink and downlink, and the uplink and downlink can be distinguished in time (immediate division).
  • time resources can be allocated between uplink and downlink in various proportions, and uplink and downlink transmissions can be performed on the same frequency channel (such as a carrier) based on the allocated time resources, so that the uplink and downlink are transmitted. Be distinguished.
  • TDD mode Compared with frequency division duplex (FDD) mode where symmetrical frequency bands need to be configured for uplink and downlink transmission, flexible allocation of time resources for uplink and downlink transmission in TDD mode can better meet the needs of asymmetric services, and Therefore, the utilization rate of the spectrum can be improved. For example, in the TDD mode, for a download service with a large amount of data, a larger proportion of downlink time resources can be allocated. In addition, in a TDD wireless communication system, there is reciprocity between uplink and downlink channels, which can reduce the overhead of channel estimation, which is useful in systems using large-scale antenna arrays.
  • each base station in a TDD wireless communication system uses the same uplink and downlink time configuration, and each cell can perform uplink and downlink transmissions synchronously.
  • a more flexible duplex mode can be enabled in, for example, a 5G communication system (such as the New Radio (NR) system).
  • the flexible duplex mode is based on the TDD mode.
  • it allows each cell/base station to use flexible and diverse uplink and downlink time configurations according to its own service characteristics, and can refine the minimum time resource allocation unit from a time slot to an OFDM symbol.
  • the first aspect of the present disclosure relates to electronic equipment for the first base station.
  • the electronic device includes a processing circuit configured to: obtain channel information of a channel from a second base station to a first base station; process the channel information to divide the channel; and combine at least the processed channel information A part is provided to the second base station, wherein at least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • the second aspect of the present disclosure relates to electronic equipment for the second base station.
  • the second base station is used to operate together with the first base station in the previous aspect.
  • the electronic device includes a processing circuit configured to: receive at least a part of processed channel information from a first base station; and eliminate downlink transmissions from the second base station to the first base station based on at least a part of the processed channel information The interference caused by the uplink reception.
  • the third aspect of the present disclosure relates to electronic equipment for the second base station.
  • the electronic device includes a processing circuit configured to: obtain channel information of a channel from a second base station to a first base station; process the channel information to divide the channel; and combine at least the processed channel information A part is provided to the first base station, wherein at least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • the fourth aspect of the present disclosure relates to a wireless communication method.
  • the method includes: obtaining, by a first base station, channel information of a channel from a second base station to the first base station; processing the channel information to divide the channel; and providing at least a part of the processed channel information to the second base station , Wherein at least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • the fifth aspect of the present disclosure relates to a wireless communication method.
  • the method includes receiving, by a second base station, at least a part of the processed channel information from the first base station; and canceling the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on the at least part of the processed channel information ,
  • the first base station is configured to execute the method according to various embodiments of the present disclosure.
  • the sixth aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions.
  • the one or more instructions may, when executed by one or more processors of the electronic device, cause the electronic device to execute the method according to various embodiments of the present disclosure.
  • the seventh aspect of the present disclosure relates to an apparatus for wireless communication, including components or units for performing operations of various methods according to embodiments of the present disclosure.
  • Fig. 1 shows an example of interference in a wireless communication system according to an embodiment of the present disclosure.
  • Fig. 2 is an example of the uplink and downlink time configuration of each base station in Fig. 1.
  • Figure 3A shows an exemplary electronic device for a first base station according to an embodiment of the present disclosure.
  • Figure 3B shows an exemplary electronic device for a second base station according to an embodiment of the present disclosure.
  • 4A to 4C show example processing for canceling interference according to an embodiment of the present disclosure.
  • 5A to 5C show example processing for selecting a sub-channel matrix according to an embodiment of the present disclosure.
  • FIG. 6 shows an example process for selecting a sub-channel matrix according to an embodiment of the present disclosure.
  • FIG. 7 shows an example process for maintaining interference time information according to an embodiment of the present disclosure.
  • FIG. 8 shows an example of interference time information according to an embodiment of the present disclosure.
  • FIGS 9A to 9C illustrate an example method for communication according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • 12A to 12E show performance simulation diagrams related to embodiments of the present disclosure.
  • FIG. 1 shows an example of interference in a wireless communication system according to an embodiment of the present disclosure. It should be understood that FIG. 1 only shows one of the multiple types and possible arrangements of wireless communication systems; the features of the present disclosure can be implemented in any of the various systems as required.
  • the wireless communication system 100 includes base stations 101, 102, and 102-1 to 102-5 and one or more terminals 111 and 112, and the base stations and the terminals may be configured to communicate through a transmission medium.
  • the base station e.g., 101, 102
  • the base station may also be configured to communicate with a network (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN), and/or the Internet, not shown). Therefore, base stations (e.g., 101, 102) can facilitate communication between terminals (e.g., 111, 112) and/or between terminals (e.g., 111, 112) and the network.
  • PSTN public switched telephone network
  • base station in this text has the full breadth of its usual meaning, and at least includes a wireless communication station that is a wireless communication system or a part of a radio system to facilitate communication.
  • base stations may include but are not limited to the following: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) in a WCDMA system and a Node B At least one; eNBs in LTE and LTE-Advanced systems; access points (APs) in WLAN and WiMAX systems; and corresponding network nodes in communication systems to be or under development (for example, in 5G New Radio (NR) systems GNB, eLTE eNB, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • eNBs in LTE and LTE-Advanced systems
  • APs access points
  • WLAN wireless local area network
  • a terminal may be a mobile station (Mobile Station, MS), user equipment (User Equipment, UE), and so on.
  • the terminal can be implemented as a device such as a mobile phone, a handheld device, a media player, a computer, a laptop or a tablet, or almost any type of wireless device.
  • the terminal can communicate using multiple wireless communication technologies.
  • the terminal may be configured to communicate using two or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, etc.
  • the terminal may also be configured to communicate using only one wireless communication technology.
  • base stations can operate according to one or more wireless communication technologies to provide continuous or nearly continuous radio signal coverage to terminals (such as 111, 112) and similar devices in a specific geographic area. .
  • the coverage area of a base station is generally called a cell.
  • the cells of different base stations may have different sizes.
  • the base station 101 can provide micro cell coverage, and the base station 102 can provide macro cell coverage.
  • a terminal 111 is located in a cell of a base station 101, and can receive a downlink signal from the base station 101.
  • a downlink signal from a neighboring base station for example, 102
  • the terminal 112 is located in the cell of the base station 102 and can receive downlink signals from the base station 102.
  • a downlink signal from a neighboring base station also means interference.
  • At least one base station in the wireless communication system 100 can use the flexible duplex mode according to its own service characteristics. For example, in order to meet a larger uplink transmission demand, the base station 101 may configure a higher (for example, greater than 1) uplink and downlink time ratio.
  • the base station 102 may configure a conventional (for example, equal to 1) uplink and downlink time ratio, or configure a lower (for example, less than 1) uplink and downlink time ratio in order to meet a larger downlink transmission demand. At this time, there are opposite moments of uplink and downlink transmission between adjacent base stations (or their cells).
  • the base station 101 receives the uplink signal (i.e. useful signal) from the terminal 111 in its own cell, it also receives (for example, through the interference channel 120 from the base station 102 to the base station 101) the downlink signal (i.e., interference) from the neighboring base station 102. signal). Since the transmission power of the base station is generally higher than that of the terminal, the interference caused by the downlink transmission of the neighboring base station 102 to the uplink reception of the base station 101 is more harmful to the base station 101 to correctly receive the terminal signal.
  • the uplink signal i.e. useful signal
  • the downlink signal i.e., interference
  • the terminal 111 While receiving the downlink signal (i.e., useful signal) from the base station 101, the terminal 111 also receives the uplink signal (i.e., interference signal) from the terminal 112 of the neighboring cell. In this case, since the transmission power of the terminal is generally small, the interference caused by the uplink transmission of the neighboring cell terminal 112 to the downlink reception of the terminal 111 is generally small.
  • the interference between the uplink and downlink of the aforementioned two adjacent cells can be called inter-link interference, and the first case corresponds to the inter-link interference of the base station to the base station, and the second case corresponds to the inter-link interference of the terminal to the terminal. interference.
  • the interference between the uplink and downlink of adjacent base stations is mutual.
  • the downlink transmission of the base station 101 may cause interference to the uplink reception of the base station 102, or the uplink transmission of the terminal 111 may cause interference to the downlink reception of the terminal 112.
  • the embodiments are described with more reference to the interference caused by (downlink transmission of) base station 102 to (uplink reception) of base station 101.
  • the operations in these embodiments are also applicable to the interference caused by the base station 101 to the base station 102, and it is only necessary to exchange the positions of the two base stations in operation.
  • the foregoing interference exists between multiple neighboring base stations.
  • the embodiments are described with more reference to the interference between the base station 102 and the base station 101.
  • the operations in these embodiments are also applicable to the interference between the base station 101 or the base station 102 and other base stations.
  • the base station 101 is sometimes referred to as a first base station and the base station 102 is referred to as a second base station.
  • FIG. 2 is an example of the uplink and downlink time configuration of each base station in Figure 1, where T is the unit time. T may correspond to a time resource allocation unit, such as one or more time slots or OFDM symbols.
  • Table 1 in Figure 2 only shows the uplink and downlink time allocation patterns of each base station from T to 7T.
  • T and 2T are used for the downlink
  • 3T to 7T are used for the uplink.
  • T to 6T are used for the downlink
  • 7T is used for the uplink.
  • T and 4T are used for the downlink
  • 5T to 7T are used for the uplink.
  • the uplink and downlink time allocation pattern can be repeated at a subsequent time.
  • the uplink and downlink time allocation mode can also have other cycles than 7T.
  • the uplink and downlink transmissions between the base station 101 and the adjacent base stations 102 and 102-5 are opposite, and the downlink transmission of the adjacent base stations 102 and 102-5 will cause interference to the uplink reception of the base station 101.
  • at least one of the first base station 101 and the second base station 102 can eliminate the downlink transmission of the second base station 102 to the first base station 101 based on the processing of the channel information of the channel between the base stations. Interference caused by uplink reception. Similar terms such as “eliminate interference” and “eliminate or reduce interference” are used in this disclosure. These terms should all be understood as eliminating all or at least part of interference, unless the understanding is not logical.
  • FIG. 3A shows an exemplary electronic device 300 for the first base station 101 according to an embodiment of the present disclosure.
  • the electronic device 300 shown in FIG. 3A may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 300 includes a channel information obtaining unit 302, a channel information processing unit 304, and an interference cancellation unit 306.
  • the electronic device 300 is implemented as the base station 101 itself or a part thereof, or as a device (such as a base station controller) or a part of the device used to control the base station 101 or otherwise related to the base station 101 .
  • the various operations described below in conjunction with the base station may be implemented by the units 302 to 306 of the electronic device 300 or other possible units (for example, transceiver units).
  • the channel information obtaining unit 202 may be configured to obtain channel information of a channel (for example, an interference channel 150) from the second base station 102 to the first base station 101.
  • the channel information processing unit 204 may be configured to process the aforementioned channel information to divide the interference channel.
  • the interference canceling unit 206 may be configured to cancel the interference caused by the downlink transmission of the second base station 102 to the uplink reception of the first base station 101 based on at least a part of the processed channel information (also called the link between the second base station 102 and the first base station 101). Inter-road interference).
  • the electronic device 300 may provide at least a part of the processed channel information to the second base station 102 (e.g., via a transceiver unit), and the second base station 102 can eliminate the second base station 102 based on at least a part of the processed channel information. Inter-link interference of the base station 102 to the first base station 101.
  • FIG. 3B shows an exemplary electronic device 350 for the second base station 102 according to an embodiment of the present disclosure.
  • the electronic device 350 shown in FIG. 3B may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 350 includes a channel information obtaining unit 352 and an interference cancellation unit 356.
  • the electronic device 350 further includes a channel information processing unit 354.
  • the electronic device 350 is implemented as the base station 102 itself or a part thereof, or as a device (such as a base station controller) or a part of the device used to control the base station 102 or otherwise related to the base station 102 .
  • the various operations described below in conjunction with the base station may be implemented by the units 352 to 356 of the electronic device 350 or other possible units (for example, a transceiver unit).
  • the channel information obtaining unit 352 may be configured to receive at least a part of the processed channel information for the interference channel 150 from the first base station 101.
  • the interference cancellation unit 356 may be configured to cancel the inter-link interference of the second base station 102 to the first base station 101 based on at least a part of the processed channel information.
  • the electronic device 350 may include a channel information processing unit 354.
  • the electronic device 350 may obtain the channel information of the interference channel 150 (for example, via the channel information obtaining unit 352).
  • the channel information processing unit 354 may be configured (as the channel information processing unit 304) to process the channel information to divide the interference channel, and the interference cancellation unit 356 eliminates the inter-link interference of the second base station 102 to the first base station 101 .
  • the electronic devices 300 and 350 may be implemented at the chip level, or may also be implemented at the device level by including other external components (such as radio links, antennas, etc.).
  • each electronic device can work as a communication device as a complete machine.
  • each of the aforementioned units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuit may refer to various implementations of a digital circuit system, an analog circuit system, or a mixed signal (combination of analog and digital) circuit systems that perform functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable gate arrays (FPGA) Programmable hardware devices, and/or systems that include multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGA field programmable gate arrays
  • At least one of the first base station 101 or the second base station 102 may eliminate or reduce the first base station based on the channel information.
  • Inter-link interference between the second base station 102 and the first base station 101 may eliminate or reduce interference based on at least a part of the channel information during uplink reception, for example, use the channel information in the receiving combination.
  • the second base station 102 may eliminate or reduce interference based on at least a part of the channel information during downlink transmission, for example, use the channel information in transmission precoding.
  • the first base station 101 can eliminate or reduce the interference based on at least a part of the channel information when receiving uplink and the second base station 102 can respectively eliminate or reduce the interference during downlink transmission.
  • a part of the channel information is used in receiving and combining and transmitting precoding.
  • FIG. 4A shows a first example process for canceling interference according to an embodiment of the present disclosure. This example process can be executed by the electronic device 300 and the electronic device 350 described above.
  • the first base station 101 (for example, through the channel information obtaining unit 302) can obtain channel information of the interference channel from the second base station 102 to the first base station 101.
  • the first base station 101 may obtain the channel information by measuring the downlink reference signal from the second base station 102 or estimation based on a priori information.
  • the first base station 101 (e.g., through the channel information processing unit 304) can process channel information to divide the interference channel.
  • the first base station 101 (for example, by the interference cancellation unit 306) may cancel the inter-link interference from the second base station 102 based on at least a part (for example, the first part) of the processed channel information.
  • the first base station 101 may provide the processed channel information to the second base station 102.
  • the second base station 102 may eliminate the inter-link interference caused to the first base station 101 based on at least a part (for example, the second part) of the processed channel information.
  • the inter-link interference of the second base station 102 to the first base station 101 may be eliminated or reduced only through operation 4008 or operation 4010, or the interference may be eliminated or reduced through both operations 4008 and operation 4010 .
  • the processed channel information of the first part and the second part are different parts, as described in detail below.
  • FIG. 4B shows a second example process for canceling interference according to an embodiment of the present disclosure. This example process can be executed by the electronic device 300 and the electronic device 350 described above.
  • FIG. 4B can be understood in conjunction with the example of FIG. 4A.
  • the second base station 102 processes the channel information in FIG. 4B.
  • the channel information is provided to the second base station (at 4403) 102 is processed.
  • the second base station 102 e.g., through the channel information processing unit 354 may process the channel information to divide the interference channel.
  • the second base station 102 (for example, by the interference cancellation unit 356) may cancel the inter-link interference caused to the first base station 101 based on at least a part (for example, the second part) of the processed channel information.
  • the second base station 102 may provide the processed channel information to the first base station 101.
  • the first base station 101 may cancel the inter-link interference from the second base station 102 based on at least a part (eg, the first part) of the processed channel information.
  • the inter-link interference of the second base station 102 to the first base station 101 may be eliminated or reduced only through operation 4410 or operation 4408, or the interference may be eliminated or reduced through both operations 4410 and 4408 .
  • the processed channel information of the first part and the second part are different parts, as described in detail below.
  • FIG. 4C shows a third example process for canceling interference according to an embodiment of the present disclosure. This example process can be executed by the electronic device 300 and the electronic device 350 described above.
  • FIG. 4C is characterized in that the second base station 102 obtains the channel information of the interference channel and processes the channel information.
  • the second base station 102 obtains channel information of the interference channel from the second base station 102 to the first base station 101.
  • the second base station 102 may estimate the channel information based on a priori information about the deployment of the base station.
  • the second base station 102 can estimate the channel information of the interference channel from the second base station 102 to the first base station 101 by measuring the downlink reference signal of the first base station 101 .
  • the following operations in FIG. 4C can be understood in conjunction with FIG. 4B, and will not be repeated here.
  • the channel information may include channel state information (Channel State Information, CSI), and may be represented by a channel matrix.
  • CSI Channel State Information
  • a first base station 101 may be configured with N R receive antennas
  • the second base station 102 may be configured with N T transmit antennas. Accordingly, from the second base station 102 to the first base station 101 and interfering channel information may be represented by a channel matrix H.
  • the first base station 101 may obtain the channel information of the interference channel by measuring the downlink reference signal of the second base station 102.
  • the downlink reference signal here may be a conventional reference signal (for example, CSI-RS) used by the second base station 102 for downlink synchronization or the like, or a reference signal dedicated to channel measurement between base stations.
  • CSI-RS CSI-RS
  • specific time-frequency resources can be allocated for transmission of such dedicated reference signals.
  • the first base station 101 may obtain channel information in any appropriate manner based on the reference signal, and the present disclosure is not limited thereto.
  • the channel information of the interference channel from the second base station 102 to the first base station 101 can be estimated based on a priori information related to base station deployment.
  • the first base station 101 or the second base station 102 can learn the location information of the neighboring base station (for example, through the neighbor cell list in the system), and estimate the distance from the neighboring base station to itself based at least on the positional relationship with the neighboring base station.
  • Channel information of the interference channel For another example, the first base station 101 or the second base station 102 may learn the multi-antenna configuration of the neighboring base station, and obtain the dimensional information of the channel matrix in combination with its own multi-antenna configuration.
  • the interfering channels Since the relative positions between the base stations are generally fixed, and there are strong line-of-sight (LOS) paths between the base stations, the interfering channels often exhibit spatial characteristics dominated by the LOS path. This is more obvious in high frequency bands such as millimeter waves. When the path loss is large and the reflection path is small, the characteristics of the interference channel and the direction of the LOS path are more related. At this time, it is appropriate to estimate the channel information based on prior information such as the relative position between the base stations and the statistical characteristics of the interference channel, which meets the need for interference cancellation.
  • LOS line-of-sight
  • processing the channel information of the interference channel 150 includes decomposing the channel matrix of the interference channel.
  • the decomposition method may include singular value (SVD) decomposition, orthogonal triangle (QR) decomposition, Schur decomposition, and so on.
  • the mathematical processing of channel information is the physical division of interference channels.
  • the interference channel is physically divided into minimum channel units.
  • the minimum channel unit may be a single path in a multipath channel. Therefore, in the present disclosure, the sub-channel matrix corresponds to the minimum channel unit of the interference channel, and the sum of multiple sub-channel matrices can constitute the overall channel matrix of the interference channel.
  • the first base station 101 providing at least a part of the processed channel information to the second base station 102 includes providing at least a part of the plurality of sub-channel matrices into which the first channel matrix is divided to the second base station 102, wherein the providing It may be performed through at least one of a wireless link or a wired interface (for example, an X2 interface) between the base stations.
  • a wireless link or a wired interface for example, an X2 interface
  • the following formula is an example of using SVD decomposition to decompose the interference channel matrix (denoted Hagg ).
  • u i is a column vector of the matrix U
  • v i is a column vector matrix V
  • ⁇ i ⁇ is a diagonal matrix of diagonal elements.
  • N R the number of receiving antennas of the first base station 101
  • N T the number of transmitting antennas of the second base station 102
  • each sub-channel matrix has the form of matrix multiplication (ie ).
  • each sub-channel matrix also has a form of matrix multiplication.
  • the following formula is an example of decomposing the interference channel matrix Hagg using Shure decomposition.
  • Hagg can be rewritten as
  • each sub-channel matrix has a form of matrix multiplication.
  • the second base station 102 may be configured as a plurality of sub-channel matrices (for example, the channel matrix Hagg) of the interference channel 150 is divided into One or more subchannel matrices in) design a precoding matrix.
  • the second base station 102 may further use the precoding matrix for downlink transmission, so that the inter-link interference from the second base station 102 is at least partially projected to the right null space of the interference channel matrix Hagg .
  • the following describes an example of designing a precoding matrix. It should be understood that although the precoding matrix is designed based on the entire channel matrix Hagg in the example, the design method may be based on part of the sub-channel matrix (for example, )get on.
  • the interference signal from the second base station 102 received by the first base station 101 can be expressed as Where Hagg is the interference channel matrix, P DL is the precoding matrix used by the second base station 102 in downlink transmission, s is the symbol vector carrying information, and ⁇ is the transmit power of the second base station 102.
  • the interference caused to the first base station 101 can be eliminated or reduced through the design of the precoding matrix.
  • the designed precoding matrix P
  • P P Null P DL
  • the P DL on the right is used for downlink transmission precoding in a general sense
  • the P Null on the left is used to eliminate interference.
  • take It is the projection matrix of the right null space of the interference channel matrix Hagg . At this time, there is And the interference caused to the first base station 101 is
  • the downlink channel matrix H DL and the projection matrix P Null of the second base station 102 together form an equivalent downlink channel matrix And have
  • any appropriate criterion can be used to design P DL .
  • the P DL can be designed based on the zero breaking (ZF) criterion as P DL can be designed based on the minimum mean square error (MMSE) criterion as Where ⁇ is the normalization factor related to the transmit power and noise power; or the P DL can be designed based on the maximum ratio combining (MRC) criterion as
  • ZF zero breaking
  • MMSE minimum mean square error
  • is the normalization factor related to the transmit power and noise power
  • the P DL can be designed based on the maximum ratio combining (MRC) criterion as
  • MRC maximum ratio combining
  • the base station 102 can target each receiver in the above manner.
  • the interfering neighboring base stations respectively design the precoding matrix.
  • the final designed precoding matrix can have multiple factors, for example expressed as Among them, the rightmost P DL is used for downlink transmission precoding in a general sense; the left It is the projection matrix for the right null space of the interference channel matrix of base station k, used to eliminate the interference caused to base station k. And have Where H k,2 is the interference channel matrix from base station 102 to base station k.
  • each interfering base station can separately design precoding in the above manner. matrix. There is no mutual influence between each interfering base station in this process. That is, each interfering base station independently designs P Null based on the interference channel matrix Hagg from itself to the base station 101, and then designs P DL based on the equivalent downlink channel matrix. As a result, the interference of each interfering base station to the base station 101 can be eliminated or reduced, at the expense of the downlink capacity of the corresponding cell.
  • the interference channel matrix Hagg can be expressed as multiple sub-channel matrices (e.g. )Sum.
  • the entire interference channel matrix Hagg (that is, all the sub-channel matrices) is considered in the design, but in some embodiments, only part of the sub-channel matrix may be considered.
  • the interference from the second base station 102 is partially projected to the right null space of the interference channel matrix Hagg (specifically, to the right null space of a part of the subchannel matrix).
  • this partial projection has low complexity, can reduce the computational load, and can reduce the impact on the downlink capacity of the second base station 102.
  • the first base station 101 may be configured as a plurality of sub-channel matrices (for example, Hagg ) into which the channel matrix (for example, Hagg ) of the interference channel 150 is divided into One or more sub-channel matrices in) design a combined matrix.
  • the first base station 101 may further use the combined matrix for uplink reception, so that the interference from the second base station 102 is at least partially projected to the left null space of the channel matrix (for example, Hagg ).
  • the following describes an example of designing a combining matrix. It should be understood that although the combining matrix is designed based on the entire channel matrix Hagg in the example, the design method may be based on part of the sub-channel matrix (for example, )get on.
  • the interference signal from the second base station 102 received by the first base station 101 can be expressed as Similarly, Hagg is the interference channel matrix, P DL is the precoding matrix used by the second base station 102 in downlink transmission, s is the symbol vector carrying information, ⁇ is the transmit power of the second base station 102, and C UL is the first
  • the base station 101 is a combined matrix used for uplink reception.
  • the interference caused by the second base station 102 can be eliminated or reduced through the design of the combined matrix.
  • the C Null on the right is used to eliminate interference
  • the C UL on the left is used for uplink reception combining in a general sense (for example, signal detection).
  • any appropriate criterion can be used to design C UL .
  • C UL can be designed based on zero breaking (ZF) criteria
  • C UL can be designed based on the minimum mean square error (MMSE) criterion
  • MMSE minimum mean square error
  • is the normalization factor related to the transmit power and noise power
  • MRC maximum ratio combining
  • the base station 101 can target Each interfering base station is separately designed for combining matrix.
  • the final design of the combined matrix can have multiple factors, such as Among them, the C UL on the far left is used for the uplink receiving combination in a general sense; the C UL on the right It is the left null space projection matrix for the interference channel matrix of base station k, and is used to eliminate the interference caused by base station k. And have Where H k,1 is the interference channel matrix from base station k to base station 101.
  • each of the interfered base stations can separately Design the combination matrix. There is no mutual influence between each interfered base station in this process. That is, each interfered base station independently designs C Null based on the interference channel matrix Hagg from the base station 102 to itself, and then designs C UL based on the equivalent uplink channel matrix. As a result, the interference of the base station 102 to each interfered base station can be eliminated or reduced, at the expense of the uplink capacity of the corresponding cell.
  • the interference channel matrix Hagg can be expressed as multiple sub-channel matrices (e.g. )Sum. Although the above combined matrix The entire interference channel matrix Hagg (that is, all the sub-channel matrices) is considered in the design, but in some embodiments, only part of the sub-channel matrix may be considered.
  • the interference from the second base station 102 is partially projected to the left null space of the interference channel matrix Hagg (specifically, to the left null space of the partial subchannel matrix).
  • the complexity of this partial projection is low, the processing load can be reduced, and the impact on the uplink capacity of the first base station 101 can be reduced.
  • the first base station 101 and the second base station 102 may cooperate to perform interference cancellation, so as to share the performance loss and computing load between the base stations.
  • the first base station 101 may design the combining matrix based on the first part (or one or more of the sub-channel matrices) of the multiple sub-channel matrices into which the interference channel matrix is divided; the second base station 102 may be divided based on the interference channel matrix
  • a precoding matrix is designed for the second part of the multiple subchannel matrices (or one or more of the subchannel matrices). Wherein, the first part and the second part have no intersection, and the union of the first part and the second part is a set including these multiple sub-channel matrices.
  • the first base station 101 can design the combining matrix based on Hagg,1 (or at least one sub-channel matrix), and the second base station 102 can design the pre-combination matrix based on Hagg,2 (or at least one sub-channel matrix). Encoding matrix.
  • the first base station 101 and the second base station 102 may need to select or negotiate about the first part and the second part in a default or explicit manner.
  • the first base station 101 and/or the second base station 102 may select the first part or the second part from a plurality of sub-channel matrices based on system configuration information or autonomously.
  • the first base station 101 may select the first part from a plurality of sub-channel matrices based on an instruction from the second base station 102, or the second base station 102 may select from a plurality of sub-channel matrices based on an instruction from the first base station 101 the second part.
  • FIG. 5A shows a first example process for selecting a sub-channel matrix according to an embodiment of the present disclosure.
  • the first base station 101 may select the first part from multiple sub-channel matrices based on system configuration information or autonomously, and notify the second base station 102 of the remaining parts that are not selected at 5004.
  • the second base station 102 may regard the remaining parts that are not selected as the second part, or may select the second part from the remaining parts based on system configuration information or autonomously.
  • FIG. 5B shows a second example process for selecting a sub-channel matrix according to an embodiment of the present disclosure.
  • the first base station 101 may provide the processed channel information to the second base station 102 (for example, see FIG. 4A), or the second base station 102 may process the obtained channel information itself (for example, see FIG. 4B, Figure 4C).
  • the second base station 102 may first select the second part of the subchannel matrix at 5042, and notify the first base station 101 of the remaining part that is not selected at 5044.
  • the second base station 102 may similarly treat the remaining part that is not selected as the second part at 5046, or select the second part from the remaining part based on system configuration information or autonomously.
  • FIG. 5C shows a third example process for selecting a sub-channel matrix according to an embodiment of the present disclosure.
  • the system configuration information can specify the upper limit of the number of selectable sub-channel matrices and the characteristics of the sub-channel matrix.
  • the upper limit of the sub-channel matrix (that is, the size of the first part or the second part) is positively correlated with the processing capabilities of each base station.
  • the characteristics of the subchannel matrix include, for example, the size of the F norm of the matrix.
  • the size of the F norm is generally positively correlated with the contribution of the corresponding sub-channel matrix in the interference, as described in detail below.
  • the negotiated system configuration information may specify that the first base station 101 selects two subchannel matrices with a smaller F norm, and specifies the second base station 102 to select three subchannel matrices with a larger F norm.
  • one or more of the corresponding part of the subchannel matrix may be used to design the combining matrix or the precoding matrix.
  • the number of sub-channel matrices used can be dynamically determined by the first base station 101 or the second base station 102 based on its own calculation load, interference conditions and other factors.
  • Fig. 6 shows a further example process for selecting a sub-channel matrix according to an embodiment of the present disclosure, which can implicitly assist the selection of a sub-channel matrix.
  • the first base station 101 may obtain and process the channel information, or the first base station 101 may obtain the channel information and the second base station 102 may process the channel information, or the second base station 102 may obtain and process the channel information. Process channel information.
  • multiple sub-channel matrices generated by processing channel information may be obtained by the second base station 102.
  • the second base station 102 may design a precoding matrix based on one or more of the multiple subchannel matrices.
  • the second base station 102 may use the precoding matrix to perform additional transmission of the downlink reference signal (compared to the previous transmission).
  • the additional downlink reference signal transmission here is different from the downlink reference signal transmission performed by the second base station 102 before 6002.
  • the precoding matrix is used for the additional transmission here. Therefore, by measuring the additional transmitted reference signal, the equivalent channel matrix obtained by the first base station 101 is the interference channel modified by the precoding matrix.
  • the first base station 101 can process the equivalent channel matrix and perform a combined matrix design based on the generated sub-channel matrix. Specifically, at 6006, the first base station 101 may obtain measurement information through additional transmission of the downlink reference signal of the second base station 102, and obtain an equivalent channel matrix based on the measurement information.
  • the first base station 101 may decompose the equivalent channel matrix, so that the equivalent channel matrix is divided into the sum of multiple sub-channel matrices.
  • the first base station 101 may design a combined matrix based on one or more of the multiple sub-channel matrices, and use the combined matrix for uplink reception, so that the interference caused by the second base station 102 is at least partially Projected to the left null space of the equivalent channel matrix.
  • the second base station 102 and the first base station 101 perform transmission precoding and reception combination based on the interference channel and the equivalent interference channel, respectively.
  • the first base station 101 can indirectly learn the interference cancellation situation of the second base station 102. In this way, no explicit signaling is required to coordinate the selection of the sub-channel matrix between the base stations, which saves signaling overhead.
  • the precoding matrix or the combining matrix may be designed based on as few subchannel matrices as possible. For example, only the main part of the interference can be eliminated, thereby simplifying the calculation while reducing the capacity loss caused by the zero-space projection, achieving a compromise between interference elimination and complexity and capacity.
  • the first base station 101 or the second base station 102 may be configured to solve the F-norm for each of the multiple sub-channel matrices into which the interference channel is divided, and based on the larger one of the F-norm.
  • multiple sub-channel matrices are designed for combining matrix or precoding matrix. Since the size of the norm F of the specific sub-channel matrix is positively correlated with the interference caused by the sub-channel matrix to the first base station 101, one or more sub-channel matrices with a larger F norm will cause interference to the first base station 101 Great contribution in China.
  • the first base station 101 or the second base station 102 can solve for each sub-channel matrix of the multiple sub-channel matrices into which the interference channel is divided, and calculate the singular value based on the singular value comparison.
  • One or more large sub-channel matrices are designed for combining matrix or precoding matrix.
  • the interference channel can be expressed as Assuming that ⁇ 1 ⁇ 2 ⁇ ... ⁇ L , and use To represent the m-th subchannel matrix of the interference channel.
  • SVD decomposition exists It can be seen that the larger the singular value of the sub-channel matrix is, the greater its contribution to the interference caused by the first base station 101.
  • the singular value of the sub-channel matrix can reflect the strength of the signal transmission path, that is, the larger the F norm (or the singular value as a special case in the SVD decomposition) corresponds to the channel gain The stronger the diameter (such as the LOS diameter).
  • each sub-channel matrix to interference may vary with the size of the F norm, when zero-space projection is performed through the combined matrix or the precoding matrix, the impact of each sub-channel matrix on the capacity is statistically Equivalently, the related computational complexity is basically equivalent. Therefore, the design of the combining matrix or the precoding matrix based on the sub-channel matrix with a larger F norm can reduce the loss of capacity and reduce the computational complexity while significantly reducing interference.
  • the first base station 101 and the second base station 102 may need to store channel information (e.g., channel matrix) and processed channel information (e.g. divided into channel sub-matrices) locally or remotely. ). Since the relative position between the base stations is roughly fixed, and the interference channel may have slow time-varying characteristics, these channel information and processed channel information can be effective for a longer period of time.
  • the first base station 101 and the second base station 102 can periodically detect the interference channel and update the stored information when desired.
  • the first base station 101 and the second base station 102 may need to store the interference time information between the base stations locally or remotely.
  • Table 1 in Figure 2 only when the uplink and downlink transmissions between adjacent base stations are opposite, inter-link interference between adjacent base stations will occur.
  • FIG. 7 shows an example process for maintaining interference time information according to an embodiment of the present disclosure.
  • the first base station 101 and the second base station 102 synchronize by detecting the synchronization signals sent by each other.
  • the first base station 101 and the second base station 102 can perform uplink and downlink configuration respectively, including uplink and downlink time allocation.
  • the first base station 101 and the second base station 102 may provide their own uplink and downlink time configuration information to each other (for example, through an X2 interface or a wireless link).
  • the first base station 101 and the second base station 102 can determine one or more times for the first base station 101 to perform uplink reception and the second base station 102 to perform downlink transmission based on the uplink and downlink configuration information of the two.
  • the multiple times include specific moments when the second base station 102 causes inter-link interference to the first base station 101.
  • the first base station 101 and the second base station 102 can also determine one or more times when the second base station 102 performs uplink reception and the first base station 101 performs downlink transmission based on the uplink and downlink configuration information of the two. It includes the specific moment when the first base station 101 causes inter-link interference to the second base station 102.
  • the first base station 101 and/or the second base station 102 may only use the combining matrix or the precoding matrix for interference cancellation at these one or more times. It should be understood that although the interference cancellation method in the present disclosure can be used at all times, considering the possible capacity loss and complicated calculations, using the interference cancellation method only at the interference time can advantageously keep the capacity loss and calculation complexity as Lower.
  • each base station can determine whether it is the interfered party or the interferer based on whether it performs uplink reception or downlink transmission during the interference time. Based on the above principles, each base station can maintain interference time information locally.
  • Table 2 is an interference time information table maintained by the first base station 101 based on the uplink and downlink time configuration examples in Table 1.
  • Table 2 referring to Table 1, during the T and 2T periods, each base station is configured for downlink transmission, and during the 7T period, each base station is configured for uplink reception. Therefore, there will be no inter-link interference during the corresponding period.
  • the uplink and downlink transmissions of the base station 101 are opposite to those of the base stations 102 and 102-5, so inter-link interference occurs, and the base station 101 becomes the interfered party due to uplink reception.
  • the base station 101 is only opposite to the uplink and downlink transmissions of the base station 102, so inter-link interference may also occur, and the base station 101 becomes the interfered party due to uplink reception.
  • Table 3 is an interference time information table maintained by the second base station 102 based on the uplink and downlink time configuration examples in Table 1. Table 3 can be similarly understood with reference to Table 2 and will not be repeated here.
  • the interference time information may be updated periodically or based on a trigger event (for example, the uplink and downlink configuration changes of one or more neighboring base stations).
  • Figure 9A shows an example method for communication according to an embodiment of the present disclosure.
  • This method can be executed by the first base station 101 or the electronic device 300 in the system 100.
  • the method 900 may include obtaining channel information of the channel from the second base station 102 to the first base station 101 (block 905), and processing the channel information to divide the channel (block 910).
  • the first base station 101 may provide at least a part of the processed channel information to the second base station 102.
  • the method 900 may further include canceling the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information (block 915).
  • this method reference may be made to the above description of the operation of the first base station 101 or the electronic device 300, which will not be repeated here.
  • FIG. 9B shows another example method for communication according to an embodiment of the present disclosure.
  • This method can be executed by the second base station 102 or the electronic device 350 in the system 100.
  • the method 940 may include receiving at least a portion of the processed channel information from the first base station (block 945).
  • the method 940 may further include eliminating interference caused by the downlink transmission of the second base station 102 to the uplink reception of the first base station 101 based on at least a part of the processed channel information (block 950).
  • this method reference may be made to the above description of the operation of the second base station 102 or the electronic device 350, which will not be repeated here.
  • FIG. 9C illustrates yet another example method for communication according to an embodiment of the present disclosure.
  • This method can be executed by the second base station 102 or the electronic device 350 in the system 100.
  • the method 980 may include obtaining channel information of the channel from the second base station 102 to the first base station 101 (block 980), and processing the channel information to divide the channel (block 985). After that, the second base station 102 may provide at least a part of the processed channel information to the first base station 101.
  • the method 980 may further include canceling the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information (block 990).
  • this method reference may be made to the above description of the operation of the base station 102 or the electronic device 350, which will not be repeated here.
  • machine-readable storage medium or the machine-executable instructions in the program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product are clear to those skilled in the art, so the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and so on.
  • the aforementioned series of processing and devices can also be implemented by software and/or firmware.
  • the base station mentioned in this disclosure may be implemented as any type of evolved node B (gNB), such as macro gNB and small gNB.
  • the small gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Head, RRH) arranged in a different place from the main body.
  • RRH Remote Radio Head
  • various types of terminals to be described below can all operate as base stations by temporarily or semi-persistently performing base station functions.
  • the terminal device mentioned in the present disclosure is also called user equipment in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle Mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) here may correspond to the above-mentioned electronic devices 300A, 1300A, and/or 1500B.
  • Each of the antennas 1410 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station device 1420 to transmit and receive wireless signals.
  • the gNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1420. For example, the controller 1421 generates a data packet based on data in a signal processed by the wireless communication interface 1425, and transmits the generated packet via the network interface 1423. The controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1421 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to the core network 1424.
  • the controller 1421 may communicate with the core network node or another gNB via the network interface 1423.
  • the gNB 1400 and the core network node or other gNB can be connected to each other through logical interfaces (such as S1 interface and X2 interface).
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1423 is a wireless communication interface, the network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to a terminal located in a cell of the gNB 1400 via an antenna 1410.
  • the wireless communication interface 1425 may generally include a baseband (BB) processor 1426 and an RF circuit 1427, for example.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1426 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1426.
  • the module may be a card or a blade inserted into the slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410.
  • FIG. 10 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 can connect multiple antennas 1410 at the same time.
  • the wireless communication interface 1425 may include a plurality of BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or base station device 1550) herein may correspond to the aforementioned electronic devices 300A, 1300A, and/or 1500B.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1560 to transmit and receive wireless signals.
  • the gNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station equipment 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to terminals located in the sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may generally include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 10 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 11 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module used to connect the base station device 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include an RF circuit 1564, for example.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1540.
  • FIG. 11 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 can connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • FIGS. 12A to 12E show performance simulation diagrams related to embodiments of the present disclosure.
  • the interference cancellation performance based on precoding, combining, and the combination of the two is simulated based on the following configuration, and the topology in Figure 1 is used.
  • 12A to 12E show the cell throughput corresponding to different levels of interference cancellation schemes.
  • “normal” means that no interference cancellation scheme is used
  • “completely zero projection” means that interference is completely eliminated based on all sub-channel matrices
  • “first-order zero projection” means that interference is partially eliminated based on one sub-channel matrix with the largest F norm.
  • “Second-order zero projection” means that the interference is partially eliminated based on the two sub-channel matrices with the upper F norm size
  • “third-order zero projection” means that the interference is partially eliminated based on the 3 sub-channel matrices with the upper F norm size.
  • FIG. 12A shows the performance of the interfered party under the interference cancellation method based on combining.
  • This method can effectively suppress inter-link interference and improve the uplink throughput of the interfered party's cell.
  • the sub-channel matrix on which it is based increases, the inter-link interference is eliminated more significantly, at the cost of the interfered party using more power for the combined operation, resulting in lower power usage efficiency. Therefore, combining based on more sub-channel matrices under a higher signal-to-noise ratio will achieve better results, and combining based on fewer sub-channel matrices under a lower signal-to-noise ratio can more effectively utilize base station power.
  • the number of sub-channel matrices on which it is based can be adjusted according to specific conditions and requirements, so as to achieve a compromise between interference and throughput performance.
  • Fig. 12B and Fig. 12C show the performance of the victim and the interferer under the interference cancellation method based on precoding. There are 1 victim and 2 interferers in this simulation. It can be seen that this method can effectively suppress inter-link interference and improve the uplink throughput of the interfered cell. In addition, this method will affect the downlink throughput of the interferer, and as the sub-channel matrix on which it is based increases, the throughput will suffer more losses. This is because when the interfering party eliminates interference based on more sub-channel matrices, more power of the interfering party is used for zero-space projection precoding, and the precoding power used for downlink transmission is reduced, thereby reducing downlink transmission performance. In an actual system, the number of sub-channel matrices on which it is based can be adjusted according to specific conditions and requirements, so as to achieve a compromise between interference and throughput performance.
  • FIG. 12D and FIG. 12E show the performance of the interfered party and the interfered party under the interference cancellation method based on the combination of precoding and combining.
  • the cell throughput of the victim is improved.
  • FIG. 12B and FIG. 12C the cell throughput of the interferer is also improved.
  • the number of sub-channel matrices on which it is based can be adjusted according to specific conditions and requirements, so as to achieve a compromise between interference and throughput performance.
  • An electronic device for a first base station comprising a processing circuit configured to:
  • At least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • the channel information is estimated based on at least the position information between the first base station and the second base station.
  • processing the channel information includes:
  • Clause 4 The electronic device of clause 3, wherein providing the at least a portion of the processed channel information to the second base station comprises:
  • At least a part of the plurality of sub-channel matrices into which the first channel matrix is divided is provided to the second base station, wherein the provision is provided through at least one of a wireless link or a wired interface between the first base station and the second base station ⁇ was carried out.
  • Clause 6 The electronic device according to Clause 5, wherein the at least part of the plurality of sub-channel matrices provided to the second base station includes all of the plurality of sub-channel matrices or the rest except the first part section.
  • Clause 7 The electronic device of clause 5, wherein the processing circuit is configured to determine the first part of the plurality of sub-channel matrices through the following operations:
  • the first part is selected from the plurality of subchannel matrices.
  • the second channel matrix is decomposed so that the second channel matrix is divided into the sum of a second plurality of sub-channel matrices, where the additional transmission of the downlink reference signal of the second base station includes:
  • processing circuit is configured to eliminate the interference through the following operations:
  • the combined matrix is used for uplink reception, so that the interference is at least partially projected to the left null space of the first channel matrix.
  • Clause 9 The electronic device of clause 5 or 8, wherein the processing circuit is further configured to solve the F norm for each of the plurality of subchannel matrices or the second plurality of subchannel matrices ,and
  • the one or more subchannel matrices in the plurality of subchannel matrices or the second plurality of subchannel matrices are subchannel matrices with a larger F norm.
  • Clause 10 The electronic device of clause 9, wherein the processing circuit is configured to decompose the first channel matrix or the second channel matrix using SVD decomposition, and the plurality of sub-channel matrices or the second plurality of sub-channel matrices
  • the one or more subchannel matrices in the channel matrix are subchannel matrices with larger singular values.
  • the second base station Based on the uplink and downlink configuration information of the first base station and the second base station, determine one or more times when the first base station performs uplink reception and the second base station performs downlink transmission, wherein the one or more times include the specific time that caused the interference Moment;
  • the interference is eliminated at the one or more times.
  • a second electronic device for a second base station wherein the second base station is configured to operate with the electronic device for a first base station as described in any one of clauses 1 to 11, and
  • the second electronic device includes a second processing circuit, and the second processing circuit is configured to:
  • At least a part of the plurality of sub-channel matrices into which the first channel matrix is received from the first base station is divided and provided to the second base station, wherein the reception is through a wireless link or a wired connection between the first base station and the second base station. At least one of the interfaces is performed.
  • the first part and the second part have no intersection, and the union of the first part and the second part is a set including the plurality of subchannel matrices.
  • Clause 15 The second electronic device of clause 14, wherein the at least part of the plurality of sub-channel matrices received from the first base station includes all or a second part of the plurality of sub-channel matrices.
  • Clause 16 The second electronic device according to clause 14, wherein the second processing circuit is configured to determine the second part of the plurality of sub-channel matrices through the following operations:
  • the second part is selected from the plurality of subchannel matrices.
  • Clause 18 The second electronic device of clause 14 or 17, wherein the second processing circuit is further configured to solve the F norm for each sub-channel matrix of the plurality of sub-channel matrices, and
  • the one or more sub-channel matrices in the plurality of sub-channel matrices are sub-channel matrices with a larger F norm.
  • Clause 19 The second electronic device according to clause 18, wherein the second processing circuit is configured to decompose the first channel matrix using SVD decomposition, and the one or more sub-channel matrices of the plurality of sub-channel matrices Is the sub-channel matrix with larger singular value.
  • the second base station Based on the uplink and downlink configuration information of the first base station and the second base station, determine one or more times when the first base station performs uplink reception and the second base station performs downlink transmission, wherein the one or more times include the specific time that caused the interference Moment;
  • the interference is eliminated at the one or more times.
  • An electronic device for a second base station comprising a processing circuit configured to:
  • At least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • Clause 22 The electronic device of clause 21, wherein the processing circuit is configured to obtain the channel information through the following operations:
  • the channel information is estimated based on at least the position information between the first base station and the second base station.
  • processing the channel information includes:
  • Clause 24 The electronic device of clause 23, wherein providing the at least a portion of the processed channel information to the first base station comprises:
  • the precoding matrix is used for downlink transmission, so that the interference is at least partially projected to the right null space of the first channel matrix.
  • Clause 26 The electronic device according to Clause 25, wherein the at least a part of the plurality of sub-channel matrices provided to the first base station includes all of the plurality of sub-channel matrices or the rest except the first part section.
  • Clause 27 The electronic device of clause 25, wherein the processing circuit is configured to determine the first part of the plurality of sub-channel matrices through the following operations:
  • the first part is selected from the plurality of subchannel matrices.
  • Clause 29 The electronic device of Clause 25 or 28, wherein the processing circuit is further configured to solve the F norm for each sub-channel matrix of the plurality of sub-channel matrices, and
  • the one or more sub-channel matrices in the plurality of sub-channel matrices are sub-channel matrices with a larger F norm.
  • Clause 30 The electronic device of clause 29, wherein the processing circuit is configured to decompose the first channel matrix using SVD decomposition, and the one or more sub-channel matrices of the plurality of sub-channel matrices are singular Subchannel matrix with larger value.
  • the second base station Based on the uplink and downlink configuration information of the first base station and the second base station, determine one or more times when the first base station performs uplink reception and the second base station performs downlink transmission, wherein the one or more times include the specific time that caused the interference Moment;
  • the interference is eliminated at the one or more times.
  • a wireless communication method including the first base station:
  • At least one of the first base station or the second base station eliminates the interference caused by the downlink transmission of the second base station to the uplink reception of the first base station based on at least a part of the processed channel information.
  • Clause 33 The method according to clause 32, further comprising the first base station:
  • Clause 34 The method of clause 33, wherein providing the at least a portion of the processed channel information to the second base station comprises:
  • At least a part of the plurality of sub-channel matrices into which the first channel matrix is divided is provided to the second base station, wherein the provision is provided through at least one of a wireless link or a wired interface between the first base station and the second base station ⁇ was carried out.
  • the combined matrix is used for uplink reception, so that the interference is at least partially projected to the left null space of the first channel matrix.
  • Clause 36 The method according to clause 35, further comprising:
  • a wireless communication method including the second base station:
  • the first base station is configured to execute the method described in any one of clauses 32 to 36.
  • Clause 38 The method according to clause 37, further comprising:
  • At least a part of the plurality of sub-channel matrices into which the first channel matrix is received from the first base station is divided and provided to the second base station, wherein the reception is through a wireless link or a wired connection between the first base station and the second base station. At least one of the interfaces is performed.
  • the first part and the second part have no intersection, and the union of the first part and the second part is a set including the plurality of subchannel matrices.
  • the SVD decomposition is used to decompose the first channel matrix, and the one or more sub-channel matrices in the plurality of sub-channel matrices are sub-channel matrices with larger singular values.
  • Clause 41 A computer-readable storage medium storing one or more instructions that, when executed by one or more processors of an electronic device, cause the electronic device to execute as in clauses 32 to 40 Any one of the methods.
  • Clause 42 A device for wireless communication, comprising means for performing the method according to any one of clauses 32 to 40.
  • Clause 43 A wireless communication system including the first base station in any one of clauses 1 to 11 and the second base station in any one of clauses 12 to 20.
  • Clause 44 A wireless communication system including the first base station in any one of clauses 1 to 11 and the second base station in any one of clauses 21 to 31.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开内容涉及用于无线通信系统的电子设备、方法和存储介质。描述了关于干扰消除的各种实施例。在一个实施例中,一种用于第一基站的电子设备包括处理电路,所述处理电路被配置为:获得从第二基站到第一基站的信道的信道信息;处理所述信道信息以对所述信道进行划分;将经处理的信道信息的至少一部分提供至第二基站,其中第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。

Description

用于无线通信系统的电子设备、方法和存储介质 技术领域
本公开一般地涉及无线通信系统和方法,并且具体地涉及用于消除干扰的技术。
背景技术
无线通信技术的发展和应用前所未有地满足了人们的语音和数据通信需求。为了提供更高的通信质量和容量,无线通信系统采用了不同层面的各种技术。在双工技术方面,存在时分双工(time division duplex,TDD)模式。根据TDD模式,上下行链路可以使用相同频段,并且在时间上区分上下行链路(即时分)。例如,在TDD无线通信系统中,可以以各种比例在上下行链路之间分配时间资源,并且在同一频率信道(例如载波)上基于分配的时间资源进行上下行传输,使得上下行链路得以区分。
与频分双工(frequency division duplex,FDD)模式下需要配置对称的频段用于上下行传输相比,TDD模式下灵活分配用于上下行传输的时间资源更能适应非对称业务的需求,并且因此可以提高频谱的利用率。例如,在TDD模式下,针对大数据量的下载业务,可以分配更大比例的下行链路时间资源。另外,在TDD无线通信系统中,上下行信道之间存在互易性,可以降低信道估计的开销,这在使用大规模天线阵列的系统中是有用的。
常规地,TDD无线通信系统中的各基站使用相同的上下行时间配置,各小区之间可以同步地进行上下行传输。为了进一步考虑不同小区之间的业务特性,在例如5G通信系统(如New Radio(NR)系统)中可以启用更加灵活的双工模式。灵活双工模式一方面基于TDD模式,另一方面允许各小区/基站根据自身业务特性使用灵活多样的上下行时间配置,并且可以将最小时间资源分配单位从时隙细化为OFDM符号。
在灵活双工模式下,一方面,资源分配与业务特性的匹配更佳,可以提升频谱利用率和系统性能;另一方面,在相邻基站使用不同的上下行时间配置的情况下,相邻小区/基站的上下行链路之间可能存在干扰。这种干扰有时也称为链路间干扰(cross-link  interference,CLI)。存在对于能够消除此种干扰的技术手段的需求。
发明内容
本公开的第一方面涉及用于第一基站的电子设备。该电子设备包括处理电路,该处理电路被配置为:获得从第二基站到第一基站的信道的信道信息;处理所述信道信息以对所述信道进行划分;将经处理的信道信息的至少一部分提供至第二基站,其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
本公开的第二方面涉及用于第二基站的电子设备。其中,第二基站用于与前一方面中的第一基站一起操作。该电子设备包括处理电路,该处理电路被配置为:接收来自第一基站的经处理的信道信息的至少一部分;以及基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
本公开的第三方面涉及用于第二基站的电子设备。该电子设备包括处理电路,该处理电路被配置为:获得从第二基站到第一基站的信道的信道信息;处理所述信道信息以对所述信道进行划分;将经处理的信道信息的至少一部分提供至第一基站,其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
本公开的第四方面涉及一种无线通信方法。该方法包括由第一基站:获得从第二基站到第一基站的信道的信道信息;处理所述信道信息以对所述信道进行划分;将经处理的信道信息的至少一部分提供至第二基站,其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
本公开的第五方面涉及一种无线通信方法。该方法包括由第二基站:接收来自第一基站的经处理的信道信息的至少一部分;以及基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰,其中,第一基站被配置为执行根据本公开的各种实施例的方法。
本公开的第六方面涉及存储有一个或多个指令的计算机可读存储介质。在一些实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备 执行根据本公开的各种实施例的方法。
本公开的第七方面涉及用于无线通信的装置,包括用于执行根据本公开实施例的各方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的无线通信系统中的干扰示例。
图2为图1中各基站的上下行时间配置示例。
图3A示出了根据本公开实施例的用于第一基站的示例性电子设备。
图3B示出了根据本公开实施例的用于第二基站的示例性电子设备。
图4A至图4C示出了根据本公开实施例的用于消除干扰的示例处理。
图5A至图5C示出了根据本公开实施例的用于选择子信道矩阵的示例处理。
图6示出了根据本公开实施例的用于选择子信道矩阵的示例处理。
图7示出了根据本公开实施例的用于维护干扰时间信息的示例处理。
图8示出了根据本公开实施例的干扰时间信息的示例。
图9A至图9C示出了根据本公开实施例的用于通信的示例方法。
图10是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。
图11是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。
图12A至图12E示出了与本公开实施例相关的性能仿真图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据本公开实施例的无线通信系统中的干扰示例。应理解,图1仅示出无线通信系统的多种类型和可能布置中的一种;本公开的特征可根据需要在各种系统中的任一者中实现。
如图1所示,无线通信系统100包括基站101、102和102-1至102-5以及一个或多个终端111和112,基站和终端可以被配置为通过传输介质进行通信。基站(例如101、102)可以还被配置为与网络(例如,蜂窝服务提供方的核心网、诸如公共交换电话网(PSTN)的电信网络和/或互联网,未示出)进行通信。因此,基站(例如101、102)可以便于终端(例如111、112)之间和/或终端(例如111、112)与网络之间的通信。
应理解,在本文中基站一词具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以包括但不限于以下:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;LTE和LTE-Advanced系统中的eNB;WLAN、WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点(例如5G New Radio(NR)系统中的gNB,eLTE eNB等)。本文中基站的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对 通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
在本文中终端一词具有其通常含义的全部广度,例如终端可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)等。终端可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑或平板电脑的设备或者几乎任何类型的无线设备。在一些情况下,终端可以使用多种无线通信技术进行通信。例如,终端可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,终端也可以被配置为仅使用一种无线通信技术进行通信。
在图1中,基站(例如101、102)可以根据一种或多种无线通信技术进行操作,在特定地理区域上向终端(例如111、112)及类似设备提供连续或近似连续的无线电信号覆盖。基站的覆盖区域一般称为小区。虽然被示出为具有相同尺寸,但不同基站的小区可以具有不同的尺寸。例如,在异构网络部署中,基站101可以提供微小区覆盖,基站102可以提供宏小区覆盖。在图1中,终端111位于基站101的小区中,可以接收来自基站101的下行信号。对于终端111,来自相邻基站(例如102)的下行信号可能意味着干扰。终端112位于基站102的小区中,可以接收来自基站102的下行信号。对于终端112,来自相邻基站(例如101)的下行信号同样意味着干扰。
无线通信系统100中的至少一个基站可以根据自身业务特性使用灵活双工模式。例如,为了满足较大的上行传输需求,基站101可以配置较高(例如大于1)的上下行时间比值。基站102可能配置常规(例如等于1)的上下行时间比值,或者为了满足较大的下行传输需求而配置较低(例如小于1)的上下行时间比值。此时,在相邻基站(或其小区)之间存在上下行传输相反的时刻。
如图1所示,根据各自的上下行时间配置,存在特定时刻,在基站101的小区中正在进行上行传输,而基站102正在进行下行传输。基站101在接收来自本小区的终端111的上行信号(即有用信号)的同时,还会接收到(例如通过从基站102到基站101的干扰信道120)来自相邻基站102的下行信号(即干扰信号)。由于基站的传输功率一般高于终端,因此相邻基站102的下行发送对基站101的上行接收造成的干扰对于基站101正确接收终端信号的危害较大。
虽然未示出,但可以预想还存在特定时刻,基站101正在进行下行传输,而在基 站102的小区中正在进行上行传输。终端111在接收来自基站101的下行信号(即有用信号)的同时,还会接收到来自相邻小区终端112的上行信号(即干扰信号)。在该情况下,由于终端的传输功率一般较小,因此相邻小区终端112的上行发送对终端111的下行接收造成的干扰一般也较小。前述两种相邻小区的上下行链路之间的干扰可称为链路间干扰,并且第一种情形对应基站对基站的链路间干扰,第二种情形对应终端对终端的链路间干扰。
应理解,相邻基站的上下行链路间的干扰是相互的。在无线通信系统100中,存在其他时刻,基站101的下行发送会对基站102的上行接收造成干扰,或者终端111的上行发送会对终端112的下行接收造成干扰。在本公开中,更多地参考基站102(的下行发送)对基站101(的上行接收)造成的干扰来描述实施例。但是应理解,这些实施例中的操作同样适用于基站101对基站102造成的干扰,仅需将两基站在操作中的地位互换即可。
还应理解,上述干扰存在于多个相邻基站之间。在本公开中,更多地参考基站102与基站101之间的干扰来描述实施例。但是应理解,这些实施例中的操作同样适用于基站101或基站102与其他基站之间的干扰。在以下描述中,为清楚起见,有时将基站101称为第一基站,将基站102称为第二基站。
图2为图1中各基站的上下行时间配置示例,其中T为单位时间。T可以对应时间资源分配单位,例如一个或多个时隙或者OFDM符号。图2中表一仅示出各基站在T至7T的上下行时间分配模式。对于基站101,T和2T用于下行链路,3T至7T用于上行链路。对于基站102,T至6T用于下行链路,7T用于上行链路。对于基站102-5,T和4T用于下行链路,5T至7T用于上行链路。该上下行时间分配模式可以在随后的时间重复。当然,上下行时间分配模式也可以具有不同于7T的其他周期。
例如在时刻3T,基站101与相邻基站102、102-5之间的上下行传输相反,相邻基站102、102-5的下行发送对基站101的上行接收会造成干扰。在本公开的实施例中,可以基于对基站之间信道的信道信息的处理,由第一基站101和第二基站102中的至少一者消除第二基站102的下行发送对第一基站101的上行接收造成的干扰。在本公开中使用了“消除干扰”和“消除或减小干扰”等类似措辞。这些措辞均应理解为消除干扰的全部或至少一部分,除非该理解不符合逻辑。
图3A示出了根据本公开实施例的用于第一基站101的示例性电子设备300。图3A所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300包括信道信息获得单元302、信道信息处理单元304和干扰消除单元306。在一种实施方式中,电子设备300被实现为基站101本身或其一部分,或者被实现为用于控制基站101或以其他方式与基站101相关的设备(例如基站控制器)或者该设备的一部分。以下结合基站描述的各种操作可以由电子设备300的单元302至306或者其他可能的单元(例如收发单元)实现。
在实施例中,信道信息获得单元202可以被配置为获得从第二基站102到第一基站101的信道(例如干扰信道150)的信道信息。信道信息处理单元204可以被配置为处理前述信道信息以对干扰信道进行划分。干扰消除单元206可以被配置为基于经处理的信道信息的至少一部分消除第二基站102的下行发送对第一基站101的上行接收造成的干扰(也称第二基站102对第一基站101的链路间干扰)。另选或附加地,电子设备300可以(例如经由收发单元)将经处理的信道信息的至少一部分提供至第二基站102,并且由第二基站102基于经处理的信道信息的至少一部分消除第二基站102对第一基站101的链路间干扰。
图3B示出了根据本公开实施例的用于第二基站102的示例性电子设备350。图3B所示的电子设备350可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备350包括信道信息获得单元352和干扰消除单元356。可选地(在本公开中,除文字明示外,附图中的虚线一般也用于表示可选),电子设备350还包括信道信息处理单元354。在一种实施方式中,电子设备350被实现为基站102本身或其一部分,或者被实现为用于控制基站102或以其他方式与基站102相关的设备(例如基站控制器)或者该设备的一部分。以下结合基站描述的各种操作可以由电子设备350的单元352至356或者其他可能的单元(例如收发单元)实现。
在实施例中,信道信息获得单元352可以被配置为接收来自第一基站101的针对干扰信道150的经处理信道信息的至少一部分。干扰消除单元356可以被配置为基于经处理信道信息的至少一部分消除第二基站102对第一基站101的链路间干扰。
另选或附加地,电子设备350可以包括信道信息处理单元354。在一个实施例中,电子设备350可以(例如经由信道信息获得单元352)获得干扰信道150的信道信息。 信道信息处理单元354可以(如信道信息处理单元304那样)被配置为处理该信道信息以对干扰信道进行划分,并且由干扰消除单元356消除第二基站102对第一基站101的链路间干扰。
在一些实施例中,电子设备300和350可以以芯片级来实现,或者也可以通过包括其他外部部件(例如无线电链路、天线等)而以设备级来实现。例如,各电子设备可以作为整机而工作为通信设备。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
根据一些实施例,在获得从第二基站102到第一基站101的干扰信道150的信道信息之后,第一基站101或第二基站102中的至少一者可以基于该信道信息消除或减小第二基站102对第一基站101的链路间干扰。在一个实施例中,第一基站101可以在上行接收时基于该信道信息的至少一部分消除或减小干扰,例如在接收合路中使用该信道信息。在一个实施例中,第二基站102可以在下行发送时基于该信道信息的至少一部分消除或减小干扰,例如在发送预编码中使用该信道信息。在一个实施例中,作为前两种方式的组合,第一基站101在上行接收时以及第二基站102可以在下行发送时可以分别基于该信道信息的至少一部分消除或减小该干扰,例如在接收合路和发送预编码中分别使用该信道信息的一部分。
图4A示出了根据本公开实施例的用于消除干扰的第一示例处理。该示例处理可以由上述电子设备300和电子设备350执行。
如图4A所示,在4002处,第一基站101(例如通过信道信息获得单元302)可以获得从第二基站102到第一基站101的干扰信道的信道信息。例如,第一基站101可以通过测量来自第二基站102的下行参考信号或者基于先验信息估计来获得信道信息。在 4004处,第一基站101(例如通过信道信息处理单元304)可以处理信道信息以划分干扰信道。在4008处,第一基站101(例如通过干扰消除单元306)可以基于经处理的信道信息的至少一部分(例如第一部分)消除来自第二基站102的链路间干扰。
在一个实施例中,附加或替代地,在4006处,第一基站101(例如通过收发单元)可以将经处理的信道信息提供至第二基站102。在4010处,第二基站102可以基于经处理的信道信息的至少一部分(例如第二部分)消除对第一基站101造成的链路间干扰。在实施例中,可以仅通过操作4008或操作4010来消除或减小第二基站102对第一基站101的链路间干扰,或者可以通过操作4008和操作4010两者来消除或减小该干扰。在后一情形中,第一部分和第二部分经处理的信道信息是不同的部分,如下文具体描述的。
图4B示出了根据本公开实施例的用于消除干扰的第二示例处理。该示例处理可以由上述电子设备300和电子设备350执行。
可以结合图4A的示例理解图4B,二者的区别在于在图4B中由第二基站102来处理信道信息。如图4B所示,在第一基站101(在4402处)获得从第二基站102到第一基站101的干扰信道的信道信息之后,会(在4403处)将该信道信息提供至第二基站102进行处理。在4404处,第二基站102(例如通过信道信息处理单元354)可以处理信道信息以划分干扰信道。在4410处,第二基站102(例如通过干扰消除单元356)可以基于经处理的信道信息的至少一部分(例如第二部分)消除对第一基站101造成的链路间干扰。
在一个实施例中,附加或替代地,在4406处,第二基站102(例如通过收发单元)可以将经处理的信道信息提供至第一基站101。在4408处,第一基站101可以基于经处理的信道信息的至少一部分(例如第一部分)消除来自第二基站102的链路间干扰。在实施例中,可以仅通过操作4410或操作4408来消除或减小第二基站102对第一基站101的链路间干扰,或者可以通过操作4410和操作4408两者来消除或减小该干扰。在后一情形中,第一部分和第二部分经处理的信道信息是不同的部分,如下文具体描述的。
图4C示出了根据本公开实施例的用于消除干扰的第三示例处理。该示例处理可以由上述电子设备300和电子设备350执行。
图4C特征在于由第二基站102来获得干扰信道的信道信息并处理信道信息。如图 4C所示,在4802处,第二基站102获得从第二基站102到第一基站101的干扰信道的信道信息。例如,第二基站102可以基于关于基站部署的先验信息估计该信道信息。或者,在基站之间的信道近似具有互易性的情况下,第二基站102可以通过测量第一基站101的下行参考信号来估计从第二基站102到第一基站101的干扰信道的信道信息。可以结合图4B来理解图4C中接下来的操作,此处不再重复。
以上参考图3A至图4C简要描述了根据本公开实施例的示例电子设备和所执行的操作。以下将对这些操作进行具体描述。
信道信息获得
应理解,在本文中信道信息一词具有其通常含义的全部广度。信道信息可以包括信道状态信息(Channel State Information,CSI),并且可以通过信道矩阵表示。在多天线系统中,第一基站101可以配置有N R根接收天线,第二基站102可以配置有N T根发送天线。相应地,从第二基站102到第一基站101的干扰信道信息可以表示为N T×N R维的信道矩阵H。
在实施例中,第一基站101可以通过测量第二基站102的下行参考信号来获得干扰信道的信道信息。此处的下行参考信号可以是第二基站102用于下行同步等的常规参考信号(例如CSI-RS),或者是专用于基站间信道测量的参考信号。例如,在NR等无线通信系统中,可以分配特定的时频资源用于传输这种专用的参考信号。第一基站101可以基于参考信号通过任何适当的方式获得信道信息,本公开不受限于此。
在实施例中,可以基于与基站部署相关的先验信息估计第二基站102到第一基站101的干扰信道的信道信息。例如,第一基站101或第二基站102可以获知相邻基站的位置信息(例如通过系统中的相邻小区列表),并且至少基于与相邻基站的位置关系,估计从相邻基站到自身的干扰信道的信道信息。再例如,第一基站101或第二基站102可以获知相邻基站的多天线配置,并结合自身的多天线配置获知信道矩阵的维度信息。
由于基站之间的相对位置一般是固定的,并且基站之间存在较强的直射(Line-of-sight,LOS)径,干扰信道往往会呈现以LOS径为主的空间特性。这在毫米波等高频段更为明显。当路径损耗较大且反射径较少时,干扰信道的特征和LOS径的方向关联性较大。此时,基于基站之间的相对位置和干扰信道的统计特性等先验信息来估计信道 信息是适当的,符合消除干扰的需求。
信道信息处理(或干扰信道划分)
在实施例中,对干扰信道150的信道信息进行处理包括对该干扰信道的信道矩阵的进行分解。例如,分解的方式可以包括奇异值(SVD)分解、正交三角(QR)分解和舒尔(Schur)分解等。与对信道信息进行数学上的处理相对应的是在物理上对干扰信道的划分。通过将干扰信道的信道矩阵分解为子信道矩阵,干扰信道在物理上被划分为最小信道单元。在一些情况下,该最小信道单元可以是多径信道中的单径。因此,在本公开中,子信道矩阵与干扰信道的最小信道单元对应,多个子信道矩阵之和可以构成干扰信道的整体信道矩阵。
相应地,第一基站101将经处理的信道信息的至少一部分提供至第二基站102包括将第一信道矩阵被划分为的多个子信道矩阵中的至少一部分提供至第二基站102,其中该提供可以通过基站之间的无线链路或有线接口(例如X2接口)中的至少一者进行。
[SVD分解示例]
下式为使用SVD分解对干扰信道矩阵(记H agg)进行分解的示例。
Figure PCTCN2020084604-appb-000001
其中,u i是矩阵U的列向量,v i是矩阵V的列向量,σ i是对角矩阵∑的对角元。第一基站101的接收天线数计为N R,第二基站102的发送天线数计为N T。为描述方便,这里取N T=N R=L。根据上式中的SVD分解,H agg被改写为
Figure PCTCN2020084604-appb-000002
由此干扰信道的信道矩阵H agg被分解为子信道矩阵
Figure PCTCN2020084604-appb-000003
之和。此处,每个子信道矩阵具有矩阵相乘的形式(即
Figure PCTCN2020084604-appb-000004
)。
[QR分解示例]
下式为使用QR分解对干扰信道矩阵H agg进行分解的示例。
Figure PCTCN2020084604-appb-000005
其中,矩阵Q是一个酉矩阵,即Q HQ=I,而q i是矩阵Q的列向量,矩阵R是一个上三角矩阵,
Figure PCTCN2020084604-appb-000006
是矩阵R的行向量。为描述方便,同样取N T=N R=L。根据上式中的QR分解,H agg被改写为
Figure PCTCN2020084604-appb-000007
由此干扰信道的信道矩阵H agg被分解为子信道矩阵
Figure PCTCN2020084604-appb-000008
之和。此处,每个子信道矩阵也具有矩阵相乘的形式。
[舒尔分解示例]
下式为使用舒尔分解对干扰信道矩阵H agg进行分解的示例。
Figure PCTCN2020084604-appb-000009
其中,矩阵U是一个酉矩阵,即U HU=I,而u i是矩阵U的列向量,矩阵R是一个上三角矩阵,r i,k是矩阵R对应位置的元素。为描述方便,同样取N T=N R=L。根据Schur分解,可以将H agg改写为
Figure PCTCN2020084604-appb-000010
由此干扰信道的信道矩阵H agg被分解为子信道矩阵
Figure PCTCN2020084604-appb-000011
之和。此处,每个子信道矩阵具有矩阵相乘的形式。
以下描述干扰消除的示例方式。
通过第二基站102预编码进行干扰消除
在实施例中,第二基站102可以被配置为基于干扰信道150的信道矩阵H agg被划分为的多个子信道矩阵(例如
Figure PCTCN2020084604-appb-000012
)中的一个或多个子信道矩阵设计预编码矩阵。第二基站102可以进一步使用该预编码矩阵进行下行发送,使得来自第二基站102的链路间干扰至少部分地投影到干扰信道矩阵H agg的右零空间。以下描述设计预编码矩阵的示 例。应理解,虽然在示例中预编码矩阵是基于整个信道矩阵H agg设计的,但是该设计方法可以基于部分的子信道矩阵(例如
Figure PCTCN2020084604-appb-000013
)进行。
一般而言,第一基站101接收到的来自第二基站102的干扰信号可以表示为
Figure PCTCN2020084604-appb-000014
Figure PCTCN2020084604-appb-000015
其中H agg为干扰信道矩阵,P DL为第二基站102在下行发送中所使用的预编码矩阵,s为携带信息的符号向量,ρ是第二基站102的发射功率。
由于该干扰信号与第二基站102所使用的预编码矩阵相关,因此可以通过预编码矩阵的设计来消除或减小对第一基站101造成的干扰。将经设计的预编码矩阵记为P,令P=P NullP DL。其中,右侧的P DL用于一般意义上的下行发送预编码,左侧的P Null用于消除干扰。在本公开的实施例中,取
Figure PCTCN2020084604-appb-000016
即为干扰信道矩阵H agg右零空间的投影矩阵。此时,有
Figure PCTCN2020084604-appb-000017
Figure PCTCN2020084604-appb-000018
并且对第一基站101造成的干扰为
Figure PCTCN2020084604-appb-000019
Figure PCTCN2020084604-appb-000020
在设计了投影矩阵P Null之后,可以认为第二基站102的下行信道矩阵H DL和投影矩阵P Null共同形成等效的下行信道矩阵
Figure PCTCN2020084604-appb-000021
并且有
Figure PCTCN2020084604-appb-000022
在实施例中,基于等效的下行信道矩阵,可以使用任何适当的准则来设计P DL。例如,可以基于破零(ZF)准则将P DL设计为
Figure PCTCN2020084604-appb-000023
可以基于最小均方误差(MMSE)准则将P DL设计为
Figure PCTCN2020084604-appb-000024
其中γ是与发射功率以及噪声功率相关的归一化因子;或者可以基于最大比合并(MRC)准则将P DL设计为
Figure PCTCN2020084604-appb-000025
由此,完成了预编码矩阵P=P NullP DL的设计。
需注意,对于等效的下行信道矩阵
Figure PCTCN2020084604-appb-000026
根据投影矩阵的性质有
Figure PCTCN2020084604-appb-000027
Figure PCTCN2020084604-appb-000028
因此,在进行零空间投影之后,第二基站102的功率使用效率会下降。相应地,基站102的小区的下行容量会受到损失。
应理解,在基站102的下行发送对两个或更多相邻基站(例如基站101和102-1等K个基站)的上行接收造成干扰的情况下,基站102可以通过上述方式针对每个受干扰的相邻基站分别设计预编码矩阵。最终设计的预编码矩阵可以具有多层因子,例如表示为
Figure PCTCN2020084604-appb-000029
其中,最右侧的P DL用于一般意义上的下行发送预编码;左侧的
Figure PCTCN2020084604-appb-000030
为针对基站k的干扰信道矩阵右零空间的投影矩阵,用于消除对基站k造成的干扰。并且有
Figure PCTCN2020084604-appb-000031
其中H k,2是从基站102到基站k的 干扰信道矩阵。在基站102通过预编码矩阵消除对多个相邻基站的干扰的情况下,在进行零空间投影之后,基站102的功率使用效率进一步下降,小区的下行容量会受到进一步损失。
应理解,在基站102和102-1至120-5中的两个或更多基站的下行发送均对基站101的上行接收造成干扰的情况下,每个干扰基站可以通过上述方式分别设计预编码矩阵。该过程每个干扰基站之间无相互影响。也就是,每个干扰基站基于从自身到基站101的干扰信道矩阵H agg独立设计P Null,之后基于等效的下行信道矩阵设计P DL。由此,每个干扰基站对基站101的干扰得以消除或减小,代价是相应小区的下行容量会受到损失。
如前所述,干扰信道矩阵H agg可以表示为多个子信道矩阵(例如
Figure PCTCN2020084604-appb-000032
)之和。虽然上述投影矩阵
Figure PCTCN2020084604-appb-000033
的设计中考虑了整个干扰信道矩阵H agg(即所有的子信道矩阵),但是在一些实施例中,可以仅考虑部分的子信道矩阵。相应地,来自第二基站102的干扰部分地投影到干扰信道矩阵H agg的右零空间(具体地,投影到部分子信道矩阵的右零空间)。有利的是,这种部分投影的复杂度较低,可以减小运算负荷,并且可以减轻对第二基站102的下行容量的影响。
通过第一基站101合路进行干扰消除
在实施例中,第一基站101可以被配置为基于干扰信道150的信道矩阵(例如H agg)被划分为的多个子信道矩阵(例如
Figure PCTCN2020084604-appb-000034
)中的一个或多个子信道矩阵设计合路矩阵。第一基站101可以进一步使用该合路矩阵进行上行接收,使得来自第二基站102的干扰至少部分地投影到信道矩阵(例如H agg)的左零空间。以下描述设计合路矩阵的示例。应理解,虽然在示例中合路矩阵是基于整个信道矩阵H agg设计的,但是该设计方法可以基于部分的子信道矩阵(例如
Figure PCTCN2020084604-appb-000035
)进行。
一般而言,第一基站101接收到的来自第二基站102的干扰信号在经过接收合路之后可以表示为
Figure PCTCN2020084604-appb-000036
同样,H agg为干扰信道矩阵,P DL为第二基站102在下行发送中所使用的预编码矩阵,s为携带信息的符号向量,ρ是第二基站102的发射功率,C UL是第一基站101用于上行接收的合路矩阵。
由于合路后的干扰信号与第一基站101所使用的合路矩阵相关,因此可以通过合 路矩阵的设计来消除或减小第二基站102所造成的干扰。将经设计的合路矩阵记为C,令C=C ULC Null。其中,右侧的C Null用于消除干扰,左侧的C UL用于一般意义上的上行接收合路(例如信号检测)。在本公开的实施例中,取
Figure PCTCN2020084604-appb-000037
即为干扰信道矩阵H agg左零空间的投影矩阵。此时,有
Figure PCTCN2020084604-appb-000038
Figure PCTCN2020084604-appb-000039
并且第一基站101检测到的干扰为
Figure PCTCN2020084604-appb-000040
Figure PCTCN2020084604-appb-000041
在设计了投影矩阵C Null之后,可以认为第一基站101的上行信道矩阵H UL和投影矩阵C Null共同形成等效的上行信道矩阵
Figure PCTCN2020084604-appb-000042
并且有
Figure PCTCN2020084604-appb-000043
在实施例中,基于等效的上行信道矩阵,可以使用任何适当的准则来设计C UL。例如,可以基于破零(ZF)准则将C UL设计为
Figure PCTCN2020084604-appb-000044
可以基于最小均方误差(MMSE)准则将C UL设计为
Figure PCTCN2020084604-appb-000045
其中γ是与发射功率以及噪声功率相关的归一化因子;或者可以基于最大比合并(MRC)准则将C UL设计为
Figure PCTCN2020084604-appb-000046
由此,完成了合路矩阵C=C ULC Null的设计。
需注意,对于等效的上行信道矩阵
Figure PCTCN2020084604-appb-000047
根据投影矩阵的性质有
Figure PCTCN2020084604-appb-000048
Figure PCTCN2020084604-appb-000049
因此,在进行零空间投影之后,第一基站101的功率使用效率会下降。相应地,基站101的小区的上行容量会受到损失。
应理解,在基站102和102-1至120-5中的两个或更多基站(例如K个)的下行发送均对基站101的上行接收造成干扰的情况下,基站101可以通过上述方式针对每个干扰基站分别设计合路矩阵。最终设计的合路矩阵可以具有多层因子,例如表示为
Figure PCTCN2020084604-appb-000050
Figure PCTCN2020084604-appb-000051
其中,最左侧的C UL用于一般意义上的上行接收合路;右侧的
Figure PCTCN2020084604-appb-000052
为针对基站k的干扰信道矩阵的左零空间投影矩阵,用于消除基站k所造成的干扰。并且有
Figure PCTCN2020084604-appb-000053
其中H k,1是从基站k到基站101的干扰信道矩阵。在基站101通过合路矩阵消除多个相邻基站所造成的干扰的情况下,在进行零空间投影之后,基站101的功率使用效率进一步下降,小区的下行容量会受到进一步损失。
应理解,在基站102的下行发送对两个或更多相邻基站(例如基站101和102-1等K个基站)的上行接收造成干扰的情况下,每个受干扰基站可以通过上述方式分别设计合路矩阵。该过程每个受干扰基站之间无相互影响。也就是,每个受干扰基站基于从基站102到自身的干扰信道矩阵H agg独立设计C Null,之后基于等效的上行信道矩阵设计 C UL。由此,基站102对每个受干扰基站的干扰得以消除或减小,代价是相应小区的上行容量会受到损失。
如前所述,干扰信道矩阵H agg可以表示为多个子信道矩阵(例如
Figure PCTCN2020084604-appb-000054
)之和。虽然上述合路矩阵
Figure PCTCN2020084604-appb-000055
的设计中考虑了整个干扰信道矩阵H agg(即所有的子信道矩阵),但是在一些实施例中,可以仅考虑部分的子信道矩阵。相应地,来自第二基站102的干扰部分地投影到干扰信道矩阵H agg的左零空间(具体地,投影到部分子信道矩阵的左零空间)。有利的是,这种部分投影的复杂度较低,可以减小处理负荷,并且可以减轻对第一基站101的上行容量的影响。
通过第一基站101和第二基站102协作进行干扰消除
如前所述,基于干扰信道150的信道矩阵H agg或被划分为的一个或多个子信道矩阵设计预编码矩阵或者设计合路矩阵都涉及消除干扰与小区容量损失之间的折中,以及相关的复杂运算。因此,在一些实施例中,可以通过第一基站101和第二基站102协作进行干扰消除,以在基站之间分担性能损失和运算负荷。例如,第一基站101可以基于干扰信道矩阵被划分为的多个子信道矩阵中的第一部分(或其中的一个或多个子信道矩阵)设计合路矩阵;第二基站102可以基于干扰信道矩阵被划分为的多个子信道矩阵中的第二部分(或其中的一个或多个子信道矩阵)设计预编码矩阵。其中,第一部分和第二部分无交集,第一部分和第二部分的并集为包括这多个子信道矩阵的集合。
例如,在对干扰信道矩阵H agg进行分解为多个子信道矩阵之和后,可以将干扰信道矩阵分成两部分,即H agg=H agg,1+H agg,2。在SVD分解的例子中,有
Figure PCTCN2020084604-appb-000056
Figure PCTCN2020084604-appb-000057
在QR分解的例子中,有
Figure PCTCN2020084604-appb-000058
Figure PCTCN2020084604-appb-000059
在舒尔分解的例子中,有
Figure PCTCN2020084604-appb-000060
Figure PCTCN2020084604-appb-000061
其中,
Figure PCTCN2020084604-appb-000062
Figure PCTCN2020084604-appb-000063
是子信道序号的集合,满足
Figure PCTCN2020084604-appb-000064
Figure PCTCN2020084604-appb-000065
Figure PCTCN2020084604-appb-000066
由此,第一基站101可以基于H agg,1(或其中的至少一个子信道矩阵)设计合路矩阵,第二基站102可以基于H agg,2(或其中的至少一个子信道矩阵)设计预编码矩阵。
例如,在L=3时,可以取
Figure PCTCN2020084604-appb-000067
以SVD分解为例则有
Figure PCTCN2020084604-appb-000068
Figure PCTCN2020084604-appb-000069
如前所述,用于第一基站101和第二基站102的第一部分和第二部分子信道矩阵之间无交集,并且第一部分和第二部分子信道矩阵的并集为包括全部子信道矩阵的集合。因此,第一基站101和第二基站102可能需要以默认或显式方式关于第一部分和第二部分进行选择或协商。在一个实施例中,第一基站101和/或第二基站102可以基于系统配置信息或自主地从多个子信道矩阵中选择第一部分或第二部分。在一个实施例中,第一基站101可以基于来自第二基站102的指示从多个子信道矩阵中选择第一部分,或者第二基站102可以基于来自第一基站101的指示从多个子信道矩阵中选择第二部分。
[用于选择子信道矩阵的示例1]
图5A示出了根据本公开实施例的用于选择子信道矩阵的第一示例处理。如图5A所示,在5002处,第一基站101可以基于系统配置信息或者自主地从多个子信道矩阵中选择第一部分,并在5004处将未选择的其余部分通知给第二基站102。在5006处,第二基站102可以将未选择的该其余部分均作为第二部分,或者可以基于系统配置信息或自主地从该其余部分中选择第二部分。
图5B示出了根据本公开实施例的用于选择子信道矩阵的第二示例流程。可以参照图5A类似地理解该示例。在一些情况下,第一基站101可能会将经处理的信道信息提供至第二基站102(例如参见图4A),或者第二基站102自身可能会处理所获得的信道信息(例如参见图4B、图4C)。相应地,可以由第二基站102在5042处首先选择第二部分子信道矩阵,并在5044处将未选择的其余部分通知给第一基站101。第二基站102可以在5046处类似地将未选择的该其余部分均作为第二部分,或者基于系统配置信息或自主地从该其余部分中选择第二部分。
图5C示出了根据本公开实施例的用于选择子信道矩阵的第三示例流程。如图5C所示,在5082处,第一基站101和第二基站102可以关于系统配置信息进行协商。该系统配置信息可以指定可选择的子信道矩阵的上限数量和子信道矩阵的特性。一般地,子信道矩阵的上限数量(即第一部分或第二部分的大小)与各基站的处理能力正相关。子信道矩阵的特性例如包括该矩阵的F范数的大小。F范数的大小一般与相应子信道矩阵在干扰中的贡献正相关,如下面具体描述的。在一个实施例中,协商后的系统配置信息可以指定第一基站101选择F范数较小的2个子信道矩阵,并且指定第二基站102选择F范数较大的3个子信道矩阵。
应理解,第一基站101或第二基站102在选择相应部分的子信道矩阵之后,可以使用相应部分的中的一个或多个子信道矩阵进行合路矩阵或预编码矩阵的设计。所使用的子信道矩阵的数量可以由第一基站101或第二基站102基于自身的计算负荷、干扰状况等因素动态确定。
[用于选择子信道的示例2]
以上结合图5A至图5C描述了用于选择子信道矩阵的示例处理。图6示出了根据本公开实施例的用于选择子信道矩阵的进一步示例处理,该处理可以隐式地辅助子信道矩阵的选择。
如图6所示,首先通过信道测量或估计,干扰信道的信道信息被获得,并且该信道信息被适当地处理。如参照图4A至图4C所描述的,可以由第一基站101获得并处理信道信息,或者由第一基站101获得信道信息并由第二基站102处理信道信息,或者由第二基站102获得并处理信道信息。在任一方式下,处理信道信息所生成的多个子信道矩阵可以被第二基站102获得。接着,在6002处,第二基站102可以基于多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵。在6004处,第二基站102可以使用预编码矩阵进行下行参考信号的额外发送(相比之前发送而言)。
应理解,此处的下行参考信号额外发送与6002之前第二基站102进行的下行参考信号发送是不同的。相比之前发送,在此处的额外发送时使用了预编码矩阵。因此,通过测量额外发送的参考信号,第一基站101所获得的等效信道矩阵是经预编码矩阵改造后的干扰信道。第一基站101可以处理该等效信道矩阵并基于所生成的子信道矩阵进行合路矩阵设计。具体地,在6006处,第一基站101可以通过第二基站102的下行参考信号的额外发送获得测量信息,并基于该测量信息获得等效信道矩阵。第一基站101可以对等效信道矩阵进行分解,使得等效信道矩阵被划分为多个子信道矩阵之和。在6008处,第一基站101可以基于这多个子信道矩阵中的一个或多个子信道矩阵设计合路矩阵,并使用该合路矩阵进行上行接收,使得第二基站102所造成的干扰至少部分地投影到等效信道矩阵的左零空间。
在图6中的示例中,第二基站102和第一基站101分别基于干扰信道和等效干扰信道进行了发送预编码和接收合并。通过第二基站102使用预编码矩阵发送下行参考信号,第一基站101可以间接获知第二基站102的干扰消除情况。这样,不需要显式信令 在基站之间协调子信道矩阵的选择,节省了信令开销。
[子信道矩阵的示例选择方式]
如前所述,基于干扰信道150的信道矩阵H agg被划分为的一个或多个子信道矩阵设计预编码矩阵或者设计合路矩阵都涉及消除干扰与小区容量损失之间的折中以及相关的复杂运算。因此,在一些实施例中,可以基于尽量少的子信道矩阵设计预编码矩阵或者设计合路矩阵。例如,可以仅消除干扰的主要部分,由此在简化运算的同时,降低零空间投影引起的容量损失,达到干扰消除与复杂度、容量之间的折中。
在一个实施例中,第一基站101或第二基站102可以被配置为针对干扰信道所划分为的多个子信道矩阵中的每个子信道矩阵求解F范数,并且基于F范数较大的一个或多个子信道矩阵进行合路矩阵或预编码矩阵的设计。由于特定子信道矩阵的范数F大小与该子信道矩阵对第一基站101所造成的干扰正相关,因此F范数较大的一个或多个子信道矩阵在对第一基站101所造成的干扰中贡献较大。
以使用SVD分解来获得子信道矩阵的情况为例,第一基站101或第二基站102可以针对干扰信道所划分为的多个子信道矩阵中的每个子信道矩阵求解奇异值,并且基于奇异值较大的一个或多个子信道矩阵进行合路矩阵或预编码矩阵的设计。在SVD分解中,干扰信道可以表示为
Figure PCTCN2020084604-appb-000070
假设有σ 1≥σ 2≥…≥σ L,并且用
Figure PCTCN2020084604-appb-000071
来表示干扰信道的第m个子信道矩阵。对于SVD分解存在
Figure PCTCN2020084604-appb-000072
Figure PCTCN2020084604-appb-000073
可见子信道矩阵的奇异值越大,其在对第一基站101所造成的干扰中的贡献越大。在干扰信道的空间特性较为明显时,可以认为子信道矩阵的奇异值大小可以反应信号传输路径的强度,即越大的F范数(或者在SVD分解中作为特例的奇异值)对应着信道增益越强的径(如LOS径)。
应理解,虽然每个子信道矩阵对干扰的贡献可能随F范数大小而不同,但在通过合路矩阵或预编码矩阵进行零空间投影时,每个子信道矩阵对容量的影响在统计意义下是等效的,相关的运算复杂度也基本等效。因此,基于F范数较大的子信道矩阵进行合路矩阵或预编码矩阵的设计可以在减小对容量造成的损失并降低运算复杂度的同时,显著减小干扰。
与干扰消除相关的信息维护
在本公开的实施例中,第一基站101和第二基站102可能需要在本地或远程保存关于干扰信道的信道信息(例如信道矩阵)以及经处理的信道信息(例如被划分为的信道子矩阵)。由于基站之间的相对位置大致固定,并且干扰信道可能具有慢时变特性,因此这些信道信息和经处理的信道信息可以在较长的时间内有效。第一基站101和第二基站102可以周期性地检测干扰信道,并在期望时更新所保存的信息。
在本公开的实施例中,第一基站101和第二基站102可能需要在本地或远程保存基站间的干扰时间信息。如参照图2中表一所描述的,仅在相邻基站之间的上下行传输相反的时刻,相邻基站之间才会出现链路间干扰。换言之,在使用灵活双工的系统中,存在特定的传输时刻,其中第二基站102的下行发送会对第一基站101的上行接收造成干扰。图7示出了根据本公开实施例的用于维护干扰时间信息的示例处理。
在图7的示例中,在7002处,第一基站101和第二基站102通过检测彼此发送的同步信号进行同步。在7004处,第一基站101和第二基站102可以分别进行上下行配置,包括上下行时间分配。在7006处,第一基站101和第二基站102可以将自己的上下行时间配置信息提供至对方(例如通过X2接口或者无线链路等方式)。在7008处,第一基站101和第二基站102可以基于两者的上下行配置信息,确定第一基站101进行上行接收并且第二基站102进行下行发送的一个或多个时间,其中这一个或多个时间包括第二基站102对第一基站101造成链路间干扰的特定时刻。第一基站101和第二基站102还可以基于两者的上下行配置信息,确定第二基站102进行上行接收并且第一基站101进行下行发送的一个或多个时间,其中这一个或多个时间包括第一基站101对第二基站102造成链路间干扰的特定时刻。
基于上述确定,第一基站101和/或第二基站102可以仅在这一个或多个时间使用合路矩阵或预编码矩阵进行干扰消除。应理解,虽然本公开中的干扰消除方法可以在全部时间使用,但考虑到可能造成的容量损失和复杂运算,仅在干扰时间使用该干扰消除方法可以有利地将容量损失和运算复杂度保持为较低。
以下结合图8中的表二和表三描述干扰时间信息的示例。在实施例中,可以基于第一基站101与相邻基站之间的上下行传输是否相反来确定是否存在可能出现链路间干扰的时间。上下行传输相反,则存在这种干扰时间。进一步,各基站可以基于自身在干扰时间期间是进行上行接收还是下行发送来确定自身是被干扰方或干扰方。基于以上原 则,各基站可以在本地维护干扰时间信息。
表二为第一基站101基于表一中的上下行时间配置示例维护的干扰时间信息表。如表二所示,参照表一,在T和2T期间各基站均被配置进行下行发送,在7T期间各基站均被配置进行上行接收。因此,在相应期间不会出现链路间干扰。在3T至4T期间,基站101与基站102和102-5的上下行传输相反,因此会出现链路间干扰,并且基站101由于进行上行接收而成为被干扰方。在5T至6T期间,基站101仅与基站102的上下行传输相反,因此也会出现链路间干扰,并且基站101由于进行上行接收而成为被干扰方。
表三为第二基站102基于表一中的上下行时间配置示例维护的干扰时间信息表。可以参照表二类似地理解表三,此处不再重复。在实施例中,干扰时间信息可以周期性更新或基于触发事件(例如一个或多个相邻基站的上下行配置改变)而更新。
示例性方法
图9A示出了根据本公开实施例的用于通信的示例方法。该方法可以由系统100中的第一基站101或电子设备300执行。如图9A所示,该方法900可以包括获得从第二基站102到第一基站101的信道的信道信息(框905),以及处理所述信道信息以对所述信道进行划分(框910)。之后,第一基站101可以将经处理的信道信息的至少一部分提供至第二基站102。该方法900还可以包括基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰(框915)。该方法的详细示例操作可以参考上文关于第一基站101或电子设备300的操作描述,此处不再重复。
图9B示出了根据本公开实施例的用于通信的另一示例方法。该方法可以由系统100中的第二基站102或电子设备350执行。如图9B所示,该方法940可以包括接收来自第一基站的经处理的信道信息的至少一部分(框945)。该方法940还可以包括基于经处理的信道信息的至少一部分消除第二基站102的下行发送对第一基站101的上行接收造成的干扰(框950)。该方法的详细示例操作可以参考上文关于第二基站102或电子设备350的操作描述,此处不再重复。
图9C示出了根据本公开实施例的用于通信的又一示例方法。该方法可以由系统100中的第二基站102或电子设备350执行。如图9C所示,该方法980可以包括获得从第二基站102到第一基站101的信道的信道信息(框980),以及处理所述信道信息以对 所述信道进行划分(框985)。之后,第二基站102可以将经处理的信道信息的至少一部分提供至第一基站101。该方法980还可以包括基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰(框990)。该方法的详细示例操作可以参考上文关于基站102或电子设备350的操作描述,此处不再重复。
以上分别描述了根据本公开实施例的各示例性电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图10至图11描述根据本公开的应用示例。
第一应用示例
图10是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图10所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口 1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图10示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图10所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图10所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图10示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图11是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图11所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图10描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由 RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图10描述的BB处理器1426相同。如图11所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图11示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图11示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图11所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图11示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
图12A至图12E示出了与本公开实施例相关的性能仿真图。基于以下配置对基于预编码、合路以及基于这两者的组合的干扰消除性能进行了仿真,并使用图1中的拓扑结构。
参数 取值
载波频率 4.9GHz
小区半径 500m
基站天线高度 20m
小区内活跃用户 5
 
基站天线规模 4×4均匀平面阵
用户天线高度 1.5m
图12A至图12E示出了不同程度的干扰消除方案所对应的小区吞吐量。其中,“常规”表示不使用干扰消除方案,“完全零投影”表示基于所有的子信道矩阵完全消除干扰,“一阶零投影”表示基于F范数最大的1个子信道矩阵部分地消除干扰,“二阶零投影”表示基于F范数大小靠前的2个子信道矩阵部分地消除干扰,“三阶零投影”表示基于F范数大小靠前的3个子信道矩阵部分地消除干扰。
图12A示出了基于合路的干扰消除方法下被干扰方的性能。该仿真中存在1个被干扰方和2个干扰方。可以看出,该方法可以有效抑制链路间干扰,提升被干扰方的小区上行吞吐量。另外,随着所基于的子信道矩阵的增加,链路间干扰被消除得更显著,代价是被干扰方将更多功率用于合路操作,导致功率使用效率降低。因此,在较高信噪比下基于较多子信道矩阵进行合路会取得更好的效果,在较低信噪比下基于较少子信道矩阵进行合路可以更有效地利用基站功率。在实际系统中,可以根据具体情况和需求来调整所基于的子信道矩阵的数量,从而在干扰和吞吐量性能之间取得折中。
图12B和图12C示出了基于预编码的干扰消除方法下被干扰方和干扰方的性能。该仿真中存在1个被干扰方和2个干扰方。可以看出,该方法可以有效抑制链路间干扰,提升被干扰的小区上行吞吐量。另外,该方法会使干扰方的下行吞吐量受到影响,并且随着所基于的子信道矩阵的增加,吞吐量收到更多损失。这是由于当干扰方基于较多子信道矩阵消除干扰时,干扰方的更多功率被用于零空间投影预编码,则用于下行传输的预编码功率降低,从而下行传输性能降低。在实际系统中,可以根据具体情况和需求来调整所基于的子信道矩阵的数量,从而在干扰和吞吐量性能之间取得折中。
图12D和图12E示出了基于预编码和合路的组合的干扰消除方法下被干扰方和干扰方的性能。该仿真中存在1个被干扰方和3个干扰方。可以看出,该方法可以有效抑制链路间干扰,提升被干扰的小区上行吞吐量。另外,该方法会使干扰方的下行吞吐量受到影响,并且随着所基于的子信道矩阵的增加,吞吐量收到更多损失。与图12A相比,被干扰方的小区吞吐量得以改善。与图12B和图12C相比,干扰方的小区吞吐量也得以改善。这是因为干扰方和被干扰方均执行了部分干扰消除,这种负担使得对各自小区的 影响减小。在实际系统中,可以根据具体情况和需求来调整所基于的子信道矩阵的数量,从而在干扰和吞吐量性能之间取得折中。
本公开的方案可以以如下的示例方式实施。
条款1、一种用于第一基站的电子设备,包括处理电路,所述处理电路被配置为:
获得从第二基站到第一基站的信道的信道信息;
处理所述信道信息以对所述信道进行划分;
将经处理的信道信息的至少一部分提供至第二基站,
其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
条款2、如条款1所述的电子设备,其中,所述处理电路被配置为通过以下操作获得所述信道信息:
通过测量第二基站的下行参考信号,获得所述信道信息;和/或
至少基于第一基站和第二基站之间的位置信息,估计所述信道信息。
条款3、如条款1所述的电子设备,其中,处理所述信道信息包括:
基于所述信道信息获得第一信道矩阵;以及
对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
条款4、如条款3所述的电子设备,其中,将经处理的信道信息的所述至少一部分提供至第二基站包括:
将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
条款5、如条款4所述的电子设备,其中,所述处理电路被配置为通过以下操作消除所述干扰:
基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计合路矩阵;以及
使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的 左零空间。
条款6、如条款5所述的电子设备,其中,被提供至第二基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者除第一部分外的其余部分。
条款7、如条款5所述的电子设备,其中,所述处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第一部分:
基于系统配置信息,从所述多个子信道矩阵中选择第一部分;
从所述多个子信道矩阵中自主选择第一部分;和/或
基于来自第二基站的指示,从所述多个子信道矩阵中选择第一部分。
条款8、如条款4所述的电子设备,其中,所述处理电路还被配置为:
通过第二基站的下行参考信号的至少一次额外发送,获得测量信息;
基于所述测量信息获得第二信道矩阵;以及
对第二信道矩阵进行分解,使得第二信道矩阵被划分为第二多个子信道矩阵之和,其中,第二基站的下行参考信号的额外发送包括:
基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
使用所述预编码矩阵进行下行参考信号的所述额外发送,并且
其中,所述处理电路被配置为通过以下操作消除所述干扰:
基于所述第二多个子信道矩阵中的一个或多个子信道矩阵设计合路矩阵;
使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的左零空间。
条款9、如条款5或8所述的电子设备,其中,所述处理电路还被配置为针对所述多个子信道矩阵或所述第二多个子信道矩阵中的每个子信道矩阵求解F范数,并且
所述多个子信道矩阵或所述第二多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
条款10、如条款9所述的电子设备,其中,所述处理电路被配置为使用SVD分解对第一信道矩阵或第二信道矩阵进行分解,所述多个子信道矩阵或所述第二多个子信道 矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
条款11、如条款3所述的电子设备,其中,所述处理电路还被配置为:
基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
在所述一个或多个时间消除所述干扰。
条款12、一种用于第二基站的第二电子设备,其中第二基站被配置为用于与如条款1至11中任一项所述的用于第一基站的电子设备一起操作,并且第二电子设备包括第二处理电路,第二处理电路被配置为:
接收来自第一基站的经处理的信道信息的至少一部分;以及
基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
条款13、如条款12所述的第二电子设备,其中,第二处理电路还被配置为:
接收来自第一基站的第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述接收通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
条款14、如条款13所述的第二电子设备,其中,第二处理电路被配置为通过以下操作消除所述干扰:
基于第一信道矩阵被划分为的所述多个子信道矩阵中的第二部分中的一个或多个子信道矩阵设计预编码矩阵;以及
使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵的右零空间,
其中第一部分和第二部分无交集,第一部分和第二部分的并集为包括所述多个子信道矩阵的集合。
条款15、如条款14所述的第二电子设备,其中,接收自第一基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者第二部分。
条款16、如条款14所述的第二电子设备,其中,第二处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第二部分:
基于系统配置信息,从所述多个子信道矩阵中选择第二部分;
从所述多个子信道矩阵中自主选择第二部分;和/或
基于来自第一基站的指示,从所述多个子信道矩阵中选择第二部分。
条款17、如条款13所述的第二电子设备,其中,第二处理电路还被配置为:
基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
使用所述预编码矩阵进行下行参考信号的额外发送。
条款18、如条款14或17所述的第二电子设备,其中,第二处理电路还被配置为针对所述多个子信道矩阵中的每个子信道矩阵求解F范数,并且
所述多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
条款19、如条款18所述的第二电子设备,其中,第二处理电路被配置为使用SVD分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
条款20、如条款12所述的第二电子设备,其中,第二处理电路还被配置为:
基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
在所述一个或多个时间消除所述干扰。
条款21、一种用于第二基站的电子设备,包括处理电路,所述处理电路被配置为:
获得从第二基站到第一基站的信道的信道信息;
处理所述信道信息以对所述信道进行划分;
将经处理的信道信息的至少一部分提供至第一基站,
其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
条款22、如条款21所述的电子设备,其中,所述处理电路被配置为通过以下操作获得所述信道信息:
发送下行参考信号,并接收由第一基站测量的所述信道信息;和/或
至少基于第一基站和第二基站之间的位置信息,估计所述信道信息。
条款23、如条款21所述的电子设备,其中,处理所述信道信息包括:
基于所述信道信息获得第一信道矩阵;以及
对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
条款24、如条款23所述的电子设备,其中,将经处理的信道信息的所述至少一部分提供至第一基站包括:
将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第一基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
条款25、如条款24所述的电子设备,其中,所述处理电路被配置为通过以下操作消除所述干扰:
基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计预编码矩阵;以及
使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵的右零空间。
条款26、如条款25所述的电子设备,其中,被提供至第一基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者除第一部分外的其余部分。
条款27、如条款25所述的电子设备,其中,所述处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第一部分:
基于系统配置信息,从所述多个子信道矩阵中选择第一部分;
从所述多个子信道矩阵中自主选择第一部分;和/或
基于来自第一基站的指示,从所述多个子信道矩阵中选择第一部分。
条款28、如条款24所述的电子设备,其中,所述处理电路还被配置为:
基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
使用所述预编码矩阵进行下行参考信号的至少一次额外发送。
条款29、如条款25或28所述的电子设备,其中,所述处理电路还被配置为针对所述多个子信道矩阵中的每个子信道矩阵求解F范数,并且
所述多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
条款30、如条款29所述的电子设备,其中,所述处理电路被配置为使用SVD分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
条款31、如条款23所述的电子设备,其中,所述处理电路还被配置为:
基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
在所述一个或多个时间消除所述干扰。
条款32、一种无线通信方法,包括由第一基站:
获得从第二基站到第一基站的信道的信道信息;
处理所述信道信息以对所述信道进行划分;
将经处理的信道信息的至少一部分提供至第二基站,
其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
条款33、如条款32所述的方法,还包括由第一基站:
基于所述信道信息获得第一信道矩阵;以及
对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
条款34、如条款33所述的方法,其中,将经处理的信道信息的所述至少一部分提供至第二基站包括:
将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
条款35、如条款34所述的方法,其中,消除所述干扰包括:
基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计合路矩阵;以及
使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的左零空间。
条款36、如条款35所述的方法,还包括由第一基站:
使用SVD分解对第一信道矩阵或第二信道矩阵进行分解,所述多个子信道矩阵或所述第二多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
条款37、一种无线通信方法,包括由第二基站:
接收来自第一基站的经处理的信道信息的至少一部分;以及
基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰,
其中,第一基站被配置为执行如条款32至36中任一项所述的方法。
条款38、如条款37所述的方法,还包括由第二基站:
接收来自第一基站的第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述接收通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
条款39、如条款38所述的方法,其中,消除所述干扰包括:
基于第一信道矩阵被划分为的所述多个子信道矩阵中的第二部分中的一个或多个子信道矩阵设计预编码矩阵;以及
使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵的右零空间,
其中第一部分和第二部分无交集,第一部分和第二部分的并集为包括所述多个子信 道矩阵的集合。
条款40、如条款39所述的方法,还包括由第二基站:
使用SVD分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
条款41、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行如条款32至40中任一项所述的方法。
条款42、一种用于无线通信的装置,包括用于执行如条款32至40中任一项所述的方法的单元。
条款43、一种无线通信系统,包括条款1至11中任一项中的第一基站以及条款12至20中任一项中的第二基站。
条款44、一种无线通信系统,包括条款1至11中任一项中的第一基站以及条款21至31中任一项中的第二基站。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没 有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (44)

  1. 一种用于第一基站的电子设备,包括处理电路,所述处理电路被配置为:
    获得从第二基站到第一基站的信道的信道信息;
    处理所述信道信息以对所述信道进行划分;
    将经处理的信道信息的至少一部分提供至第二基站,
    其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
  2. 如权利要求1所述的电子设备,其中,所述处理电路被配置为通过以下操作获得所述信道信息:
    通过测量第二基站的下行参考信号,获得所述信道信息;和/或
    至少基于第一基站和第二基站之间的位置信息,估计所述信道信息。
  3. 如权利要求1所述的电子设备,其中,处理所述信道信息包括:
    基于所述信道信息获得第一信道矩阵;以及
    对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
  4. 如权利要求3所述的电子设备,其中,将经处理的信道信息的所述至少一部分提供至第二基站包括:
    将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
  5. 如权利要求4所述的电子设备,其中,所述处理电路被配置为通过以下操作消除所述干扰:
    基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计合路矩阵;以及
    使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的左零空间。
  6. 如权利要求5所述的电子设备,其中,被提供至第二基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者除第一部分外的其余部分。
  7. 如权利要求5所述的电子设备,其中,所述处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第一部分:
    基于系统配置信息,从所述多个子信道矩阵中选择第一部分;
    从所述多个子信道矩阵中自主选择第一部分;和/或
    基于来自第二基站的指示,从所述多个子信道矩阵中选择第一部分。
  8. 如权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    通过第二基站的下行参考信号的至少一次额外发送,获得测量信息;
    基于所述测量信息获得第二信道矩阵;以及
    对第二信道矩阵进行分解,使得第二信道矩阵被划分为第二多个子信道矩阵之和,
    其中,第二基站的下行参考信号的额外发送包括:
    基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
    使用所述预编码矩阵进行下行参考信号的所述额外发送,并且
    其中,所述处理电路被配置为通过以下操作消除所述干扰:
    基于所述第二多个子信道矩阵中的一个或多个子信道矩阵设计合路矩阵;
    使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的左零空间。
  9. 如权利要求5或8所述的电子设备,其中,所述处理电路还被配置为针对所述多个子信道矩阵或所述第二多个子信道矩阵中的每个子信道矩阵求解F范数,并且
    所述多个子信道矩阵或所述第二多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
  10. 如权利要求9所述的电子设备,其中,所述处理电路被配置为使用SVD分解对第一信道矩阵或第二信道矩阵进行分解,所述多个子信道矩阵或所述第二多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
  11. 如权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
    在所述一个或多个时间消除所述干扰。
  12. 一种用于第二基站的第二电子设备,其中第二基站被配置为用于与如权利要求1至11中任一项所述的用于第一基站的电子设备一起操作,并且第二电子设备包括第二处理电路,第二处理电路被配置为:
    接收来自第一基站的经处理的信道信息的至少一部分;以及
    基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
  13. 如权利要求12所述的第二电子设备,其中,第二处理电路还被配置为:
    接收来自第一基站的第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述接收通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
  14. 如权利要求13所述的第二电子设备,其中,第二处理电路被配置为通过以下操作消除所述干扰:
    基于第一信道矩阵被划分为的所述多个子信道矩阵中的第二部分中的一个或多个子信道矩阵设计预编码矩阵;以及
    使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵的右零空间,
    其中第一部分和第二部分无交集,第一部分和第二部分的并集为包括所述多个子信道矩阵的集合。
  15. 如权利要求14所述的第二电子设备,其中,接收自第一基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者第二部分。
  16. 如权利要求14所述的第二电子设备,其中,第二处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第二部分:
    基于系统配置信息,从所述多个子信道矩阵中选择第二部分;
    从所述多个子信道矩阵中自主选择第二部分;和/或
    基于来自第一基站的指示,从所述多个子信道矩阵中选择第二部分。
  17. 如权利要求13所述的第二电子设备,其中,第二处理电路还被配置为:
    基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
    使用所述预编码矩阵进行下行参考信号的额外发送。
  18. 如权利要求14或17所述的第二电子设备,其中,第二处理电路还被配置为针对所述多个子信道矩阵中的每个子信道矩阵求解F范数,并且
    所述多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
  19. 如权利要求18所述的第二电子设备,其中,第二处理电路被配置为使用SVD 分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
  20. 如权利要求12所述的第二电子设备,其中,第二处理电路还被配置为:
    基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
    在所述一个或多个时间消除所述干扰。
  21. 一种用于第二基站的电子设备,包括处理电路,所述处理电路被配置为:
    获得从第二基站到第一基站的信道的信道信息;
    处理所述信道信息以对所述信道进行划分;
    将经处理的信道信息的至少一部分提供至第一基站,
    其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
  22. 如权利要求21所述的电子设备,其中,所述处理电路被配置为通过以下操作获得所述信道信息:
    发送下行参考信号,并接收由第一基站测量的所述信道信息;和/或
    至少基于第一基站和第二基站之间的位置信息,估计所述信道信息。
  23. 如权利要求21所述的电子设备,其中,处理所述信道信息包括:
    基于所述信道信息获得第一信道矩阵;以及
    对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
  24. 如权利要求23所述的电子设备,其中,将经处理的信道信息的所述至少一部分提供至第一基站包括:
    将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第一基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
  25. 如权利要求24所述的电子设备,其中,所述处理电路被配置为通过以下操作消除所述干扰:
    基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计预编码矩阵;以及
    使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵 的右零空间。
  26. 如权利要求25所述的电子设备,其中,被提供至第一基站的所述多个子信道矩阵中的所述至少一部分包括所述多个子信道矩阵中的全部或者除第一部分外的其余部分。
  27. 如权利要求25所述的电子设备,其中,所述处理电路被配置为通过以下操作确定所述多个子信道矩阵中的第一部分:
    基于系统配置信息,从所述多个子信道矩阵中选择第一部分;
    从所述多个子信道矩阵中自主选择第一部分;和/或
    基于来自第一基站的指示,从所述多个子信道矩阵中选择第一部分。
  28. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    基于所述多个子信道矩阵中的一个或多个子信道矩阵设计预编码矩阵;
    使用所述预编码矩阵进行下行参考信号的至少一次额外发送。
  29. 如权利要求25或28所述的电子设备,其中,所述处理电路还被配置为针对所述多个子信道矩阵中的每个子信道矩阵求解F范数,并且
    所述多个子信道矩阵中的所述一个或多个子信道矩阵是F范数较大的子信道矩阵。
  30. 如权利要求29所述的电子设备,其中,所述处理电路被配置为使用SVD分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
  31. 如权利要求23所述的电子设备,其中,所述处理电路还被配置为:
    基于第一基站和第二基站的上下行配置信息,确定第一基站进行上行接收并且第二基站进行下行发送的一个或多个时间,其中所述一个或多个时间包括造成所述干扰的特定时刻;以及
    在所述一个或多个时间消除所述干扰。
  32. 一种无线通信方法,包括由第一基站:
    获得从第二基站到第一基站的信道的信道信息;
    处理所述信道信息以对所述信道进行划分;
    将经处理的信道信息的至少一部分提供至第二基站,
    其中,第一基站或第二基站中的至少一者基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰。
  33. 如权利要求32所述的方法,还包括由第一基站:
    基于所述信道信息获得第一信道矩阵;以及
    对第一信道矩阵进行分解,使得第一信道矩阵被划分为多个子信道矩阵之和。
  34. 如权利要求33所述的方法,其中,将经处理的信道信息的所述至少一部分提供至第二基站包括:
    将第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述提供通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
  35. 如权利要求34所述的方法,其中,消除所述干扰包括:
    基于第一信道矩阵被划分为的所述多个子信道矩阵中的第一部分中的一个或多个子信道矩阵设计合路矩阵;以及
    使用所述合路矩阵进行上行接收,使得所述干扰至少部分地投影到第一信道矩阵的左零空间。
  36. 如权利要求35所述的方法,还包括由第一基站:
    使用SVD分解对第一信道矩阵或第二信道矩阵进行分解,所述多个子信道矩阵或所述第二多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
  37. 一种无线通信方法,包括由第二基站:
    接收来自第一基站的经处理的信道信息的至少一部分;以及
    基于经处理的信道信息的至少一部分消除第二基站的下行发送对第一基站的上行接收造成的干扰,
    其中,第一基站被配置为执行如权利要求32至36中任一项所述的方法。
  38. 如权利要求37所述的方法,还包括由第二基站:
    接收来自第一基站的第一信道矩阵被划分为的所述多个子信道矩阵中的至少一部分提供至第二基站,其中所述接收通过第一基站和第二基站之间的无线链路或有线接口中的至少一者进行。
  39. 如权利要求38所述的方法,其中,消除所述干扰包括:
    基于第一信道矩阵被划分为的所述多个子信道矩阵中的第二部分中的一个或多个子信道矩阵设计预编码矩阵;以及
    使用所述预编码矩阵进行下行发送,使得所述干扰至少部分地投影到第一信道矩阵的右零空间,
    其中第一部分和第二部分无交集,第一部分和第二部分的并集为包括所述多个子信道矩阵的集合。
  40. 如权利要求39所述的方法,还包括由第二基站:
    使用SVD分解对第一信道矩阵进行分解,所述多个子信道矩阵中的所述一个或多个子信道矩阵是奇异值较大的子信道矩阵。
  41. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行如权利要求32至40中任一项所述的方法。
  42. 一种用于无线通信的装置,包括用于执行如权利要求32至40中任一项所述的方法的单元。
  43. 一种无线通信系统,包括权利要求1至11中任一项中的第一基站以及权利要求12至20中任一项中的第二基站。
  44. 一种无线通信系统,包括权利要求1至11中任一项中的第一基站以及权利要求21至31中任一项中的第二基站。
PCT/CN2020/084604 2019-04-19 2020-04-14 用于无线通信系统的电子设备、方法和存储介质 WO2020211736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080028138.6A CN113678388A (zh) 2019-04-19 2020-04-14 用于无线通信系统的电子设备、方法和存储介质
US17/601,956 US20220190995A1 (en) 2019-04-19 2020-04-14 Electronic device, method, and storage medium for wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910317376.8 2019-04-19
CN201910317376.8A CN111836287A (zh) 2019-04-19 2019-04-19 用于无线通信系统的电子设备、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2020211736A1 true WO2020211736A1 (zh) 2020-10-22

Family

ID=72838025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084604 WO2020211736A1 (zh) 2019-04-19 2020-04-14 用于无线通信系统的电子设备、方法和存储介质

Country Status (3)

Country Link
US (1) US20220190995A1 (zh)
CN (2) CN111836287A (zh)
WO (1) WO2020211736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240040388A1 (en) * 2022-08-01 2024-02-01 Qualcomm Incorporated Techniques for mitigating inter-network node interference in wireless communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594420A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 多点协同传输系统中的干扰抑制方法及装置
CN104717001A (zh) * 2015-03-17 2015-06-17 西安电子科技大学 基于多天线技术的非对称tdd异构网络中跨层干扰减轻方法
CN104980380A (zh) * 2014-04-14 2015-10-14 株式会社Ntt都科摩 基站、通信系统及其方法
CN107070581A (zh) * 2016-12-29 2017-08-18 上海华为技术有限公司 一种干扰消除方法以及基站
US20180287739A1 (en) * 2017-03-28 2018-10-04 Lg Electronics Inc. Method for communication apparatus processing an in-band emission interference signal when the communication appartus operating in fdr mode tranceives signals using fdm manner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737307B2 (en) * 2009-12-22 2014-05-27 Lg Electronics Inc. Apparatus for performing comp communication using a precoded sounding reference signal and method of the same
CN104735789B (zh) * 2013-12-19 2018-06-26 中国移动通信集团公司 一种小区间干扰消除方法、装置及系统
US9559762B2 (en) * 2014-06-30 2017-01-31 Lg Electronics Inc. Method of transceiving feedback information in wireless communication system and apparatus therefor
CN106576328B (zh) * 2014-08-20 2019-12-24 华为技术有限公司 一种无线通信方法、装置及基站
CN106941464B (zh) * 2016-01-04 2020-01-21 中国移动通信集团公司 干扰消除的方法、基站和用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594420A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 多点协同传输系统中的干扰抑制方法及装置
CN104980380A (zh) * 2014-04-14 2015-10-14 株式会社Ntt都科摩 基站、通信系统及其方法
CN104717001A (zh) * 2015-03-17 2015-06-17 西安电子科技大学 基于多天线技术的非对称tdd异构网络中跨层干扰减轻方法
CN107070581A (zh) * 2016-12-29 2017-08-18 上海华为技术有限公司 一种干扰消除方法以及基站
US20180287739A1 (en) * 2017-03-28 2018-10-04 Lg Electronics Inc. Method for communication apparatus processing an in-band emission interference signal when the communication appartus operating in fdr mode tranceives signals using fdm manner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T: "Design of Interference Measurement for NR", 3GPP TSG RAN WG1 MEETING#88, R1-1702296, 17 February 2017 (2017-02-17), XP051209450, DOI: 20200624151818A *

Also Published As

Publication number Publication date
CN113678388A (zh) 2021-11-19
CN111836287A (zh) 2020-10-27
US20220190995A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
EP3497805B1 (en) Method for uplink transmission
CN109075827B (zh) 用于大容量mimo的参考信号和链路适配
RU2767777C2 (ru) Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
US20170104568A1 (en) Method and node in a wireless communication network
JP2020501386A (ja) 無線ネットワークにおけるチャネル測定及び干渉測定のためのシステム及び方法
KR102365954B1 (ko) 멀티 셀 전차원 mimo 시스템을 위한 방법 및 장치
JP7022762B2 (ja) ユーザ装置、基地局、無線通信方法およびシステム
CN108886742A (zh) 5g新无线电中的波束成型公共信道
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
JP2019506084A (ja) ユーザ装置及び無線通信方法
CN113765830B (zh) 获取信道信息的方法及通信装置
JP2023014231A (ja) ユーザ装置、無線通信方法、無線基地局及び無線通信システム
EP3627880B1 (en) Communication device, base station, method and recording medium
CN111066258B (zh) 用于毫米波多用户波束成形中的增强相位反馈的技术和装置
WO2022068624A1 (zh) 一种解调参考信号的发送方法、接收方法及通信装置
JP2020512755A (ja) ユーザ端末及び無線基地局
CN114930732B (zh) 用于要求服务质量的应用的ue协作接收和协作发送
CN113992309A (zh) 获取信道参数的方法及装置
WO2020108367A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021249531A1 (en) Channel state information report based on reference signal and hypothesis in full duplex
WO2020211736A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US10448407B2 (en) Interference cancellation enhancement in HetNets through coordinated SIMO/MIMO interference codes
JP6645369B2 (ja) 無線通信システム、及び、基地局
US20170223741A1 (en) Efficient clear channel assessment (cca) with request-to-send (rts) frame and clear-to-send (cts) frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791148

Country of ref document: EP

Kind code of ref document: A1