WO2021258776A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2021258776A1
WO2021258776A1 PCT/CN2021/079474 CN2021079474W WO2021258776A1 WO 2021258776 A1 WO2021258776 A1 WO 2021258776A1 CN 2021079474 W CN2021079474 W CN 2021079474W WO 2021258776 A1 WO2021258776 A1 WO 2021258776A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
time domain
stmc
domain window
signal strength
Prior art date
Application number
PCT/CN2021/079474
Other languages
English (en)
French (fr)
Inventor
刘海义
孙晓宇
徐波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021258776A1 publication Critical patent/WO2021258776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the communication field, and more specifically, to a communication method and communication device in the communication field.
  • terminal equipment and network equipment need to measure channel quality before transmitting data.
  • NR new radio
  • it can be based on synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast).
  • channel synchronization signal/physical broadcast.
  • SSB synchronization signal/physical broadcast channel block
  • the cell can send SSB, and the terminal device can measure the cell based on the received SSB.
  • the terminal device does not know the sending location of the SSB.
  • the serving cell of the terminal device can send the measurement window configuration of the SSB to the terminal device.
  • the measurement window configuration can be called a synchronization signal/ Physical broadcast channel block measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC), for example, SMTC can include the period, length, and offset of the terminal device to receive the SSB.
  • SSB receives, and there is no need to receive SSB outside the STMC time domain window.
  • the terminal equipment will receive all SSBs in the serving cell and neighboring cells.
  • the terminal equipment will When all SSBs of neighboring cells are received, the required STMC time domain window will also increase, which will lead to an increase in measurement overhead.
  • the embodiments of the present application provide a communication method, device, and system, which help improve system performance.
  • a communication method including: a terminal device (or a module in the terminal device, such as a chip) determines a target beam in the first measurement timing configuration STMC time domain window, and the target beam is carried There is a first synchronization signal/physical broadcast channel block SSB, where the first SSB is a part of all SSBs carried in the first STMC time domain window; the terminal device receives the first SSB on the target beam .
  • the terminal device may only receive part of the SSBs in all SSBs, so as to reduce the number of SSBs that need to be measured, thereby achieving the purpose of saving power consumption.
  • the method further includes: the terminal device receives a second SSB, where the second SSB is all SSBs carried in the second STMC time domain window, and the first The second STMC time domain window is the previous window of the first STMC time domain window; the determining the target beam in the first STMC time domain window includes: the terminal device determines the third SSB in the second SSB, so The first signal strength in the third SSB is greater than or equal to a first threshold, and the first signal strength is the largest signal strength among at least one signal strength corresponding to the third SSB; The index of the beam, and the target beam is determined in the first STMC time domain window.
  • At least one SSB (for example, the third SSB) is selected according to the signal strength from all SSBs (for example, the second SSB) carried in the previous STMC time domain window, and at least one SSB corresponds to the at least one SSB.
  • the largest signal strength in the signal strength (for example, the first signal strength) is greater than or equal to the first threshold, the beam in which the at least one SSB is located is determined as the target beam, and only the SSB on the target beam is received in the next STMC time domain window, In order to reduce the number of SSBs that need to be measured, so as to achieve the purpose of saving power consumption.
  • the first N (N ⁇ 1) SSBs can be selected from all SSBs (for example, the second SSB) carried in the previous STMC time domain window according to the size of the signal strength.
  • the largest signal strength (for example, the first signal strength) of the N signal strengths corresponding to each SSB is greater than or equal to the first threshold, the beam in which the N SSBs are located is determined as the target beam, and only receive in the next STMC time domain window SSB on the target beam to reduce the number of SSBs that need to be measured, so as to achieve the purpose of saving power consumption.
  • the method further includes: the terminal device determines whether a second signal strength is less than a second threshold, and the second signal strength is determined according to at least one signal strength corresponding to the first SSB; If the second signal strength is less than the second threshold, a fourth SSB is received in a third STMC time domain window, and the fourth SSB is all SSBs carried in the third STMC time domain window.
  • the third STMC time domain window is the time domain window after the first STMC time domain window; or, if the second signal strength is greater than or equal to the second threshold, the time domain window within the third STMC time domain window A fifth SSB is received on the target beam, the fifth SSB is a part of all SSBs carried in the third STMC time domain window, and the third STMC time domain window is the size of the first STMC time domain window The next window.
  • the signal strength of the SSB received on the target beam is judged. If the requirements are met, only the SSB on the target beam is still received in the next STMC time domain window, otherwise the SSB in the next STMC time domain window All must be received, so as not to affect the accuracy of the terminal equipment to measure SSB.
  • the first signal strength is the largest signal strength among at least one signal strength corresponding to the first SSB.
  • the method before determining the target beam in the first STMC time domain window, the method further includes: determining that the moving speed of the terminal device within a preset time length is less than or equal to the third Threshold; or, it is determined that the terminal device is in a static state for a preset length of time.
  • the purpose of determining that the terminal device is still within the coverage of the target beam has been achieved, so that the terminal device It is still possible to receive only the SSB on the target beam in the STMC time domain window, so as to reduce the number of SSBs that need to be measured, thereby achieving the purpose of saving power consumption.
  • the method before determining the target beam in the first STMC time domain window, the method further includes: determining that the beam switching frequency is less than or equal to a fourth threshold within a preset time length.
  • the terminal device by determining that the beam switching frequency is less than or equal to the fourth threshold within a preset time length, it is determined that the target beam has not been changed, so that the terminal device can still only detect the SSB on the target beam in the STMC time domain window. Reception is performed to reduce the number of SSBs that need to be measured, so as to achieve the purpose of saving power consumption.
  • a communication device in a second aspect, may be the terminal device in the foregoing method, or may be a chip applied to the terminal device.
  • the communication device includes a processor, which is coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the terminal device in the first aspect and any one of its possible implementation modes; or, to implement the second Aspect and the method executed by the terminal device in any one of its possible implementations.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be the network device in the above method, or a chip applied to the network device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the third aspect and any one of its possible implementation manners; or, to implement the fourth aspect. Aspect and the method executed by the network device in any one of its possible implementations.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program is provided.
  • the program When the program is executed by a processor, it is used to execute any method in the first aspect and its possible implementation manners, or to execute the second aspect and its possible implementation manners. Any method in the third aspect and its possible implementation manners, or any method in the fourth aspect and its possible implementation manners.
  • a program product comprising: program code, when the program code is run by a communication device, the communication device executes any method in the first aspect and its possible implementation manners , Or used to perform any method in the second aspect and its possible implementations, or used to perform any method in the third aspect and its possible implementations, or used to implement the fourth aspect and its possible implementations Any method in the embodiment.
  • a computer-readable storage medium stores a program.
  • the communication device executes any one of the first aspect and its possible implementation manners. Method, or used to perform any method in the second aspect and its possible implementations, or used to perform any method in the third aspect and its possible implementations, or used to implement the fourth aspect and its possible implementations Any one of the implementations.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the timing of receiving the SSB
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 6 is a schematic block diagram of another communication device provided in the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • NR new radio
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or the function of the core network device and the logical function of the wireless access network device can be integrated on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • the radio access network equipment in the embodiments of the present application is an access equipment that a terminal device accesses to the mobile communication system in a wireless manner. reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, or the cloud radio access network (Cloud Radio
  • the wireless controller in the Access Network (CRAN) scenario can also be a relay station, a vehicle-mounted device, a wearable device, and a network device in the PLMN network that will evolve in the future.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. If there is no special description, in this application, network equipment refers to wireless access network equipment.
  • the terminal equipment in the embodiments of the present application may also be referred to as a terminal, a terminal equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • Network equipment and terminal equipment can communicate through licensed spectrum (licensed spectrum), communicate through unlicensed spectrum (unlicensed spectrum), or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • the network equipment and the terminal equipment can communicate through the frequency spectrum below 6 gigahertz (gigahertz, GHz), communicate through the frequency spectrum above 6 GHz, and communicate using the frequency spectrum below 6 GHz and the frequency above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • PSS and SSS are used for terminal equipment to perform downlink synchronization, including timing synchronization, frame synchronization and symbol synchronization; PSS and SSS are also used to obtain cell ID and measure cell signal quality.
  • the signal quality of a cell is mainly measured through SSS signals. The measurement result selects initial beam selection, etc. and RRM measurement, etc.
  • the signal quality of the cell can be used in reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • One or more than two types are used for characterization; the PBCH carries the content of the master information block (MIB).
  • Mobility management is to ensure that the communication link between the network device and the terminal device is not interrupted due to the movement of the terminal device. According to the state of the terminal device, it can be divided into two parts: idle state mobility management and connected state mobility management. In the idle state, mobility management mainly refers to the process of cell selection/reselection, and in the connected state, mobility management mainly refers to cell handover. Whether it is cell selection/reselection or handover, it is all based on the measurement results.
  • the SSB of a cell in SMTC and NR is concentrated in a half-frame of 5ms.
  • one SSB occupies four orthogonal frequency division multiplexing (OFDM) symbols, and the position of the first OFDM symbol of the SSB can have multiple choices.
  • OFDM orthogonal frequency division multiplexing
  • the network device As for which of the above possible locations the network device will send the SSB, it is the internal implementation of the network device, and the terminal device cannot assume.
  • NR introduces the concept of synchronization signal measurement timing configuration (SMTC).
  • SMTC is a time domain window configured by network equipment for terminal equipment to perform SSB-based measurements.
  • the terminal device only needs to perform the SSB measurement within the time domain window, and does not need to perform the SSB measurement outside the time domain window.
  • the SMTC includes: the period and time offset of the time domain window.
  • the period of the time domain window can be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the value of the time offset in each cycle takes 1ms as the granularity and takes a value from 0 to the period of the time domain window minus 1ms.
  • the length of the time domain window (duration), the granularity of the length of the time domain window is also 1ms, and the length can be 1ms, 2ms, 3ms, 4ms, 5ms, etc.
  • the terminal equipment will receive all SSBs in the serving cell and neighboring cells.
  • the terminal equipment will When all SSBs of neighboring cells are received, the required STMC time domain window will also increase, which will lead to an increase in measurement overhead.
  • the terminal device can only receive part of the SSBs in all the SSBs, so as to reduce the number of SSBs that need to be measured, thereby achieving savings The purpose of power consumption.
  • FIG. 2 is a schematic flowchart of the method 200. Hereinafter, each step of the method 200 will be described in detail.
  • the method 200 is described by taking a terminal device as an executor of the method 200 as an example.
  • the execution subject of the method 200 may also be a chip corresponding to the terminal device.
  • the terminal device determines a target beam, the target beam bears a first SSB, and the first SSB is a part of all SSBs carried in the first STMC time domain window.
  • step 220 the terminal device receives the first SSB on the target beam.
  • the network device sends the SSB to the terminal device on multiple beams in the STMC1 time domain window (for example, the first STMC time domain window).
  • the SSB carried in the STMC1 time domain window is denoted as SSB1 (for example, The first SSB)
  • the multiple beams all carry SSB1
  • the terminal device can determine at least two beams (for example, target beams) from the multiple beams, and only receive the SSB1 carried by the at least two beams, And measure the received SSB1.
  • STMC1 includes 10 beams, beam 0 to beam 9, and the terminal device can select beams with odd numbers from the 10 beams, namely beam 1, beam 3, beam 5, beam 7, and For beam 9, only beam 1, beam 3, beam 5, beam 7 and SSB1 carried on beam 9 are received.
  • the terminal device may only receive part of the SSBs in all SSBs, so as to reduce the number of SSBs that need to be measured, thereby achieving the purpose of saving power consumption.
  • the terminal device may determine the target beam in the following manner.
  • the method 200 may further include the following steps: the terminal device receives a second SSB, the second SSB is all SSBs carried in the second STMC time domain window, and the second STMC time domain window is the front of the first STMC time domain window. A window.
  • the STMC2 time domain window (for example, the second STMC time domain window) is the previous time domain window adjacent to STMC1, and the terminal device receives all SSBs (for example, the second SSB) carried in the STMC2 time domain window.
  • the terminal device can determine the SSB (for example, the third SSB) that satisfies the condition from all SSBs carried in the STMC2 time domain window, and the terminal device can further determine the index of the beam carrying the SSB that satisfies the condition in the STMC2 time domain window.
  • the device may determine the beam with the same index in the STMC1 time domain window as the target beam.
  • the terminal device may select the first N (N ⁇ 1) SSBs according to the signal strength from all SSBs carried in the STMC2 time domain window, where the N SSBs correspond to signal strength 1 (for example, the first A signal strength) is greater than or equal to the threshold value 1 (for example, the first threshold value), the signal strength 1 may be the largest signal strength among the N signal strengths corresponding to the N SSBs, and the terminal device determines the N SSBs as satisfying the condition SSB, for example, the beams carrying SSBs that meet the conditions in the STMC2 time domain window can be beam 2, beam 3, beam 5, beam 7, and beam 8.
  • the terminal device can set beam 2, beam 3, and beam in the STMC1 time domain window. 5. Beam 7 and beam 8 are determined as target beams, and N is equal to 5.
  • N when N is equal to 1, it means that the terminal device has selected one SSB from all SSBs carried in the STMC2 time domain window, and the signal strength of the SSB is greater than or equal to the threshold 1.
  • the foregoing signal strength may be reference signal received power (RSRP), and the threshold value 1 may be 85 dBm, and the terminal device may determine an SSB with an RSRP greater than or equal to 85 dBm in the STMC2 time domain window as meeting the condition.
  • RSRP reference signal received power
  • the threshold value 1 may be 85 dBm
  • the terminal device may determine an SSB with an RSRP greater than or equal to 85 dBm in the STMC2 time domain window as meeting the condition.
  • the foregoing is only an exemplary description for describing the solution, and does not constitute any limitation to the embodiment of the present application.
  • the SSB that meets the condition can also be determined according to the signal quality.
  • the embodiment of the present application does not Make a limit.
  • the method 200 may further include the following steps: the terminal device determines whether the second signal strength is less than a second threshold, the second signal strength is determined according to at least one signal strength corresponding to the first SSB; if the second signal strength is less than all According to the second threshold, the terminal device receives the fourth SSB in the third STMC time domain window, the fourth SSB is all SSBs carried in the third STMC time domain window, and the third STMC time domain window is that of the first STMC time domain window The latter window; or, if the second signal strength is greater than or equal to the second threshold, the fifth SSB is received on the target beam in the third STMC time domain window, and the fifth SSB is carried in the third STMC time domain window For some SSBs in all SSBs, the third STMC time domain window is a window after the first STMC time domain window.
  • the SMTC3 time domain window here is the next time domain window adjacent to SMTC1
  • the terminal device may determine the signal strength 2 (for example, the second signal strength) according to the received signal strength of each SSB1, and compare the signal strength 2 with the threshold 2 (for example, the second threshold).
  • the terminal device can receive all SSBs in the SMTC3 time domain window (for example, the fourth SSB); if the signal strength 2 is greater than or equal to the threshold 2, the terminal device can receive only the target in the SMTC3 time domain window SSB on the beam (e.g., fifth SSB).
  • signal strength 2 may be the largest signal strength among the signal strengths of all SSB1s.
  • 5 SSB1s are included in total, 5 SSB1s correspond to 5 signal strengths, and signal strength 2 may be the highest of the 5 signal strengths.
  • the method 200 may further include the following steps: determining that the moving speed of the terminal device within a preset length of time is less than or equal to a third threshold; or, determining that the terminal device is in a static state within the preset length of time.
  • the terminal device when receiving the SSB on the target beam, it is necessary to ensure that the terminal device is within the coverage of the target beam, so that the terminal device can accurately receive the SSB sent by the network device. To this end, it is possible to determine whether the terminal device is within the coverage of the target beam by determining the motion state of the terminal device.
  • the target beams determined by the terminal device in the STMC2 time domain window are beam 2, beam 3, beam 5, and beam 7, in order to ensure that the terminal device is still in beam 2, beam 3, beam 5, and beam 7 in the STMC1 time domain window.
  • the terminal device can determine whether the terminal device has moved within the time length of the STMC2 time domain window to the STMC1 time domain window (for example, the preset time length).
  • the terminal device can determine the current terminal device's current The state of exercise.
  • the terminal device If the terminal device is in a static state during this period, it can be considered that the terminal device is still within the coverage of the target beam, or if the moving speed of the terminal device during this period is less than or equal to the threshold 3 (for example, the third threshold), it is also It can be considered that the terminal equipment is still within the coverage of the target beam.
  • the threshold 3 for example, the third threshold
  • the method 200 may further include the following step: determining that the beam switching frequency is less than or equal to a fourth threshold within a preset time length.
  • the beam used at different times may change, that is, the network device may switch the beam during the process of sending the SSB. Therefore, in order to ensure that the terminal device is within the coverage of the target beam, it can be determined whether the beam switching frequency is less than or equal to the threshold 4 (for example, the fourth threshold). If the beam switching frequency is less than or equal to the threshold 4, it can be considered that the terminal device is still Within the coverage of the target beam.
  • the threshold 4 for example, the fourth threshold
  • the terminal device judges whether the terminal device is within the coverage of the target beam according to the motion state of the terminal device and the beam switching frequency.
  • the switching frequency is less than or equal to the threshold value 4
  • the terminal device is considered to be still within the coverage of the target beam; or, when the terminal device is in a static state for a preset period of time and the beam switching frequency is less than or equal to the threshold value 4, the terminal device is considered to be Still within the coverage of the target beam.
  • the method 300 is described by taking a terminal device as an executor of the method 300 as an example.
  • the execution subject of the method 300 may also be a chip corresponding to the terminal device.
  • the terminal device measures the SSB according to the large and small periods. As shown in FIG. 3, there is a large period T 1 between the SMTC4 time domain window and the SMTC10 time domain window, and T 1 includes multiple small periods T 2 , The terminal device can measure all SSBs in the SMTC4 time domain window, and according to the measurement results, select the SSB that meets the condition from all SSBs in the SMTC4 time domain window, and carry the SSB that meets the condition in the SMTC4 time domain window.
  • beam index determining a target beam receiving window in the time domain to the SMTC T 2 inside, the terminal device can only SSB beam on the target to achieve the purpose of saving power.
  • FIG. 4 is a schematic flowchart of the method 300. Each step of the method 300 will be described in detail below. In the method 300, it assumes that the current time is a start time of a large cycle T 1.
  • step 301 the terminal device measures all beams in the SMTC time domain window.
  • the terminal device measures all SSBs in the current SMTC time domain window.
  • step 302 the terminal device determines the state of motion within a preset length of time.
  • step 303 the terminal device determines whether the moving speed within a preset length of time is less than or equal to the threshold 3, or the terminal device determines whether it is in a static state within a preset length of time.
  • step 304 is executed.
  • step 304 it is determined whether the beam switching frequency is less than or equal to the threshold value 4 within a preset time length, and if the beam switching frequency is less than or equal to the threshold value 4, step 305 is executed.
  • step 305 the terminal device selects an SSB that meets the condition from the SSB received in step 301, and determines the target beam according to the selected SSB that meets the condition.
  • the method of determining the target beam according to the selected SSB that meets the conditions please refer to the related description in the method 200, and for the sake of brevity, it is not repeated here.
  • step 306 the terminal device determines whether the small period T 2 has started, and if it has started, step 307 is executed.
  • step 307 the terminal device only receives the SSB on the target beam in the SMTC time domain window within the small period T 2.
  • the SMTC time domain window in the small period T 2 in step 306 and step 307 is the SMTC5 time domain window.
  • step 308 the terminal device determines whether the next small period T 2 starts, and if it starts, step 309 is executed.
  • step 309 determines whether the terminal device is received only in the next cycle T SSB small beam on a target within the window in the time domain SMTC 2, if it is determined SSB may only receive beam on the target, step 310 is performed, Otherwise, go to step 301.
  • the method for determining whether to receive only the SSB on the target beam please refer to the related description in the method 200, and for the sake of brevity, the details are not repeated here.
  • step 310 the terminal device only receives the SSB on the target beam in the SMTC time domain window within the next small period T 2.
  • the SMTC time domain window in the small period T 2 from step 308 to step 310 is the SMTC6 time domain window.
  • step 311 the terminal apparatus determines a large period T 1 whether to start, if started, the process goes to step 301, otherwise step 312 is performed.
  • step 312 the terminal device determines whether to stop measuring SSB, if it stops measuring SSB, it ends; otherwise, step 308 is executed.
  • step 303 in the method 300 can be omitted, or it can be judged whether the terminal device is within the coverage of the target beam only based on the beam switching frequency.
  • step 302 in the method 300 can be omitted, or it can also be based on the movement of the terminal device.
  • the status and the beam switching frequency are integrated to determine whether the terminal device is within the coverage of the target beam, which is not limited in the embodiment of the present application.
  • the foregoing description of the preset time length is only an exemplary description.
  • the foregoing preset time length may also be the amount of time the terminal device accesses the network.
  • the length of time from the moment to the current moment is not limited in the embodiment of the present application.
  • the threshold value 1 to the threshold value 4 may be notified by the network device to the terminal device, or may also be determined based on a protocol, which is not limited in the embodiment of the present application.
  • the threshold value 1 and the threshold value 2 may be the same threshold value, or may also be different threshold values, which is not limited in the embodiment of the present application.
  • the terminal device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 5 and 6 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal equipment in the foregoing method embodiments, and therefore can also achieve the beneficial effects of the foregoing method embodiments.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1, and may also be a module (such as a chip) applied to the terminal device.
  • the communication device 400 includes a processing unit 410 and a transceiving unit 420.
  • the communication device 400 is used to implement the function of the terminal device in the method embodiment shown in FIG. 2 or FIG. 4.
  • the processing unit 410 is configured to determine a target beam within the STMC time domain window at the first measurement timing configuration, and the target beam bears A first synchronization signal/physical broadcast channel block SSB, where the first SSB is a part of all SSBs carried in the first STMC time domain window.
  • the transceiver unit 420 is configured to receive the first SSB on the target beam.
  • the transceiving unit 420 is further configured to: receive a second SSB, where the second SSB is all SSBs carried in a second STMC time domain window, and the second STMC time domain window is The first window of the first STMC time domain window; the processing unit 410 is specifically configured to: determine a third SSB in the second SSB, and the first signal strength in the third SSB is greater than or equal to the first Threshold, the first signal strength is the largest signal strength among at least one signal strength corresponding to the third SSB; according to the index of the beam carrying the third SSB, the first STMC time domain window is determined The target beam.
  • the processing unit 410 is specifically configured to determine whether the second signal strength is less than or equal to a second threshold, and the second signal strength is based on at least one signal strength corresponding to the first SSB Determined; if the second signal strength is less than or equal to the second threshold, a fourth SSB is received in a third STMC time domain window, where the fourth SSB is all carried in the third STMC time domain window SSB, the third STMC time domain window is a time domain window after the first STMC time domain window; or, if the second signal strength is greater than the second threshold, within the third STMC time domain window
  • the fifth SSB is received on the target beam, the fifth SSB is a part of all SSBs carried in the third STMC time domain window, and the third STMC time domain window is the first STMC time The window after the domain window.
  • the second signal strength is the largest signal strength among at least one signal strength corresponding to the first SSB.
  • the processing unit 410 is specifically configured to: before determining the target beam in the first STMC time domain window, determine that the moving speed of the device within a preset time length is less than or equal to the third Threshold; or, it is determined that the device is in a static state for a preset length of time.
  • the processing unit 410 is configured to: before determining the target beam in the first STMC time domain window, determine that the beam switching frequency is less than or equal to the fourth threshold within a preset time length.
  • processing unit 410 and the transceiving unit 420 can be obtained directly by referring to the relevant description in the method embodiment shown in FIG. 2 or FIG. 4, and will not be repeated here.
  • the communication device 500 includes a processor 510 and an interface circuit 520.
  • the processor 510 and the interface circuit 520 are coupled to each other.
  • the interface circuit 520 may be a transceiver or an input/output interface.
  • the communication device 500 may further include a memory 530 for storing instructions executed by the processor 510 or storing input data required by the processor 510 to run the instructions or storing data generated after the processor 510 runs the instructions.
  • the processor 510 is used to perform the function of the above-mentioned processing unit 410, and the interface circuit 520 is used to perform the function of the above-mentioned transceiving unit 420.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, and can also be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in Random Access Memory (RAM), Flash memory, Read-Only Memory (ROM), Programmable ROM (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the associated objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,对于STMC时域窗口内承载的全部SSB,终端设备可以仅接收全部SSB中的部分SSB,以减少需要测量的SSB的数量,从而为节省功耗提供了一种解决方案。

Description

通信方法及通信装置
本申请要求于2020年06月24日提交国家知识产权局、申请号为202010595492.9、申请名称为“通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中通信方法及通信装置。
背景技术
在当前的通信系统中,终端设备与网络设备在传输数据之前,需要对信道质量进行测量,例如在新无线(new radio,NR)中可以基于同步信号/物理广播信道块(synchronization signal/physical broadcast channel,SSB)进行测量。小区可以发送SSB,终端设备可以根据接收的SSB对小区进行测量。
但是终端设备并不知道SSB的发送位置,为了避免终端设备一直搜索SSB而导致的高功耗,终端设备的服务小区可以向终端设备发送SSB的测量窗口配置,测量窗口配置可以称为同步信号/物理广播信道块测量定时配置(SS/PBCH block measurement timing configuration,SMTC),例如SMTC中可以包括终端设备接收SSB的周期、长度和偏移量,这样,终端设备只需要在STMC时域窗口内对SSB进行接收,而在STMC时域窗口外无需对SSB进行接收。
在现有的测量方案中,终端设备对服务小区以及相邻小区的所有SSB均会进行接收,然而,随着网络设备的密度、频点和波束数量的增加,终端设备在对服务小区以及相邻小区的所有SSB进行接收时,所需要的STMC时域窗口也会增大,这样就会导致测量开销的增大。
发明内容
本申请实施例提供了一种通信方法、装置及系统,有助于提高系统性能。
第一方面,提供了一种通信方法,包括:终端设备(也可以是终端设备中的模块,比如,芯片)在第一测量定时配置STMC时域窗口内确定目标波束,所述目标波束上承载有第一同步信号/物理广播信道块SSB,所述第一SSB为所述第一STMC时域窗口内承载的全部SSB中的部分SSB;终端设备在所述目标波束上接收所述第一SSB。
基于上述技术方案,对于STMC时域窗口内承载的全部SSB,终端设备可以仅接收全部SSB中的部分SSB,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:终端设备接收第二SSB,所述第二SSB为第二STMC时域窗口内承载的全部SSB,所述第二STMC时域窗口为所述第一STMC时域窗口的前一个窗口;所述在第一STMC时域窗口内确定目标波束,包括:终端设备在所述第二SSB中确定第三SSB,所述第三SSB中的第一信号强度大于或等于第一阈值,所述第一信号强度为所述第三SSB对应的至少一个信号强度中最大的信号强度;终端设备根据承载所述第三SSB的波束的索引,在所述第一STMC时域窗口内确定所述目标波束。
基于上述技术方案,从前一个STMC时域窗口内承载的全部SSB(例如,第二SSB)中按照信号强度的大小选出至少一个SSB(例如,第三SSB),该至少一个SSB对应的至少一个信号强度中最大的信号强度(例如,第一信号强度)大于或等于第一阈值,将该至少一个SSB所在的波束确定为目标波束,在下一个STMC时域窗口内仅接收目标波束上的SSB,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
示例性地,可以从前一个STMC时域窗口内承载的全部SSB(例如,第二SSB)中按照信号强度的大小选出前N(N≥1)个SSB(例如,第三SSB),该N个SSB对应的N个信号强度中最大的信号强度(例如,第一信号强度)大于或等于第一阈值,将该N个SSB所在的波束确定为目标波束,在下一个STMC时域窗口内仅接收目标波束上的SSB,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
结合第一方面和上述实现方式,所述方法还包括:终端设备确定第二信号强度是否小于第二阈值,所述第二信号强度是根据所述第一SSB对应的至少一个信号强度确定的;如果所述第二信号强度小于所述第二阈值,在第三STMC时域窗口内接收第四SSB,所述第四SSB为所述第三STMC时域窗口内承载的全部SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个时域窗口;或,如果所述第二信号强度大于或等于所述第二阈值,在第三STMC时域窗口内的所述目标波束上接收第五SSB,所述第五SSB为所述第三STMC时域窗口内承载的全部SSB中的部分SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个窗口。
基于上述技术方案,对在目标波束上接收的SSB的信号强度进行判断,如果满足要求,则在下一个STMC时域窗口内仍然仅接收目标波束上的SSB,否则在下一个STMC时域窗口内的SSB均要进行接收,以免影响终端设备测量SSB的准确性。
结合第一方面和上述实现方式,所述第一信号强度是所述第一SSB对应的至少一个信号强度中最大的信号强度。
结合第一方面和上述实现方式,所述在第一STMC时域窗口内确定目标波束之前,所述方法还包括:确定所述终端设备在预设的时间长度内的移动速度小于或等于第三阈值;或,确定所述终端设备在预设的时间长度内处于静止状态。
基于上述技术方案,通过确定终端设备在预设的时间长度内的移动速度小于或等于第三阈值,或处于静止状态,已达到确定终端设备仍然在目标波束的覆盖范围内的目的,使得终端设备依然可以仅对STMC时域窗口内的目标波束上的SSB进行接收,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
结合第一方面和上述实现方式,所述在第一STMC时域窗口内确定目标波束之前,所述方法还包括:确定波束切换频率在预设的时间长度内小于或等于第四阈值。
基于上述技术方案,通过确定波束切换频率在预设的时间长度内小于或等于第四阈值,以确定目标波束尚未发生改变,使得终端设备依然可以仅对STMC时域窗口内的目标波束上的SSB进行接收,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
第二方面,提供一种通信装置,该通信装置可以为上述方法中的终端设备,或者,为应用于终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中终端设备所执行的方法;或者,以实现上述第二方面及其任意一种可能的实现方式中终端设备所执行的方法。可选 地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为应用于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第三方面,提供一种通信装置,该通信装置可以为上述方法中的网络设备,或者,为应用于网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面及其任意一种可能的实现方式中网络设备所执行的方法;或者,以实现上述第四方面及其任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为应用于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第四方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法。
第五方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置运行时,使得通信装置执行上述第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法。
第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序被执行时,使得通信装置执行上述第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图;
图2是本申请实施例提供的通信方法的示意性流程图;
图3是接收SSB的时序示意图;
图4是本申请实施例提供的通信方法的另一示意性流程图;
图5本申请提供的一种通信装置的示意性框图;
图6本申请提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、第五代(5th Generation,5G)移动通信系统中的新无线(new radio,NR)以及未来的移动通信系统等。
图1是适用于本申请实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
本申请实施例中的无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点,还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,还可以是中继站、车载设备、可穿戴设备以及未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。
本申请实施例中的终端设备也可以称为终端Terminal、终端设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
首先对本申请用到的术语进行简单的描述。
SSB包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信道(physical broadcast channel,PBCH),以及 为了解调PBCH所需的解调参考信号(demodulation reference signal,DMRS)。PSS和SSS用于终端设备进行下行同步,包括定时同步、帧同步和符号同步;PSS和SSS还用于获取小区ID以及测量小区信号质量,测量小区的信号质量主要是通过SSS信号进行测量,根据测量结果选择初始波束选择等和RRM测量等。小区的信号质量可以用参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一种或两种以上进行表征;PBCH承载了主系统信息(master information block,MIB)内容。
测量,测量是移动性管理的基础,移动性管理是无线移动通信中的重要组成部分。移动性管理是为了保证网络设备与终端设备之间的通信链路不因终端设备的移动而中断。根据终端设备的状态可以分为空闲态移动性管理和连接态移动性管理两部分。在空闲态下,移动性管理主要指的是小区选择/重选(cell selection/reselection)的过程,在连接态下,移动性管理主要指的是小区切换(handover)。不论是小区选择/重选还是切换,都是基于测量的结果进行的。
SMTC,NR中一个小区的SSB集中在一个5ms的半帧里。在时域上,一个SSB占据4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),SSB的第一个OFDM符号的位置可以有多种选择。至于网络设备会在上述可能的位置中的哪些位置发送SSB则是网络设备的内部实现,终端设备无法假设。为了避免终端设备无谓的搜索导致的高功耗。NR引入了同步信号测量定时配置(SMTC)的概念。SMTC是网络设备为终端设备配置的一个用于进行基于SSB的测量的时域窗口。终端设备只需要在时域窗口内进行SSB测量,而在时域窗口外无需进行SSB测量。SMTC包括:时域窗口的周期与时间偏移量(offset)。时域窗口的周期可以是5ms、10ms、20ms、40ms、80ms或160ms等。而每个周期下时间偏移量的取值以1ms为颗粒度在0到时域窗口的周期减1ms之间取值。
时域窗口的长度(duration),时域窗口长度的粒度也为1ms,长度可以是1ms、2ms、3ms、4ms或5ms等。
在现有的测量方案中,终端设备对服务小区以及相邻小区的所有SSB均会进行接收,然而,随着网络设备的密度、频点和波束数量的增加,终端设备在对服务小区以及相邻小区的所有SSB进行接收时,所需要的STMC时域窗口也会增大,这样就会导致测量开销的增大。
有鉴于此,本申请实施例提出的一种通信方法,对于STMC时域窗口内承载的全部SSB,终端设备可以仅接收全部SSB中的部分SSB,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
下面结合方法200对本申请实施例提供的通信方法的一种实现方式进行说明,图2是方法200的示意性流程图。下面,对方法200的每个步骤进行详细说明。
在本申请实施例中,以终端设备作为执行方法200的执行主体为例,对方法200进行说明。作为示例而非限定,执行方法200的执行主体也可以是对应终端设备的芯片。
在步骤210中,终端设备确定目标波束,目标波束上承载有第一SSB,第一SSB为第一STMC时域窗口内承载的全部SSB中的部分SSB。
在步骤220中,终端设备在目标波束上接收第一SSB。
换句话说,网络设备在STMC1时域窗口(例如,第一STMC时域窗口)内的多个波束上向终端设备发送SSB,下文中将STMC1时域窗口内承载的SSB记为SSB1(例如,第一SSB),该多个波束上均承载了SSB1,终端设备可以从该多个波束中确定出至少两个波束(例如,目标波束),仅对该至少两个波束承载的SSB1进行接收,并对接收到的SSB1进行测量。
示例性的,STMC1内包括10个波束,分别为波束0至波束9,终端设备可以从该10个波束中选出索引号为奇数的波束,即波束1、波束3、波束5、波束7以及波束9,仅对波束1、波束3、波束5、波束7以及波束9上承载的SSB1进行接收。
基于上述技术方案,对于STMC时域窗口内承载的全部SSB,终端设备可以仅接收全部SSB中的部分SSB,以减少需要测量的SSB的数量,从而达到节省功耗的目的。
作为一种实现方式,终端设备可以通过以下方式确定目标波束。
示例性地,方法200还可以包括以下步骤:终端设备接收第二SSB,第二SSB为第二STMC时域窗口内承载的全部SSB,第二STMC时域窗口为第一STMC时域窗口的前一个窗口。
换句话说,STMC2时域窗口(例如,第二STMC时域窗口)是与STMC1相邻的前一个时域窗口,终端设备接收STMC2时域窗口内承载的全部SSB(例如,第二SSB)。
终端设备可以从STMC2时域窗口内承载的全部SSB确定出满足条件的SSB(例如,第三SSB),终端设备进一步可以确定出STMC2时域窗口内承载该满足条件的SSB的波束的索引,终端设备可以将STMC1时域窗口内与该索引相同的波束确定为目标波束。
示例性地,终端设备可以从STMC2时域窗口内承载的全部SSB中按照信号强度的大小选出前N(N≥1)个SSB,其中,该N个SSB对应的信号强度1(例如,第一信号强度)大于或等于阈值1(例如,第一阈值),信号强度1可以是该N个SSB对应的N个信号强度中最大的信号强度,终端设备将该N个SSB确定为满足条件的SSB,例如,STMC2时域窗口内承载满足条件的SSB的波束可以是波束2、波束3、波束5、波束7、波束8,终端设备可以将STMC1时域窗口内的波束2、波束3、波束5、波束7、波束8确定为目标波束,此时N等于5。
应理解,当N等于1时,意味着终端设备从STMC2时域窗口内承载的全部SSB中选出了一个SSB,该SSB的信号强度大于或等于阈值1。
示例性地,上述信号强度可以是参考信号接收功率(reference signal received power,RSRP),阈值1可以是85dBm,终端设备可以将STMC2时域窗口内RSRP大于或等于85dBm的SSB确定为满足条件的。
需要说明的是,上述仅是为了描述方案所做的示例性说明,不对本申请实施例构成任何限定,在具体实现时,还可以根据信号质量确定满足条件的SSB,本申请实施例对此不做限定。
示例性地,方法200还可以包括以下步骤:终端设备确定第二信号强度是否小于第二阈值,第二信号强度是根据第一SSB对应的至少一个信号强度确定的;如果第二信号强度小于所述第二阈值,终端设备在第三STMC时域窗口内接收第四SSB,第四SSB为第三STMC时域窗口内承载的全部SSB,第三STMC时域窗口为第一STMC时域窗口的后 一个窗口;或,如果第二信号强度大于或等于所述第二阈值,在第三STMC时域窗口内的目标波束上接收第五SSB,第五SSB为第三STMC时域窗口内承载的全部SSB中的部分SSB,第三STMC时域窗口为第一STMC时域窗口的后一个窗口。
换句话说,为了确定在SMTC3时域窗口(例如,第三SMTC时域窗口)内能否继续仅接收目标波束上的SSB,此处的SMTC3时域窗口是与SMTC1相邻的下一时域窗口,终端设备可以根据接收到的每个SSB1的信号强度确定信号强度2(例如,第二信号强度),将信号强度2与阈值2(例如,第二阈值)进行比较。如果信号强度2小于阈值2,终端设备可以在SMTC3时域窗口内接收全部SSB(例如,第四SSB);如果信号强度2大于或等于阈值2,终端设备可以在SMTC3时域窗口内仅接收目标波束上的SSB(例如,第五SSB)。
示例性地,信号强度2可以是所有SSB1的信号强度中的最大的信号强度,例如,共包括5个SSB1,5个SSB1共对应5个信号强度,信号强度2可以是5个信号强度中的最大的信号强度,或者,只有1个SSB1,1个SSB1对应1个信号强度,信号强度2就是该1个SSB1对应的该1个信号强度。
示例性地,方法200还可以包括以下步骤:确定终端设备在预设的时间长度内的移动速度小于或等于第三阈值;或,确定终端设备在预设的时间长度内处于静止状态。
换句话说,在目标波束上接收SSB时,有必要确保终端设备在目标波束的覆盖范围内,这样才能使得终端设备对网络设备发送的SSB进行准确接收。为此,可以通过确定终端设备的运动状态来确定终端设备是否在目标波束的覆盖范围内。
假设终端设备在STMC2时域窗口内确定的目标波束分别为波束2、波束3、波束5、波束7,为了保证在STMC1时域窗口内终端设备仍然在波束2、波束3、波束5、波束7的覆盖范围内,可以确定终端设备在STMC2时域窗口至STMC1时域窗口的时间长度(例如,预设的时间长度)内是否发生了移动,终端设备可以通过内部的速度传感器确定终端设备的当前的运动状态。如果终端设备在此期间处于静止状态,则可以认为终端设备仍然在目标波束的覆盖范围内,或者,如果终端设备在此期间的移动速度小于或等于阈值3(例如,第三阈值),则也可以认为终端设备仍然在目标波束的覆盖范围内。
示例性地,方法200还可以包括以下步骤:确定波束切换频率在预设的时间长度内小于或等于第四阈值。
网络设备在向终端设备发送SSB时,不同时刻所使用的波束可能会发生变化,即网络设备在发送SSB的过程中可能会进行波束切换。因此,为了保证终端设备在目标波束的覆盖范围内,可以确定波束切换频率是否小于或等于阈值4(例如,第四阈值),如果波束切换频率小于或等于阈值4,则可以认为终端设备仍然在目标波束的覆盖范围内。
此外,终端设备根据终端设备的运动状态与波束切换频率综合来判断终端设备是否在目标波束的覆盖范围内,例如,当终端设备在预设的时间长度内的移动速度小于或等于阈值3且波束切换频率小于或等于阈值4时,认为终端设备仍然在目标波束的覆盖范围内;或者,当终端设备在预设的时间长度内处于静止状态且波束切换频率小于或等于阈值4时,认为终端设备仍然在目标波束的覆盖范围内。
下面结合方法300对本申请实施例提供的通信方法的另一种实现方式进行说明。
在本申请实施例中,以终端设备作为执行方法300的执行主体为例,对方法300进行 说明。作为示例而非限定,执行方法300的执行主体也可以是对应终端设备的芯片。
在方法300中,终端设备对SSB按照大小周期进行测量,如图3所示,SMTC4时域窗口至SMTC10时域窗口之间为一个大周期T 1,在T 1内部包括多个小周期T 2,终端设备可以对SMTC4时域窗口内的所有SSB进行测量,根据测量结果,从SMTC4时域窗口内的所有SSB中选出满足条件的SSB,并根据SMTC4时域窗口内承载满足条件的SSB的波束的索引,确定目标波束,对于处于T 2内部的SMTC时域窗口,终端设备可以仅对目标波束上的SSB进行接收,从而达到节省功耗的目的。
图4是方法300的示意性流程图。下面对方法300的每个步骤进行详细说明。在方法300中,假设当前时刻为某一个大周期T 1的起始时刻。
在步骤301中,终端设备对SMTC时域窗口内的所有波束均进行测量。
终端设备对当前SMTC时域窗口内的所有SSB均进行测量。
在步骤302中,终端设备确定在预设的时间长度内的运动状态。
在步骤303中,终端设备确定在预设的时间长度内的移动速度是否小于或等于阈值3,或者,终端设备确定在预设的时间长度内是否处于静止状态。
如果终端设备在预设的时间长度内的移动速度小于或等于阈值3,或者,终端设备在预设的时间长度内处于静止状态,则执行步骤304。
在步骤304中,确定在预设的时间长度内波束切换频率是否小于或等于阈值4,如果波束切换频率小于或等于阈值4,则执行步骤305。
在步骤305中,终端设备从步骤301中接收到的SSB中选出满足条件的SSB,根据选出的满足条件的SSB确定目标波束。关于根据选出的满足条件的SSB确定目标波束的方法请参考方法200中的相关描述,为了简洁,此处不再赘述。
在步骤306中,终端设备确定小周期T 2是否开始,如果开始,则执行步骤307。
在步骤307中,终端设备仅接收处于小周期T 2内的SMTC时域窗口内的目标波束上的SSB。
基于步骤301中的假设,步骤306与步骤307中的小周期T 2内的SMTC时域窗口为SMTC5时域窗口。
在步骤308中,终端设备确定下一个小周期T 2是否开始,如果开始,则执行步骤309。
在步骤309中,终端设备确定能否仅接收处于该下一个小周期T 2内的SMTC时域窗口内的目标波束上的SSB,如果确定可以仅接收目标波束上的SSB,则执行步骤310,否则执行步骤301。关于确定能否仅接收目标波束上的SSB的方法请参考方法200中的相关描述,为了简洁,此处不再赘述。
在步骤310中,终端设备仅接收处于该下一个小周期T 2内的SMTC时域窗口内的目标波束上的SSB。
基于步骤301中的假设,步骤308至步骤310中的小周期T 2内的SMTC时域窗口为SMTC6时域窗口。
在步骤311中,终端设备确定下一个大周期T 1是否开始,如果开始,则转而执行步骤301,否则执行步骤312。
在步骤312中,终端设备判断是否停止测量SSB,如果停止测量SSB,则结束,否则执行步骤308。
需要说明的是,在方法200以及方法300中,在确定终端设备是否在目标波束的覆盖范围内时,可以仅根据终端设备的运动状态来判断终端设备是否在目标波束的覆盖范围内,此时方法300中的步骤303可以省略,或者,可以仅根据波束切换频率来判断终端设备是否在目标波束的覆盖范围内,此时方法300中的步骤302可以省略,或者,还可以根据终端设备的运动状态与波束切换频率综合来判断终端设备是否在目标波束的覆盖范围内,本申请实施例对此不作限定。
还需要说明的是,在方法200以及方法300中,上述关于预设的时间长度的描述仅作为示例性说明,在具体实现时,上述预设的时间长度还可以是终端设备从接入网络的时刻起,至当前时刻的时间长度,本申请实施例对此不作限定。
还需要说明的是,在方法200以及方法300中,阈值1至阈值4可以是网络设备通知给终端设备的,或者,还可以基于协议确定的,本申请实施例对此不作限定。
还需要说明的是,在方法200以及方法300中,阈值1与阈值2可以是相同的阈值,或者,还可以是不同的阈值,本申请实施例对此不作限定。
可以理解的是,为了实现上述实施例中功能,终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5和图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,还可以是应用于终端设备的模块(如芯片)。
如图5所示,通信装置400包括处理单元410和收发单元420。通信装置400用于实现上述图2、或图4中所示的方法实施例中终端设备的功能。
当通信装置400用于实现图2所示的方法实施例中终端设备的功能时:处理单元410,用于在第一测量定时配置STMC时域窗口内确定目标波束,所述目标波束上承载有第一同步信号/物理广播信道块SSB,所述第一SSB为所述第一STMC时域窗口内承载的全部SSB中的部分SSB。
收发单元420,用于在所述目标波束上接收所述第一SSB。
在一种可能的实现方式中,所述收发单元420还用于:接收第二SSB,所述第二SSB为第二STMC时域窗口内承载的全部SSB,所述第二STMC时域窗口为所述第一STMC时域窗口的前一个窗口;所述处理单元410具体用于:在所述第二SSB中确定第三SSB,所述第三SSB中的第一信号强度大于或等于第一阈值,所述第一信号强度为所述第三SSB对应的至少一个信号强度中最大的信号强度;根据承载所述第三SSB的波束的索引,在所述第一STMC时域窗口内确定所述目标波束。
在一种可能的实现方式中,所述处理单元410具体用于:确定第二信号强度是否小于或等于第二阈值,所述第二信号强度是根据所述第一SSB对应的至少一个信号强度确定的;如果所述第二信号强度小于或等于所述第二阈值,在第三STMC时域窗口内接收第四SSB,所述第四SSB为所述第三STMC时域窗口内承载的全部SSB,所述第三STMC时 域窗口为所述第一STMC时域窗口的后一个时域窗口;或,如果所述第二信号强度大于所述第二阈值,在第三STMC时域窗口内的所述目标波束上接收第五SSB,所述第五SSB为所述第三STMC时域窗口内承载的全部SSB中的部分SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个窗口。
在一种可能的实现方式中,所述第二信号强度是所述第一SSB对应的至少一个信号强度中最大的信号强度。
在一种可能的实现方式中,所述处理单元410具体用于:在第一STMC时域窗口内确定目标波束之前,确定所述装置在预设的时间长度内的移动速度小于或等于第三阈值;或,确定所述装置在预设的时间长度内处于静止状态。
在一种可能的实现方式中,所述处理单元具410体用于:在第一STMC时域窗口内确定目标波束之前,确定波束切换频率在预设的时间长度内小于或等于第四阈值。
有关上述处理单元410和收发单元420更详细的描述可以直接参考图2或图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图6所示,通信装置500包括处理器510和接口电路520。处理器510和接口电路520之间相互耦合。可以理解的是,接口电路520可以为收发器或输入输出接口。可选的,通信装置500还可以包括存储器530,用于存储处理器510执行的指令或存储处理器510运行指令所需要的输入数据或存储处理器510运行指令后产生的数据。
当通信装置500用于实现图2或图4所示的方法时,处理器510用于执行上述处理单元410的功能,接口电路520用于执行上述收发单元420的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种通信方法,其特征在于,所述方法由终端设备执行,包括:
    在第一测量定时配置STMC时域窗口内确定目标波束,所述目标波束上承载有第一同步信号/物理广播信道块SSB,所述第一SSB为所述第一STMC时域窗口内承载的全部SSB中的部分SSB;
    在所述目标波束上接收所述第一SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二SSB,所述第二SSB为第二STMC时域窗口内承载的全部SSB,所述第二STMC时域窗口为所述第一STMC时域窗口的前一个窗口;
    所述在第一STMC时域窗口内确定目标波束,包括:
    在所述第二SSB中确定第三SSB,所述第三SSB中的第一信号强度大于或等于第一阈值,所述第一信号强度为所述第三SSB对应的至少一个信号强度中最大的信号强度;
    根据承载所述第三SSB的波束的索引,在所述第一STMC时域窗口内确定所述目标波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定第二信号强度是否小于第二阈值,所述第二信号强度是根据所述第一SSB对应的至少一个信号强度确定的;
    如果所述第二信号强度小于所述第二阈值,在第三STMC时域窗口内接收第四SSB,所述第四SSB为所述第三STMC时域窗口内承载的全部SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个时域窗口;或,
    如果所述第二信号强度大于或等于所述第二阈值,在第三STMC时域窗口内的所述目标波束上接收第五SSB,所述第五SSB为所述第三STMC时域窗口内承载的全部SSB中的部分SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个窗口。
  4. 根据权利要求3所述的方法,其特征在于,所述第二信号强度是所述第一SSB对应的至少一个信号强度中最大的信号强度。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述在第一STMC时域窗口内确定目标波束之前,所述方法还包括:
    确定所述终端设备在预设的时间长度内的移动速度小于或等于第三阈值;或
    确定所述终端设备在预设的时间长度内处于静止状态。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述在第一STMC时域窗口内确定目标波束之前,所述方法还包括:
    确定波束切换频率在预设的时间长度内小于或等于第四阈值。
  7. 一种通信装置,其特征在于,包括:
    处理单元,用于在第一测量定时配置STMC时域窗口内确定目标波束,所述目标波束上承载有第一同步信号/物理广播信道块SSB,所述第一SSB为所述第一STMC时域窗口内承载的全部SSB中的部分SSB;
    收发单元,用于在所述目标波束上接收所述第一SSB。
  8. 根据权利要求7所述的装置,其特征在于,所述收发单元还用于:接收第二SSB, 所述第二SSB为第二STMC时域窗口内承载的全部SSB,所述第二STMC时域窗口为所述第一STMC时域窗口的前一个窗口;
    所述处理单元具体用于:在所述第二SSB中确定第三SSB,所述第三SSB中的第一信号强度大于或等于第一阈值,所述第一信号强度为所述第三SSB对应的至少一个信号强度中最大的信号强度;根据承载所述第三SSB的波束的索引,在所述第一STMC时域窗口内确定所述目标波束。
  9. 根据权利要求7或8所述的装置,其特征在于,所述处理单元具体用于:确定第二信号强度是否小于第二阈值,所述第二信号强度是根据所述第一SSB对应的至少一个信号强度确定的;如果所述第二信号强度小于所述第二阈值,在第三STMC时域窗口内接收第四SSB,所述第四SSB为所述第三STMC时域窗口内承载的全部SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个时域窗口;或,如果所述第二信号强度大于或等于所述第二阈值,在第三STMC时域窗口内的所述目标波束上接收第五SSB,所述第五SSB为所述第三STMC时域窗口内承载的全部SSB中的部分SSB,所述第三STMC时域窗口为所述第一STMC时域窗口的后一个窗口。
  10. 根据权利要求9所述的装置,其特征在于,所述第二信号强度是所述第一SSB对应的至少一个信号强度中最大的信号强度。
  11. 根据权利要求7至10中任一项所述的装置,其特征在于,所述处理单元具体用于:在第一STMC时域窗口内确定目标波束之前,确定所述装置在预设的时间长度内的移动速度小于或等于第三阈值;或,确定所述装置在预设的时间长度内处于静止状态。
  12. 根据权利要求7至11中任一项所述的装置,其特征在于,所述处理单元具体用于:在第一STMC时域窗口内确定目标波束之前,
    确定波束切换频率在预设的时间长度内小于或等于第四阈值。
  13. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至6中任一项所述的方法。
PCT/CN2021/079474 2020-06-24 2021-03-08 通信方法及通信装置 WO2021258776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010595492.9 2020-06-24
CN202010595492.9A CN113840359B (zh) 2020-06-24 2020-06-24 通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021258776A1 true WO2021258776A1 (zh) 2021-12-30

Family

ID=78965004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079474 WO2021258776A1 (zh) 2020-06-24 2021-03-08 通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN113840359B (zh)
WO (1) WO2021258776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061077A1 (zh) * 2022-09-23 2024-03-28 华为技术有限公司 一种通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515156A (zh) * 2021-06-23 2022-12-23 索尼集团公司 用于无线通信系统的电子设备、方法和存储介质
KR20240037189A (ko) * 2022-04-19 2024-03-21 지티이 코포레이션 송신 리소스 표시를 위한 방법 및 시스템
WO2024026776A1 (en) * 2022-08-04 2024-02-08 Apple Inc. Absolute timing window for air-to-ground ues

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167134A (zh) * 2018-02-13 2019-08-23 北京三星通信技术研究有限公司 同步信号发送和接收的方法及设备
WO2019214732A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 通信方法和装置
CN110971359A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种无线通信网络中的指示波束信息的方法和设备
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
CN111278042A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 一种信息上报方法及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052379A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. Methods on radio resource management and radio link monitoring configurations and procedures
US11102738B2 (en) * 2018-04-06 2021-08-24 Apple Inc. Synchronization signal design for unlicensed spectrum access using cellular communications
WO2019245199A1 (ko) * 2018-06-22 2019-12-26 엘지전자 주식회사 측정을 수행하는 방법 및 무선 통신 기기
WO2020024110A1 (zh) * 2018-07-31 2020-02-06 华为技术有限公司 参考信号强度指示的测量方法和装置
WO2020032503A1 (ko) * 2018-08-07 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 채널 품질을 보고하는 방법 및 이를 위한 장치
CN113347655A (zh) * 2018-08-09 2021-09-03 华为技术有限公司 测量配置方法与装置
US11349545B2 (en) * 2018-11-02 2022-05-31 Apple Inc. Beam management without beam correspondence
KR20200057235A (ko) * 2018-11-16 2020-05-26 삼성전자주식회사 참조 신호 수신 방법 및 이를 위한 전자 장치
CN111245537B (zh) * 2018-11-29 2021-06-01 华为技术有限公司 一种测量方法及装置
CN111294851B (zh) * 2019-02-20 2022-10-25 展讯通信(上海)有限公司 寻呼监听方法及装置、存储介质、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167134A (zh) * 2018-02-13 2019-08-23 北京三星通信技术研究有限公司 同步信号发送和接收的方法及设备
WO2019214732A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 通信方法和装置
CN110971359A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种无线通信网络中的指示波束信息的方法和设备
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
CN111278042A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 一种信息上报方法及终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061077A1 (zh) * 2022-09-23 2024-03-28 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN113840359A (zh) 2021-12-24
CN113840359B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
WO2021258776A1 (zh) 通信方法及通信装置
US9730179B2 (en) Passive locationing over multiple channels
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
US20170359632A1 (en) Method of Inter-Frequency or Inter-Radio Access Technology Measurement
WO2021196965A1 (zh) 一种测量间隙的配置方法及装置
WO2020078318A1 (zh) 通信方法及装置
US20210029566A1 (en) Method for measurement on carrier, terminal device, and network device
US20210152309A1 (en) Reference signal sending method, reference signal receiving method, apparatus, and device
US20170188294A1 (en) Method and apparatus of transmitting discovery signal, method and apparatus of discovering cell
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
US20220385428A1 (en) Signal quality information obtaining method, device, and system
EP3501205B1 (en) Uplink measurement based mobility management
WO2022022491A1 (zh) 通信方法及装置
US20190207688A1 (en) Method and Apparatus for Measuring Interference Between Terminal Devices
WO2020150883A1 (zh) 小区的切换方法、装置、设备和存储介质
US20230318784A1 (en) Wireless communication method and device
CN113491154B (zh) 具有波束成形的已知小区定义
JP2023513291A (ja) データ伝送方法及び装置
EP4044654A1 (en) Method and apparatus for accessing network device
WO2019141231A1 (zh) 载波测量的方法和终端设备
CN114071667A (zh) 通信的方法、通信装置及系统
WO2022233191A1 (zh) 一种用于上报小区或载波信息的方法及装置
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品
WO2024017019A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829088

Country of ref document: EP

Kind code of ref document: A1