WO2021008446A1 - 甲醛分解催化剂、甲醛分解催化毡及它们的制造方法 - Google Patents

甲醛分解催化剂、甲醛分解催化毡及它们的制造方法 Download PDF

Info

Publication number
WO2021008446A1
WO2021008446A1 PCT/CN2020/101244 CN2020101244W WO2021008446A1 WO 2021008446 A1 WO2021008446 A1 WO 2021008446A1 CN 2020101244 W CN2020101244 W CN 2020101244W WO 2021008446 A1 WO2021008446 A1 WO 2021008446A1
Authority
WO
WIPO (PCT)
Prior art keywords
formaldehyde
decomposition catalyst
filter
filter material
felt
Prior art date
Application number
PCT/CN2020/101244
Other languages
English (en)
French (fr)
Inventor
高麟
陈慧
王韬
莫代林
任德忠
Original Assignee
成都易态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910630483.6A external-priority patent/CN110394051B/zh
Application filed by 成都易态科技有限公司 filed Critical 成都易态科技有限公司
Priority to JP2022501256A priority Critical patent/JP7519119B2/ja
Publication of WO2021008446A1 publication Critical patent/WO2021008446A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the inventions and creations involved in the specification of this application mainly belong to the field of filtration technology, especially the field of air filtration and purification technology.
  • Pollutants in the air are mainly divided into solid pollutants and gas pollutants.
  • solid pollutants such as PM10, PM2.5
  • they are generally removed by physical filtration (that is, to separate specific objects through physical means);
  • gas pollutants in the air such as VOC, that is, organic gaseous substances
  • chemical filtration that is, the use of chemical properties of substances to achieve the separation of specific objects
  • the fine particles in solid pollutants are harmful to human health.
  • fibrous filtration materials with high filtration efficiency and good air permeability such as glass fiber, PP fiber, PET fiber, expanded PTFE fiber, etc.
  • this type of material is easy to adhere to and breed bacteria on the fiber bundles during use, thereby causing secondary pollution.
  • Formaldehyde is one of the gaseous pollutants that is more harmful to the human body.
  • the use of manganese dioxide in metal oxides as a formaldehyde decomposition catalyst has been considered a feasible and advantageous way in some aspects.
  • the manganese dioxide used as a formaldehyde decomposition catalyst is limited to nanometer manganese dioxide, so that it has a sufficient specific surface area to enable the formaldehyde decomposition catalyst to achieve acceptable formaldehyde removal efficiency.
  • filter devices with different filtering objects are connected in series to form a filter system.
  • the filtration system can be composed of independent filtration devices, or can be integrated by filtration devices.
  • the filter materials used as different filter devices are either relatively independently installed in the same shell component or assembled as relatively independent components.
  • the above-mentioned filtering system has a relatively complicated structure, which often takes up a large space and has a high manufacturing cost, which limits its application in some traditional household air purifiers, household air conditioners and other parent equipment.
  • the completed inventions include a filter material, a filter component, a filter, and a filter method, and the purpose is to solve the technical problem of improving the adhesion of the filter material and the breeding of bacteria.
  • the completed inventions include a filter structure, a filter assembly, and a method for manufacturing the filter assembly.
  • the purpose is to solve the technical problem of optimizing the composite structure of different functional layers in the filter material.
  • the completed inventions also include a formaldehyde decomposition catalyst, formaldehyde catalytic decomposition felt and their manufacturing methods, with the purpose of solving the technical problem of realizing efficient catalytic decomposition of formaldehyde.
  • the completed invention also includes a filter assembly, which aims to solve the technical problem of encapsulating the pleated filter material to form the filter assembly.
  • the filter material includes different functional layers. All functional layers include a physical filter layer, the physical filter layer includes a metal filter layer and a fiber filter layer; the metal filter layer and the fiber filter layer overlap back and forth along the filter direction.
  • the metal filter layer can also serve as a conductive layer; the fiber filter layer also serves as an insulating layer for the conductive layer.
  • the metal filter layer is mainly composed of powder sintered metal porous material.
  • the metal filter layer is a foldable flexible metal film with a thickness of ⁇ 200 microns.
  • the metal filter layer contains a net-like framework and a powder sintered porous metal material filled in the mesh of the framework.
  • the average pore size of the metal filter layer is ⁇ 200 microns, 190 microns, 180 microns, 170 microns, 160 microns, 150 microns, 140 microns, 130 microns, 120 microns, 110 microns or 100 microns; and the metal The average pore size of the filter layer is ⁇ 5 microns, 10 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns or 100 microns.
  • the filtration efficiency of the fiber filter layer for solid particles is higher than the filtration efficiency of the metal filter layer for solid particles.
  • the fiber filter layer is mainly composed of at least one fiber filter material selected from the group consisting of glass fiber, PP fiber, PET fiber, and expanded PTFE fiber; and/or, the fiber filter layer is mainly composed of ultrafine fiber filter material constitute.
  • the two adjacent surfaces of the metal filter layer and the fiber filter layer are attached but not adhered.
  • all the functional layers include a chemical filter layer; the physical filter layer and the chemical filter layer overlap back and forth along the filter direction.
  • the chemical filter layer includes at least one volatile organic compound filter layer; the at least one volatile organic compound filter layer includes a corresponding volatile organic compound decomposition catalyst and/or adsorbent.
  • the at least one volatile organic compound filter layer is a formaldehyde filter layer
  • the decomposition catalyst is mainly composed of sub-micron-micron petal-like particles formed of ⁇ -crystalline MnO 2 .
  • the diameter of the petaloid particles is mainly distributed between 0.5-5 microns.
  • the fiber filter layer is a fiber filter layer with electrical insulation properties.
  • the two adjacent surfaces of the fiber filter layer and the at least one volatile organic compound filter layer are attached but not adhered.
  • all the functional layers include a metal mesh support layer; the physical filter layer and the metal mesh support layer overlap back and forth along the filtering direction.
  • the physical filter layer, the chemical filter layer and the metal mesh support layer overlap one after another along the filter direction.
  • the at least one volatile organic compound filter layer and the metal mesh support layer are attached to but not adhered between the two adjacent surfaces of the metal mesh support layer.
  • the filter material has a pleated structure and a blank stacking all functional layers of the filter material is integrally folded to form the pleated structure.
  • At least two adjacent functional layers are provided with a local connection structure that can prevent parallel displacement between the at least two adjacent functional layers.
  • the partial connection structure includes riveting pieces that may but need not be arranged at intervals along the edge of the filter material, and the riveting pieces are respectively connected to the adjacent at least two functional layers; or, the partial connection structure includes Adhesive points arranged at intervals along the edge of the filter material are possible but not necessary.
  • the filter assembly includes: a filter portion, the filter portion including any one of the above-mentioned filter materials, the filter material has a pleated structure; a positioning portion, the positioning portion includes a filter material arranged around the periphery of the filter material to confine the filter material inside And a positioning frame that opens both sides of the filter material to the outside; and a sealing part, the sealing part includes a sealing part arranged between the filter material and the positioning part to prevent the object to be filtered from penetrating the inner boundary area of the positioning frame without passing through the filter material The sealing material.
  • the positioning portion is provided with a conductive component for conductive connection with the metal filter layer in the filter material; the metal filter layer is installed in the filter assembly in an insulated manner and can be charged by the conduction of the conductive component.
  • the sealing material includes a sealant glued between the periphery of the filter material and the positioning frame.
  • the sealing material includes at least one sealing plate located at the edge of the filter material; the inner side of the at least one sealing plate and the surface where the corresponding filter material edge is located are bonded by a sealant, and the outer side is bonded to the corresponding The inner sides of the positioning frame are bonded by sealant.
  • the filter material is a pleated structure with a rectangular shape, one pair of opposite sides of the filter material are pleated wave-shaped sides, and the other pair of opposite sides are straight-shaped sides;
  • the positioning frame is connected to the filter A rectangular positioning frame with matching materials; the surface of the filter material on which the straight edges are located is directly bonded to the inner side of the corresponding positioning frame through sealant, and the corrugated edges are respectively passed through the at least one sealing plate and the corresponding The inner side of the positioning frame is glued.
  • the positioning frame includes: a side positioning frame, a sealing material is arranged between the side positioning frame and the filter material; an upper positioning frame, the upper positioning frame is arranged at the upper end of the side positioning frame And extend along the top edge of the side positioning frame; and a lower positioning frame, which is arranged at the lower end of the side positioning frame and extends along the bottom edge of the side positioning frame.
  • the upper positioning frame body and the side positioning frame body are separately connected; the bottom surface of the upper positioning frame body has a stepped surface for fitting with the upper end of the side positioning frame body, and is located between the upper positioning frame body and the side positioning frame body.
  • the sealant between the positioning frames basically covers the two parallel planes on the step surface.
  • the positioning part further includes a pleated shape-preserving component arranged on the side of the filter material; the pleated shape-retaining component includes a support arranged between a plurality of adjacent pairs of fold waves of the filter material.
  • the support is composed of positioning glue which is respectively filled and solidified between the pairs of adjacent wrinkle waves; the positioning glue is only respectively filled between the wave crests of the corresponding adjacent wrinkle waves.
  • the filter includes an air inlet, an air outlet, and an air duct located between the air inlet and the air outlet. Any one of the above-mentioned filter components is installed on the air duct, and the windward side of the filter assembly is connected to the air inlet, The air outlet side is connected to the air outlet.
  • the filter is also used as an air conditioner with an air filtering function.
  • the filtering method is to filter and purify the air through any one of the above-mentioned filter materials, any one of the above-mentioned filter components or any one of the above-mentioned filters; wherein the metal filter layer is charged or uncharged.
  • the aforementioned filter material, filter component, filter and filter method are based on the combination of the metal filter layer and the fiber filter layer in the filter material on the same physical filter layer.
  • the filter material passes through the physical filter layer, the filter material first Filtered by the metal filter layer once and then filtered by the fiber filter layer for a second time. Therefore, the number of bacteria and other microorganisms entering the fiber filter layer is reduced, thereby reducing the adhesion and growth of bacteria in the fiber filter layer, and the metal filter layer has antibacterial performance Relatively good, bacteria are not easy to multiply. In this way, the problem of bacteria breeding on the physical filter layer as a whole can be improved to a certain extent.
  • the metal filter layer and the fiber filter layer can support each other after being overlapped back and forth in the filtering direction, the support and/or positioning of the laminate formed after the metal filter layer and the fiber filter layer are overlapped back and forth along the filter direction will be more supported and/or positioned by the metal
  • the uniform implementation of the filter layer and the same components other than the fiber filter layer helps to reduce the space occupied by the functional unit composed of the metal filter layer and the fiber filter layer.
  • the technical solutions of the filter structure, the filter assembly and the manufacturing method of the filter assembly are as follows:
  • the filter structure includes a filter material, the filter material includes different functional layers, and at least two adjacent functional layers of all the functional layers of the filter material are attached but not bonded; all the functional layers of the filter material are stacked
  • the blank is integrally deformed and processed into a filter material of a specific shape.
  • the adjacent at least two functional layers exist in any one of the following situations or a combination of any two or more situations: a) a physical filter layer containing two or more functional layers; b) two layers The chemical filter layer of the above functional layers; c) a composite layer of a physical filter layer containing more than one functional layer and a chemical filter layer containing more than one functional layer; d) a physical filter layer containing more than one functional layer and a composite layer containing one The composite layer of the material support layer of the functional layer above; e) the composite layer of the chemical filter layer containing more than one functional layer and the material support layer containing more than one functional layer; f) the physical filter containing more than one functional layer A composite layer of a chemical filter layer containing more than one functional layer and a material support layer containing more than one functional layer.
  • the physical filter layer includes a metal filter layer and/or a fiber filter layer; and/or, the chemical filter layer includes at least one volatile organic compound filter layer, and the at least one volatile organic compound filter layer includes Corresponding volatile organic compound decomposition catalyst and/or adsorbent; and/or, the material support layer includes a metal mesh support layer.
  • a local connection structure is provided between the at least two adjacent functional layers to prevent parallel displacement between the at least two adjacent functional layers.
  • the local connection structure includes a riveting member, and the riveting member is respectively connected to the adjacent at least two functional layers; and/or, the local connection structure includes a bonding point.
  • the partial connection structure is arranged at intervals along the edge of the filter material.
  • the riveting piece is composed of U-shaped metal nails with two legs bent inward; the adjacent at least two functional layers are clamped between the connecting part of the head of the U-shaped metal nail and the foot Between the inward bends.
  • the blanks on which all the functional layers of the filter material are stacked are integrally deformed and processed into a filter material with a pleated structure.
  • the filter assembly includes: a filter portion, including any one of the above-mentioned filter structures, the filter material of the filter structure is a filter material formed into a pleated structure from a blank stacked with all functional layers of the filter material; a positioning portion, The positioning part includes a positioning frame provided on the periphery of the filter material so as to confine the filter material inside and open both sides of the filter material to the outside; and a sealing part including a positioning frame provided between the filter material and the positioning part It is used to prevent the object to be filtered from penetrating the sealing material in the inner boundary area of the positioning frame without passing through the filter material.
  • the manufacturing method of the filter assembly includes: sequentially overlapping each of the independent blanks for forming the corresponding functional layer of the filter material to form a blank for stacking all the functional layers of the filter material; using a local connection structure to use the independent respective Perform anti-translational connection at the local connection points on the blanks constituting the corresponding functional layers of the filter material; perform integral deformation processing on the blanks of all functional layers of the stacked filter material to form a filter material of a specific shape; combine the filter material with the filter The other parts of the assembly are assembled to form a filter assembly.
  • the blank is formed into a filter material of a specific shape by integral deformation processing, which can not only shape the filter material into the designed shape and structure, but also make the shape and structure of the functional layers attached to each other in the filter material be basically consistent to achieve fluid filtration It is uniform and reduces the filtration resistance, and these functional layers can also support each other to improve the overall strength of the filter material.
  • the formaldehyde decomposition catalyst is mainly composed of sub-micron-micron petal-like particles formed by ⁇ crystal MnO 2 .
  • the "sub-micron-micron petaloid particles” refers to a combination of submicron petaloid particles with a diameter in the range of 0.1-1 microns and micron petaloid particles with a diameter in the range of 1-10 microns.
  • the diameter distribution range of submicron-micron petaloid particles is ⁇ 0.5 microns. That is, among these sub-micron-micron-sized petal-like particles, the diameter of the micron-sized petal-like particle with the largest diameter is at least 0.5 microns larger than the diameter of the sub-micron-sized petal-like particle with the smallest diameter.
  • the diameters of the sub-micron-micron petaloid particles are mainly distributed between 0.1-5 micrometers, more specifically between 0.3-5 micrometers. Furthermore, the diameter of the submicron-micron petaloid particles is mainly distributed between 0.5-5 microns; still further, the diameter of the submicron-micron petaloid particles is mainly distributed between 0.5-3 microns. Between micrometers.
  • water lotion of the sub-micron-micron petaloid particles is alkaline.
  • the formaldehyde catalytic decomposition felt includes a gas-permeable support and a formaldehyde decomposition catalyst attached to the gas-permeable support, and the formaldehyde decomposition catalyst is any of the above-mentioned formaldehyde decomposition catalysts.
  • the formaldehyde decomposition catalyst is distributed on the outside of the material constituting the air-permeable support and is mainly filled in the pores between the materials constituting the air-permeable support.
  • the adhesive distributed on the formaldehyde decomposition catalyst; the adhesive is preferably but not limited to an acrylic adhesive or a polyurethane adhesive.
  • the relative adhesion amount is 40 g/m 2 or more.
  • the breathable support is made of breathable fiber felt with an air permeability of ⁇ 3000m 3 /m 2 ⁇ hour at a pressure difference of 100 Pa, preferably an air permeability ⁇ 5500m 3 /m 2 ⁇ at a pressure difference of 100 Pa Hours of air-permeable fiber felt; and, the relative adhesion amount is 40-120 g/m 2 , preferably 50-70 g/m 2 .
  • the breathable support uses PP fiber felt or PET fiber felt.
  • the air-permeable support adopts a foam-like porous support or a support net; when the air-permeable support adopts a support net, the support net may be any one of a woven net, a perforated net, or a diagonal stretch net. kind.
  • the volatile organic compound filter material contains a breathable support and a corresponding volatile organic compound decomposition catalyst or adsorbent attached to the breathable support.
  • a breathable support and a corresponding volatile organic compound decomposition catalyst or adsorbent attached to the breathable support.
  • the volatile organic matter filter material is a formaldehyde catalytic decomposition felt, which belongs to any of the above-mentioned formaldehyde catalytic decomposition felts, and the formaldehyde decomposition catalyst in the formaldehyde catalytic decomposition felt is extruded and dispersed to form a breathable support In the pores between the materials, the extrusion and dispersion operation is performed during the adhesion process of attaching the formaldehyde decomposition catalyst to the surface of the gas-permeable support and/or the extrusion process after the adhesion process; or
  • the volatile organic compound decomposition catalyst or adsorbent is squeezed and dispersed in the pores between the materials constituting the gas-permeable support.
  • the squeezing and dispersion operation is to attach the volatile organic compound decomposition catalyst or adsorbent to It is performed during the attaching process to the surface of the air-permeable support and/or during the pressing process after the attaching process.
  • extrusion and dispersion is realized by an extrusion member capable of applying an extrusion force perpendicular to the surface of the gas-permeable support to the formaldehyde decomposition catalyst/the volatile organic compound decomposition catalyst or adsorbent .
  • the attaching process and/or the pressing process include the formaldehyde decomposition catalyst/decomposition catalyst of the volatile organic compounds attached to the air-permeable support by means of a spatula that is used as an extrusion member and moves in parallel along the surface of the air-permeable support Or a process in which the adsorbent is squeezed and dispersed in the pores between the materials constituting the breathable support.
  • the attaching step and/or the pressing step includes the formaldehyde decomposition catalyst/the volatile organic compound decomposition catalyst attached to the air-permeable support by means of a pressing roller that is used as an extrusion member and rolls parallel to the surface of the air-permeable support Or a process in which the adsorbent is squeezed and dispersed in the pores between the materials constituting the breathable support.
  • the above-mentioned formaldehyde decomposition catalyst and the formaldehyde catalytic decomposition felt applied with the formaldehyde decomposition catalyst relate to MnO 2 particles of specific crystal form, microscopic morphology, diameter size and diameter distribution, and the MnO 2 particles are based on a large-scale production process developed by the applicant.
  • the process not only greatly improves the production efficiency of the formaldehyde decomposition catalyst, but at the same time, the obtained product, that is, the formaldehyde removal effect of the above formaldehyde decomposition catalyst also breaks expectations, and has an ideal formaldehyde removal efficiency compared with other existing formaldehyde decomposition catalysts.
  • the filtered side of the above-mentioned volatile organic compound filter material may also be provided with a protective functional layer, the protective functional layer having a porous structure and having a pore size smaller than that of the decomposition catalyst or adsorbent.
  • the protective functional layer is preferably PP fiber felt, PET fiber felt or electrostatic cotton.
  • the volatile organic compound filter material and the protective functional layer may be connected through a connecting layer, and the connecting layer may be an ultrasonic composite layer.
  • the catalyst that falls off the chemical filter layer can also be intercepted and the service life of the catalyst can be prolonged. It has been verified that the life of the chemical filter layer can be extended by 30%; the protective function layer can also be opposite to the filter direction. The direction of the filter material supports the functional layer before the protective functional layer.
  • the manufacturing method of the formaldehyde decomposition catalyst uses potassium permanganate, manganese sulfate and water as raw materials to obtain the formaldehyde decomposition catalyst by the mixed reaction, which specifically includes:
  • the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank were respectively added dropwise to the bottom water with a volume of more than 2 times the reference volume stored in advance in the mixing reactor at the same time. Add all the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank at the same time within 45 minutes, and then fully stir the mixed solution at 70-90°C until the reaction is completed;
  • the formaldehyde decomposition catalyst is obtained by solid-liquid separation from the mixed liquid after the reaction is completed.
  • the method for manufacturing a formaldehyde decomposition catalyst is to perform alkali washing on a target to obtain a formaldehyde decomposition catalyst after alkali washing.
  • the target is: 1) a formaldehyde decomposition catalyst obtained by mixing potassium permanganate, manganese sulfate and water as raw materials; 2 ) The precipitate obtained after step B in the method for manufacturing a formaldehyde decomposition catalyst; or 3) the formaldehyde decomposition catalyst obtained after step C in the method for manufacturing a formaldehyde decomposition catalyst.
  • the formaldehyde decomposition catalyst prepared with potassium permanganate, manganese sulfate and water as raw materials has an odor that may be detected. Alkaline washing can remove the odor of the formaldehyde decomposition catalyst and improve the comfort of using the formaldehyde decomposition catalyst.
  • the manufacturing method of the formaldehyde catalytic decomposition felt includes: providing a breathable support; providing a material liquid containing a formaldehyde decomposition catalyst; squeezing and dispersing the material liquid on the breathable support, and obtaining the formaldehyde catalytic decomposition felt after the material liquid is dried
  • the formaldehyde decomposition catalyst is: 1) any one of the above-mentioned formaldehyde decomposition catalyst; 2) any one of the above-mentioned formaldehyde decomposition catalyst manufacturing method; or 3) mainly formed by ⁇ crystal form MnO 2 It is a formaldehyde decomposition catalyst composed of petal-like particles of submicron-micron size.
  • the material liquid is attached to the air-permeable support through a drawing process, and the extrusion and dispersion process exists in the drawing process.
  • the filter assembly includes: a filter part, the filter part including a filter material, the filter material has a pleated structure; a positioning part, the positioning part includes a peripheral portion of the filter material so as to confine the filter material inside and A positioning frame that is open to the outside on both sides of the locating frame; and a sealing portion, the sealing portion includes a sealing material provided between the filter material and the positioning portion to prevent the object to be filtered from penetrating the inner boundary area of the positioning frame without passing through the filter material.
  • the sealing material includes a sealant glued between the periphery of the filter material and the positioning frame.
  • the sealing material includes at least one sealing plate located at the edge of the filter material; the inner side of the at least one sealing plate and the surface where the corresponding filter material edge is located are bonded by a sealant, and the outer side is bonded to the corresponding The inner sides of the positioning frame are bonded by sealant.
  • the filter material is a pleated structure with a rectangular shape, one pair of opposite sides of the filter material are pleated wave-shaped sides, and the other pair of opposite sides are straight-shaped sides;
  • the positioning frame is connected to the filter A rectangular positioning frame with matching materials; the surface of the filter material on which the straight edges are located is directly bonded to the inner side of the corresponding positioning frame through sealant, and the corrugated edges are respectively passed through the at least one sealing plate and the corresponding The inner side of the positioning frame is glued.
  • the positioning frame includes: a side positioning frame, a sealing material is arranged between the side positioning frame and the filter material; an upper positioning frame, the upper positioning frame is arranged at the upper end of the side positioning frame And extend along the top edge of the side positioning frame; and a lower positioning frame, which is arranged at the lower end of the side positioning frame and extends along the bottom edge of the side positioning frame.
  • the upper positioning frame body and the side positioning frame body are separately connected; the bottom surface of the upper positioning frame body has a stepped surface for fitting with the upper end of the side positioning frame body, and is located between the upper positioning frame body and the side positioning frame body.
  • the sealant between the positioning frames basically covers the two parallel planes on the step surface.
  • the positioning part further includes a pleated shape-preserving component arranged on the side of the filter material; the pleated shape-retaining component includes a supporter arranged at intervals between a plurality of adjacent pairs of fold waves of the filter material.
  • the support is composed of positioning glue which is respectively filled and solidified between the multiple pairs of adjacent fold waves on the front side of the filter material; the positioning glue is only respectively filled with the peaks of the corresponding adjacent fold waves between.
  • the filter material includes at least a metal filter layer mainly composed of powdered sintered metal porous material, and the metal filter layer is a flexible metal film with a thickness of ⁇ 200 microns and is foldable.
  • the filter material includes different functional layers, among all the functional layers of the filter material, at least two adjacent functional layers are attached but not adhered, and the different functional layers include a material support layer, so
  • the material support layer is preferably a metal mesh support layer made of metal mesh; the blank of all the functional layers of the filter material is formed into a filter material with a pleated structure through integral deformation processing.
  • FIGS. 1-7 show the manufacturing process of a filter component in the invention and creation involved in the specification of this application. among them:
  • Fig. 1 is an exploded view of a blank in which all functional layers of a filter material are stacked.
  • Fig. 2 is a schematic diagram of a blank in which all functional layers of a filter material are stacked.
  • Fig. 3 is a schematic diagram after a blank of all functional layers of a stacked filter material is folded into a pleated structure of the filter material.
  • Fig. 4 is a schematic diagram of positioning glue filled and solidified between pairs of adjacent fold waves of the filter material.
  • Figure 5 is a schematic diagram of installing a sealing plate on the filter material.
  • Figure 6 is a schematic diagram before putting the filter material into the positioning frame.
  • Figure 7 is a schematic diagram of the structure of the filter assembly.
  • Fig. 8 is a schematic structural diagram of a filter created by the invention involved in the specification of this application.
  • Fig. 9 is a physical photo of the structure shown in Fig. 4.
  • Fig. 10 is a scanning electron micrograph of a formaldehyde decomposition catalyst created by the invention related to the specification of this application.
  • Figures (a)-(d) in Figure 10 are photos of the field of view selected on the slide without any tendency during microscopic observation.
  • Fig. 11 is an X-ray diffraction (XRD) chart of the formaldehyde decomposition catalyst shown in Fig. 10.
  • Fig. 12 is a scanning electron micrograph of a formaldehyde catalytic decomposition felt created by the invention related to the specification of this application.
  • Figures (a)-(d) in Figure 12 are photos of the field of view selected on the slide without any tendency during microscopic observation.
  • FIG. 13 is a scanning electron microscope image of the formaldehyde decomposition catalyst of Comparative Example 1.
  • Figures (a)-(b) in FIG. 13 are photos of the field of view selected on the slide without any tendency during microscopic observation.
  • Fig. 14 is a graph showing the change of formaldehyde concentration with time when the formaldehyde removal performance test is performed using the formaldehyde decomposition catalyst of Example A1.
  • Fig. 15 is a graph showing the change of formaldehyde concentration with time when the formaldehyde decomposing catalyst of Example A5 is used for the formaldehyde removal performance test.
  • Fig. 16 is a graph showing the change of formaldehyde concentration with time when the formaldehyde removal performance test is performed using the formaldehyde decomposition catalyst of Comparative Example 1.
  • Figure 17 is a scanning electron micrograph of a formaldehyde decomposition catalytic felt in the invention and creation involved in the specification of this application.
  • Figure 18 is a test diagram of the comprehensive performance of the formaldehyde catalytic decomposition felts of Examples B1-B5.
  • Fig. 19 is a comparison diagram of the distribution uniformity of the formaldehyde decomposition catalyst of the formaldehyde catalytic decomposition felt of Example B2 and Example B6.
  • filter material 100 physical filter layer 110, metal filter layer 111, fiber filter layer 112, chemical filter layer 120, volatile organic compound filter layer 121, breathable support 121a, decomposition catalyst 121b, metal mesh support layer 130 , Pleated structure 101, pleated wave-shaped side 101a, linear side 101b, pleated wave 101c; filter assembly 200, filter portion 210, positioning portion 220, positioning frame 221, side positioning frame 221a, upper positioning frame 221b, step The surface 221b1, the lower positioning frame 221c, the pleated shape-preserving component 222, the positioning glue 222a, the conductive component 223, the sealing portion 230, the sealing plate 231; the filter 300, the air inlet 310, and the air outlet 320;
  • FIGS. 1-7 and 9 show the manufacturing process of a filter assembly in the inventions involved in the specification of this application, which can reflect the filter assembly and its filter material and other related structures.
  • the filter material 100 in the filter assembly has different functional layers. All of the functional layers include a physical filter layer 110.
  • the physical filter layer 110 includes a metal filter layer 111 and a fiber filter layer 112.
  • the metal filter layer 111 and the fiber filter layer 112 overlap back and forth along the filter direction.
  • the metal filter layer 111 is mainly made of metal (including alloy).
  • the metal filter layer 111 is preferably a metal filter layer mainly composed of powdered sintered metal porous material; more preferably, a flexible metal film with a thickness of ⁇ 200 microns and foldable.
  • the thickness of the flexible metal film is less than or equal to 200 microns, so it is easier to achieve higher air permeability. Since the flexible metal film itself can be folded, it does not affect the bending or folding of the shape of the filter material 100.
  • the flexible metal film can be a porous film prepared by a method provided in the Chinese patent document of CN104874798A, or a flexible metal film prepared by other methods.
  • Paper-type film is a flexible metal film containing a net-like framework and a powder sintered metal porous material filled in the mesh of the framework. Its thickness can reach ⁇ 200 microns and can be folded by itself.
  • the average pore size of the paper membrane is generally set in the range of 5-200 microns.
  • the upper limit of this range can also be set to 190 microns, 180 microns, 170 microns, 160 microns, 150 microns, 140 microns, 130 microns, 120 microns, 110 microns or 100 microns as needed; the lower limit of this range is also It can be set to 10 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns or 100 microns as required.
  • average pore size is a commonly used parameter to characterize porous materials and can be measured by the bubble method.
  • the related technology involved in the patent application document with the publication number CN104266952A applied by the applicant of this application can be the same as measuring the average pore size of the metal filter layer 111.
  • the average pore size of the metal filter layer 111 can usually be 10-150 microns, further 10-120 microns, and further 10-100 microns. Furthermore, it is 10-80 microns.
  • filtration efficiency refers to the ratio of the amount of solid particulate matter intercepted by the filter material to the amount of solid particulate matter contained in the gas to be filtered under the test conditions.
  • the metal filter layer 111 may contain some metal substances with sterilization function, such as copper and silver.
  • the powder sintered porous metal material of the metal filter layer 111 is mainly composed of a copper-nickel alloy formed by powder sintering. Such a metal filter layer 111 can meet the requirements for "flexibility". It also has a certain sterilization function.
  • the fiber filter layer 112 is mainly made of inorganic non-metal fibers (such as glass fibers), organic fibers (such as PP fibers) or their composite materials. Generally, the fiber filter layer 112 is mainly composed of at least one fiber filter material among glass fiber, PP fiber, PET fiber, and expanded PTFE fiber.
  • the filtration efficiency of the fiber filter layer 112 for solid particles is higher than the filtration efficiency of the metal filter layer 111 for solid particles.
  • the fiber filter layer 112 is preferably a fiber filter layer mainly composed of ultrafine fiber filter materials, so that the fiber filter layer 112 can have better filtration efficiency and air permeability.
  • the "superfine fiber filter material” should be understood as a fiber filter material whose diameter can make the fiber filter layer made of the gas to be filtered with a removal rate of more than 98% of dust with a particle size of ⁇ 2.5 ⁇ m.
  • the aforementioned glass fiber, PP fiber, PET fiber, and expanded PTFE fiber can all be ultrafine fiber filter materials.
  • the filter material 100 combines the metal filter layer 111 with the fiber filter layer 112, the material to be filtered is first filtered by the metal filter layer 111 and then filtered by the fiber filter layer 112 again. Therefore, the number of bacteria entering the fiber filter layer 112 This reduces the adhesion and growth of bacteria in the fibrous filter layer.
  • the metal filter layer 111 has relatively good antibacterial performance, and bacteria are not easy to multiply. In this way, the filter material 100 as a whole, especially the physical filter layer 110, can prevent bacteria from growing. Some improvements have been made.
  • the metal filter layer 111 and the fiber filter layer 112 can support each other after being overlapped back and forth along the filtering direction, the support and/or positioning of the laminate itself formed after the metal filter layer 111 and the fiber filter layer 112 are overlapped back and forth along the filtering direction will be more Many of the same components other than the metal filter layer 111 and the fiber filter layer 112 are implemented uniformly, which helps to reduce the occupied space of the functional unit composed of the metal filter layer 111 and the fiber filter layer 112.
  • the average pore size of the metal filter layer 111 is preferably selected to be 10-100 microns, and the average pore size of the metal filter layer 111 is selected to be 20- 80 microns is particularly suitable.
  • the filtration accuracy of porous filter media is approximately equal to 1/10 of its average pore size.
  • the average pore size of the metal filter layer 111 is 80 microns, its filtration accuracy is about 8 microns.
  • a filter cake is gradually formed on the metal filter layer 111, thereby further increasing the filtration accuracy, that is, less than 8 microns. That is to say, when the average pore size of the metal filter layer 111 is 80 microns, it can intercept solid particles (dust) with a particle size ⁇ 8 microns during filtration.
  • the metal filter layer 111 can intercept a larger portion of PM10 and other larger solid particles, and a larger portion of mold spores (particle size distribution in the air).
  • the range is mainly 1-100 microns) and some bacteria (the particle size distribution range in the air is mainly 0.5-10 microns). In this way, the adhesion and growth of mold and bacteria on the fiber filter layer 112 can be effectively reduced.
  • the entire filter material especially in addition to the metal filter layer and the fiber filter layer, also contains other functional layers, especially physical or chemical filtration.
  • the metal filter layer 111 can also be used as a conductive layer. In this way, when the metal filter layer 111 is charged by an external power source, the metal filter layer 111 can affect the The charged particles are repelled or adsorbed, thereby improving the filtration efficiency of the filter material 100.
  • the fiber filter layer 112 can serve as an insulating layer for the conductive layer to facilitate the connection between the metal filter layer 111 and the installation filter material 100.
  • the housing and/or other components are insulated and connected.
  • the metal filter layer 111 doubles as a conductive layer and the fiber filter layer 112 serves as an insulating layer for the conductive layer.
  • the material characteristics of the metal filter layer 111 and the fiber filter layer 112 are further utilized, so that the metal filter layer 111 and the fiber filter layer 112 are more Good combination.
  • all the functional layers of the filter material 100 also include a chemical filter layer 120, and the physical filter layer 110 and the chemical filter layer 120 overlap back and forth along the filter direction.
  • the chemical filter layer 120 includes at least one volatile organic compound filter layer 121, and the at least one volatile organic compound filter layer 121 includes a corresponding volatile organic compound decomposition catalyst 121b or adsorbent.
  • the at least one volatile organic compound filter layer 121 usually further includes a breathable support 121a, and the decomposition catalyst 121b or adsorbent is attached to the breathable support 121a.
  • the at least one volatile organic compound filter layer 121 is preferably a formaldehyde filter layer.
  • the decomposition catalyst or adsorbent for volatile organic compounds should be formaldehyde decomposition catalyst or formaldehyde adsorbent.
  • the formaldehyde filter layer includes a gas-permeable support 121a and a formaldehyde decomposition catalyst or a formaldehyde adsorbent attached to the gas-permeable support 121a.
  • the formaldehyde decomposition catalyst is preferably the formaldehyde decomposition catalyst developed by the applicant of the present application, which is mainly composed of sub-micron-micron petal-like particles formed of ⁇ -crystalline MnO 2 .
  • the main advantage of the above formaldehyde decomposition catalyst is that it has high formaldehyde removal effect and can be produced on a large scale.
  • the formaldehyde decomposition catalyst and the formaldehyde filter layer applying it will be specifically described in detail in the subsequent part of this specification.
  • formaldehyde decomposition catalyst can also be replaced by other catalysts, such as a titanium dioxide catalyst (using photocatalytic technology).
  • a titanium dioxide catalyst using photocatalytic technology
  • formaldehyde adsorbents for example, activated carbon, zeolite, porous clay ore, etc. can be used. If the formaldehyde adsorbent is used in this application, activated carbon is preferred.
  • the fiber filter layer 112 When the metal filter layer 111 doubles as a conductive layer and the fiber filter layer 112 serves as an insulating layer for the conductive layer, since the fiber filter layer 112 insulates between the metal filter layer 111 and the formaldehyde filter layer, it can prevent the metal filter layer 111 from being charged.
  • the surface of the metal filter layer 111 may carry a certain charge. If the fibrous filter layer is set as a fibrous filter layer with electrical insulation properties, the surface charge of the metal filter layer 111 can be prevented from detrimental to the decomposition catalyst 121b or adsorbent on the at least one volatile organic compound filter layer 121. For example, avoiding the influence of the surface charge of the metal filter layer 111 on the surface electronic structure of the decomposition catalyst 121b and reducing the catalytic activity.
  • all functional layers of the filter material 100 may also include a metal mesh support layer 130; the physical filter layer 110 and the metal mesh support layer 130 overlap back and forth along the filtering direction.
  • the aforementioned metal mesh support layer 130 may also be equivalently replaced by other material support layers.
  • the meaning of the so-called “equivalence” is consistent with the “equivalence principle” in the judgment of patent infringement.
  • the functional layers of the filter material 100 include the chemical filter layer 120, the physical filter layer 110, the chemical filter layer 120, and the metal mesh support layer 130 overlap one after another along the filter direction.
  • the basic function of the aforementioned metal mesh support layer 130 is to support the functional layers of the filter material 100 before the metal mesh support layer 130 in a direction opposite to the filtering direction, and prevent these functional layers from deforming in the filtering direction.
  • the filter material 100 includes the chemical filter layer 120, considering that the chemical filter layer 120 has a certain influence on the overall air permeability of the filter material, at this time, the average pore size of the metal filter layer 111 can be appropriately increased.
  • the filter material is composed of a metal filter layer 111, a fiber filter layer 112, a formaldehyde filter layer and a metal mesh support layer 130, wherein the average pore size of the metal filter layer 111 is set at Between 40-90 microns, such as about 42 microns, 55 microns, 79 microns, and 85 microns, the use effect of the metal filter layer 111 is satisfactory.
  • the filter material 100 has a pleated structure 101 and a blank in which all functional layers of the filter material 100 are stacked is integrally folded to form the pleated structure 101.
  • the filter material 100 having the pleated structure 101 can greatly increase the filter area of the filter material, thereby improving the filter efficiency.
  • the metal mesh support layer 130 can in addition to the direction opposite to the filtering direction to the filter material 100 located in the metal In addition to supporting the functional layer before the mesh support layer 130, it also has the function of positioning and maintaining the shape of the wrinkle waves 101c of the wrinkle-shaped structure 101, which can prevent the wrinkle waves 101c from deforming to a certain extent to avoid the gap between the wrinkle waves 101c Inconsistent.
  • the filter assembly 200 applying the aforementioned filter material 100 includes:
  • the filter part 210 includes any one of the filter materials 100 described above, and the filter material 100 has a pleated structure 101;
  • a positioning portion 220, the positioning portion 220 includes a positioning frame 221 arranged around the filter material 100 so as to confine the filter material 100 inside and open both sides of the filter material 100 to the outside; and
  • the sealing portion 230 includes a sealing material disposed between the filter material 100 and the positioning portion 220 to prevent the object to be filtered from penetrating the inner boundary area of the positioning frame 221 without passing through the filter material 100.
  • the filter assembly 200 is a specific method designed to configure the filter material 100 as an integral module that can be disassembled and assembled in a parent device such as a filter when the above-mentioned filter material 100 is applied, so as to facilitate the separate filter assembly. Manufacturing, sales, installation and replacement.
  • the aforementioned filter assembly 200 is not limited to the aforementioned filter material 100. As long as it is a filter material with a pleated structure, it can generally be used for the filter assembly.
  • the positioning portion 220 of the filter assembly 200 can also be provided with a conductive member 223 for conductive connection with the metal filter layer 111 in the filter material 100, and the metal filter The layer 111 is insulated and installed in the filter assembly 200 and can be charged by the conduction of the conductive member 223.
  • the conductive member 223 may be any conductor, which is located on the positioning portion 220 and is preferably in a manner that can automatically contact the electrical connection terminals on the filter or other parent device after the filter assembly 200 is installed on the filter or other parent device. Set up.
  • a contact 223a can be provided on the positioning portion 220 (the contact position can be located on the side of the positioning frame 221.
  • the side of the contact 223a is just on the side of the parent device such as a filter.
  • the electrical connection terminal on the upper side is contacted), and then the contact 223a and the metal filter layer 111 are contacted through a copper lug 223b.
  • the sealing material of the sealing portion 230 is only a sealant bonded between the periphery of the filter material 100 and the positioning frame 221.
  • the sealing material of the sealing portion 230 includes a sealing plate 231 located at the edge of the filter material 100, and the inner surface of the sealing plate 231 passes between the surface where the edge of the corresponding filter material 100 is located.
  • the sealant is bonded, and the outer side surface and the inner side surface of the corresponding positioning frame 221 are bonded by sealant.
  • the sealing plate 231 and the filter material 100 can be bonded first, and then the filter material 100 with the sealing plate 231 can be sealed and installed in the positioning frame 221. Therefore, the sealing plate 231 can facilitate the sealing installation of the filter material 100 in the positioning frame 221. Positioning box 221. However, providing the sealing plate 231 will increase the manufacturing cost of the filter assembly and occupy some space.
  • the filter material 100 is a pleated structure with a rectangular shape.
  • One pair of opposite sides of the filter material 100 are pleated corrugated sides 101a, and the other pair of opposite sides are straight lines.
  • the shaped side 101b, the positioning frame 221 is a rectangular positioning frame that matches the filter material 100, and the surface of the filter material 100 where the linear shaped side 101b is located is directly bonded to the inner surface of the corresponding positioning frame 221 through a sealant,
  • the corrugated edges 101a are respectively bonded to the inner surface of the corresponding positioning frame 221 through the at least one sealing plate 231.
  • the surface of the filter material 100 where the linear side 101b is located is directly bonded to the inner side of the corresponding positioning frame 221 through the sealant, and the corrugated side 101a is respectively passed through the at least one sealing plate 231 and The inner surface of the corresponding positioning frame 221 is bonded.
  • the sealing plate 231 not only achieves the purpose of facilitating the sealing and installation of the filter material 100 in the positioning frame 221 and can effectively seal the corrugated edge 101a, in addition, it also saves the number of sealing plates 231 used, and because of the straight line
  • the surface of the filter material 100 where the edge 101b is located and the inner side surface of the corresponding positioning frame 221 are bonded face-to-face so as to achieve a good sealing effect.
  • the positioning frame 221 includes: a side positioning frame 221a, a sealing material is arranged between the side positioning frame 221a and the filter material 100; an upper positioning frame 221b, The upper positioning frame 221b is disposed at the upper end of the side positioning frame 221a and extends along the top edge of the side positioning frame 221a; and, the lower positioning frame 221c is disposed on the side positioning frame 221a And extend along the bottom edge of the side positioning frame 221a.
  • the sealing material between the positioning frame 221 and the filter material 100 can be a sealant.
  • the upper positioning frame 221b is preferably connected to the side positioning frame 221a separately, so that the upper positioning frame 221b can be mounted to the side positioning frame after the filter material 100 is loaded into the positioning frame 221. ⁇ 221a on.
  • the bottom surface of the upper positioning frame 221b as a stepped surface 221b1 for fitting with the upper end of the side positioning frame 221a, and to be located between the upper positioning frame 221b and the side positioning frame 221a
  • the sealant basically covers the two parallel planes on the step surface, so that not only the installation and positioning of the upper positioning frame 221b can be facilitated, but the sealing effect of the upper positioning frame 221b on the filter material 100 can be ensured.
  • the upper positioning frame 221b and the lower positioning frame 221c can limit the filter material 100 to better confine it in the side positioning frame 221a.
  • the filter material 100 with the pleated structure 101 can greatly increase the filtering area of the filter material compared to the filter material with a smooth surface, thereby improving the filtration efficiency; however, the pleated structure 101 has the folds during use. Waves 101c may be deformed, resulting in inconsistent gaps between pleated waves 101c, and finally resulting in uneven filter flux distribution on the filter material.
  • the positioning portion 220 of the filter assembly 200 may include a pleated shape-preserving member 222 arranged on the side of the filter material 100, and the pleated shape-keeping member 222 may include a plurality of pairs of adjacent pleated waves 101c arranged on the filter material 100 at intervals. Between the supports.
  • the pleated shape-preserving member 222 is provided with supports spaced between the multiple pairs of adjacent pleated waves 101c of the filter material 100 to prevent the pleated waves 101c from being deformed, thereby ensuring the uniformity of the filtering flux distributed on the filter material 100.
  • the support is composed of positioning glue 222a which is respectively filled and solidified between the pairs of adjacent fold waves 101c.
  • the support formed in this way has low cost, is easy to manufacture and can be bonded to the fold waves 101c. Not easy to fall off.
  • the positioning glue 222a may only be respectively filled between the peaks of the adjacent fold waves 101c, thereby reducing the laying area of the positioning glue 222a on the filter material and reducing the influence of the positioning glue on the filtration efficiency.
  • the depth of the positioning glue 222a filled in the gap between the crests of the adjacent fold waves 101c is preferably not more than 1.5 cm, 1.2 cm, 1 cm, 0.8 cm or 0.5 cm.
  • the depth of the positioning glue 222a filled in the gap between the crests of the adjacent fold waves 101c is related to the characteristics of the filter material and other factors. For example, when the filter material is relatively soft, it is not easy for the positioning glue 222a to be only filled between the crests of the adjacent fold waves 101c, because the positioning glue 222a cannot effectively support the fold waves 101c.
  • the metal filter layer 111 of the filter material 100 on the filter assembly 200 has a high resistance to deformation, and the metal filter layer 111 is preferably a metal filter layer mainly composed of powdered sintered metal porous material and has ideal surface roughness to make Placing the positioning glue 222a on the surface of the metal filter layer can achieve the effect that the positioning glue 222a is only filled between the crests of the corresponding adjacent fold waves 101c.
  • the positioning glue 222a can also form a continuous positioning glue line on the side of the filter material 100.
  • the pleated shape-preserving component 222 may include at least two positioning glue lines arranged on the side of the filter material 100 that do not overlap with each other.
  • Fig. 1 is an exploded view of a blank in which all functional layers of a filter material are stacked.
  • Fig. 2 is a schematic diagram of a blank in which all functional layers of a filter material are stacked.
  • the blanks of all functional layers of the stacked filter material respectively include a blank as a metal filter layer 111, a blank as a fiber filter layer 112, a blank as a chemical filter layer 120, and a blank as a metal mesh.
  • the blanks of the support layer 130 are all independent components.
  • the blank of the metal filter layer 111 is mainly composed of a copper-nickel alloy formed by powder sintering, which belongs to a foldable flexible metal film with a thickness of less than or equal to 200 microns.
  • the blank of the metal filter layer 111 has a mesh-like framework and a powder sintered porous metal material (copper-nickel alloy) filled in the mesh of the framework, and the average pore size of the metal filter layer 111 is set to be 40-90 microns between.
  • the blank of the fiber filter layer 112 adopts a superfine fiber filter material purchased from the market, and its filtration precision can make the fiber filter layer remove more than 98% of dust with a particle size of ⁇ 2.5 ⁇ m in the gas to be filtered.
  • the blank of the chemical filter layer 120 is composed of a volatile organic compound filter layer 121, specifically a formaldehyde filter layer, which includes a breathable support and a formaldehyde decomposition catalyst attached to the breathable support, wherein the breathable support is a commercial PP (polypropylene) breathable film sold, the formaldehyde decomposition catalyst adopts the formaldehyde decomposition catalyst developed by the applicant of the present application, which is mainly composed of sub-micron-micron petal-like particles formed by ⁇ -crystalline MnO 2 and The diameter of the sub-micron-micron petaloid particles is mainly distributed between 0.3-5 microns.
  • the blank of the metal mesh support layer 130 is a stainless steel mesh purchased from the market.
  • the above blanks are stacked in sequence, the top is the blank of the metal filter layer 111, the lower is the blank of the fiber filter layer 112, the next is the blank of the chemical filter layer 120, and the last is the blank of the metal mesh support layer 130. Blank.
  • the local connection structure 140 specifically adopts a riveting piece 141 arranged at intervals along the edge of the filter material, and each riveting piece 141 is respectively connected to the blanks of the four functional layers at the same time.
  • the structure of the riveting member 141 is similar to the structure of a commercially available staple, that is, it is composed of U-shaped metal nails with two legs bent inward.
  • the blanks of the above four functional layers are clamped between the connecting part of the head of the U-shaped metal nail and the inwardly bent part of the foot. At this time, any adjacent blanks of the four functional layers Attach but not glue between the two layers of blanks.
  • Fig. 3 is a schematic diagram after a blank of all functional layers of a stacked filter material is folded into a pleated structure of the filter material.
  • Fig. 4 is a schematic diagram of positioning glue filled and solidified between pairs of adjacent fold waves of the filter material.
  • Fig. 9 is a physical photo of the structure shown in Fig. 4.
  • the blanks of all the functional layers of the stacked filter material are integrally folded (implemented by existing folding equipment), and the blanks of all the functional layers of the stacked filter material are integrally folded into a filter material 100
  • the fold-shaped structure 101 As shown in Figure 3, the blanks of all the functional layers of the stacked filter material are integrally folded (implemented by existing folding equipment), and the blanks of all the functional layers of the stacked filter material are integrally folded into a filter material 100 The fold-shaped structure 101.
  • the blank for stacking all the functional layers of the filter material has been provided with the riveting member 141 in advance, it is used as the blank of the metal filter layer 111, the blank of the fiber filter layer 112, and the blank of the chemical filter layer 120 during the integral folding process. Any part of the blank and the blank as the metal mesh support layer 130 will not be misaligned.
  • a wrinkle wave positioning tool 400 is also used.
  • the wrinkle wave positioning tool 400 is strip-shaped and has positioning grooves corresponding to the wrinkle waves 101c of the wrinkle-shaped structure 101 one-to-one, and the wrinkle waves 101c of the wrinkle-shaped structure 101 can be respectively locked into the corresponding positioning grooves.
  • Different fold wave positioning tools 400 can be provided on the fold-shaped structure 101 at the same time.
  • two fold wave positioning tools 400 are provided above and below the fold-shaped structure 101
  • two fold wave positioning tools 400 above the fold-shaped structure 101 are respectively close to the edge of the fold-shaped structure 101
  • two fold-wave positioning tools 400 below the fold-shaped structure 101 The two fold wave positioning tools 400 are respectively close to the edge of the fold-shaped structure 101. In this way, the overall structure of the corrugated structure 101 will be stably maintained.
  • the pleated structure 101 held by the pleated wave positioning tool 400 is placed on a specially designed glueing equipment, with the metal filter layer 111 facing upward.
  • the conveyor belt of the gluing equipment drives the wrinkle-shaped structure 101 held by the wrinkle wave positioning tool 400 to move in parallel, and the movement direction is consistent with the length direction of the wrinkle wave positioning tool 400.
  • a syringe is arranged above the conveyor belt of the glue dispensing device.
  • the syringe injects positioning glue onto the corrugated structure 101.
  • the positioning glue is injected, the syringe moves relative to the filter material 100 along the wave direction of the fold wave 101c of the filter material 100. Therefore, the positioning glue 222a injected onto the surface of the metal filter layer 111 finally forms a continuous positioning glue line.
  • the depth of the positioning glue 222a filled in the gap between the crests of the adjacent wrinkle waves 101c is only about 0.5 cm (as shown in FIG. 9).
  • the fold wave positioning tool 400 is removed.
  • the metal filter layer 111, the fiber filter layer 112, the chemical filter layer 120, and the metal mesh support layer 130 are attached to but not adhered to any adjacent functional layers (as shown in FIG. 9, the independent filter material can be seen from the cross section Different functional layers) will not cause the problem of increased filtration resistance when the functional layers are bonded.
  • the metal filter layer 111, the fiber filter layer 112, the chemical filter layer 120, and the metal mesh support layer 130 need to be manufactured separately due to the difference in material and function, it is more beneficial to only attach them without bonding. Improve the production efficiency of filter materials.
  • the shapes and structures of the functional layers attached to each other in the filter material are basically the same and can support each other.
  • the filter material 100 is positioned and supported on the windward side and the windward side of the filter material through the pleated shape-preserving component 222 and the metal mesh support layer 130, a long service life of the filter material is ensured.
  • Figure 5 is a schematic diagram of installing a sealing plate on the filter material.
  • Figure 6 is a schematic diagram before putting the filter material into the positioning frame.
  • Figure 7 is a schematic diagram of the structure of the filter assembly.
  • the filter material 100 is a pleated structure with a rectangular shape
  • one pair of opposite sides of the filter material 100 are corrugated edges 101a, and the other pair of opposite sides are straight edges.
  • 101b and the positioning frame 221 is a rectangular positioning frame that matches the filter material 100.
  • the filter material 100 is placed in front of the positioning frame 221, and the folds 101a
  • a sealing plate 231 is correspondingly installed with sealant respectively.
  • each corrugated edge 101a is respectively installed with a sealing plate 231 through a sealant, and the filter material 100 is also provided with a positioning glue 222a, the linear edge 101b of the filter material 100 is not easy to move, which may be inconvenient Subsequently, the surface of the filter material 100 where the linear edge 101b is located is directly bonded to the inner surface of the corresponding positioning frame 221 through a sealant.
  • the part of the metal filter layer 111 on the filter material 100 where the linear edge 101b is located can be separately peeled off to use the peeled metal filter layer 111 (See FIG. 5) It is directly bonded to the inner surface of the corresponding positioning frame 221 through sealant.
  • the filter material 100 is placed in the positioning frame 221.
  • the surface of the filter material 100 where the linear side 101b is located (that is, the peeled metal filter layer 111) is directly passed through the sealant. It is bonded to the inner surface of the corresponding positioning frame 221, and the corrugated edge 101a is bonded to the inner surface of the corresponding positioning frame 221 through the sealing plate 231, respectively.
  • Fig. 8 is a schematic structural diagram of a filter created by the invention involved in the specification of this application.
  • the filter 300 includes an air inlet 310, an air outlet 320, and an air inlet located between the air inlet 310 and the air outlet 320.
  • the above-mentioned filter assembly 200 is installed on the air duct, and the windward side of the filter assembly 200 is conducted with the air inlet 310 and the outlet side is conducted with the air outlet 320.
  • the above-mentioned filter 300 may also be used as an air conditioner having an air filtering function. Because the special structure of the filter material 100 makes the thickness of the filter assembly 200 thinner, the filter assembly 200 can be directly installed in an existing household air conditioner.
  • the metal filter layer 111 of the filter assembly 200 can be selectively charged or uncharged.
  • examples of the formaldehyde decomposition catalyst are represented by “Example A1”, “Example A2”, “Example A3” and so on (and so on).
  • examples of the formaldehyde decomposition catalytic felt are represented by “Example B1”, “Example B2”, “Example B3” and so on (and so on).
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials, specifically: preparing potassium permanganate into a potassium permanganate solution with a concentration of 95 g/L and placing it in the first titration tank, The manganese sulfate is prepared into a manganese sulfate solution with a concentration of 70 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank is 4 :3.
  • the volume of potassium permanganate solution in the first titration tank as the reference volume, and the reference volume is set to 50 liters
  • the volume of manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and sulfuric acid
  • the molecular weight of manganese is calculated to be approximately equal to 50 liters; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank were added dropwise to the pre-stored volume of 100 liters of bottom water in the mixing reactor.
  • the titration time is set to 10 minutes (that is, the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank are all dripped at the same time in a time period of 10 minutes), and then the temperature is 80 °C
  • the mixed solution is fully stirred for 2 hours; finally, the formaldehyde decomposition catalyst is obtained by centrifugal dehydration from the mixed solution after the reaction is completed. The obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • Fig. 10 is a scanning electron microscope image of the formaldehyde decomposition catalyst of Example A1, and the images (a)-(d) in Fig. 10 are respectively photos of the field of view selected on the slide without tendency during microscopic observation.
  • Fig. 11 is an X-ray diffraction (XRD) chart of the formaldehyde decomposition catalyst shown in Fig. 10.
  • the formaldehyde decomposition catalyst of Example A1 is mainly composed of sub-micron-micron petaloid particles.
  • the diameter (ie, particle size) of the micron-sized petal-like particles is mainly distributed between 1-3 microns
  • the diameter of the sub-micron-sized petal-like particles is mainly distributed between 0.1-1 microns.
  • sub-micron-micron petaloid particles are often in agglomerated state, and due to the uneven distribution of the particle diameter, a large number of sub-micron petaloid particles are irregularly distributed around the micron petaloid particles, which improves The specific surface area of micron-micron petal-like particles after agglomeration.
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials.
  • the potassium permanganate is configured into a potassium permanganate solution with a concentration of 60 g/L and placed in the first titration tank.
  • the manganese sulfate is prepared into a manganese sulfate solution with a concentration of 70 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank is 1 .
  • the volume of the potassium permanganate solution in the first titration tank is the reference volume, and the reference volume is set to 50 liters, then the volume of the manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and manganese sulfate.
  • the molecular weight is calculated; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank are added dropwise to the pre-stored volume of 100 liters of bottom water in the mixing reactor at the same time, and the titration time is set to After 10 minutes, the mixture was fully stirred at 80°C for 2 hours; finally, the mixture was centrifuged and dehydrated to obtain a formaldehyde decomposition catalyst after the reaction was completed. The obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • the X-ray diffraction test performed on the formaldehyde decomposition catalyst of Example A2 confirmed that the submicron-micron petaloid particles of the formaldehyde decomposition catalyst of Example A2 were ⁇ crystal MnO 2 .
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials. Specifically, potassium permanganate is prepared into a potassium permanganate solution with a concentration of 110 g/L and placed in the first titration tank. The manganese sulfate was prepared into a manganese sulfate solution with a concentration of 120 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank was 1.1 ,
  • the volume of the potassium permanganate solution in the first titration tank is the reference volume, and the reference volume is set to 50 liters, then the volume of the manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and manganese sulfate.
  • the molecular weight is calculated; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank are added dropwise to the pre-stored volume of 100 liters of bottom water in the mixing reactor at the same time, and the titration time is set to After 10 minutes, the mixture was fully stirred at 80°C for 2 hours; finally, the mixture was centrifuged and dehydrated to obtain a formaldehyde decomposition catalyst after the reaction was completed. The obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials, specifically: preparing potassium permanganate into a potassium permanganate solution with a concentration of 95 g/L and placing it in the first titration tank, The manganese sulfate is prepared into a manganese sulfate solution with a concentration of 70 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank is 4 :3.
  • the volume of the potassium permanganate solution in the first titration tank as the reference volume, and the reference volume is set to 100 liters
  • the volume of the manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and sulfuric acid
  • the molecular weight of manganese is calculated to be approximately equal to 100 liters; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank are added dropwise to the pre-stored volume of 200 liters of bottom water in the mixing reactor.
  • the titration time is set to 18 minutes, and then the mixed solution is fully stirred at 80°C for 2 hours; finally, the formaldehyde decomposition catalyst is obtained by centrifugal dehydration from the mixed solution after the reaction is completed. The obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • the X-ray diffraction test was performed on the formaldehyde decomposition catalyst of Example A4 to confirm that the submicron-micron petaloid particles of the formaldehyde decomposition catalyst of Example A2 were ⁇ crystal MnO 2 .
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials, specifically: preparing potassium permanganate into a potassium permanganate solution with a concentration of 95 g/L and placing it in the first titration tank, The manganese sulfate is prepared into a manganese sulfate solution with a concentration of 70 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank is 4 :3.
  • the volume of the potassium permanganate solution in the first titration tank as the reference volume, and the reference volume is set to 300 liters
  • the volume of the manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and sulfuric acid
  • the molecular weight of manganese is calculated to be approximately equal to 300 liters; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank are added dropwise to the pre-stored volume of 600 liters of bottom water in the mixing reactor.
  • the titration time is set to 35 minutes, and then the mixed solution is fully stirred at 80°C for 2 hours; finally, the formaldehyde decomposition catalyst is obtained by centrifugal dehydration from the mixed solution after the reaction is completed. The obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • Fig. 12 is a scanning electron microscope image of the formaldehyde decomposition catalyst of Example A5, and the images (a)-(d) in Fig. 12 are respectively photos of the field of view selected on the slide without tendency during microscopic observation.
  • the formaldehyde decomposition catalyst of Example A5 is mainly composed of sub-micron-micron petaloid particles.
  • the diameter of the micron-sized petal-like particles is mainly distributed between 1-4 microns
  • the diameter of the sub-micron-sized petal-like particles is mainly distributed between 0.3-1 microns.
  • sub-micron-micron petaloid particles are often in agglomerated state, and due to the uneven distribution of particle diameter, a large number of sub-micron petaloid particles are irregularly distributed around the micron petaloid particles (this phenomenon Compared with the formaldehyde decomposition catalyst of Example A1), the specific surface area of the sub-micron-micron petal-like particles after agglomeration is larger.
  • the X-ray diffraction test performed on the formaldehyde decomposition catalyst of Example A5 confirmed that the submicron-micron petaloid particles of the formaldehyde decomposition catalyst of Example A5 were ⁇ crystal MnO 2 .
  • the uneven distribution of ⁇ crystal MnO 2 particle diameter is related to the volume of the raw material potassium permanganate solution or manganese sulfate solution and the corresponding titration time. It is further speculated that the volume of the raw material potassium permanganate solution or manganese sulfate solution is relatively large. When the corresponding titration time is longer, the crystal grains that take the lead to nucleate mainly grow up.
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate, manganese sulfate and water as raw materials, specifically: preparing potassium permanganate into a potassium permanganate solution with a concentration of 95 g/L and placing it in the first titration tank, The manganese sulfate is prepared into a manganese sulfate solution with a concentration of 70 g/L and placed in the second titration tank.
  • the ratio of the amount of potassium permanganate in the first titration tank to the manganese sulfate in the second titration tank is 4 :3.
  • the volume of potassium permanganate solution in the first titration tank as the reference volume, and the reference volume is set to 50 liters
  • the volume of manganese sulfate solution in the second titration tank is based on the above conditions and combined with potassium permanganate and sulfuric acid
  • the molecular weight of manganese is calculated to be approximately equal to 50 liters; then the potassium permanganate solution in the first titration tank and the manganese sulfate solution in the second titration tank were added dropwise to the pre-stored volume of 100 liters of bottom water in the mixing reactor.
  • the titration time is set to 10 minutes, and then the mixture is fully stirred for 2 hours at 80°C; after that, the formaldehyde decomposition catalyst is obtained by centrifugal dehydration from the mixture after the reaction is completed; finally, the mixture is centrifuged and dehydrated from the mixture after the reaction is completed The formaldehyde decomposition catalyst is obtained. Then, the obtained formaldehyde decomposition catalyst is alkali washed, washed, dried and dispersed.
  • the alkaline washing refers to washing the formaldehyde decomposition catalyst with alkaline solution.
  • the formaldehyde decomposition catalyst is specifically added to deionized water, then a certain amount of lye is added to adjust the pH of the solution to 9-11, and finally the formaldehyde decomposition catalyst is obtained by centrifugal dehydration.
  • the formaldehyde decomposition catalyst is obtained by mixing potassium permanganate and absolute ethanol as raw materials, specifically: potassium permanganate is prepared into a potassium permanganate solution with a concentration (mass percentage) of 1.25%, and 4 liters of potassium manganate is taken The solution is mixed and stirred with 1 liter of absolute ethanol, reacted at room temperature for 10 hours, the mixture is centrifuged and dehydrated to obtain a formaldehyde decomposition catalyst after the reaction is completed, and the obtained formaldehyde decomposition catalyst is washed, dried and dispersed.
  • Fig. 13 is a scanning electron microscope image of the formaldehyde decomposition catalyst of Comparative Example 1, and the images (a)-(b) in Fig. 13 are respectively photos of the field of view selected on the slide without tendency during microscopic observation.
  • the formaldehyde decomposition catalyst of Comparative Example 1 is mainly formed by agglomeration of nano-sized particles.
  • the X-ray diffraction test performed on the formaldehyde decomposition catalyst of Comparative Example 1 determined that the formaldehyde decomposition catalyst of Comparative Example 1 was MnO 2 of ⁇ crystal form.
  • the formaldehyde decomposition catalysts of Example A1, Example A5, and Comparative Example 1 were used to perform formaldehyde removal performance tests.
  • the test principle and method are as follows: make a closed experiment cabin with a size of 550mm ⁇ 415mm ⁇ 315mm, and is equipped with a formaldehyde injection port and a formaldehyde concentration test instrument.
  • the two sides of the experiment cabin are provided with air outlets and inlets, air outlets and The air inlets are connected by a pipe with a diameter of 200mm, and a fan is installed on the pipe.
  • a set of flanges is installed on the pipe for loading and unloading the formaldehyde decomposition catalyst for testing.
  • test first heat a certain volume and concentration of formaldehyde solution and inject it into the experimental chamber through the formaldehyde injection port to make the initial concentration of formaldehyde in the experimental chamber 1.4-2.0 mg/m 3 , and when the concentration of formaldehyde in the experimental chamber increases to the highest value
  • start the fan and start timing Record the formaldehyde concentration in the cabin every 5 minutes.
  • the test duration is set to 15 minutes, during which the fan power remains constant (wind speed is about 3m/s). After 15 minutes, inject formaldehyde again as described above and repeat the test for 15 minutes. The test was repeated 4 times for each formaldehyde decomposition catalyst.
  • the formaldehyde removal efficiency of the formaldehyde decomposition catalysts of Example A1 and Example A5 is better than that of the formaldehyde decomposition catalyst of Comparative Example 1.
  • the possible reason is that although the formaldehyde decomposition catalyst of Comparative Example is composed of nano-scale particles, they are easy to remove. Agglomeration, especially when attached to a gas-permeable support, these fine particles aggregate into lumps, which is not conducive to full contact with formaldehyde in the air; however, the formaldehyde decomposition catalyst of the embodiment is uneven due to the uneven distribution of particle diameters.
  • the sub-micron petaloid particles are irregularly distributed around the micron petaloid particles, so that the sub-micron-micron petaloid particles are agglomerated to facilitate full contact with formaldehyde in the air.
  • the formaldehyde decomposition catalyst related to the invention and creation involved in the specification of this application can be directly used as a product to manufacture, sell, and use the product, or it can be applied to formaldehyde catalytic decomposition felt to manufacture, sell, and Use and other behaviors.
  • Figure 17 is a scanning electron micrograph of a formaldehyde decomposition catalytic felt in the invention and creation involved in the specification of this application.
  • the formaldehyde decomposition catalytic felt related to the invention and creation involved in the specification of this application includes a breathable support 121a and a formaldehyde decomposition catalyst (belonging to the decomposition catalyst 121b) attached to the breathable support.
  • the formaldehyde decomposition catalyst is distributed on the outside of the material constituting the gas permeable support 121a and is mainly filled in the pores between the materials constituting the gas permeable support.
  • the formaldehyde decomposition catalyst generally also includes an adhesive distributed on the formaldehyde decomposition catalyst, so that it can be more firmly attached to the breathable support 121a.
  • the adhesive is preferably an acrylic adhesive or a polyurethane adhesive, and these two types of adhesives will not adversely affect the performance of the formaldehyde decomposition catalyst.
  • the weight of the formaldehyde decomposition catalyst is divided by the area of the windward side of the gas permeable support 121a as the relative adhesion amount of the formaldehyde decomposition catalyst on the gas permeable support 121a
  • the formaldehyde removal efficiency of the formaldehyde decomposition catalyst based on the invention related to the specification of this application is ,
  • the relative adhesion amount is generally more than 40g/m 2 , so that the formaldehyde decomposition catalytic felt basically has a commercially acceptable formaldehyde removal effect.
  • the formaldehyde decomposition catalyst is attached to the breathable support 121a, especially when the relative adhesion amount is more than 40g/m 2 , the breathability of the breathable support 121a will be significantly reduced.
  • the formaldehyde decomposition catalytic felt have better decomposing
  • the formaldehyde effect has reasonable air permeability. It is recommended that the air-permeable support 121a adopts air-permeable fiber felt with an air permeability of ⁇ 3000 m 3 /m 2 ⁇ hour at a pressure difference of 100 Pa.
  • the filter material related to the invention and creation involved in the specification of this application includes different functional layers, and the formaldehyde decomposition catalytic felt is only one of the functional layers, and in order to ensure the air permeability of the entire filter material, the breathable support 121a is preferably used at 100 Breathable fiber felt with air permeability ⁇ 5500m 3 /m 2 ⁇ hour at Pa pressure difference.
  • air permeability at a pressure difference of 100 Pa can be understood from its unit “m 3 /m 2 ⁇ hour”. Specifically, "air permeability at a pressure difference of 100 Pa” refers to the value of cubic meters of air passing through a unit square meter area of the formaldehyde decomposition catalytic felt per hour under a pressure difference of 100 Pa.
  • the air-permeable fiber felt that meets the above-mentioned air permeability requirements can be obtained from the prior art, such as PP fiber felt, PET fiber felt and the like.
  • PP fiber felt and PET fiber felt not only have better air permeability, but also have more suitable properties such as strength.
  • the formaldehyde catalytic decomposition felt in the invention and creation involved in the specification of this application can not only be used as one of the functional layers of the filter material, but also has other application methods. At this time, the form and performance of the breathable support 121a in the formaldehyde catalytic decomposition felt Major changes can also be made.
  • a foamed porous support can be used as the breathable support 121a in the formaldehyde catalytic decomposition felt to attach more Formaldehyde decomposition catalyst.
  • the air-permeable support 121a may adopt a supporting net, and the supporting net may be a woven net, a perforated net, a diagonal-stretched net, etc.
  • the formaldehyde decomposition catalyst of Example A1 is mixed with a dispersant and a binder to prepare a feed solution, wherein the binder is acrylic acid and the dispersant is water.
  • the breathable support 121a uses PP fiber felt.
  • the material liquid is attached to the PP fiber felt through a drawing process. When drawing, the strip made of PP fiber felt is immersed in the material liquid under the driving of the conveying roller, and then rises vertically from the surface of the material liquid, and then passes through the channel formed between a pair of scrapers located above the material liquid.
  • Each scraper in a pair of scrapers moves in parallel along the surface of the corresponding PP fiber felt, thereby applying a squeezing force perpendicular to the surface of the PP fiber felt to the formaldehyde decomposition catalyst, thereby squeezing the formaldehyde decomposition catalyst attached to the PP fiber felt
  • the pressure is dispersed in the pores between the materials constituting the breathable support, and finally the formaldehyde catalytic decomposition felt is dried to obtain the formaldehyde catalytic decomposition felt.
  • the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was detected to be about 40 g/m 2 .
  • Example B1 On the basis of Example B1, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was increased. After drying, it was detected that the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was about 60 g/m 2 .
  • Example B1 On the basis of Example B1, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was increased. After drying, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was detected to be about 80 g/m 2 .
  • Example B1 On the basis of Example B1, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was increased. After drying, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was detected to be about 100 g/m 2 .
  • Example B1 On the basis of Example B1, the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was increased. After drying, it was detected that the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt was about 120 g/m 2 .
  • the squeezing process includes a pair of pressure rollers, a channel is formed between the pair of pressure rollers, each of the pair of pressure rollers rolls in parallel along the surface of the corresponding formaldehyde catalytic decomposition felt, so as to further adhere to the PP fiber felt
  • the above formaldehyde decomposition catalyst is extruded and dispersed in the pores between the materials constituting the breathable support.
  • the formaldehyde catalytic decomposition felts of Examples B1-B5 were used to carry out the formaldehyde removal performance test.
  • the test principle and method are basically the same as the formaldehyde removal performance test of the formaldehyde decomposition catalyst. The difference is that the formaldehyde catalytic decomposition felt is directly clamped in No need to use PP breathable film between flanges.
  • Figure 18 is a test diagram of the comprehensive performance of the formaldehyde catalytic decomposition felts of Examples B1-B5.
  • the abscissa is the relative adhesion amount of the formaldehyde decomposition catalyst on the PP fiber felt, where "40" means the adhesion amount is about 40g/m 2 , corresponding to the formaldehyde catalytic decomposition felt of Example B1, and the rest can be deduced by analogy .
  • the ordinate on the left side of Figure 18 is the air volume, the unit is m 3 /m 2 ⁇ hour, which means the value of cubic meters of air passing on the formaldehyde decomposition catalytic felt per unit square meter area per hour.
  • the formaldehyde removal efficiency of the formaldehyde catalytic decomposition felts of Examples B1-B5 was gradually increased from about 66% to 72% in the first 10 minutes of the above-mentioned formaldehyde removal performance test process. Although there was a certain increase, the increase was not Big.
  • the air permeability test was carried out using the formaldehyde catalytic decomposition felts of Examples B1-B5 respectively, that is, the cube of air passing through the formaldehyde decomposition catalytic felt per unit square meter area per hour under a certain pressure difference (specifically 10 Pascals) Meter value. Due to the limitation of flowmeter readings, when using the formaldehyde catalytic decomposition felts of Examples B1-B5 for the air permeability test, the test of one formaldehyde catalytic decomposition felt was performed by stacking 6 sheets of the same formaldehyde catalytic decomposition felt. The flow rate can be reduced to meet the flow meter reading limit.
  • the air permeability of the formaldehyde catalytic decomposition felts of Examples B1-B5 is successively reduced.
  • the relative adhesion amount is about 70g/m 2 (between 60g/m 2 -70g/m 2 )
  • the formaldehyde catalytic decomposition felts The air permeability and the efficiency of formaldehyde removal are optimal.
  • Figure 18 shows that when the relative adhesion amount is 120g/m 2 , the air permeability of the formaldehyde catalytic decomposition felt is 0, but this phenomenon does not indicate that the formaldehyde catalytic decomposition felt is not air-permeable. This is because 6 sheets were used in the test. The same formaldehyde catalytic decomposition felts are superimposed, but in fact each formaldehyde catalytic decomposition felt has a certain degree of air permeability.
  • Fig. 19 is a comparison diagram of the distribution uniformity of the formaldehyde decomposition catalyst of the formaldehyde catalytic decomposition felt of Example B2 and Example B6.
  • the comparison diagram is to put two formaldehyde catalytic decomposition felts together for light transmission observation. Through observation, it can be clearly seen that the formaldehyde decomposition catalyst distribution of the formaldehyde catalytic decomposition felt of Example B6 is obviously more uniform and fine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

一种甲醛分解催化剂、甲醛催化分解毡及它们的制造方法。甲醛分解催化剂,主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成。甲醛催化分解毡,包含透气支撑物和附着在透气支撑物上的上述甲醛分解催化剂。上述甲醛分解催化剂涉及特定晶型、微观形貌、直径大小以及直径分布的MnO 2颗粒,该MnO 2颗粒基于一种规模化生产工艺所得到,该工艺大大提高了甲醛分解催化剂的生产效率,具有理想的除甲醛效率。

Description

甲醛分解催化剂、甲醛分解催化毡及它们的制造方法 技术领域
本申请说明书涉及的发明创造主要属于过滤技术领域,特别属于空气过滤净化技术领域。
背景技术
空气中的污染物主要分为固体污染物和气体污染物。针对空气中的固体污染物(如PM10、PM2.5)污染,一般通过物理过滤(即通过物理方式实现特定对象的分离)去除;针对空气中的气体污染物(如VOC,即有机气态物质),一般通过化学过滤(即利用物质化学性质实现特定对象的分离)去除。
固体污染物中的微细颗粒物(如PM2.5)对人体健康危害较大。在利用物理过滤去除微细颗粒物方面,过滤效率较高且透气性好的纤维过滤材料(例如玻璃纤维、PP纤维、PET纤维、膨体PTFE纤维等)是特别常用的材料。然而,这类材料在使用过程中其纤维束上容易附着和滋生细菌,从而造成二次污染。
甲醛则是气态污染物中对人体危害较大物质。在利用化学过滤去除甲醛方面,采用金属氧化物中的二氧化锰作为甲醛分解催化剂已被认为是可行而且在一些方面具备一定优势的方式。目前,作为甲醛分解催化剂的二氧化锰限定为纳米级二氧化锰,由此才能具备足够的比表面积以使该甲醛分解催化剂达到使用上可接受的除甲醛效率。
由于空气中往往同时含有不同种类的污染物,为了去除这些污染物,通常是将过滤对象不同的过滤装置依次串联形成过滤系统。该过滤系统既可以是由各个独立的过滤装置所组成,也可以由过滤装置集成。当过滤系统由过滤装置集成时,分别作为不同过滤装置的过滤材料要不是相对独立的安装于同一壳部件中,要不作为相对独立的部件相互组装的。
上述过滤系统结构比较复杂,往往需要占用较大的空间,同时制造成本也较高,从而限制了其在一些传统的家用空气净化器、家用空调器等母体设备中应用的可能性。特别是,人们很难在不改变或仅在小幅度改变母体设备结构的情况下直接在母体设备中加装这样的过滤系统;即便勉强加装,如何确保过滤系统具备足够大的过滤面积也是问题。
发明内容
基于上述背景技术,在开发新型空气净化解决方案的过程中,完成了以下发明创造。
一方面,完成的发明创造包括一种过滤材料、过滤组件、过滤器及过滤方法,目的在于解决改善过滤材料附着和滋生细菌情况的技术问题。
一方面,完成的发明创造包括一种过滤结构、过滤组件及过滤组件的制造方法,目的在于解决优化过滤材料中不同功能层复合结构的技术问题。
一方面,完成的发明创造还包括一种甲醛分解催化剂、甲醛催化分解毡及它们的制造方法,目的 在于解决实现甲醛高效催化分解的技术问题。
一方面,完成的发明创造还包括一种过滤组件,目的在于解决实现对褶皱形过滤材料进行封装从而形成过滤组件的技术问题。
为了解决改善过滤材料附着和滋生细菌情况的技术问题,过滤材料、过滤组件、过滤器及过滤方法的技术方案如下:
过滤材料,包括不同功能层,其全部功能层中包含物理过滤层,所述物理过滤层包含金属过滤层和纤维过滤层;所述金属过滤层与纤维过滤层沿过滤方向前后重叠。
进一步地是,所述金属过滤层可兼作导电层;所述纤维过滤层兼作对导电层的绝缘层。
进一步地是,所述金属过滤层主要由粉末烧结金属多孔材料构成。
进一步地是,所述金属过滤层是一种厚度≤200微米且可折叠的柔性金属薄膜。
进一步地是,所述金属过滤层含有网状的骨架以及填充于骨架网孔中的粉末烧结金属多孔材料。
进一步地是,所述金属过滤层的平均孔径≤200微米、190微米、180微米、170微米、160微米、150微米、140微米、130微米、120微米、110微米或100微米;且所述金属过滤层的平均孔径≥5微米、10微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米或100微米。
进一步地是,所述纤维过滤层对固体颗粒物的过滤效率高于金属过滤层对固体颗粒物的的过滤效率。
进一步地是,所述纤维过滤层主要由玻璃纤维、PP纤维、PET纤维、膨体PTFE纤维中的至少一种纤维过滤材料构成;并且/或者,所述纤维过滤层主要由超细纤维过滤材料构成。
进一步地是,所述金属过滤层与纤维过滤层彼此相邻的两表面之间贴附但不粘合。
进一步地是,所述全部功能层中包含化学过滤层;所述物理过滤层与化学过滤层沿过滤方向前后重叠。
进一步地是,所述化学过滤层包含至少一种挥发性有机物过滤层;所述至少一种挥发性有机物过滤层包含相应的挥发性有机物的分解催化剂和/或吸附剂。
进一步地是,所述至少一种挥发性有机物过滤层为甲醛过滤层,所述分解催化剂主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成,所述亚微米-微米级花瓣状颗粒的直径主要分布在0.5-5微米之间。
进一步地是,所述纤维过滤层为一种具有电绝缘性质的纤维过滤层。
进一步地是,所述纤维过滤层与所述至少一种挥发性有机物过滤层彼此相邻的两表面之间贴附但不粘合。
进一步地是,所述全部功能层中包含金属网支撑层;所述物理过滤层与金属网支撑层沿过滤方向前后重叠。
进一步地是,所述物理过滤层、化学过滤层和金属网支撑层沿过滤方向前后依次重叠。
进一步地是,所述至少一种挥发性有机物过滤层与金属网支撑层彼此所相邻的两表面之间贴附但不粘合。
进一步地是,该过滤材料具有褶皱形结构并且堆叠该过滤材料的全部功能层的坯件经一体折叠成型为该褶皱形结构。
进一步地是,其全部功能层中相邻的至少两层功能层之间设置有可防止所述相邻的至少两层功能层之间产生平行位移的局部连接结构。
进一步地是,所述局部连接结构包括可以但不必须沿过滤材料边缘间隔设置的铆接件,所述铆接件分别与所述相邻的至少两层功能层连接;或者,所述局部连接结构包括可以但不必须沿过滤材料边缘间隔设置的粘结点。
过滤组件,包括:过滤部,所述过滤部包括上述任意一种过滤材料,所述过滤材料具有褶皱形结构;定位部,所述定位部包括设置在过滤材料周边从而将过滤材料限定在其内部并将过滤材料的两侧向外界敞开的定位框;以及密封部,所述密封部包括设置在过滤材料与定位部之间用以防止待过滤物不经过过滤材料而穿透定位框内界区域的密封材料。
进一步地是,所述定位部上设置有用于与过滤材料中的金属过滤层导电连接的导电部件;所述金属过滤层绝缘安装在过滤组件中并能够通过导电部件的导电而带电。
进一步地是,所述密封材料包括粘接于过滤材料周边与定位框之间的密封胶。
进一步地是,所述密封材料包括位于过滤材料边缘的至少一块密封板;所述至少一块密封板的内侧面与对应的过滤材料边缘所在的面之间通过密封胶粘接、外侧面与对应的定位框内侧面之间通过密封胶粘接。
进一步地是,所述过滤材料是一个外形为矩形的褶皱形结构,该过滤材料的其中一对对边为褶皱波型边,另一对对边为直线型边;所述定位框为与过滤材料匹配的矩形定位框;所述直线型边所在的过滤材料上的面分别通过密封胶直接与对应的定位框内侧面粘接,所述褶皱波型边分别通过所述至少一块密封板与对应的定位框内侧面粘接。
进一步地是,所述定位框包括:侧定位框体,所述侧定位框体与过滤材料之间设置有密封材料;上定位框体,所述上定位框体设置在侧定位框体的上端并沿侧定位框体的顶边延伸;以及下定位框体,所述下定位框体设置在侧定位框体的下端并沿侧定位框体的底边延伸。
进一步地是,所述上定位框体与侧定位框体分体式连接;所述上定位框体的底面具有用于与侧定位框体的上端适配的台阶面,位于上定位框体与侧定位框体之间的密封胶基本布满所述台阶面上的两平行的平面。
进一步地是,所述定位部还包括设置在过滤材料侧面的褶皱保形部件;所述褶皱保形部件包括间 隔设置于过滤材料的多对相邻褶皱波之间的支撑物。
进一步地是,所述支撑物由分别填充于所述多对相邻褶皱波之间并凝固的定位胶构成;所述定位胶仅分别填充于对应相邻褶皱波的波峰之间。
过滤器,包括进风口、排风口和位于进风口与排风口之间的风道,所述风道上安装有上述任意一种过滤组件,所述过滤组件的迎风侧与进风口导通、出风侧与排风口导通。
进一步地是,所述过滤器由具有空气过滤功能的空调器兼作。
过滤方法,通过上述任意一种过滤材料、上述任意一种过滤组件或上述任意一种过滤器对空气进行过滤净化;其中,金属过滤层带电或不带电。
上述过滤材料、过滤组件、过滤器及过滤方法,基于过滤材料中金属过滤层与纤维过滤层在同一物理过滤层上的结合,使用时当待过滤物经过该物理过滤层时,待过滤物首先由金属过滤层一次过滤后再由纤维过滤层二次过滤,因此,进入纤维过滤层的细菌等微生物数量减少,从而降低了纤维过滤层中附着和滋生细菌的情况,而金属过滤层抑菌性能相对较好,细菌不易繁殖,这样,物理过滤层整体滋生细菌的问题可得到一定程度的改善。
由于金属过滤层与纤维过滤层沿过滤方向前后重叠后能够相互支撑,因此对于金属过滤层与纤维过滤层沿过滤方向前后重叠后形成的叠层本身的支撑和/或定位将更多的被金属过滤层与纤维过滤层之外的相同部件统一实现,有助于缩小由金属过滤层与纤维过滤层构成的功能单元的占用空间。
为了解决优化过滤材料中不同功能层复合结构的技术问题,过滤结构、过滤组件及过滤组件的制造方法的技术方案如下:
过滤结构,包括过滤材料,该过滤材料包括不同功能层,该过滤材料的全部功能层中的相邻的至少两层功能层之间贴附但不粘合;堆叠该过滤材料的全部功能层的坯件经一体变形加工成型为特定形状的过滤材料。
进一步地是,所述相邻的至少两层功能层存在于以下任意一种情形或任意两种以上情形的结合之中:a)包含两层以上功能层的物理过滤层;b)包含两层以上功能层的化学过滤层;c)包含一层以上功能层的物理过滤层与包含一层以上功能层的化学过滤层的复合层;d)包含一层以上功能层的物理过滤层与包含一层以上功能层的材料支撑层的复合层;e)包含一层以上功能层的化学过滤层与包含一层以上功能层的材料支撑层的复合层;f)包含一层以上功能层的物理过滤层、包含一层以上功能层的化学过滤层与包含一层以上功能层的材料支撑层的复合层。
进一步地是,所述物理过滤层包含金属过滤层和/或纤维过滤层;并且/或者,所述化学过滤层包含至少一种挥发性有机物过滤层,所述至少一种挥发性有机物过滤层包含相应的挥发性有机物的分解催化剂和/或吸附剂;并且/或者,所述材料支撑层包含金属网支撑层。
进一步地是,所述相邻的至少两层功能层之间设置有可防止该相邻的至少两层功能层之间产生平 行位移的局部连接结构。
进一步地是,所述局部连接结构包括铆接件,所述铆接件分别与所述相邻的至少两层功能层连接;并且/或者,所述局部连接结构包括粘结点。
进一步地是,所述局部连接结构沿过滤材料的边缘间隔设置。
进一步地是,所述铆接件由两脚向内弯折的U形金属钉构成;所述相邻的至少两层功能层被夹紧于U形金属钉的头部的连接部与脚部的向内弯折部之间。
进一步地是,堆叠所述过滤材料的全部功能层的坯件经一体变形加工成型为褶皱形结构的过滤材料。
过滤组件,包括:过滤部,包括上述任意一种过滤结构,该过滤结构的过滤材料是由堆叠该过滤材料全部功能层的坯件经一体变形加工成型为褶皱形结构的过滤材料;定位部,所述定位部包括设置在过滤材料周边从而将过滤材料限定在其内部并将过滤材料的两侧向外界敞开的定位框;以及密封部,所述密封部包括设置在过滤材料与定位部之间用以防止待过滤物不经过过滤材料而穿透定位框内界区域的密封材料。
过滤组件的制造方法,包括:将独立的各个分别用于构成过滤材料相应功能层的坯件依次重叠形成堆叠过滤材料的全部功能层的坯件;通过局部连接结构将所述独立的各个分别用于构成过滤材料相应功能层的坯件进行局部连接点上的防平移连接;对所述堆叠过滤材料的全部功能层的坯件进行一体变形加工成型为特定形状的过滤材料;将过滤材料与过滤组件的其他部分组装形成过滤组件。
当过滤材料的全部功能层中的相邻的至少两层功能层之间贴附并且粘合时,为了实现这样的粘合,基本上来说,将不可避免的在彼此贴附的功能层之间的分界面上产生足以对流体流动造成一定阻挡作用的结合面,例如粘胶结合面、烧结结合面等,这样就会增大过滤阻力。而当过滤材料的全部功能层中的相邻的至少两层功能层之间贴附但不粘合时,就不会造成过滤阻力增大的问题;同时,由于堆叠过滤材料的全部功能层的坯件经一体变形加工成型为特定形状的过滤材料,这样既能够使过滤材料成型为设计的形状和结构,又使得过滤材料中彼此贴附的功能层之间形状、结构基本一致而实现流体过滤的均匀一致并降低过滤阻力,并且这些功能层之间还能够相互支撑以提高过滤材料的整体强度。
当堆叠所述过滤材料的全部功能层的坯件经一体变形加工成型为褶皱形结构的过滤材料时,不仅使得过滤材料具有更大的过滤面积,同时由于过滤材料的全部功能层均为褶皱形结构,贴附但不粘合的功能层之间不易发生相对位移。
为了解决实现甲醛高效催化分解的的技术问题,甲醛分解催化剂、甲醛催化分解毡及它们的制造方法的技术方案如下:
甲醛分解催化剂,主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成。所述“亚微米-微米级花瓣状颗粒”是指,直径在0.1-1微米范围的亚微米级花瓣状颗粒和直径在1-10微米范围的微 米级花瓣状颗粒的组合。
通常,亚微米-微米级花瓣状颗粒的直径分布范围≥0.5微米。即这些亚微米-微米级花瓣状颗粒中直径最大的微米级花瓣状颗粒的直径比直径最小的亚微米级花瓣状颗粒的直径至少大0.5微米。
进一步地是,所述亚微米-微米级花瓣状颗粒的直径主要分布在0.1-5微米之间,更具体主要分布在0.3-5微米之间。更进一步地是,所述亚微米-微米级花瓣状颗粒的直径主要分布在0.5-5微米之间;再进一步地是,所述亚微米-微米级花瓣状颗粒的直径主要分布在0.5-3微米之间。
进一步地是,所述亚微米-微米级花瓣状颗粒的水洗液呈碱性。
甲醛催化分解毡,包含透气支撑物和附着在透气支撑物上的甲醛分解催化剂,所述甲醛分解催化剂为上述任意一种甲醛分解催化剂。
进一步地是,所述甲醛分解催化剂分布于构成透气支撑物的材料的外侧并主要填充于构成透气支撑物的材料之间的孔隙中。
进一步地是,包含分布于所述甲醛分解催化剂上的粘接剂;所述粘接剂优选但不限于丙烯酸系粘接剂或聚氨酯系粘接剂。
进一步地是,若将甲醛分解催化剂的重量除以透气支撑物的迎风面的面积设为甲醛分解催化剂在透气支撑物上的相对附着量,则所述相对附着量为40g/m 2以上。
进一步地是,所述透气支撑物采用在100帕压差时空气渗透率≥3000m 3/m 2·小时的透气纤维毡,优选采用在100帕压差时空气渗透率≥5500m 3/m 2·小时的透气纤维毡;并且,所述相对附着量为40-120g/m 2,优选为50-70g/m 2
进一步地是,所述透气支撑物采用PP纤维毡或PET纤维毡。
进一步地是,所述透气支撑物采用泡沫状多孔支撑体或支撑网;当所述透气支撑物采用支撑网时,所述支撑网可以为编织网、冲孔网、斜拉网中的任意一种。
挥发性有机物过滤材料,包含透气支撑物和附着在透气支撑物上的相应的挥发性有机物的分解催化剂或吸附剂,此外,
1)该挥发性有机物过滤材料为甲醛催化分解毡,该甲醛催化分解毡属于上述任意一种甲醛催化分解毡,并且,该甲醛催化分解毡中的甲醛分解催化剂被挤压分散于构成透气支撑物的材料之间的孔隙中,所述挤压分散操作是在将甲醛分解催化剂附着在透气支撑物表面的附着工序中和/或附着工序之后的挤压工序中进行的;或者
2)所述挥发性有机物的分解催化剂或吸附剂被挤压分散于构成透气支撑物的材料之间的孔隙中,所述挤压分散操作是在将挥发性有机物的分解催化剂或吸附剂附着在透气支撑物表面的附着工序中和/或附着工序之后的挤压工序中进行的。
进一步地是,所述挤压分散的操作是借助能够对所述甲醛分解催化剂/所述挥发性有机物的分解催 化剂或吸附剂施加垂直于透气支撑物表面的挤压力的挤压部件来实现的。
进一步地是,所述附着工序和/或挤压工序包括借助作为挤压部件并沿透气支撑物表面平行运动的刮刀将附着在透气支撑物上的甲醛分解催化剂/所述挥发性有机物的分解催化剂或吸附剂挤压分散于构成透气支撑物的材料之间的孔隙中的过程。
进一步地是,所述附着工序和/挤压工序包括借助作为挤压部件并沿透气支撑物表面平行滚动的压辊将附着在透气支撑物上的甲醛分解催化剂/所述挥发性有机物的分解催化剂或吸附剂挤压分散于构成透气支撑物的材料之间的孔隙中的过程。
上述甲醛分解催化剂和应用了该甲醛分解催化剂的甲醛催化分解毡涉及特定晶型、微观形貌、直径大小以及直径分布的MnO 2颗粒,该MnO 2颗粒基于申请人开发的一种规模化生产工艺所得到,该工艺不仅大大提高了甲醛分解催化剂的生产效率,同时,得到的产品即上述甲醛分解催化剂除甲醛效果也突破预期,相比于其他现有甲醛分解催化剂具有理想的除甲醛效率。
而对于上述的一种甲醛催化分解毡,通过将甲醛分解催化剂挤压分散于构成透气支撑物的材料之间的孔隙中,很好的解决了甲醛分解催化剂在透气支撑物上难以均匀分布的技术难题,有助于进一步提升甲醛催化分解毡的除甲醛效果。
此外,上述挥发性有机物过滤材料的已过滤侧还可以设置保护功能层,所述保护功能层具有多孔结构且孔径小于所述分解催化剂或吸附剂的粒径。所述保护功能层优选为PP纤维毡、PET纤维毡或静电棉。此外,挥发性有机物过滤材料与保护功能层可通过连接层连接,连接层可以为超声波复合层。
通过设置保护功能层,还可以对从化学过滤层中脱落的催化剂进行拦截,延长催化剂的使用寿命;经验证,化学过滤层的寿命可以延长30%;保护功能层还可以对沿与过滤方向相反的方向对过滤材料中位于保护功能层之前的功能层进行支撑。
甲醛分解催化剂的制造方法,以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体包括:
A.将高锰酸钾配置成为60-110克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70-120克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为3:3至4:3,若设第一滴定罐中的高锰酸钾溶液的体积或第二滴定罐中的硫酸锰溶液的体积为基准体积,则基准体积不少于50升;
B.分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积为基准体积2倍以上的底水中,在10-45分钟内同时将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液全部滴加完毕,然后在70-90℃下对混合液进行充分搅拌直至反应完成;
C.从反应完成后的混合液中固液分离得到甲醛分解催化剂。
甲醛分解催化剂的制造方法,对目标物进行碱洗得到碱洗后的甲醛分解催化剂,所述目标物为:1) 高锰酸钾、硫酸锰和水为原料混合反应获得的甲醛分解催化剂;2)上述甲醛分解催化剂的制造方法中步骤B后得到的沉淀物;或3)上述甲醛分解催化剂的制造方法中步骤C后得到的甲醛分解催化剂。
发明人发现,以高锰酸钾、硫酸锰和水为原料制备的甲醛分解催化剂存在可能被觉察到的异味,通过碱洗能够去除甲醛分解催化剂的异味,提升甲醛分解催化剂使用的舒适性。
甲醛催化分解毡的制造方法,包括:提供透气支撑物;提供含有甲醛分解催化剂的料液;将所述料液挤压分散在透气支撑物上,待料液干燥后获得所述甲醛催化分解毡;其中,所述甲醛分解催化剂为:1)上述任意一种甲醛分解催化剂;2)上述任意一种甲醛分解催化剂的制造方法得到的甲醛分解催化剂;或3)主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成的甲醛分解催化剂。
进一步地是,所述料液通过拉浆工艺附着在透气支撑物上,所述挤压分散过程存在于所述拉浆工艺中。
为了解决对褶皱形过滤材料进行封装从而形成过滤组件的技术问题,过滤组件的技术方案如下:
过滤组件,包括:过滤部,所述过滤部包括过滤材料,所述过滤材料具有褶皱形结构;定位部,所述定位部包括设置在过滤材料周边从而将过滤材料限定在其内部并将过滤材料的两侧向外界敞开的定位框;以及密封部,所述密封部包括设置在过滤材料与定位部之间用以防止待过滤物不经过过滤材料而穿透定位框内界区域的密封材料。
进一步地是,所述密封材料包括粘接于过滤材料周边与定位框之间的密封胶。
进一步地是,所述密封材料包括位于过滤材料边缘的至少一块密封板;所述至少一块密封板的内侧面与对应的过滤材料边缘所在的面之间通过密封胶粘接、外侧面与对应的定位框内侧面之间通过密封胶粘接。
进一步地是,所述过滤材料是一个外形为矩形的褶皱形结构,该过滤材料的其中一对对边为褶皱波型边,另一对对边为直线型边;所述定位框为与过滤材料匹配的矩形定位框;所述直线型边所在的过滤材料上的面分别通过密封胶直接与对应的定位框内侧面粘接,所述褶皱波型边分别通过所述至少一块密封板与对应的定位框内侧面粘接。
进一步地是,所述定位框包括:侧定位框体,所述侧定位框体与过滤材料之间设置有密封材料;上定位框体,所述上定位框体设置在侧定位框体的上端并沿侧定位框体的顶边延伸;以及下定位框体,所述下定位框体设置在侧定位框体的下端并沿侧定位框体的底边延伸。
进一步地是,所述上定位框体与侧定位框体分体式连接;所述上定位框体的底面具有用于与侧定位框体的上端适配的台阶面,位于上定位框体与侧定位框体之间的密封胶基本布满所述台阶面上的两平行的平面。
进一步地是,所述定位部还包括设置在过滤材料侧面的褶皱保形部件;所述褶皱保形部件包括间隔设置于过滤材料的多对相邻褶皱波之间的支撑物。
进一步地是,所述支撑物由分别填充于位于过滤材料前侧面上所述多对相邻褶皱波之间并凝固的定位胶构成;所述定位胶仅分别填充于对应相邻褶皱波的波峰之间。
进一步地是,所述过滤材料至少包含主要由粉末烧结金属多孔材料构成的金属过滤层,所述金属过滤层是一种厚度≤200微米且可折叠的柔性金属薄膜。
进一步地是,该过滤材料包括不同功能层,该过滤材料的全部功能层中的相邻的至少两层功能层之间贴附但不粘合,所述不同功能层中包含材料支撑层,所述材料支撑层优选是由金属网制成的金属网支撑层;堆叠该过滤材料的全部功能层的坯件经一体变形加工成型为褶皱形结构的过滤材料。
下面结合附图和具体实施方式对本申请做进一步的说明。本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
构成本申请的一部分的附图用来辅助对本申请的理解,附图中所提供的内容及其在本申请中有关的说明可用于解释本申请,但不构成对本申请的不当限定。在附图中:
图1-7示出了本申请说明书涉及的发明创造中的一种过滤组件的制造过程。其中:
图1为堆叠过滤材料的全部功能层的坯件的分解图。
图2为堆叠过滤材料的全部功能层的坯件的示意图。
图3为堆叠过滤材料的全部功能层的坯件一体折叠为过滤材料的褶皱形结构后示意图。
图4为填充并凝固于过滤材料的多对相邻褶皱波之间的定位胶的示意图。
图5为在过滤材料上安装密封板的示意图。
图6为将过滤材料放入定位框前的示意图。
图7为过滤组件的结构示意图。
图8为本申请说明书涉及的发明创造的一种过滤器的结构示意图。
图9为图4所示结构的实物照片。
图10为本申请说明书涉及的发明创造的一种甲醛分解催化剂的扫描电镜图。
图10中的图(a)-(d)分别为显微观测时无倾向的在载片上选取的视场的照片。
图11为图10所示甲醛分解催化剂的X射线衍射(XRD)图。
图12为本申请说明书涉及的发明创造的一种甲醛催化分解毡的扫描电镜图。
图12中的图(a)-(d)分别为显微观测时无倾向的在载片上选取的视场的照片。
图13为对比例1的甲醛分解催化剂的扫描电镜图。
图13中的图(a)-(b)分别为显微观测时无倾向的在载片上选取的视场的照片。
图14为使用实施例A1的甲醛分解催化剂进行除甲醛性能测试时甲醛浓度随时间变化图。
图15为使用实施例A5的甲醛分解催化剂进行除甲醛性能测试时甲醛浓度随时间变化图。
图16为使用对比例1的甲醛分解催化剂进行除甲醛性能测试时甲醛浓度随时间变化图。
图17为本申请说明书涉及的发明创造中一种甲醛分解催化毡的扫描电镜图。
图18为实施例B1-B5的甲醛催化分解毡综合性能测试图。
图19为实施例B2与实施例B6的甲醛催化分解毡的甲醛分解催化剂分布均匀性对照图。
图中标记为:过滤材料100、物理过滤层110、金属过滤层111、纤维过滤层112、化学过滤层120、挥发性有机物过滤层121、透气支撑物121a、分解催化剂121b、金属网支撑层130、褶皱形结构101、褶皱波型边101a、直线型边101b、褶皱波101c;过滤组件200、过滤部210、定位部220、定位框221、侧定位框体221a、上定位框体221b、台阶面221b1、下定位框体221c、褶皱保形部件222、定位胶222a、导电部件223、密封部230、密封板231;过滤器300、进风口310、排风口320;褶皱波定位工装400。
具体实施方式
下面结合附图对本申请涉及的发明创造进行清楚、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本申请涉及的发明创造。
在结合附图对本申请进行说明前,需要特别指出的是:本申请中在包括下述说明在内的各部分中所提供的技术方案、技术特征,在不冲突的情况下,这些技术方案、技术特征可以相互组合。
此外,下述说明中涉及到的实施方式、实施例通常仅是本申请一分部而不是全部的实施方式、实施例。因此,基于本申请中的实施方式、实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式、实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及有关的部分中的术语“包括”、“包含”、“具有”以及它们的任何变形,意图在于覆盖不排他的包含。而本申请中的其他相关术语和单位,均可基于本申请相关内容得到合理的解释。
图1-7和9示出了本申请说明书涉及的发明创造中的一种过滤组件的制造过程,其中能够反映该过滤组件及其过滤材料等相关结构。
如图1-7和9所示,过滤组件中的过滤材料100具有不同功能层,其全部功能层中包含物理过滤层110,物理过滤层110包含金属过滤层111和纤维过滤层112,所述金属过滤层111与纤维过滤层112沿过滤方向前后重叠。
其中,金属过滤层111主要由金属(包括合金)制成。该金属过滤层111优选主要由粉末烧结金属多孔材料构成的金属过滤层;更优选厚度≤200微米且可折叠的柔性金属薄膜。
所述柔性金属薄膜的厚度≤200微米,因此更容易达到较高的透气性。由于柔性金属薄膜本身可折叠,因此不影响对过滤材料100形状的弯曲或折叠。
所述柔性金属薄膜可以采用由CN104874798A的中国专利文件中提供的方法所制备的多孔薄膜,也可以采用其他方法制备的柔性金属薄膜。
本申请特别建议采用由本申请的申请人在基于上述CN104874798A专利文件中的内容而制造的商业名称为“纸型膜”的产品。
纸型膜是一种含有网状的骨架以及填充于骨架网孔中的粉末烧结金属多孔材料的柔性金属薄膜,其厚度可以达到≤200微米且本身可折叠。
上述物理过滤层中,纸型膜(或其他金属过滤层111)的平均孔径一般设定在5-200微米范围内。该范围的上限值还可以根据需要设定为190微米、180微米、170微米、160微米、150微米、140微米、130微米、120微米、110微米或100微米;该范围的下限值也可以根据需要设定为10微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米或100微米。
上述术语“平均孔径”,是表征多孔材料的常用参数,可通过气泡法测量。由本申请的申请人申请的、公开号为CN104266952A的专利申请文献中涉及的相关技术可以同于测量金属过滤层111的平均孔径。
为了使金属过滤层111在透气性与过滤效率之间取得较好的平衡,金属过滤层111的平均孔径通常可以为10-150微米,进一步为10-120微米,再进一步为10-100微米,更进一步为10-80微米。
上述术语“过滤效率”,是指在测试条件下,被过滤材料所拦截的固体颗粒物的量与待过滤气体中本身含有的固体颗粒物的量之比。
金属过滤层111中可包含一些具有杀菌功能的金属物质,比如铜、银等。在上述过滤材料的一个/些实施方式可以是,金属过滤层111的粉末烧结金属多孔材料主要由粉末烧结形成的铜-镍合金构成,这样的金属过滤层111既能够满足对“柔性”要求,又具备一定的杀菌功能。
纤维过滤层112主要由无机非金属纤维(如玻璃纤维)、有机纤维(如PP纤维)或它们的复合材料制成。通常,所述纤维过滤层112主要由玻璃纤维、PP纤维、PET纤维、膨体PTFE纤维中的至少一种纤维过滤材料构成。
一般而言,纤维过滤层112对固体颗粒物的过滤效率是高于金属过滤层111对固体颗粒物的的过滤效率的。
纤维过滤层112优选主要由超细纤维过滤材料构成的纤维过滤层,从而可使纤维过滤层112具有更好的过滤效率和透气性。
所述“超细纤维过滤材料”应理解为:其直径能够使制成的纤维过滤层对待过滤气体中粒径≥2.5μm的粉尘的去除率在98%以上的纤维过滤材料。上述玻璃纤维、PP纤维、PET纤维、膨体PTFE纤维均可以是超细纤维过滤材料。
上述过滤材料100由于将金属过滤层111与纤维过滤层112相结合,待过滤物首先由金属过滤层 111一次过滤后再由纤维过滤层112二次过滤,因此,进入纤维过滤层112的细菌数量较少,从而降低了纤维过滤层中附着和滋生细菌的情况,而金属过滤层111抑菌性能相对较好,细菌不易繁殖,这样,过滤材料100整体特别是物理过滤层110滋生细菌的问题可得到一定改善。
由于金属过滤层111与纤维过滤层112沿过滤方向前后重叠后能够相互支撑,因此对于金属过滤层111与纤维过滤层112沿过滤方向前后重叠后形成的叠层本身的支撑和/或定位将更多的被金属过滤层111与纤维过滤层112之外的相同部件统一实现,有助于缩小由金属过滤层111与纤维过滤层112构成的功能单元的占用空间。
当纤维过滤层112主要由超细纤维过滤材料构成的纤维过滤层时,金属过滤层111的平均孔径选择为10-100微米是比较适宜的,并且,金属过滤层111的平均孔径选择为20-80微米尤其适宜。
根据经验,多孔过滤介质的过滤精度约等于其平均孔径的1/10。例如,当金属过滤层111的平均孔径为80微米时,其过滤精度约为8微米。并且,过滤时,金属过滤层111上还会逐渐形成滤饼,从而进一步增大过滤精度,即小于8微米。也就是说,当金属过滤层111的平均孔径为80微米时,其能够在过滤时拦截粒径≤8微米的固体颗粒物(粉尘)。
当金属过滤层111的平均孔径选择为10-100微米时,金属过滤层111可拦截较大部分的PM10等粒径较大的固体颗粒物、较大部分的霉菌孢子(在空气中的粒径分布范围主要为1-100微米)以及一部分的细菌(在空气中的粒径分布范围主要为0.5-10微米)。这样,可有效降低纤维过滤层112上附着和滋生霉菌和细菌的情况。
但是,当金属过滤层111的平均孔径越靠近10-100微米中的下限,整个过滤材料特别是除包含金属过滤层和纤维过滤层外还包含其他功能层尤其是具有物理过滤作用或化学过滤作用的功能层的过滤材料的透气性越低。
所以,最好根据过滤材料100整体的过滤性能指标选择金属过滤层111的平均孔径等相关技术参数。
利用金属过滤层大多能够导电的特性,上述过滤材料100的金属过滤层111还可兼作导电层,这样,当通过外接电源使金属过滤层111带电时,金属过滤层111可对带过滤物中的带电颗粒进行排斥或吸附,由此提高过滤材料100的过滤效率。
同时,纤维过滤层大多具有绝缘的特性,因此,当金属过滤层111兼作导电层时,纤维过滤层112则可充当对导电层的绝缘层,以便于将金属过滤层111与安装过滤材料100的壳体和/或其他部件(例如过滤材料的其他功能层)绝缘连接。
金属过滤层111兼作导电层而纤维过滤层112充当对导电层的绝缘层的设计,进一步利用了金属过滤层111和纤维过滤层112的材料特性,从而使金属过滤层111和纤维过滤层112更好的结合在一起。
除了金属过滤层111和纤维过滤层112以外,上述过滤材料100的全部功能层中还包含有化学过滤层120,且所述物理过滤层110与化学过滤层120沿过滤方向前后重叠。
优选的,所述化学过滤层120包含至少一种挥发性有机物过滤层121,所述至少一种挥发性有机物过滤层121包含相应的挥发性有机物的分解催化剂121b或吸附剂。
所述至少一种挥发性有机物过滤层121通常还包括透气支撑物121a,所述分解催化剂121b或吸附剂附着在透气支撑物121a上。
所述至少一种挥发性有机物过滤层121优选为甲醛过滤层。这时,挥发性有机物的分解催化剂或吸附剂应为甲醛分解催化剂或甲醛吸附剂。
一般而言,所述甲醛过滤层包含透气支撑物121a和附着在透气支撑物121a上的甲醛分解催化剂或甲醛吸附剂。
所述甲醛分解催化剂优选由本申请的申请人开发的甲醛分解催化剂,其主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成。
上述甲醛分解催化剂主要优点在于除甲醛效果高,并且可以规模化生产。关于该甲醛分解催化剂及应用它的甲醛过滤层将在本说明书的后续部分专门进行详细说明。
所述甲醛分解催化剂当然也可以由其他催化剂替代,例如二氧化钛催化剂(采用光催化技术)。另外,现有技术中也存在多种可选的甲醛吸附剂,例如可以采用活性炭、沸石、多孔粘土矿石等。若本申请采用甲醛吸附剂,则优选采用活性炭。
当金属过滤层111兼作导电层而纤维过滤层112充当对导电层的绝缘层时,由于纤维过滤层112在金属过滤层111与甲醛过滤层之间起绝缘作用,故能够避免金属过滤层111带电对甲醛分解催化剂或甲醛吸附剂的不利影响,如避免金属过滤层111带电对甲醛分解催化剂表面电子结构的影响而降低催化活性。
另外,无论金属过滤层111是否外接电源,其表面均可能带有一定的电荷。如将纤维过滤层设置为一种具有电绝缘性质的纤维过滤层,则能够避免金属过滤层111的表面电荷对所述至少一种挥发性有机物过滤层121上的分解催化剂121b或吸附剂的不利影响,如避免金属过滤层111的表面电荷对分解催化剂121b表面电子结构的影响而降低催化活性。
除了金属过滤层111和纤维过滤层112以外,上述过滤材料100的全部功能层中还可以包含金属网支撑层130;所述物理过滤层110与金属网支撑层130沿过滤方向前后重叠。
可能的情况下,上述金属网支撑层130也可以由其他的材料支撑层进行等同的替代。所谓“等同”含义与专利侵权判断中的“等同原则”一致。
当上述过滤材料100的全部功能层中包含化学过滤层120时,所述物理过滤层110、化学过滤层120和金属网支撑层130沿过滤方向前后依次重叠。
上述金属网支撑层130的基本作用在于沿与过滤方向相反的方向对过滤材料100中位于金属网支撑层130之前的功能层进行支撑,防止这些功能层沿过滤方向变形。
当过滤材料100包含化学过滤层120时,考虑到化学过滤层120对过滤材料整体透气性会有一定影响,此时,可以适当增大金属过滤层111的平均孔径。
在上述过滤材料100的一个/些实施方式可以是,过滤材料由金属过滤层111、纤维过滤层112、甲醛过滤层和金属网支撑层130构成,其中,金属过滤层111的平均孔径设定在40-90微米之间,如具体为42微米左右、55微米左右、79微米和85微米等,对这些金属过滤层111的使用效果满意。
优选的,过滤材料100具有褶皱形结构101并且堆叠该过滤材料100的全部功能层的坯件经一体折叠成型为该褶皱形结构101。具有褶皱形结构101的过滤材料100相比于表面平滑的过滤材料而言能够大大提高过滤材料的过滤面积,从而提升过滤效率。
当过滤材料100的全部功能层中还包含所述金属网支撑层130时,若采用上述褶皱形结构101,则金属网支撑层130除了能够沿与过滤方向相反的方向对过滤材料100中位于金属网支撑层130之前的功能层进行支撑外,还具有了对褶皱形结构101的褶皱波101c进行定位保形的作用,能够在一定程度上防止褶皱波101c变形以避免褶皱波101c之间的间隙不一致。
进一步如图1-7所示,应用上述过滤材料100的过滤组件200包括:
过滤部210,所述过滤部210包括上述任意一种过滤材料100,并且所述过滤材料100具有褶皱形结构101;
定位部220,所述定位部220包括设置在过滤材料100周边从而将过滤材料100限定在其内部并将过滤材料100的两侧向外界敞开的定位框221;以及
密封部230,所述密封部230包括设置在过滤材料100与定位部220之间用以防止待过滤物不经过过滤材料100而穿透定位框221内界区域的密封材料。
该过滤组件200是在应用上述过滤材料100的情况下为将过滤材料100配置为一个整体可拆装于过滤器等母体设备的独立模块而设计的一种具体方式,从而便于对过滤组件进行单独的制造、销售、安装和更换。
需指出,上述过滤组件200并非只能采用上述过滤材料100。只要是具有褶皱形结构的过滤材料通常均可以用于该过滤组件。
当上述过滤材料100的金属过滤层111兼作导电层时,过滤组件200的定位部220上还可设置用于与过滤材料100中的金属过滤层111导电连接的导电部件223,同时所述金属过滤层111绝缘安装在过滤组件200中并能够通过导电部件223的导电而带电。
所述导电部件223可以是任何导体,其位于定位部220上并最好以能够在过滤组件200被安装于过滤器等母体设备后自动与过滤器等母体设备上的电连接端子接触的方式而设置。
例如,可以在定位部220上设置触点223a(触点位置可以位于定位框221的侧面,当过滤组件200被安装于过滤器等母体设备后该触点223a的侧面刚好与过滤器等母体设备上的电连接端子接触),然后将所述触点223a与金属过滤层111之间通过铜耳223b接触。
上述过滤组件200的一个实施方式中,所述密封部230的密封材料仅仅是粘接于过滤材料100周边与定位框221之间的密封胶。
上述过滤组件200的另一个实施方式中,所述密封部230的密封材料包括位于过滤材料100边缘密封板231,所述密封板231的内侧面与对应的过滤材料100边缘所在的面之间通过密封胶粘接、外侧面与对应的定位框221内侧面之间通过密封胶粘接。
由此,可先将密封板231与过滤材料100粘接后再将粘接有密封板231的过滤材料100密封安装在定位框221中,因此通过密封板231可便于将过滤材料100密封安装于定位框221中。但是,设置密封板231会增加过滤组件的制造成本并占用一些空间。
上述过滤组件200的又一个实施方式中,所述过滤材料100是一个外形为矩形的褶皱形结构,该过滤材料100的其中一对对边为褶皱波型边101a,另一对对边为直线型边101b,所述定位框221为与过滤材料100匹配的矩形定位框,所述直线型边101b所在的过滤材料100上的面分别通过密封胶直接与对应的定位框221内侧面粘接,所述褶皱波型边101a分别通过所述至少一块密封板231与对应的定位框221内侧面粘接。
由此,所述直线型边101b所在的过滤材料100上的面分别通过密封胶直接与对应的定位框221内侧面粘接,而褶皱波型边101a则分别通过所述至少一块密封板231与对应的定位框221内侧面粘接。
这样不仅通过密封板231达到了便于将过滤材料100密封安装于定位框221中的目的并能够对褶皱波型边101a进行有效密封,此外,还节省了密封板231的使用数量,而且,由于直线型边101b所在的过滤材料100上的面与对应的定位框221内侧面之间为面对面粘接从而可达到良好的密封效果。
为了对过滤材料100进行更好的固定和密封,所述定位框221包括:侧定位框体221a,所述侧定位框体221a与过滤材料100之间设置有密封材料;上定位框体221b,所述上定位框体221b设置在侧定位框体221a的上端并沿侧定位框体221a的顶边延伸;以及,下定位框体221c,所述下定位框体221c设置在侧定位框体221a的下端并沿侧定位框体221a的底边延伸。所述定位框221与过滤材料100之间的密封材料可采用密封胶。
上述定位框221中,其上定位框体221b最好与侧定位框体221a分体式连接,以便于在向定位框221中装入过滤材料100后再将上定位框体221b安装到侧定位框体221a上。
在此基础上,最好将上定位框体221b的底面设计为用于与侧定位框体221a的上端适配的台阶面221b1,并使位于上定位框体221b与侧定位框体221a之间的密封胶基本布满所述台阶面上的两平行的平面,这样,既可以方便上定位框体221b的安装定位,又能够确保上定位框体221b对过滤材料100 的密封效果。
上定位框体221b和下定位框体221c能够对过滤材料100进行限位,将其更好的限制在侧定位框体221a中。
上述过滤组件200中,具有褶皱形结构101的过滤材料100相比于表面平滑的过滤材料而言能够大大提高过滤材料的过滤面积,从而提升过滤效率;但是,使用过程中褶皱形结构101的褶皱波101c可能变形,导致褶皱波101c之间的间隙不一致,最后导致过滤材料上分布的过滤通量不均匀。
针对上述问题,上述过滤组件200的定位部220可以包括设置在过滤材料100侧面的褶皱保形部件222,所述褶皱保形部件222可包括间隔设置于过滤材料100的多对相邻褶皱波101c之间的支撑物。
通过褶皱保形部件222上间隔设置于过滤材料100的多对相邻褶皱波101c之间的支撑物来防止褶皱波101c变形,从而确保过滤材料100上分布的过滤通量的均匀性。
优选的,所述支撑物由分别填充于所述多对相邻褶皱波101c之间并凝固的定位胶222a构成,这样形成的支撑物成本低、便于制作并且能够与褶皱波101c粘接在一起而不容易脱落。
进一步的,所述定位胶222a可以仅分别填充于对应相邻褶皱波101c的波峰之间,从而减少定位胶222a在过滤材料上的敷设面积,降低定位胶对过滤效率的影响。
所述定位胶222a填充于对应相邻褶皱波101c的波峰之间的缝隙中的深度优选不超过1.5厘米、1.2厘米、1厘米、0.8厘米或0.5厘米。
所述定位胶222a填充于对应相邻褶皱波101c的波峰之间的缝隙中的深度与过滤材料的特性等因素有关。例如,当过滤材料比较柔软时,定位胶222a不易仅分别填充于对应相邻褶皱波101c的波峰之间,因为这样定位胶222a难以起到对褶皱波101c有效支撑的作用。
而上述过滤组件200上的过滤材料100的金属过滤层111的抗变形能力较高,并且该金属过滤层111优选主要由粉末烧结金属多孔材料构成的金属过滤层而具有理想的表面粗糙度以使将定位胶222a设置在金属过滤层表面能够实现定位胶222a仅分别填充于对应相邻褶皱波101c的波峰之间的效果。
所述定位胶222a还可在过滤材料100的侧面形成连续的定位胶线。这时,所述褶皱保形部件222可包括设置在过滤材料100侧面的至少两条彼此不重合的定位胶线。
下面再一步结合图1-7和9对本申请说明书涉及的发明创造中的相关过滤组件的一个实施例的制造方法进行说明。
I.获得堆叠过滤材料的全部功能层的坯件
图1为堆叠过滤材料的全部功能层的坯件的分解图。图2为堆叠过滤材料的全部功能层的坯件的示意图。
如图1-2所示,堆叠过滤材料的全部功能层的坯件分别包括作为金属过滤层111的坯件、作为纤维过滤层112的坯件、作为化学过滤层120的坯件和作为金属网支撑层130的坯件,它们均为独立的 部件。
其中,金属过滤层111的坯件主要由粉末烧结形成的铜-镍合金构成,其属于厚度≤200微米且可折叠的柔性金属薄膜。
该金属过滤层111的坯件具有网状的骨架以及填充于骨架网孔中的粉末烧结金属多孔材料(铜-镍合金),且该金属过滤层111的平均孔径设定在40-90微米之间。
纤维过滤层112的坯件采用了一种从市场购买的超细纤维过滤材料,其过滤精度能够使纤维过滤层对待过滤气体中粒径≥2.5μm的粉尘的去除率在98%以上。
化学过滤层120的坯件由一种挥发性有机物过滤层121构成,具体为甲醛过滤层,其包含透气支撑物和附着在透气支撑物上的甲醛分解催化剂,其中,所述透气支撑物采用市售的PP(聚丙烯)透气薄膜,所述甲醛分解催化剂采用由本申请的申请人开发的甲醛分解催化剂,其主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成,且所述亚微米-微米级花瓣状颗粒的直径主要分布在0.3-5微米之间。
金属网支撑层130的坯件采用从市场购买的不锈钢网。
将上述坯件依次堆叠起来,最上面为金属过滤层111的坯件,往下是纤维过滤层112的坯件,再往下是化学过滤层120的坯件,最后是金属网支撑层130的坯件。
为了避免这些堆叠起来坯件在后续的成型过程中发生错位,还采取了在上述四种功能层的坯件之间设置可防止它们产生平行位移的局部连接结构140的技术手段。
局部连接结构140具体采用了一种沿过滤材料边缘间隔设置的铆接件141,每个铆接件141分别同时与上述四种功能层的坯件连接。
上述铆接件141的结构与市售订书钉结构类似,即由两脚向内弯折的U形金属钉构成。上述四种功能层的坯件被夹紧于U形金属钉的头部的连接部与脚部的向内弯折部之间,这时,这四种功能层的坯件中任意相邻的两层坯件之间贴附但不粘合。
II.对堆叠过滤材料的全部功能层的坯件进行一体变形加工成型为特定形状的过滤材料
图3为堆叠过滤材料的全部功能层的坯件一体折叠为过滤材料的褶皱形结构后示意图。图4为填充并凝固于过滤材料的多对相邻褶皱波之间的定位胶的示意图。图9为图4所示结构的实物照片。
如图3所示,将堆叠过滤材料的全部功能层的坯件进行一体折叠加工(通过现有的折叠设备来实施),将堆叠过滤材料的全部功能层的坯件一体折叠成型为过滤材料100的褶皱形结构101。
由于堆叠过滤材料的全部功能层的坯件事先已经设置了铆接件141,因此,在一体折叠加工时作为金属过滤层111的坯件、作为纤维过滤层112的坯件、作为化学过滤层120的坯件和作为金属网支撑层130的坯件中任意部分均不会发生错位。
如图3所示,在成型褶皱形结构101后,为了便于后续的操作,还使用了褶皱波定位工装400。褶 皱波定位工装400为条状并具有与褶皱形结构101的褶皱波101c一一对应的定位槽,褶皱形结构101的褶皱波101c可分别卡入对应的定位槽中。
褶皱形结构101上可以同时设置不同的褶皱波定位工装400。例如,在褶皱形结构101上方和下方分别设有两个褶皱波定位工装400,褶皱形结构101上方的两个褶皱波定位工装400分别靠近褶皱形结构101的边缘,褶皱形结构101下方的两个褶皱波定位工装400分别靠近褶皱形结构101的边缘。这样,褶皱形结构101的整体结构将被稳定的保持。
将被褶皱波定位工装400保持的褶皱形结构101放在专门设计的打胶设备上,使金属过滤层111朝上。打胶设备的传送带驱动被褶皱波定位工装400保持的褶皱形结构101平行运动,运动方向与褶皱波定位工装400的长度方向一致。
在打胶设备的传送带上方设置有注射器,当被褶皱波定位工装400保持的褶皱形结构101经过注射器下方时,注射器向褶皱形结构101的上方注射定位胶。由于注射定位胶时注射器沿过滤材料100的褶皱波101c的波动方向与过滤材料100相对运动,因此,注射到金属过滤层111表面的定位胶222a最后形成连续的定位胶线。
通过控制褶皱形结构101与注射器之间的相对速度以及注射器在单位时间内的注射量,能够确保进入各相邻褶皱波101c之间缝隙中的定位胶222a在仅填充于对应相邻褶皱波101c的波峰之间时即凝固。
这个实施例中,定位胶222a填充于对应相邻褶皱波101c的波峰之间的缝隙中的深度仅为0.5厘米左右(如图9所示)。
当褶皱保形部件222设置完毕后,再拆掉褶皱波定位工装400。
由于金属过滤层111、纤维过滤层112、化学过滤层120和金属网支撑层130中任意相邻功能层之间贴附但不粘合(如图9所示,从过滤材料剖面上可见独立的不同功能层),不会造当成功能层粘合时存在的过滤阻力增大的问题。
并且,由于金属过滤层111、纤维过滤层112、化学过滤层120和金属网支撑层130之间因材质和功能不同而需要单独的制造,只将它们之间贴附但不粘合更有利于提升过滤材料的生产效率。
同时,由于堆叠过滤材料的全部功能层的坯件经一体变形加工成型为特定形状的过滤材料,这样又使得过滤材料中彼此贴附的功能层之间形状、结构基本一致,并且能够相互支撑。
当堆叠所述过滤材料的全部功能层的坯件经一体变形加工成型为褶皱形结构的过滤材料时,不仅使得过滤材料具有更大的过滤面积,同时由于过滤材料的全部功能层均为褶皱形结构,贴附但不粘合的功能层之间不易发生相对位移。
由于过滤材料100通过褶皱保形部件222和金属网支撑层130分别在过滤材料的迎风侧与出风侧对过滤材料100进行定位和支撑,保证了过滤材料较长的使用寿命。
III.组装形成过滤组件
图5为在过滤材料上安装密封板的示意图。图6为将过滤材料放入定位框前的示意图。图7为过滤组件的结构示意图。
如图2、5和6所示,鉴于过滤材料100是一个外形为矩形的褶皱形结构,该过滤材料100的其中一对对边为褶皱波型边101a,另一对对边为直线型边101b,而所述定位框221为与过滤材料100匹配的矩形定位框,为便于将过滤材料100封装在定位框221中,将过滤材料100放入定位框221前,将各褶皱波型边101a分别通过密封胶对应安装上一块密封板231。
此外,由于各褶皱波型边101a分别通过密封胶对应安装上了一块密封板231,同时过滤材料100上还设有定位胶222a,因此,过滤材料100的直线型边101b不易活动,可能不便于后续将所述直线型边101b所在的过滤材料100上的面分别通过密封胶直接与对应的定位框221内侧面粘接。为了解决该问题,鉴于过滤材料100具有多个独立的功能层,可单独将所述直线型边101b所在的过滤材料100上的金属过滤层111部分的剥离,以便利用被剥离的金属过滤层111(参见图5)通过密封胶直接与对应的定位框221内侧面粘接。
如图6所示,将过滤材料100放入定位框221中,这时,使直线型边101b所在的过滤材料100上的面(即上述被被剥离的金属过滤层111)分别通过密封胶直接与对应的定位框221内侧面粘接,并使褶皱波型边101a则分别通过密封板231与对应的定位框221内侧面粘接。
关于过滤组件200其他方面的组装可以参见本说明书前面的有关内容,在此不再赘述。总之,通过上面的过程,得到过滤组件200成品。
图8为本申请说明书涉及的发明创造的一种过滤器的结构示意图。如图8所示,在本申请说明书涉及的发明创造中的过滤器的一个实施例中,过滤器300包括进风口310、排风口320和位于进风口310与排风口320之间的风道,所述风道上安装有上述过滤组件200,所述过滤组件200的迎风侧与进风口310导通、出风侧与排风口320导通。
上述过滤器300可由具有空气过滤功能的空调器兼作。由于过滤材料100的特殊结构使得过滤组件200的厚度较薄,该过滤组件200可以直接安装在现有的家用空调中。
此外,该过滤器300运行时还可选择性使过滤组件200的金属过滤层111带电或不带电。
下面专门对本申请说明书涉及的发明创造中有关甲醛分解催化剂的内容进行说明。下面的说明中,有关甲醛分解催化剂的实施例用“实施例A1”、“实施例A2”、“实施例A3”等(以此类推)来表示。有关甲醛分解催化毡的实施例用“实施例B1”、“实施例B2”、“实施例B3”等(以此类推)来表示。
实施例A1
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓度为95克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70克/升的硫酸锰溶液 并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为4:3,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为50升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算约等于50升;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积100升的底水中,滴定时间设为10分钟(即在10分钟的时间周期同时将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液全部滴加完毕),然后在80℃下对混合液进行充分搅拌2小时;最后从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行清洗、干燥和分散。
图10为实施例A1的甲醛分解催化剂的扫描电镜图,图10中的图(a)-(d)分别为显微观测时无倾向的在载片上选取的视场的照片。图11为图10所示甲醛分解催化剂的X射线衍射(XRD)图。
根据图10所示,实施例A1的甲醛分解催化剂主要由亚微米-微米级花瓣状颗粒所构成。其中,微米级花瓣状颗粒的直径(即粒径)主要分布在1-3微米之间,亚微米级花瓣状颗粒的直径主要分布0.1-1微米之间。
进一步观察可以发现,这些亚微米-微米级花瓣状颗粒往往呈团聚状态,且由于颗粒的直径分布不均匀,大量亚微米级花瓣状颗粒在微米级花瓣状颗粒的周围不规则分布,提高了亚微米-微米级花瓣状颗粒团聚起来后的比表面积。
根据图11所示,结合δ晶型二氧化锰(JCPDS 80-1089)的(001)、(002)、(111)晶面的标准衍射峰,并通过文献“不同晶型二氧化锰的可控制备条件研究,王歌等,无机盐工业,2017年8月”可证实,实施例A1的甲醛分解催化剂的亚微米-微米级花瓣状颗粒为δ晶型的MnO 2
实施例A2
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓度为60克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为1,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为50升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算得到;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积100升的底水中,滴定时间设为10分钟,然后在80℃下对混合液进行充分搅拌2小时;最后从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行清洗、干燥和分散。
对实施例A2的甲醛分解催化剂进行扫描电镜观察确定实施例A2的甲醛分解催化剂符合主要由亚微米-微米级花瓣状颗粒所构成的特征,其亚微米-微米级花瓣状颗粒具体的直径分布与实施例A1的甲醛分解催化剂类似。
对实施例A2的甲醛分解催化剂进行的X射线衍射测试确定实施例A2的甲醛分解催化剂的亚微米- 微米级花瓣状颗粒为δ晶型的MnO 2
实施例A3
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓度为110克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为120克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为1.1,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为50升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算得到;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积100升的底水中,滴定时间设为10分钟,然后在80℃下对混合液进行充分搅拌2小时;最后从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行清洗、干燥和分散。
对实施例A3的甲醛分解催化剂进行扫描电镜观察确定实施例A3的甲醛分解催化剂符合主要由亚微米-微米级花瓣状颗粒所构成的特征,其亚微米-微米级花瓣状颗粒具体的直径分布与实施例A1的甲醛分解催化剂类似。
对实施例A3的甲醛分解催化剂进行X射线衍射测试确定实施例A2的甲醛分解催化剂的亚微米-微米级花瓣状颗粒为δ晶型的MnO 2
实施例A4
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓度为95克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为4:3,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为100升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算约等于100升;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积200升的底水中,滴定时间设为18分钟,然后在80℃下对混合液进行充分搅拌2小时;最后从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行清洗、干燥和分散。
对实施例A4的甲醛分解催化剂进行扫描电镜观察确定实施例A4的甲醛分解催化剂符合主要由亚微米-微米级花瓣状颗粒所构成的特征,其亚微米-微米级花瓣状颗粒的直径分布的不均匀性较实施例A1的甲醛分解催化剂所有增大。
对实施例A4的甲醛分解催化剂进行X射线衍射测试确定实施例A2的甲醛分解催化剂的亚微米-微米级花瓣状颗粒为δ晶型的MnO 2
实施例A5
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓 度为95克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为4:3,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为300升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算约等于300升;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积600升的底水中,滴定时间设为35分钟,然后在80℃下对混合液进行充分搅拌2小时;最后从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行清洗、干燥和分散。
图12为实施例A5的甲醛分解催化剂的扫描电镜图,图12中的图(a)-(d)分别为显微观测时无倾向的在载片上选取的视场的照片。根据图12所示,实施例A5的甲醛分解催化剂主要由亚微米-微米级花瓣状颗粒所构成。其中,微米级花瓣状颗粒的直径主要分布在1-4微米之间,亚微米级花瓣状颗粒的直径主要分布0.3-1微米之间。
进一步观察可以发现,这些亚微米-微米级花瓣状颗粒往往呈团聚状态,且由于颗粒的直径分布不均匀,大量亚微米级花瓣状颗粒在微米级花瓣状颗粒的周围不规则分布(这种现象相比于实施例A1的甲醛分解催化剂更为明显),使得亚微米-微米级花瓣状颗粒团聚起来后的比表面积较大。对实施例A5的甲醛分解催化剂进行的X射线衍射测试确定实施例A5的甲醛分解催化剂的亚微米-微米级花瓣状颗粒为δ晶型的MnO 2
推测δ晶型MnO 2颗粒直径分布不均匀性与原料高锰酸钾溶液或硫酸锰溶液的体积和相应的滴定时间相关,进一步推测当原料高锰酸钾溶液或硫酸锰溶液的体积较大而相应的滴定时间较长时,率先形核的晶粒以长大为主。
实施例A6
以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成为浓度为95克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为4:3,设第一滴定罐中的高锰酸钾溶液的体积为基准体积,基准体积设为50升,则第二滴定罐中的硫酸锰溶液体积根据上述条件并结合高锰酸钾与硫酸锰的分子量计算约等于50升;然后分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积100升的底水中,滴定时间设为10分钟,然后在80℃下对混合液进行充分搅拌2小时;此后从反应完成后的混合液中离心脱水得到甲醛分解催化剂;最后,从反应完成后的混合液中离心脱水得到甲醛分解催化剂。再对所得甲醛分解催化剂进行碱洗、清洗、干燥和分散。
所述碱洗是指用碱液对甲醛分解催化剂进行洗涤。本实施例具体是将甲醛分解催化剂加入去离子水中,然后加入一定量碱液,使溶液pH值调制9-11,最后再离心脱水得到甲醛分解催化剂。
对比例1
以高锰酸钾、无水乙醇为原料混合反应获得甲醛分解催化剂,具体为:将高锰酸钾配置成浓度(质量百分比)为1.25%的高锰酸钾溶液,取4升高锰酸钾溶液与1升无水乙醇混合搅拌,在常温下反应10小时,从反应完成后的混合液中离心脱水得到甲醛分解催化剂,再对所得甲醛分解催化剂进行清洗、干燥和分散。
图13为对比例1的甲醛分解催化剂的扫描电镜图,图13中的图(a)-(b)分别为显微观测时无倾向的在载片上选取的视场的照片。根据图13所示,对比例1的甲醛分解催化剂主要由纳米级颗粒团聚而成。对对比例1的甲醛分解催化剂进行的X射线衍射测试确定对比例1的甲醛分解催化剂为δ晶型的MnO 2
分别使用实施例A1、实施例A5、对比例1的甲醛分解催化剂进行除甲醛性能测试。测试原理及方法为:制作一个封闭的实验舱,尺寸为550mm×415mm×315mm,并设有甲醛注射口和甲醛浓度测试仪表,实验舱的两侧分别开有出风口和进风口,出风口和进风口之间用直径为200mm的管道连接,管道上安装有风机,此外,管道上还安装有一组法兰,用于装卸测试用的甲醛分解催化剂。
测试前,将定量的甲醛分解催化剂均匀铺设在一片PP透气薄膜上,铺设量为0.04g/cm 2,然后再用另一片PP透气薄膜将甲醛分解催化剂盖住,再将包夹有甲醛分解催化剂的两片PP透气薄膜夹持在法兰之间,从而将甲醛分解催化剂固定在管道内。
测试时,先将一定体积和浓度的甲醛溶液加热并通过甲醛注射口注入实验舱内,使实验舱内甲醛初始浓度为1.4-2.0mg/m 3,当实验舱内甲醛浓度增加到最高值并稳定1分钟后,启动风机并开始计时,每隔5分钟记录舱内甲醛浓度,测试时长定为15分钟,期间风机功率保持一定(风速约为3m/s)。15分钟后,再重新按上述方式注入甲醛并重复进行15分钟测试。每种甲醛分解催化剂重复进行4次测试。
分别使用实施例A1、实施例A5、对比例1的甲醛分解催化剂进行上述除甲醛性能测试得到的实验舱中甲醛浓度随时间变化的曲线图分别为图14、图15和图16。
根据图14、图15和图16所示可算计得到:使用实施例A1的甲醛分解催化剂进行上述除甲醛性能测试过程前10分钟的除甲醛效率为76.2%,使用实施例A5的甲醛分解催化剂进行上述除甲醛性能测试过程前10分钟的除甲醛效率为81.2%,使用对比例1的甲醛分解催化剂进行上述除甲醛性能测试过程前10分钟的除甲醛效率为64%。
实施例A1和实施例A5的甲醛分解催化剂的除甲醛效率优于对比例1的甲醛分解催化剂的除甲醛效率,推测可能原因是:尽管对比例的甲醛分解催化剂由纳米级颗粒构成,但它们容易团聚,特别是当附着在透气支撑物上时后,这些细微的颗粒聚集为块状,反而不利于与空气中的甲醛充分接触;而实施例的甲醛分解催化剂由于颗粒的直径分布不均匀,大量亚微米级花瓣状颗粒在微米级花瓣状颗粒的周围不规则分布,使得亚微米-微米级花瓣状颗粒团聚起来后有利于与空气中的甲醛充分接触。
此外,通过多名测试者嗅觉测试(将测试样品放置于测试者鼻下15厘米处)表明,实施例A6的甲醛分解催化剂相比于实施例A1-A5的甲醛分解催化剂异味明显降低。
本申请说明书涉及的发明创造中有关的甲醛分解催化剂可以直接作为产品而对该产品实施制造、销售和使用等行为,也可以应用在甲醛催化分解毡上而对甲醛催化分解毡实施制造、销售和使用等行为。图17为本申请说明书涉及的发明创造中一种甲醛分解催化毡的扫描电镜图。如图17所示,本申请说明书涉及的发明创造中有关的甲醛分解催化毡包括透气支撑物121a和附着在透气支撑物上的甲醛分解催化剂(属于分解催化剂121b)。
如图17所示,所述甲醛分解催化剂分布于构成透气支撑物121a的材料的外侧并主要填充于构成透气支撑物的材料之间的孔隙中。
此外,所述甲醛分解催化剂一般还包含分布于所述甲醛分解催化剂上的粘接剂,以便能够比较稳固的附着于透气支撑物121a上。所述粘接剂优选丙烯酸系粘接剂或聚氨酯系粘接剂,这两类粘接剂不会对甲醛分解催化剂的使用性能造成不利影响。
若将甲醛分解催化剂的重量除以透气支撑物121a的迎风面的面积设为甲醛分解催化剂在透气支撑物121a上的相对附着量,基于本申请说明书涉及的发明创造的甲醛分解催化剂的除甲醛效率,则所述相对附着量一般为40g/m 2以上,从而使甲醛分解催化毡基本具有商业上可接受的除甲醛效果。
由于透气支撑物121a上附着甲醛分解催化剂后特别是当所述相对附着量为40g/m 2以上时,透气支撑物121a的透气性能会明显降低,为了使甲醛分解催化毡既具有较好的除甲醛效果同时又具有合理的透气性,建议所述透气支撑物121a采用在100帕压差时空气渗透率≥3000m 3/m 2·小时的透气纤维毡。
由于本申请说明书涉及的发明创造有关的过滤材料包括了不同功能层,而甲醛分解催化毡仅作为功能层之一,而为了保证整个过滤材料的透气性,所述透气支撑物121a优选采用在100帕压差时空气渗透率≥5500m 3/m 2·小时的透气纤维毡。
上述“100帕压差时空气渗透率”可以根据其单位“m 3/m 2·小时”得到理解。具体而言,“100帕压差时空气渗透率”是指:在100帕压差下每小时中在每单位平米面积的甲醛分解催化毡上通过的空气的立方米数值。
具有符合上述透气性要求的透气纤维毡可以从现有技术中获得,例如PP纤维毡、PET纤维毡等。PP纤维毡、PET纤维毡不仅透气性较好,而且强度等性能也较为适宜。
本申请说明书涉及的发明创造中的甲醛催化分解毡不仅可以作为过滤材料的功能层之一,还存在其他的应用方式,这时,甲醛催化分解毡中的透气支撑物121a的形态、性能等方面也可做较大改变。
在一个甲醛浓度较高的场合中(例如家具厂、涂料厂等),为了更好的去除甲醛,可采用泡沫状多孔支撑体作为甲醛催化分解毡中的透气支撑物121a,以便附着更多的甲醛分解催化剂。为在特定通道上独立安装甲醛催化分解毡,这时,透气支撑物121a可以采用支撑网,而支撑网可以为编织网、冲孔 网、斜拉网等。
实施例B1
将实施例A1的甲醛分解催化剂与分散剂、粘接剂混合配置成料液,其中粘接剂为丙烯酸,分散剂为水。透气支撑物121a采用PP纤维毡。通过拉浆工艺将所述料液附着在PP纤维毡。拉浆时由PP纤维毡构成的带材在传送辊的带动下浸入料液中,然后垂直的从料液表面升起,再通过位于料液上方的一对刮刀之间所形成的通道,这一对刮刀中每一个刮刀均沿对应的PP纤维毡表面平行运动,从而对所述甲醛分解催化剂施加垂直于PP纤维毡表面的挤压力,从而将附着在PP纤维毡上的甲醛分解催化剂挤压分散于构成透气支撑物的材料之间的孔隙中,最后再对甲醛催化分解毡进行烘干得到甲醛催化分解毡。烘干后检测甲醛分解催化剂在PP纤维毡上的相对附着量约为40g/m 2
实施例B2
在实施例B1的基础上,增加甲醛分解催化剂在PP纤维毡上的相对附着量,烘干后检测甲醛分解催化剂在PP纤维毡上的相对附着量约为60g/m 2
实施例B3
在实施例B1的基础上,增加甲醛分解催化剂在PP纤维毡上的相对附着量,烘干后检测甲醛分解催化剂在PP纤维毡上的相对附着量约为80g/m 2
实施例B4
在实施例B1的基础上,增加甲醛分解催化剂在PP纤维毡上的相对附着量,烘干后检测甲醛分解催化剂在PP纤维毡上的相对附着量约为100g/m 2
实施例B5
在实施例B1的基础上,增加甲醛分解催化剂在PP纤维毡上的相对附着量,烘干后检测甲醛分解催化剂在PP纤维毡上的相对附着量约为120g/m 2
实施例B6
在实施例B2的基础上,在拉浆工艺与烘干步骤之间增加挤压工序。所述挤压工序包括一对压辊,该对压辊之间形成通道,这一对压辊中每一个压辊均沿对应的甲醛催化分解毡表面平行滚动,从而进一步将附着在PP纤维毡上的甲醛分解催化剂挤压分散于构成透气支撑物的材料之间的孔隙中。
分别使用实施例B1-B5的甲醛催化分解毡进行除甲醛性能测试,测试原理及方法与对甲醛分解催化剂进行除甲醛性能测试的原理及方法基本一致,区别在于直接将甲醛催化分解毡夹持在法兰之间而无需使用PP透气薄膜。
图18为实施例B1-B5的甲醛催化分解毡综合性能测试图。图18中,横坐标为甲醛分解催化剂在PP纤维毡上的相对附着量,其中“40”是指对附着量约为40g/m 2,对应实施例B1的甲醛催化分解毡,其余以此类推。图18左侧纵坐标为风量,单位为m 3/m 2·小时,含义为每小时中在每单位平米面积的甲 醛分解催化毡上通过的空气的立方米数值,该数值越大表示甲醛催化分解毡透气性越好,反之越差。图18左侧纵坐标为甲醛去除率,可根据与图14-16显示数据的同类数据计算得到。
如图18所示,使用实施例B1-B5的甲醛催化分解毡进行上述除甲醛性能测试过程前10分钟的除甲醛效率从约66%逐渐上升至72%,虽有一定上升,但上升幅度不大。
分别使用实施例B1-B5的甲醛催化分解毡进行透气性测试,即测试在一定压差下(具体均为10帕斯卡)每小时中在每单位平米面积的甲醛分解催化毡上通过的空气的立方米数值。由于流量计读数限制,使用实施例B1-B5的甲醛催化分解毡进行透气性测试时,对一种甲醛催化分解毡的测试均是将6张同样的甲醛催化分解毡叠加在一起测试的,这样可以降低流量,以满足流量计读数限制。
如图18所示,实施例B1-B5的甲醛催化分解毡的透气性依次降低,当相对附着量为70g/m 2左右(60g/m 2-70g/m 2之间)时甲醛催化分解毡的透气性与除甲醛效率综合最优。
虽然图18中显示当相对附着量为120g/m 2时甲醛催化分解毡的透气性为0,但这种现象并不能说明此甲醛催化分解毡不透气,这是因为,测试时是将6张同样的甲醛催化分解毡叠加在一起的,而实际上每张甲醛催化分解毡有一定的透气性。
图19为实施例B2与实施例B6的甲醛催化分解毡的甲醛分解催化剂分布均匀性对照图。该对照图是将两种甲醛催化分解毡放在一起透光观察,通过观察可以清楚看出实施例B6的甲醛催化分解毡的甲醛分解催化剂分布明显更为均匀细腻。
以上对本申请的有关内容进行了说明。本领域普通技术人员在基于这些说明的情况下将能够实现本申请。基于本申请的上述内容,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他优选实施方式和实施例,都应当属于本申请保护的范围。

Claims (21)

  1. 甲醛分解催化剂,其特征在于:主要由δ晶型的MnO 2形成的亚微米-微米级花瓣状颗粒所构成,所述亚微米-微米级花瓣状颗粒为直径在0.1-1微米范围的亚微米级花瓣状颗粒和直径在1-10微米范围的微米级花瓣状颗粒的组合。
  2. 如权利要求1所述的甲醛分解催化剂,其特征在于:所述亚微米-微米级花瓣状颗粒的直径主要分布在0.1-5微米之间,更具体主要分布在0.3-5微米之间。
  3. 如权利要求2所述的甲醛分解催化剂,其特征在于:所述亚微米-微米级花瓣状颗粒的直径主要分布在0.5-5微米之间。
  4. 如权利要求3所述的甲醛分解催化剂,其特征在于:所述亚微米-微米级花瓣状颗粒的直径主要分布在0.5-3微米之间。
  5. 如权利要求1至4中任意一项权利要求所述的甲醛分解催化剂,其特征在于:所述亚微米-微米级花瓣状颗粒的水洗液呈碱性。
  6. 甲醛催化分解毡,包含透气支撑物和附着在透气支撑物上的甲醛分解催化剂,其特征在于:所述甲醛分解催化剂为权利要求1至5中任意一项权利要求所述的甲醛分解催化剂。
  7. 如权利要求6所述的甲醛催化分解毡,其特征在于:所述甲醛分解催化剂分布于构成透气支撑物的材料的外侧并主要填充于构成透气支撑物的材料之间的孔隙中。
  8. 如权利要求6所述的甲醛催化分解毡,其特征在于:包含分布于所述甲醛分解催化剂上的粘接剂;所述粘接剂优选但不限于丙烯酸系粘接剂或聚氨酯系粘接剂。
  9. 如权利要求6所述的甲醛催化分解毡,其特征在于:若将甲醛分解催化剂的重量除以透气支撑物的迎风面的面积设为甲醛分解催化剂在透气支撑物上的相对附着量,则所述相对附着量为40g/m 2以上。
  10. 如权利要求9所述的甲醛催化分解毡,其特征在于:所述透气支撑物采用在100帕压差时空气渗透率≥3000m 3/m 2·小时的透气纤维毡,优选采用在100帕压差时空气渗透率≥5500m 3/m 2·小时的透气纤维毡;并且,所述相对附着量为40-120g/m 2,优选为50-70g/m 2
  11. 如权利要求10所述的甲醛催化分解毡,其特征在于:所述透气支撑物采用PP纤维毡或PET纤维毡。
  12. 如权利要求6所述的甲醛催化分解毡,其特征在于:所述透气支撑物采用泡沫状多孔支撑体或支撑网;当所述透气支撑物采用支撑网时,所述支撑网可以为编织网、冲孔网、斜拉网中的任意一种。
  13. 挥发性有机物过滤材料,包含透气支撑物和附着在透气支撑物上的相应的挥发性有机物的分解催化剂或吸附剂,其特征在于:
    1)该挥发性有机物过滤材料为甲醛催化分解毡,该甲醛催化分解毡属于权利要求6至12中任意 一项权利要求所述的甲醛催化分解毡,并且,该甲醛催化分解毡中的甲醛分解催化剂被挤压分散于构成透气支撑物的材料之间的孔隙中,所述挤压分散操作是在将甲醛分解催化剂附着在透气支撑物表面的附着工序中和/或附着工序之后的挤压工序中进行的;或者
    2)所述挥发性有机物的分解催化剂或吸附剂被挤压分散于构成透气支撑物的材料之间的孔隙中,所述挤压分散操作是在将挥发性有机物的分解催化剂或吸附剂附着在透气支撑物表面的附着工序中和/或附着工序之后的挤压工序中进行的。
  14. 如权利要求13所述的挥发性有机物过滤材料,其特征在于:所述挤压分散的操作是借助能够对所述甲醛分解催化剂/所述挥发性有机物的分解催化剂或吸附剂施加垂直于透气支撑物表面的挤压力的挤压部件来实现的。
  15. 如权利要求14所述的挥发性有机物过滤材料,其特征在于:所述附着工序和/或挤压工序包括借助作为挤压部件并沿透气支撑物表面平行平行运动的刮刀将附着在透气支撑物上的甲醛分解催化剂/所述挥发性有机物的分解催化剂或吸附剂挤压分散于构成透气支撑物的材料之间的孔隙中的过程。
  16. 如权利要求14所述的挥发性有机物过滤材料,其特征在于:所述附着工序和/挤压工序包括借助作为挤压部件并沿透气支撑物表面平行滚动的压辊将附着在透气支撑物上的甲醛分解催化剂/所述挥发性有机物的分解催化剂或吸附剂挤压分散于构成透气支撑物的材料之间的孔隙中的过程。
  17. 如权利要求14所述的挥发性有机物过滤材料,其特征在于:该挥发性有机物过滤材料的已过滤侧设有保护功能层,所述保护功能层具有多孔结构且孔径小于所述分解催化剂或吸附剂的粒径。
  18. 甲醛分解催化剂的制造方法,其特征在于,以高锰酸钾、硫酸锰和水为原料混合反应获得甲醛分解催化剂,具体包括:
    A.将高锰酸钾配置成为浓度为60-110克/升的高锰酸钾溶液并置于第一滴定罐中,将硫酸锰配置成为浓度为70-120克/升的硫酸锰溶液并置于第二滴定罐中,第一滴定罐中高锰酸钾与第二滴定罐中的硫酸锰之间物质的量之比为3:3至4:3,若设第一滴定罐中的高锰酸钾溶液的体积或第二滴定罐中的硫酸锰溶液的体积为基准体积,则基准体积不少于50升;
    B.分别将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液同时滴加至混合反应器中预先储存的体积为基准体积2倍以上的底水中,在10-45分钟内同时将第一滴定罐中的高锰酸钾溶液和第二滴定罐中的硫酸锰溶液全部滴加完毕,然后在70-90℃下对混合液进行充分搅拌直至反应完成;
    C.从反应完成后的混合液中固液分离得到甲醛分解催化剂。
  19. 甲醛分解催化剂的制造方法,其特征在于:对目标物进行碱洗得到碱洗后的甲醛分解催化剂,所述目标物为:
    1)高锰酸钾、硫酸锰和水为原料混合反应获得的甲醛分解催化剂;
    2)权利要求18所述的甲醛分解催化剂的制造方法中步骤B后得到的沉淀物;或
    3)权利要求18所述的甲醛分解催化剂的制造方法中步骤C后得到的甲醛分解催化剂。
  20. 甲醛催化分解毡的制造方法,其特征在于,包括:
    提供透气支撑物;
    提供含有甲醛分解催化剂的料液;
    将所述料液挤压分散在透气支撑物上,待料液干燥后获得所述甲醛催化分解毡;
    其中,所述甲醛分解催化剂为:
    1)权利要求1至5中任意一项权利要求所述的甲醛分解催化剂;或
    2)权利要求18或19中所述甲醛分解催化剂的制造方法得到的甲醛分解催化剂。
  21. 如权利要求20所述的甲醛催化分解毡的制造方法,其特征在于:所述料液通过拉浆工艺附着在透气支撑物上,所述挤压分散过程存在于所述拉浆工艺中。
PCT/CN2020/101244 2019-07-12 2020-07-10 甲醛分解催化剂、甲醛分解催化毡及它们的制造方法 WO2021008446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501256A JP7519119B2 (ja) 2019-07-12 2020-07-10 ホルムアルデヒド分解触媒、ホルムアルデヒド分解フェルト及びそれらの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910630483.6A CN110394051B (zh) 2018-11-13 2019-07-12 过滤材料、过滤组件、过滤器及过滤方法
CN201910630483.6 2019-07-12
CN201910934057.1A CN110614034A (zh) 2019-09-26 2019-09-26 过滤材料以及过滤组件
CN201910934057.1 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021008446A1 true WO2021008446A1 (zh) 2021-01-21

Family

ID=68924929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101244 WO2021008446A1 (zh) 2019-07-12 2020-07-10 甲醛分解催化剂、甲醛分解催化毡及它们的制造方法

Country Status (3)

Country Link
JP (1) JP7519119B2 (zh)
CN (1) CN110614034A (zh)
WO (1) WO2021008446A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198461A (zh) * 2021-04-20 2021-08-03 上海师范大学 一种纳米MnO2/PTFE复合材料及其制备方法和应用
CN116161701A (zh) * 2023-03-31 2023-05-26 中山市洁鼎过滤制品有限公司 一种室温催化降解甲醛的活性锰催化剂的制备及其应用
CN116212853A (zh) * 2022-12-28 2023-06-06 重庆工商大学 δ-MnO2催化材料及其制备方法和在可降解甲醛的滤网制备中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614034A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150093294A1 (en) * 2013-09-30 2015-04-02 Lennox Industries Inc. Air filtration using manganese oxide
CN105013322A (zh) * 2015-06-25 2015-11-04 中国科学院生态环境研究中心 一种锰氧化物催化剂用于催化氧化甲醛的用途
CN105312048A (zh) * 2014-08-01 2016-02-10 财团法人工业技术研究院 臭氧及甲醛分解材料及其制备方法
CN107029702A (zh) * 2017-04-24 2017-08-11 中国科学院上海硅酸盐研究所 负载氧化锰的碳纤维毡催化剂材料及其制备方法和应用
CN206566607U (zh) * 2016-12-02 2017-10-20 成都易态科技有限公司 对甲醛具有催化降解功能的过滤结构以及过滤元件
CN108557893A (zh) * 2018-03-02 2018-09-21 武汉理工大学 一种超薄二氧化锰纳米片及其制备方法和应用
CN109529613A (zh) * 2018-12-26 2019-03-29 深圳市中建南方环境股份有限公司 一种室温下矿化甲醛的方法及净化系统
CN110302663A (zh) * 2018-11-13 2019-10-08 成都易态科技有限公司 过滤结构及过滤结构的制造方法
CN110614034A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN110614031A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN110614032A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料的制备方法
CN110614033A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN211274219U (zh) * 2019-09-26 2020-08-18 成都易态科技有限公司 过滤材料以及过滤组件
CN111569847A (zh) * 2019-11-08 2020-08-25 成都易态科技有限公司 甲醛吸附-催化分解复合材料、制备方法及应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2203896Y (zh) * 1994-05-24 1995-07-26 林松 电子式空气净化过滤网
JP3578259B2 (ja) 1998-07-02 2004-10-20 日立化成工業株式会社 空気中のホルムアルデヒドの分解・除去方法
CN2397982Y (zh) * 1999-11-03 2000-09-27 南方汇通股份有限公司 复合空气滤尘网
US20050214199A1 (en) 2002-07-26 2005-09-29 Sued-Chemie Catalysts Japan, Inc Manganese compound, process for producing the same, and method of utilization of the same
DE102008038768A1 (de) * 2008-08-12 2010-02-18 Robert Bosch Gmbh Filter
JP2011025199A (ja) * 2009-07-28 2011-02-10 Toei Sangyo Kk フィルター及びフィルター装置
WO2012167280A1 (en) 2011-06-03 2012-12-06 The Regents Of The University Of California Manganese oxide and activated carbon fibers for removing particle, voc or ozone from a gas
CN104226020B (zh) * 2014-09-04 2016-05-11 浙江大学 一种具有催化功能的复合型纳米滤料及其制备方法和应用
CN205295805U (zh) * 2015-12-03 2016-06-08 北京亚都环保科技有限公司 复合空气净化滤纸及应用其的滤芯
CN205252894U (zh) * 2015-12-14 2016-05-25 张松波 一种茶多酚空气净化膜
EP3448540B1 (en) * 2016-04-29 2020-10-14 Ahlstrom-Munksjö Oyj Filter medium, method of manufacturing the same and uses thereof
CN206121322U (zh) * 2016-08-09 2017-04-26 厦门超宇环保科技股份有限公司 一种新型高强度过滤毡
CN106823790A (zh) * 2017-03-14 2017-06-13 广东美的环境电器制造有限公司 一种复合空气净化过滤结构及复合空气净化滤芯
CN108339413B (zh) * 2018-01-25 2021-05-07 成都易态科技有限公司 过滤催化一体多孔薄膜的制备方法
CN209005549U (zh) * 2018-10-16 2019-06-21 广东美的环境电器制造有限公司 空气过滤结构及空气净化滤芯
CN209221679U (zh) * 2018-11-06 2019-08-09 浙江金海环境技术股份有限公司 Pm2.5空气滤材

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150093294A1 (en) * 2013-09-30 2015-04-02 Lennox Industries Inc. Air filtration using manganese oxide
CN105312048A (zh) * 2014-08-01 2016-02-10 财团法人工业技术研究院 臭氧及甲醛分解材料及其制备方法
CN105013322A (zh) * 2015-06-25 2015-11-04 中国科学院生态环境研究中心 一种锰氧化物催化剂用于催化氧化甲醛的用途
CN206566607U (zh) * 2016-12-02 2017-10-20 成都易态科技有限公司 对甲醛具有催化降解功能的过滤结构以及过滤元件
CN107029702A (zh) * 2017-04-24 2017-08-11 中国科学院上海硅酸盐研究所 负载氧化锰的碳纤维毡催化剂材料及其制备方法和应用
CN108557893A (zh) * 2018-03-02 2018-09-21 武汉理工大学 一种超薄二氧化锰纳米片及其制备方法和应用
CN211435757U (zh) * 2018-11-13 2020-09-08 成都易态科技有限公司 过滤结构及过滤组件
CN110302663A (zh) * 2018-11-13 2019-10-08 成都易态科技有限公司 过滤结构及过滤结构的制造方法
CN211435756U (zh) * 2018-11-13 2020-09-08 成都易态科技有限公司 过滤组件
CN109529613A (zh) * 2018-12-26 2019-03-29 深圳市中建南方环境股份有限公司 一种室温下矿化甲醛的方法及净化系统
CN110614034A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN110614033A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN211274219U (zh) * 2019-09-26 2020-08-18 成都易态科技有限公司 过滤材料以及过滤组件
CN110614032A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料的制备方法
CN110614031A (zh) * 2019-09-26 2019-12-27 成都易态科技有限公司 过滤材料以及过滤组件
CN111569847A (zh) * 2019-11-08 2020-08-25 成都易态科技有限公司 甲醛吸附-催化分解复合材料、制备方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198461A (zh) * 2021-04-20 2021-08-03 上海师范大学 一种纳米MnO2/PTFE复合材料及其制备方法和应用
CN116212853A (zh) * 2022-12-28 2023-06-06 重庆工商大学 δ-MnO2催化材料及其制备方法和在可降解甲醛的滤网制备中的应用
CN116212853B (zh) * 2022-12-28 2023-10-31 重庆工商大学 δ-MnO2催化材料及其制备方法和在可降解甲醛的滤网制备中的应用
CN116161701A (zh) * 2023-03-31 2023-05-26 中山市洁鼎过滤制品有限公司 一种室温催化降解甲醛的活性锰催化剂的制备及其应用

Also Published As

Publication number Publication date
CN110614034A (zh) 2019-12-27
JP7519119B2 (ja) 2024-07-19
JP2022539896A (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2021008446A1 (zh) 甲醛分解催化剂、甲醛分解催化毡及它们的制造方法
CN211435756U (zh) 过滤组件
CN101804275B (zh) 纳米光触媒-活性炭纤维复合过滤介质
CN112774653B (zh) 甲醛吸附-催化分解复合材料、制备方法及应用
CN112774652B (zh) 甲醛净化多孔薄膜及其制备方法
CN110614032B (zh) 过滤材料的制备方法
CN103346338A (zh) 一种新型气体增湿器及其方法
CN206919204U (zh) 过滤网组件和空气净化器
CN204582894U (zh) 空气净化用板状复合功能滤网
CN211274219U (zh) 过滤材料以及过滤组件
CN211706434U (zh) 过滤材料以及过滤组件
CN107036179A (zh) 一种远程控制空气净化器
CN110614031A (zh) 过滤材料以及过滤组件
CN110614033A (zh) 过滤材料以及过滤组件
CN202432661U (zh) 一种多段过滤空调净化器
CN112774651B (zh) 甲醛净化材料制剂、制备方法及应用
CN211706433U (zh) 过滤材料以及过滤组件
JP2007098362A (ja) カチオン吸着材とその製造方法
CN109126446A (zh) 以纸为骨架构建核壳结构蜂窝状空气净化过滤网的方法
CN109603853B (zh) 常温催化剂和复合滤网及其应用
CN112774650B (zh) 甲醛净化材料制剂、制备方法及应用
CN208124481U (zh) 一种空气净化器
JP2013022583A (ja) エアフィルタろ材
CN110639256A (zh) 化工废液处理设备
CN201578961U (zh) 汽车空调滤芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840171

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20840171

Country of ref document: EP

Kind code of ref document: A1