WO2021008397A1 - 一种带导流散热环的熔融金属搅拌机构 - Google Patents

一种带导流散热环的熔融金属搅拌机构 Download PDF

Info

Publication number
WO2021008397A1
WO2021008397A1 PCT/CN2020/100335 CN2020100335W WO2021008397A1 WO 2021008397 A1 WO2021008397 A1 WO 2021008397A1 CN 2020100335 W CN2020100335 W CN 2020100335W WO 2021008397 A1 WO2021008397 A1 WO 2021008397A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation ring
flow guide
diversion
molten metal
Prior art date
Application number
PCT/CN2020/100335
Other languages
English (en)
French (fr)
Inventor
诸葛敏
揭旭伟
黄进红
Original Assignee
派罗特克(广西南宁)高温材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 派罗特克(广西南宁)高温材料有限公司 filed Critical 派罗特克(广西南宁)高温材料有限公司
Publication of WO2021008397A1 publication Critical patent/WO2021008397A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material

Definitions

  • the invention belongs to the technical field of molten aluminum treatment equipment, in particular to a molten metal stirring mechanism with a flow guide and heat dissipation ring.
  • the common method is to stir the molten aluminum with a high-speed rotating stirring mechanism while injecting inert gas, chlorine or refining agent into it, so that the inert gas, chlorine or refining agent is evenly distributed in the molten aluminum.
  • the traditional method is to introduce a certain flow and static pressure of low temperature or room temperature cooling air, and cool the stirring mechanism by means of convection heat exchange.
  • a large amount of low-temperature or normal-temperature cooling air enters the furnace, which significantly reduces the temperature of the atmosphere and the molten aluminum in the furnace, causing energy consumption and other unfavorable process problems.
  • the technical problem to be solved by the present invention is to provide a molten metal stirring mechanism with a flow guide and radiating ring, which can effectively reduce the temperature drop in the furnace caused by cooling air and at the same time improve the cooling efficiency of the stirring shaft.
  • the invention provides a molten metal stirring mechanism with a flow guide and heat dissipation ring, which comprises a driving device, a stirring shaft, a flow guide and heat dissipation ring, a connecting steel sleeve, and a flow guide heat shield.
  • the front end of the stirring shaft is connected to the driving device through the steel sleeve
  • the drive shaft is connected, the connecting steel sleeve is placed in the inner cavity of the diversion heat shield, the front end of the diversion heat shield is fixedly connected with the housing of the driving device, and the diversion heat dissipation ring is installed on the stirring shaft and is located in the diversion partition.
  • the rear of the heat shield is provided.
  • a runner is installed at the rear end of the stirring shaft.
  • the diversion and heat dissipation ring is installed on the mixing shaft through threaded connection, flange connection or interference fit, or the diversion and heat dissipation ring and the mixing shaft are integrally formed.
  • the windward surface structure of the diversion and heat dissipation ring is flat, bowl-shaped or barrel-shaped.
  • the windward surface of the diversion and heat dissipation ring is a smooth plane or densely serrated surface or densely densely covered pit surface or densely covered convex mesa surface.
  • the diversion and heat dissipation ring is made of graphite or calcium silicate or ceramic fiber or silicon carbide or silicon nitride high temperature resistant materials.
  • the outer diameter of the diversion and heat dissipation ring is 200-600mm, the inner diameter is 50-400mm, and the thickness is 5-100mm.
  • the front end of the diversion heat shield has a cooling air inlet, and an annular outlet is provided between the rear end and the stirring shaft.
  • the linear distance between the diversion heat dissipation ring and the annular outlet of the diversion heat shield is 5 to 300 mm.
  • the effective convection heat dissipation area is increased by the diversion heat dissipation ring, and the cooling capacity of the cooling air to the stirring shaft is improved;
  • Fig. 1 is a schematic diagram of the overall structure of a molten metal stirring mechanism with a flow guide and heat dissipation ring of the present invention.
  • Fig. 2 is a schematic view of the state of use of the molten metal stirring mechanism with flow guide and heat dissipation ring of the present invention.
  • Figure 3-1 is a schematic diagram of a planar flow guide and heat dissipation ring used in the present invention.
  • Figure 3-2 is a cross-sectional view of the diversion and heat dissipation ring in Figure 3-1 along the central axis.
  • Figure 4-1 is a schematic diagram of a bowl-shaped diversion and heat dissipation ring used in the present invention.
  • Figure 4-2 is a cross-sectional view of the diversion and heat dissipation ring in Figure 4-1 along the central axis.
  • Figure 5-1 is a schematic diagram of the barrel-shaped flow diversion and heat dissipation ring used in the present invention.
  • Figure 5-2 is a cross-sectional view of the diversion and heat dissipation ring in Figure 5-1 along the central axis.
  • Fig. 6-1 is a schematic diagram of a densely serrated surface flow guide and heat dissipation ring used in the present invention.
  • Fig. 6-2 is a schematic diagram of the diversion and heat dissipation ring in Fig. 6-1 in another direction.
  • Figure 7-1 is a schematic diagram of the densely pitted surface diversion and heat dissipation ring used in the present invention.
  • Fig. 7-2 is a schematic diagram of the flow guide and heat dissipation ring in another direction in Fig. 7-1.
  • Figure 8-1 is a schematic diagram of the densely-distributed convex mesa surface diversion and heat dissipation ring used in the present invention.
  • Fig. 8-2 is a schematic view of the flow guide and heat dissipation ring in another direction in Fig. 8-1.
  • a molten metal stirring mechanism with a flow guide and heat dissipation ring of the present invention includes a driving device 16, a stirring shaft 2, a flow guide and heat dissipation ring 1, a connecting steel sleeve 3, and a flow guide heat shield 4.
  • the front end of the mixing shaft 2 is connected to the drive shaft 17 of the driving device 16 through a connecting steel sleeve 4, the connecting steel sleeve 3 is placed in the cavity 5 formed by the diversion heat shield 4, and the end of the mixing shaft 2 is equipped with a runner 14
  • the front end of the diversion heat shield 4 is fixedly connected with the housing of the driving device 16, and an inlet 8 for the cooling air 6 is reserved, and an annular outlet 9 is left between the rear end of the diversion heat shield 4 and the stirring shaft 2;
  • the flow radiating ring 1 is installed on the stirring shaft 2 and located behind the flow guide heat shield 4.
  • the cooling air 6 enters the cavity 5 from the inlet 8 of the diversion heat shield 4 along the flow line 7, and flows out from the annular outlet 9 of the diversion heat shield 4, and the cooling air 6 flows toward the inside of the furnace 10 and passes After the diversion effect of the diversion ring 1 changes the flow direction, the cooling air 6 flows toward the outside of the furnace 10.
  • the diversion and heat dissipation ring 1 is installed on the mixing shaft 2 by threaded connection, flange connection or interference fit; it is also possible to use the diversion and heat dissipation ring 1 and the mixing shaft 2 to be integrally processed or integrally cast Become.
  • the structure of the windward surface of the diversion and heat dissipation ring 1 can be flat (as shown in Figure 3-1), bowl-shaped (as shown in Figure 4-1) or barrel-shaped (as shown in Figure 5-1). Shown).
  • the planar structure is simple and the processing cost is low.
  • the bowl-shaped structure and the barrel-shaped structure are more conducive to the reflux of the cooling air 6, and the convection heat dissipation surface area is also larger, but the processing cost is higher.
  • the windward surface of the diversion and heat dissipation ring 1 can be a smooth plane (as shown in Figure 3-1) or densely serrated (as shown in Figures 6-1 and 6-2) or densely covered with pits. Surface (as shown in Figure 7-1 and Figure 7-2) or densely-coated convex surface (as shown in Figure 8-1 and Figure 8-2).
  • the smooth plane structure is simple and the processing cost is low.
  • the densely-distributed serrated surface, densely-distributed concave surface and densely-distributed convex mesa can form a larger convection heat dissipation surface area, which has higher heat dissipation efficiency, but higher processing costs.
  • the material of the diversion and heat dissipation ring 1 is graphite, calcium silicate, ceramic fiber, silicon carbide or silicon nitride and other high temperature resistant materials.
  • the preferred outer diameter of the flow guide ring 1 is 200 to 600 mm, the preferred inner diameter is 50 to 400 mm, and the preferred thickness is 5 to 100 mm.
  • the linear distance between the diversion and heat dissipation ring 1 and the annular outlet 5 is 5 to 300 mm.
  • the melting furnace 10 contains a certain volume of molten aluminum 11, and the temperature of the molten aluminum 11 and the high-temperature gas 12 in the furnace 10 can reach 750°C or above.
  • the stirring mechanism extends from the window 13 on the side of the furnace 10 into the furnace 10, the end runner 14 of the stirring shaft 2 extends into the molten aluminum 11, and the runner 14 rotates at a high speed to stir the molten aluminum 11 while moving toward the molten aluminum.
  • Inert gas chlorine or refining agent is injected into molten aluminum 11 to evenly distribute inert gas, chlorine or refining agent in molten aluminum 11, through a series of physical and chemical reactions to reduce hydrogen, alkali metal and non-metallic inclusions The purpose of content.
  • the heat in the molten aluminum 11 and the high-temperature gas 12 in the furnace 10 will be transferred to the stirring mechanism by means of heat conduction, heat convection, and heat radiation.
  • the conductive heat 15 transferred to the entire stirring mechanism by heat conduction through the stirring shaft 2 accounts for the largest proportion, which is the main factor causing the temperature rise of the stirring mechanism.
  • the high temperature caused by the conduction heat 15 is sufficient to make the connecting steel sleeve 3 of the stirring mechanism, the bearing system, and the driving system fail and damage. Therefore, the cooling system is added to the stirring mechanism in practical applications.
  • the function of the diversion heat shield 4 of the present invention is: the diversion cooling air 6 cools the connecting steel sleeve 3 by means of thermal convection, and at the same time the isolation furnace 10 transfers heat to the connecting steel sleeve through high temperature heat radiation and thermal convection. 3.
  • a certain flow of low-temperature or room-temperature cooling air 6 enters the cavity 5 from the inlet 8 of the diversion heat shield 4 along the flow line 7.
  • the temperature of the cooling air 6 is usually lower than 40°C, and the cooling air 6 in the low-temperature turbulent state is exchanged by convection
  • the thermal method absorbs a large amount of heat from the connecting steel sleeve 3 so as to achieve the purpose of cooling the connecting steel sleeve 3.
  • the circulation section of the annular outlet 9 is an annular shape coaxial with the stirring shaft 2, and the cooling air 6 is guided through the annular outlet 9 to close to the surface of the stirring shaft 2 and flow out from the cavity 5 of the diversion heat shield 4.
  • the cooling air 6 flowing out of the cavity 5 has a temperature of about 80° C. and flows toward the inside of the furnace, but after the diversion effect of the diversion ring 1 changes the flow direction and flows toward the outside of the furnace. Assuming that there is no guide ring 1, a large amount of cooling air 6 will directly flow into the furnace 10 to mix with the high-temperature gas 12, resulting in a significant decrease in the temperature of the molten aluminum 11 and the high-temperature gas 12 in the melting furnace 10.
  • the temperature drop of the molten aluminum 11 is as high as 35°C or above; after the diversion cooling ring 1 is added, the temperature drop of the molten aluminum 11 is 15°C or below, meanwhile, the diversion heat dissipation ring 1 increases the effective convection heat dissipation area, improves the cooling efficiency of the cooling air flow to the stirring shaft 2, and the flow rate of the cooling air 6 can be appropriately reduced. Processing the windward surface of the diversion and heat dissipation ring 1 into a serrated surface, densely densely covered pit surface, densely covered convex mesa, etc. helps to improve the efficiency of convection heat transfer.
  • the present invention diverts the cooling air flowing in the direction of the furnace to the outside of the furnace by adding a diversion radiating ring at an appropriate position on the stirring shaft, preventing a large amount of cooling air from directly flowing into the furnace;
  • the flow heat dissipation ring increases the effective convection heat dissipation area and improves the heat dissipation capacity of the stirring shaft; solves or alleviates the energy consumption and other unfavorable process problems caused by the cooling air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种带导流散热环(1)的熔融金属搅拌机构,其中搅拌轴(2)的前端通过联接钢套(3)与驱动装置(16)的驱动轴(17)连接,联接钢套(3)置于导流隔热罩(4)的空腔(5)内,导流隔热罩(4)的前端与驱动装置(16)的外壳固定连接,导流散热环(1)安装在搅拌轴(2)上,并位于导流隔热罩(4)的后方。冷空气在导流隔热罩(4)内冷却搅拌轴(2),从导流隔热罩(4)流出后遇到导流散热环(1)则被改变流向,朝熔炉外流去。该结构能阻止冷空气直接流入熔炉内,且增加了搅拌轴(2)的散热面积。

Description

一种带导流散热环的熔融金属搅拌机构 技术领域
本发明属于熔融铝液处理设备技术领域,具体是一种带导流散热环的熔融金属搅拌机构。
背景技术
在铝加工和铝铸造行业,为了生产高品质的铝合金产品,通常需要降低熔炉内熔融铝液中氢、碱金属及非金属夹杂含量等。目前常用做法是通过高速旋转的搅拌机构搅拌熔融铝液的同时向其中喷射惰性气体、氯气或精炼剂等,使惰性气体、氯气或精炼剂等均匀地分布在熔融铝液中,经过一系列的物理化学反应实现降低氢、碱金属及非金属夹杂含量等目的。
当搅拌轴伸入熔融铝液中进行除气精炼工作时,熔炉内的高温熔融铝液和高温气体中的热量会以热传导、热对流和热辐射等方式传递至整个搅拌机构,使搅拌机构温度明显升高而失效并损坏。为了保证搅拌机构正常运作,传统的方法是导入一定流量和静压的低温或室温冷却空气,通过对流换热的方式冷却搅拌机构。但冷却搅拌机构的同时,大量低温或常温的冷却空气进入熔炉,使熔炉内的气氛温度和铝液温度明显降低,带来能耗和其它不利的工艺问题。
因此,有必要改进传统的搅拌机构,研究一种能有效降低冷却空气引起的熔炉内温降,同时又能提高搅拌轴冷却效率的搅拌机构。
发明内容
本发明所要解决的技术问题是提供一种带导流散热环的熔融金属搅拌机构,能有效降低冷却空气引起的熔炉内温降,同时能提高搅拌轴的冷却效率。
本发明以如下技术方案解决上述技术问题:
本发明一种带导流散热环的熔融金属搅拌机构,包括驱动装置、搅拌轴、导流散热环、联接钢套、导流隔热罩,所述搅拌轴的前端通过联接钢套与驱动装置的驱动轴联接,联接钢套置于导流隔热罩的内腔中,导流隔热罩的前端与驱动装置的外壳固定连接,导流散热环安装在搅拌轴上,并位于导流隔热罩的后方。
所述搅拌轴的后端安装有转轮。
所述导流散热环通过螺纹连接、法兰连接或过盈配合安装在搅拌轴上,或者导流散热环与搅拌轴为一体成型。
所述导流散热环的迎风面结构为平面形或碗形或桶形。
所述导流散热环的迎风面表面为光滑平面或密布锯齿面或密布凹坑面或密布凸台面。
所述导流散热环采用石墨或硅酸钙或陶瓷纤维或碳化硅或氮化硅的耐高温材料制作。
所述导流散热环的外径尺寸为200~600mm,内径尺寸为50~400mm,厚度尺寸为5~100mm。
所述导流隔热罩的前端有冷却空气入口,后端与搅拌轴之间有环形出口。
所述导流散热环与导流隔热罩的环形出口直线距离为5~300mm。
本发明一种带导流散热环的熔融金属搅拌机构具有如下有益效果:
1.通过在搅拌轴上的适当位置安装导流散热环,把流动方向朝熔炉内部的冷却空气导流为流动方向朝熔炉外部,阻止了大量冷却空气直接流入熔炉内;
2.通过导流散热环增加了有效对流散热面积,提高了冷却空气对搅拌轴的冷却能力;
3.能有效解决或缓解了冷却空气带来的能耗以及其它不利的工艺问题。
附图说明
图1是本发明带导流散热环的熔融金属搅拌机构的整体结构示意图。
图2是本发明带导流散热环的熔融金属搅拌机构的使用状态示意图。
图3-1是本发明采用的平面形导流散热环示意图。
图3-2是图3-1中导流散热环沿中轴线的剖面图。
图4-1是本发明采用的碗形导流散热环示意图。
图4-2是图4-1中导流散热环沿中轴线的剖面图。
图5-1是本发明采用的桶形导流散热环示意图。
图5-2是图5-1中导流散热环沿中轴线的剖面图。
图6-1是本发明采用的密布锯齿面导流散热环示意图。
图6-2是图6-1中的导流散热环另一方向的示意图。
图7-1是本发明采用的密布凹坑面导流散热环示意图。
图7-2是图7-1中的导流散热环另一方向的示意图。
图8-1是本发明采用的密布凸台面导流散热环示意图。
图8-2是图8-1中的导流散热环另一方向的示意图。
图中标记说明:1-导流散热环,2-搅拌轴,3-联接钢套,4-导流隔热罩, 5-空腔,6-冷却空气,7-流线,8-入口,9-环形出口,10-熔炉,11-熔融铝液,12-高温气体,13-窗口,14-转轮,15-传导热量,16-驱动装置,17-驱动轴。
具体实施方式
以下结合附图对本发明的技术方案作如下说明:
如图1、图2所示,本发明一种带导流散热环的熔融金属搅拌机构包括驱动装置16、搅拌轴2、导流散热环1、联接钢套3、导流隔热罩4,搅拌轴2的前端通过联接钢套4与驱动装置16的驱动轴17联接,联接钢套3置于导流隔热罩4形成的空腔5中,搅拌轴2的未端安装有转轮14;导流隔热罩4的前端与驱动装置16的外壳固定连接,并留有冷却空气6的入口8,导流隔热罩4的后端与搅拌轴2之间留有环形出口9;导流散热环1安装在搅拌轴2上,并位于导流隔热罩4的后方。
使用时,冷却空气6沿流线7从导流隔热罩4的入口8进入空腔5,从导流隔热罩4的环形出口9流出后,冷却空气6朝熔炉10内部方向流动,经过导流散热环1的导流作用后改变流动方向,冷却空气6朝熔炉10外部方向流动。
在上述发明中,导流散热环1通过螺纹连接或法兰连接或过盈配合等方式安装在搅拌轴2上;也可以将导流散热环1与搅拌轴2采用一体加工而成或一体铸造而成。
在上述发明中,所述导流散热环1的迎风面结构可为平面形(如图3-1所示)或碗形(如图4-1所示)或桶形(如图5-1所示)。平面形结构简单,加工成本低。碗形结构和桶型结构更有利于冷却空气6的回流,同时对流散热表面积也较大,但加工成本较高。
在上述发明中,所述导流散热环1的迎风面表面可为光滑平面(如图3-1所示)或密布锯齿面(如图6-1、6-2所示)或密布凹坑面(如图7-1、图7-2所示)或密布凸台面(如图8-1、图8-2所示)。光滑平面结构简单,加工成本低。密布锯齿面、密布凹坑面和密布凸台面可形成较大的对流散热表面积,散热效率更高,但加工成本较高。
在上述发明中,导流散热环1的材质为石墨或硅酸钙或陶瓷纤维或碳化硅或氮化硅等耐高温材料。
在上述发明中,导流散热环1的优选外径尺寸为200~600mm,优选内径尺寸为50~400mm,优选厚度尺寸为5~100mm。
在上述发明中,导流散热环1与环形出口5的直线距离为5~300mm。
应用时,如图2所示,熔炉10内盛装一定体积的熔融铝液11,熔融铝液11和熔炉10内的高温气体12的温度可达750℃或以上。除气精炼时,搅拌机构从熔炉10侧面的窗口13伸入熔炉10内,搅拌轴2的末端转轮14伸入熔融铝液11中,转轮14高速旋转搅拌熔融铝液11,同时向熔融铝液11内喷射惰性气体、氯气或精炼剂等,使惰性气体、氯气或精炼剂等均匀地分布在熔融铝液11中,经过一系列的物理化学反应实现降低氢、碱金属及非金属夹杂含量的目的。除气精炼时,熔融铝液11和熔炉10内高温气体12中的热量会以热传导、热对流、热辐射等方式传递至搅拌机构。实际应用中发现,通过搅拌轴2以热传导方式传递至整个搅拌机构的传导热量15占比最多,是引起搅拌机构温升的主要因素。传导热量15引起的高温足以使搅拌机构的联接钢套3、轴承系统、驱动系统失效并损坏,因此实际应用中搅拌机构都增加了冷却系统。
本发明所述导流隔热罩4的作用是:导流冷却空气6通过热对流的方式冷 却联接钢套3,同时隔离熔炉10内通过高温热辐射和热对流等方式传递热量至联接钢套3。一定流量的低温或室温冷却空气6沿流线7从导流隔热罩4的入口8进入空腔5,冷却空气6的温度通常低于40℃,低温紊流状态的冷却空气6通过对流换热的方式从联接钢套3吸收大量热量,从而达到冷却联接钢套3的目的。环形出口9的流通截面为一个与搅拌轴2同轴心的环形,通过环形出口9导流冷却空气6紧贴搅拌轴2表面从导流隔热罩4的空腔5中流出。
从空腔5流出的冷却空气6温度约为80℃,并朝熔炉内部方向流动,但经过导流散热环1导流作用后改变流动方向,朝熔炉外部方向流动。假设没有导流散热环1的存在,大量冷却空气6将直接流入熔炉10内与高温气体12混合,导致熔炉10内熔融铝液11和高温气体12的温度明显降低。根据实际应用测量数据,除气精炼结束后,未增加导流散热环1时,熔融铝液11的降温幅度高达35℃或以上;增加导流散热环1后,熔融铝液11的降温幅度为15℃或以下,同时导流散热环1增加了有效对流散热面积,提高了冷却空气流对搅拌轴2的冷却效率,冷却空气6的流量可适当降低。把导流散热环1的迎风面表面加工为锯齿面、密布凹坑面、密布凸台面等,有助于提高对流换热的效率。
通过以上描述说明,本发明通过在搅拌轴上的适当位置增加导流散热环,把流动方向朝熔炉内的冷却空气的导流为朝熔炉外,阻止了大量冷却空气直接流入熔炉内;同时导流散热环增加了有效对流散热面积,提高了搅拌轴的散热能力;解决或缓解了冷却空气带来的能耗和其它不利的工艺问题。

Claims (10)

  1. 一种带导流散热环的熔融金属搅拌机构,包括驱动装置,其特征在于,还包括搅拌轴、导流散热环、联接钢套、导流隔热罩,所述搅拌轴的前端通过联接钢套与驱动装置的驱动轴联接,联接钢套置于导流隔热罩的内腔中,导流隔热罩的前端与驱动装置的外壳固定连接,导流散热环安装在搅拌轴上,并位于流隔热罩的后方。
  2. 根据权利要求1所述带导流散热环的熔融金属搅拌机构,其特征在于,所述搅拌轴的后端安装有转轮。
  3. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环通过螺纹连接、法兰连接或过盈配合连接安装在搅拌轴上。
  4. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环与搅拌轴为一体成型。
  5. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环的迎风面结构为平面形或碗形或桶形。
  6. 根据权利要求5所述带导流散热环的熔融金属搅拌机构,其特征在于,导流散热环的迎风面表面为光滑平面或密布锯齿面或密布凹坑面或密布凸台面。
  7. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环采用石墨或硅酸钙或陶瓷纤维或碳化硅或氮化硅的耐高温材料制作。
  8. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环的外径尺寸为200~600mm,内径尺寸为50~400mm,厚度尺寸为5~100mm。
  9. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流隔热罩的前端有冷却空气入口,后端与搅拌轴之间有环形出口。
  10. 根据权利要求1或2所述带导流散热环的熔融金属搅拌机构,其特征在于,所述导流散热环与导流隔热罩的环形出口直线距离为5~300mm。
PCT/CN2020/100335 2019-07-18 2020-07-06 一种带导流散热环的熔融金属搅拌机构 WO2021008397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910651687.8A CN110455094B (zh) 2019-07-18 2019-07-18 一种带导流散热环的熔融金属搅拌机构
CN201910651687.8 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021008397A1 true WO2021008397A1 (zh) 2021-01-21

Family

ID=68481449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100335 WO2021008397A1 (zh) 2019-07-18 2020-07-06 一种带导流散热环的熔融金属搅拌机构

Country Status (2)

Country Link
CN (1) CN110455094B (zh)
WO (1) WO2021008397A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455094B (zh) * 2019-07-18 2021-08-03 派罗特克(广西南宁)高温材料有限公司 一种带导流散热环的熔融金属搅拌机构
CN112359223A (zh) * 2020-12-11 2021-02-12 派罗特克(广西南宁)高温材料有限公司 一种熔融金属炉内精炼转子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256848A (ja) * 2003-02-25 2004-09-16 Jfe Steel Kk 撹拌式脱硫装置
JP2010116583A (ja) * 2008-11-11 2010-05-27 Nisshin Steel Co Ltd 攪拌式脱硫装置用インペラ
JP2014185824A (ja) * 2013-03-25 2014-10-02 Dowa Thermotech Kk 熱処理装置
CN206359556U (zh) * 2016-12-27 2017-07-28 营口东邦冶金设备耐材有限公司 消耗型铁水脱硫搅拌器
CN206359555U (zh) * 2016-12-27 2017-07-28 辽宁中邦高新技术发展有限公司 旋转纵吹脱硫喷枪
CN110455094A (zh) * 2019-07-18 2019-11-15 派罗特克(广西南宁)高温材料有限公司 一种带导流散热环的熔融金属搅拌机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206519651U (zh) * 2017-02-23 2017-09-26 南京索菲智能装备有限公司 搅拌摩擦头水气联合冷却装置
CN106583917B (zh) * 2017-02-23 2022-07-19 江苏科技大学 一种双轴肩搅拌摩擦头气液联合冷却装置及冷却方法
CN207276482U (zh) * 2017-09-08 2018-04-27 深圳市凯盛科技工程有限公司 一种用于电子显示玻璃熔窑的鼓泡装置
CN108285942B (zh) * 2018-02-26 2020-05-22 西安交通大学 一种具有冷却功能的粒化器及其驱动系统
CN109488587B (zh) * 2018-12-31 2024-04-12 兰州兰泵有限公司 一种高温熔盐泵隔热装置
CN109519415B (zh) * 2019-01-28 2023-11-17 重庆水泵厂有限责任公司 一种高温泵用隔热壳体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256848A (ja) * 2003-02-25 2004-09-16 Jfe Steel Kk 撹拌式脱硫装置
JP2010116583A (ja) * 2008-11-11 2010-05-27 Nisshin Steel Co Ltd 攪拌式脱硫装置用インペラ
JP2014185824A (ja) * 2013-03-25 2014-10-02 Dowa Thermotech Kk 熱処理装置
CN206359556U (zh) * 2016-12-27 2017-07-28 营口东邦冶金设备耐材有限公司 消耗型铁水脱硫搅拌器
CN206359555U (zh) * 2016-12-27 2017-07-28 辽宁中邦高新技术发展有限公司 旋转纵吹脱硫喷枪
CN110455094A (zh) * 2019-07-18 2019-11-15 派罗特克(广西南宁)高温材料有限公司 一种带导流散热环的熔融金属搅拌机构

Also Published As

Publication number Publication date
CN110455094B (zh) 2021-08-03
CN110455094A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021008397A1 (zh) 一种带导流散热环的熔融金属搅拌机构
CN114951672B (zh) 一种循环冷却式高温金属离心雾化制粉装置
CN209926898U (zh) 一种精铅冶炼炉烟快速冷却装置
CN204125474U (zh) 一种热态熔渣在线取渣装置
CN104451184B (zh) 一种复合坩埚
CN201161286Y (zh) 冷却辊装置
CN112113438A (zh) 一种高温熔渣余热回收利用系统
CN200996035Y (zh) 一种光亮退火炉的风冷装置
CN213067121U (zh) 一种冶金炉辊用双回路水冷却结构
CN215162106U (zh) 流液洞集成管道式水箱冷却系统
CN105937854A (zh) 风冷技术在电炉中的应用
CN109465419B (zh) 一种电子束离心铸造大尺寸钛合金管设备及方法
CN201827155U (zh) 高温离心风机的冷却装置
CN209443074U (zh) 一种铝合金熔炼系统
CN220462168U (zh) 一种压铸件的冷却输送装置
CN202254858U (zh) 一种水冷水套
CN213515069U (zh) 一种抗氧化耐磨稳定辊
CN221147173U (zh) 一种节能环保高温熔炉
CN219670542U (zh) 一种布料器冷却水套
CN220454238U (zh) 焙烧回转窑
CN209068982U (zh) 一种节能有芯熔铜电炉
TWI852814B (zh) 單晶矽晶體生長裝置及其控制方法
CN215628209U (zh) 一种真空蒸馏炉出料装置
CN219342003U (zh) 一种马弗炉
CN117840406B (zh) 一种颗粒增强复合材料全自动铸造生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20839882

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20839882

Country of ref document: EP

Kind code of ref document: A1