WO2021008354A1 - 供电保障系统和供电保障方法 - Google Patents

供电保障系统和供电保障方法 Download PDF

Info

Publication number
WO2021008354A1
WO2021008354A1 PCT/CN2020/099276 CN2020099276W WO2021008354A1 WO 2021008354 A1 WO2021008354 A1 WO 2021008354A1 CN 2020099276 W CN2020099276 W CN 2020099276W WO 2021008354 A1 WO2021008354 A1 WO 2021008354A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
module
power
wake
Prior art date
Application number
PCT/CN2020/099276
Other languages
English (en)
French (fr)
Inventor
王连松
但志敏
蔡福鹏
侯贻真
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20841021.7A priority Critical patent/EP3925819A4/en
Publication of WO2021008354A1 publication Critical patent/WO2021008354A1/zh
Priority to US17/566,723 priority patent/US20220121262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1635Details related to the integration of battery packs and other power supplies such as fuel cells or integrated AC adapter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the field of battery management, and in particular to a power supply guarantee system and a power supply guarantee method.
  • Battery management system Battery Management System, BMS is an important part of new energy vehicle energy management, which realizes intelligent management and maintenance of electric vehicle power battery system.
  • the lead-acid battery of the whole vehicle provides power for the BMS, and at the same time, it is connected to the low-voltage controller through the power supply bus and supplies power to the low-voltage controller.
  • the BMS In the traditional power supply system, once there is no lead-acid battery in an electric vehicle, and the BMS is in a dormant state, the BMS will not work normally.
  • the embodiments of the present application provide a power supply guarantee system and a power supply guarantee method, which can continue to provide power to the BMS when the BMS is in a sleep state, so that the BMS is always in a powered state, thereby ensuring the normal operation of the BMS.
  • a power supply guarantee system which is applied to a battery management system.
  • the power supply guarantee system includes: a main control module, a high-voltage battery pack, a high-voltage power supply module, a timing device, and a power conversion module.
  • the main control module is used to send the received wake-up time to the timing device
  • the high-voltage power supply module is used to supply power to the timing device according to the electric energy in the high-voltage battery pack;
  • the timing device is used to set the wake-up clock according to the wake-up time, and start timing when the battery management system enters sleep, and when the timing reaches the wake-up time, send a discharge command to the high-voltage battery pack;
  • the power conversion module is used to convert the high-voltage electrical energy output by the high-voltage battery pack according to the discharge instruction into low-voltage electrical energy, and use the low-voltage electrical energy to power the battery management system.
  • a power supply guarantee method for use in the above-mentioned power supply guarantee system, and the power supply guarantee method includes:
  • the high-voltage power supply module According to the electric energy in the high-voltage battery pack, provide regular power for the timing device;
  • the timing device sets the wake-up clock according to the wake-up time, and starts timing when the battery management system enters sleep. When the timing device reaches the wake-up time, it sends a discharge command to the high-voltage battery pack;
  • the power conversion module is used to convert the high-voltage electrical energy output by the high-voltage battery pack according to the discharge instruction into low-voltage electrical energy, and the low-voltage electrical energy is used to power the battery management system.
  • the battery management system when the battery management system is in a dormant state, the battery management system is periodically awakened to ensure that the battery management system is in a powered state, so that the battery management system can easily check the relevant information in the battery pack of the vehicle. Collect and store.
  • the BMS can be awakened without using the lead-acid battery of the vehicle, thereby reducing the loss of lead-acid and increasing the life of the lead-acid.
  • FIG. 1 is a schematic diagram showing the system structure of a vehicle lead-acid battery powering a battery management system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the structure of a power supply guarantee system according to an embodiment of the present application
  • Fig. 3 is a schematic diagram showing a detailed structure of a power supply guarantee system according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram showing a detailed structure of a power supply guarantee system according to still another embodiment of the present application.
  • FIG. 5 is a schematic flowchart showing a method for power supply guarantee according to an embodiment of the present application
  • Fig. 6 is a schematic flowchart showing a method for power supply guarantee according to another embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a system structure in which a lead-acid battery of a vehicle supplies power to a battery management system according to an embodiment.
  • the lead-acid battery 101 of the vehicle can supply power to the battery management system 102.
  • the battery management system 102 may include a battery management unit 1021, a direct current/direct current conversion (DC/DC) module 1022, and a battery pack 1023.
  • the DC/DC module 1022 can perform voltage conversion, for example, can convert a 24V system power supply into 12V to supply power to the electrical equipment of the vehicle-mounted 12V system.
  • the vehicle lead-acid battery 101 can provide power to the battery management system 102, and can also be connected to the low-voltage control unit through a power supply bus to supply power to the low-voltage control unit.
  • the battery management system 102 can interact with the vehicle control unit (VCU) 103 via the CAN bus, and upload the state of change (SOC), voltage, current and other related information of the battery pack 1023 to the whole Car control module.
  • VCU vehicle control unit
  • SOC state of change
  • the vehicle control module and battery management system are powered off. Since there is no lead-acid battery to provide power, the entire BMS is in a dormant state. It is impossible to monitor the SOC, voltage, current and other states of the battery pack in the vehicle and deal with it accordingly.
  • the embodiments of the present application provide a power supply guarantee system and a power supply guarantee method to provide a power source for the battery management system.
  • the battery management system When the battery management system is in a sleep state, the battery management system is periodically awakened to ensure that the battery management system is in a powered state, which is convenient for the battery.
  • the management system collects and stores relevant information in the battery pack of the vehicle.
  • the BMS can be awakened without using the lead-acid battery of the vehicle, thereby reducing the loss of lead-acid and increasing the life of the lead-acid.
  • Fig. 2 is a schematic structural diagram showing a power supply guarantee system according to an embodiment of the present application.
  • the power supply guarantee system 200 in the embodiment of the present application may include: a high-voltage battery pack 10, a high-voltage power supply module 20, a timing device 30, a main control module 40, and a power conversion module 50.
  • the main control module 40 can be used to send the received wake-up time to the timing device; the high-voltage power supply module 20 is used to supply power to the timing device 30 according to the electric energy in the high-voltage battery pack 10; the timing device 30 can be used to set the wake-up time according to the Set the wake-up clock and start timing when the battery management system enters sleep.
  • the timing reaches the wake-up time, it sends a discharge command to the high-voltage battery pack 10;
  • the power conversion module 50 is used to convert the high-voltage energy output by the high-voltage battery pack 10 according to the discharge command Converted into low-voltage electrical energy, and use low-voltage electrical energy to power the battery management system.
  • the wake-up time received by the timing device is the wake-up time set by the vehicle control module. That is, the vehicle control module (not shown in the figure) can be used to set the wake-up time, and can send the wake-up time to the timing device through the main control module.
  • the main control module may be, for example, a Microprogrammed Control Unit (MCU).
  • the vehicle when the vehicle does not have a lead-acid battery and the BMS enters the dormant state, it can continue to provide power to the BMS, so that the BMS is always in a powered state, thereby maintaining the normal operation of the entire BMS system.
  • FIG. 3 shows a detailed structural diagram of a power supply guarantee system according to another embodiment of the present application.
  • the same or equivalent structures in FIG. 3 and FIG. 2 use the same reference numerals. It should be noted that these embodiments are not used to limit the scope of the disclosure of this application.
  • the power conversion module 50 may specifically include: a forward power control module 51, a first high-voltage transmission module, a synchronous rectification module 52, and a first isolation drive module 53 And the second high-voltage transmission module.
  • the timing device 30 is also used to provide an enable signal to the forward power control module 51 when the timing reaches the wake-up time. Under the control of the enable signal, the forward power control module 51 starts to work.
  • the forward power control module 51 is used to provide power to the synchronous rectification module 52 through the first high-voltage transmission module, and to control the connection between the high-voltage battery pack 10 and the second high-voltage transmission module through the first isolation drive module 53.
  • the second high-voltage transmission module is used to convert the high-voltage electric energy in the high-voltage battery pack 10 into low-voltage electric energy when the connection with the high-voltage battery pack 10 is turned on;
  • the synchronous rectification module 52 is used to perform synchronous rectification processing on low-voltage electrical energy, and use the low-voltage electrical energy after the synchronous rectification processing to supply power to the battery management system.
  • the vehicle control module when the vehicle needs to be powered off, can set the wake-up time in advance, generate a timing wake-up command according to the wake-up time, and can issue the wake-up command to the BMS, and the VCU can be powered off .
  • the BMS sends the timing wake-up instruction to the timing device through the main control module. After the timer is set for a good time, the entire BMS will enter the sleep state. When the timing device reaches the wake-up time, it will issue a discharge command to the high-voltage battery pack. The electric energy in the high-voltage battery pack is converted into low-voltage electricity through the power conversion module to provide a power source for the BMS, so that the BMS can be used from sleep. Wake up and start to monitor the SOC, voltage, current and other related information in the battery pack of the vehicle and process accordingly.
  • the high-voltage power supply module includes a first power access point B, a first voltage dividing resistor network R1, a second voltage dividing resistor network R2, and a first voltage stabilizing unit DZ1, and the timing device 30 includes Clock power supply terminal VCC1.
  • the first power supply access point B is located at the positive pole of the high-voltage battery pack 10, one end of the first voltage divider resistor network R1 is connected to the first power supply access point B, and the other end of the first voltage divider resistor network R1 Connected to one end of the second voltage dividing resistor network R2, and the other end of the second voltage dividing resistor network R2 is connected to the clock power supply terminal VCC1; one end of the first voltage stabilizing unit DZ1 is connected to the clock power supply terminal VCC1, and the first voltage stabilizing unit DZ1 The other end of is connected to the reference voltage end.
  • the first voltage dividing resistor network R1 and the second voltage dividing resistor network R2 may respectively include a plurality of resistors connected in series, and the first voltage stabilizing unit DZ1 may include a Zener diode.
  • the first power access point B provides constant voltage V RTC for the timing device through the first voltage dividing resistor network R1 and the second voltage dividing resistor network R2, and is stabilized by the first voltage stabilizing unit DZ1 ,
  • the clock power terminal VCC1 of the timing device 30 can obtain a stable working voltage.
  • the power conversion module includes a resonance filter module, the input end of the resonance filter module is connected to the high-voltage battery pack, and the output end of the resonance filter module is connected to the high-voltage power supply module.
  • the resonant filter module includes a first capacitor network C1, a second capacitor network C2, and a first inductance network L1.
  • One end of the first capacitive network C1 is connected to the high-voltage battery pack 10, the other end of the first capacitive network C1 is connected to the reference voltage terminal, one end of the first inductive network L1 is connected to the high-voltage battery pack 10, and the other end of the first inductive network L1 It is connected to one end of the second capacitor network C2, and the other end of the second capacitor network C2 is connected to the reference voltage terminal.
  • the resonant filter module can filter out the harmonic currents in the circuit whose frequency is the same or similar to the resonant frequency through the series resonance of the capacitor and the inductor, avoiding a large number of harmonics flowing into the capacitor and causing damage to the capacitor.
  • the power supply guarantees the safety provided.
  • the timing device 30 may include a real time clock (RTC), a clock power terminal VCC1, a clock input terminal IN1, and a clock output terminal OUT1.
  • RTC real time clock
  • VCC1 clock power terminal
  • IN1 clock input terminal
  • OUT1 clock output terminal
  • the timing device 30 is also used to receive the wake-up time through the clock input terminal IN1, and set the real-time clock RTC according to the wake-up time, and the real-time clock RTC starts timing when the battery management system enters sleep, and when the timing reaches the wake-up time, it outputs through the clock
  • the terminal OUT1 outputs an enable signal.
  • the high-voltage power supply module 20 includes a first power access point B, a first voltage divider resistor network R1, and a second regulated power supply DZ2, and the forward power control module 51 includes an enable terminal Enable and a forward power terminal VCC2 .
  • the first power access point B is located at the positive pole of the high-voltage battery pack 10, one end of the first voltage dividing resistor network R1 is connected to the first power access point B, and the other end of the second voltage dividing resistor network R1 is connected to the forward power source. Terminal VCC2 is connected.
  • the high-voltage power supply module 20 is also used to supply the electric energy in the high-voltage battery pack 10 to the forward power supply control module 51 via the first power access point B and the second voltage divider resistor network R2.
  • the forward power control module 51 is also used to receive an enable signal through the enable terminal Enable, and use the enable signal to start the forward power control module 51 to work.
  • the first power access point B provides the normal power V AUX to the forward power control module 51 through the first voltage divider resistor network R1, and the voltage is stabilized by the second voltage stabilizing unit DZ2, and the forward power control module
  • the forward power terminal VCC2 of 51 can obtain a stable starting voltage.
  • the second voltage divider resistor network R2 plays a role of voltage divider. By adjusting the resistance value of the second voltage divider resistor network R2, the variation range of the operating voltage of the forward power supply control module can be adjusted to Make the forward power control module obtain a stable working voltage.
  • the first voltage dividing resistor network R1 and the second voltage dividing resistor network R2 each include a resistor. In other embodiments, each of the first voltage dividing resistor network R1 and the second voltage dividing resistor network R2 may include more than two resistors connected in series and/or in parallel.
  • the combination form and resistance value of the first voltage dividing resistor network R1 and the second voltage dividing resistor network R2 can be set according to actual conditions in the actual application scenario of the power supply guarantee system.
  • the first high-voltage transmission module includes a first switching device Q1 and a first transformer T1
  • the forward power control module 51 includes a first control signal output port GATE2.
  • the forward power control module 51 is also used to control the on and off of the first switching device Q1 through the first control signal output port GATE2.
  • the first switching device Q1 When the first switching device Q1 is turned on, the first part Np1 of the primary winding of the first transformer T1 stores energy, and when the first switching device Q1 is turned off, the energy stored in the first part Np1 of the primary winding is coupled to the second part of the primary winding Np2 And the secondary winding Ns1 of the first transformer T1.
  • the electric energy coupled to the secondary winding Ns1 of the first transformer T1 is used to provide power to the synchronous rectification module 52, and the electric energy coupled to the second part Np2 of the primary winding of the first transformer is used Provide power to the forward power control module 51.
  • the power conversion module 50 further includes a first rectification and filtering unit, and the first rectification and filtering unit is connected to the synchronous rectification power terminal VCC3 of the synchronous rectification module 52.
  • the first rectifying and filtering unit is used for rectifying and filtering the electric energy coupled to the secondary winding Ns1 of the first transformer T1, and inputting the electric energy after the rectifying and filtering processing into the synchronous rectification power terminal VCC3.
  • the clock output terminal OUT1 of the timing device 30 enables the forward power control module 51, such as the forward control chip. Enable (Enable). At this time, the first transformer T1 starts to work, and at the same time, the high-voltage side outputs electric energy to supply power to the forward power control module 51.
  • the forward power control module 51 includes a second control signal output port GATE1 and a third control signal output port HOUT
  • the first isolation drive module 53 includes a first isolation input terminal IN2 and a third control signal output port HOUT.
  • the second high voltage transmission module includes a second switch device Q2 and a third switch device Q3.
  • the forward power control module 51 is also used to control the conduction of the second switching device Q2 through the second control signal outputted by the second control signal output port GATE1, and output the third control signal through the third control signal output port HOUT Signal and transmit the third control signal to the first isolation input terminal IN2.
  • the first isolation drive module 53 is configured to output a first drive signal through the first drive signal output port OUT4 according to the second control signal received by the first isolation input terminal IN2 to control the conduction of the third switch device Q3.
  • the forward power control module 51 is also used to control the connection between the high-voltage battery pack and the second high-voltage transmission module when the second switching device Q2 is turned on and the third switching device Q3 is turned on.
  • the high-voltage power in the high-voltage battery pack is transmitted to the low-voltage side of the second transformer T2 through the turned-on second switching device Q2 and the third switching device Q3, and the second transformer T2 outputs low-voltage power.
  • FIG. 4 shows a detailed structural diagram of a power supply guarantee system according to still another embodiment of the present application.
  • the same or equivalent structures in FIG. 4 and FIG. 3 use the same reference numerals. It should be noted that these embodiments are not used to limit the scope of the disclosure of this application.
  • the first rectifying and filtering unit includes a first diode network D1 and a third capacitor network C3.
  • the input end of the first diode network D1 is connected to the end of the same name of the secondary winding Ns1 of the first transformer T1
  • the output end of the first diode network D1 is connected to one end of the third capacitor network C3, and the third capacitor
  • the other end of the network C3 is connected to the reference voltage terminal
  • the synonymous end of the secondary winding Ns1 of the first transformer T1 is connected to the reference voltage terminal.
  • the first diode network can play a rectifying role and improve the current passing capacity
  • the third capacitor network can play a filtering role.
  • the first rectifying diode network D1 may include a single diode device, and the third capacitor network C3 may include a single capacitor.
  • the first rectifier diode network D1 may also include more than two diodes connected in series and/or parallel, and the third capacitor network C3 may also include more than two capacitors connected in series and/or parallel.
  • the respective combinations of the first diode network D1 and the third capacitor network C3 can be set according to actual conditions in the actual application scenario of power supply guarantee.
  • the power conversion module includes a second rectification and filtering unit, and the second rectification and filtering unit is connected to the output terminal of the second high-voltage transmission module.
  • the second rectification and filtering unit is used for performing rectification and filtering processing on the low-voltage electric energy after the synchronous rectification processing, and transmitting the low-voltage electric energy after the rectification and filtering processing to the battery management system.
  • the second rectifying and filtering unit may include a second inductance network L2 and a fourth capacitance network C4.
  • One end of the second inductive network L2 is connected to the end of the same name of the secondary winding Ns2 of the second transformer T2, the other end of the second inductive network L2 is connected to one end of the fourth capacitive network C4, and the other end of the fourth capacitive network C4 is connected to Reference voltage terminal.
  • the second inductive network L2 can play a role in isolating AC signals and filtering
  • the fourth capacitor network C4 can play a role in filtering and stabilizing.
  • the second inductance network L2 may include a single inductor, and the fourth capacitance network C4 may include a single capacitor.
  • the second inductor network L2 may also include more than two inductors connected in series and/or in parallel, and the fourth capacitor network C4 may also include more than two capacitors connected in parallel.
  • the combination form and resistance value of the second inductance network L2 and the fourth capacitance network C4 can be set according to actual conditions in the actual application scenario of power supply guarantee.
  • the power supply guarantee system further includes a low dropout linear voltage stabilizing module 60 and a first isolation device 70.
  • the low-dropout linear voltage stabilizing module 60 is used for stepping down low-voltage electrical energy to obtain the stepped-down electrical energy; the main control module 40 is also used for starting work according to the stepped-down electrical energy and passing the first
  • the isolation device 70 sends the wake-up time to the timing device 30.
  • the electrical energy after the step-down process provides a working voltage for the main control module to start the main control module;
  • the first isolation device plays a role of electrical isolation, which avoids reducing the low-voltage side of the main control module and the main control module through electrical isolation.
  • the direct connection between timing devices on the high-voltage side reduces electrical interference and improves the safety of the power supply guarantee system.
  • the power conversion module further includes a second isolation device 54.
  • the second isolation device 54 is used to electrically isolate the frequency synchronization signal output by the forward power supply control module 51 and transmit the electrically isolated frequency synchronization signal to the synchronous rectification module 52.
  • the synchronous rectification module 52 includes a synchronous rectification power supply terminal VCC3, a synchronous rectification first output port OUT2, and a synchronous rectification second output port OUT3.
  • the second high-voltage transmission module includes a second transformer T2, The fourth switching device Q4 and the fifth switching device Q5.
  • the first output port OUT2 of synchronous rectification is connected to the control terminal of the fourth switching device, the first load access terminal of the fourth switching device Q4 is connected to the synonymous terminal of the secondary winding Ns2 of the second transformer T2, and the fourth The second load access terminal of the switching device Q4 is connected to the reference voltage terminal.
  • the second output port OUT3 of the synchronous rectification is connected to the control terminal of the fifth switch device Q5, the first load access terminal of the fifth switch device Q5 is connected to the end of the same name of the secondary winding Ns2 of the second transformer T2, and the fifth switch device Q5
  • the second load access terminal is connected to the reference voltage terminal.
  • the synchronous rectification module 52 is also used to receive the electrically isolated frequency synchronization signal output by the second isolation device 54 and to synchronously control the conduction of the fourth switching device Q4 and the fifth switching device Q5 according to the frequency synchronization signal.
  • the low-voltage power is transmitted to the battery management system through the turned-on fourth switching device Q4 and the turned-on fifth switching device Q5.
  • the first frequency synchronization interface SYNC1 of the forward power supply control module 51 is connected to the second isolation input terminal IN3 of the second isolation device 54, and the second drive signal output port OUT5 of the second isolation device 54 is connected to the synchronization The second frequency synchronization interface SYNC2 of the rectifier chip.
  • the second isolating device 54 can transmit the frequency synchronization signal output by the forward power supply control module to the synchronous rectification module to achieve signal frequency synchronization between the forward power supply control module and the synchronous rectification module.
  • the vehicle control module issues a timing wake-up instruction to the BMS and then powers off.
  • the BMS transmits the timing wake-up instruction to the timing device through the main control module, and the timing device follows the timing After the wake-up command is set to wake-up time, the entire BMS will enter the sleep state.
  • the timing device When the timing device reaches the wake-up time, it will issue a discharge command to the high-voltage battery pack, and the electricity in the high-voltage battery pack is converted into low-voltage electricity through the power conversion module, thereby supplying power to the BMS and ensuring the normal operation of the BMS.
  • the high-voltage battery pack will output a stable 24V power supply to the low-voltage side, and the power supply is converted by a low-dropout linear regulator module to supply power to the main control module. Therefore, the low dropout linear voltage regulator module works normally, the main control module works normally, and the power conversion module works normally, so that the entire BMS works normally. After that, the BMS will monitor the relevant data in the battery, store it and process it accordingly. After the above work is completed, if the VCU is not working, the BMS will send the timing wake-up instruction to the timer and then go to sleep again, and wait for the next timing wake-up.
  • the BMS when the BMS is in the dormant state, the BMS is awakened by a timing device to provide a stable power source for the BMS. Ensure that the BMS is in a powered state, so that the BMS can collect and store the relevant information in the battery pack of the vehicle, and realize the real-time monitoring of the vehicle condition by the BMS.
  • the power supply guarantee system of the embodiment of the present application realizes the wake-up of the BMS through the timer device without using the lead-acid battery of the vehicle to wake up, thereby reducing the loss of lead-acid and increasing the life of the lead-acid.
  • Fig. 5 is a flowchart showing a method for power supply guarantee according to an embodiment of the present application.
  • the power supply guarantee method exemplified in this application can be applied to the power supply guarantee system described with reference to FIGS. 1 to 4 in the above embodiment.
  • the power supply guarantee method 500 in the embodiment of the present application includes the following steps:
  • step S510 the main control module is used to receive the wake-up time, and the received wake-up time is sent to the timing device.
  • step S520 the high-voltage power supply module provides constant power to the timing device according to the electric energy in the high-voltage battery pack.
  • step S530 the timing device sets a wake-up clock according to the wake-up time, and starts timing when the battery management system enters sleep.
  • the timing device reaches the wake-up time, it sends a discharge instruction to the high-voltage battery pack.
  • step S540 the power conversion module is used to convert the high-voltage electrical energy output by the high-voltage battery pack according to the discharge instruction into low-voltage electrical energy, and the low-voltage electrical energy is used to power the battery management system.
  • the wake-up time received by the main control module is the wake-up time set by the vehicle control module.
  • the main control module receiving block can be used to set the wake-up time, and the main control module can send the wake-up time to the timing device.
  • the power supply guarantee method may further include:
  • step S550 after the wake-up time is set by the vehicle control module, the vehicle control module is powered off; and after the wake-up time is sent to the timing device through the main control module, the battery management system is powered off.
  • the power supply guarantee method may further include:
  • step S560 when the timing device does not reach the wake-up time and the vehicle control module is in the working state, the vehicle control module provides the working voltage to the high-voltage battery pack, and the high-voltage battery pack starts to work.
  • the power supply guarantee method may further include:
  • Step S570 When the timing device reaches the wake-up time, and the vehicle control module is in a sleep state, the timing device resets the wake-up clock according to the wake-up time.
  • the BMS wakes up from the sleep state, and if the vehicle control module is not working, the timer continues to count. After the BMS is awakened from sleep, if the vehicle control module is still not working, the BMS will pass the timing wake-up command to the timer to enter the sleep state, and wait for the next timing wake-up. Once the VCU is found to be working, this sleep The awakened state will end.
  • Fig. 6 shows a schematic flow chart of a power supply guarantee method according to another embodiment of the present application.
  • the power supply guarantee method may include:
  • step S601 when the vehicle control module is working normally, it is determined whether it needs to be powered off.
  • step S602 if power off is required, after the vehicle control module issues a timed wake-up instruction to the BMS, the vehicle control module is powered off; if power off is not required, the VCU works normally, and the power supply guarantee method process ends.
  • the BMS transmits the timing wake-up instruction to the timing device, and the timing device sets the wake-up clock according to the wake-up time, and the BMS is powered off and in a sleep state.
  • step S604 when the timing device reaches the predetermined wake-up time, the power conversion module is activated by the timing device to start working.
  • the step of the timing device starting the power conversion module to start working may specifically include: when the timer reaches the predetermined wake-up time, sending an enable signal to the forward power control module; under the control of the enable signal, the forward power control The module starts to work; the forward power control module controls the on and off of the switch device Q1, and controls the storage and release of the electric energy in the primary winding Np1 of the transformer T1 through the on and off of the switch device Q1; the forward power control module also controls the switch The device Q2 and the switching device Q3 are turned on and off. When the switching device Q3 is turned on, the high-voltage electric energy output by the high-voltage battery pack is converted into low-voltage electric energy through the transformer T2.
  • step S605 the high-voltage electric energy of the high-voltage battery pack is converted into stable low-voltage electric energy through the power conversion module, and the BMS works normally.
  • step S606 it is determined whether the vehicle control module is working normally. If the vehicle control module is working normally, the BMS will not enter the sleep state after completing the normal work.
  • step S607 if the vehicle control module does not work normally, that is, the normal control module is still in a sleep state, after the BMS completes normal work, the timing device resets the wake-up clock according to the wake-up time, and the BMS is powered off again and is in the sleep state.
  • the BMS when the BMS is in the dormant state, the BMS is awakened by the timing device, and the high-voltage battery pack is used to provide a stable power source for the BMS to ensure that the BMS is in a powered state, so as to realize the BMS's real-time status of the vehicle monitor.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program tangibly embodied on a machine-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network, and/or installed from a removable storage medium.
  • the computer program product includes one or more computer instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing various embodiments.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种供电保障系统和供电保障方法。供电保障系统(200)应用于电池管理系统(102),该供电保障系统(200)包括:主控模块(40),用于将接收的唤醒时刻发送至定时装置(30);高压供电模块(20),用于根据高压电池包(10)中的电能向定时装置(30)供电;定时装置(30),用于根据唤醒时刻设定唤醒时钟,并在电池管理系统(102)进入休眠时开始计时,当计时达到唤醒时刻时,向高压电池包(10)发送放电指令;电源转换模块(50),用于将高压电池包(10)根据放电指令输出的高压电能转换为低压电能,并利用低压电能为电池管理系统(102)供电。根据上述供电保障系统(200),在电池管理系统(102)处于休眠状态时,可以继续为电池管理系统(102)提供电源,保证电池管理系统(102)的正常工作,减少铅酸电池的损耗。

Description

供电保障系统和供电保障方法
相关申请的交叉引用
本申请要求享有于2019年07月16日提交的名称为“供电保障系统和供电保障方法”的中国专利申请201910641181.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池管理领域,尤其涉及一种供电保障系统和供电保障方法。
背景技术
目前,面对能源短缺、环境污染日益严重的现状,发展纯电动的新能源汽车势在必行,将成为降低汽车尾气排放、能量消耗和缓解环境压力的重要途径。电池管理系统(Battery Management System,BMS)是新能源汽车能量管理的重要组成部分,实现对电动汽车动力电池系统的智能化管理及维护。
通常,整车铅酸电池为BMS提供电源,同时通过供电总线与低压控制器连接,并为低压控制器供电。在传统的供电系统中,一旦电动汽车不存在铅酸电池,而BMS处于休眠状态后,使得BMS将无法正常工作。
发明内容
本申请实施例提供一种供电保障系统和供电保障方法,可以在BMS处于休眠状态时,可以继续为BMS提供电源,使得BMS一直处于得电状态,从而保证BMS的正常工作。
根据本申请实施例的一方面,提供一种供电保障系统,应用于电池管理系统,供电保证系统包括:主控模块、高压电池包、高压供电模块、定 时装置和电源转换模块,其中,
主控模块,用于将接收的唤醒时刻发送至定时装置;
高压供电模块,用于根据高压电池包中的电能向定时装置供电;
定时装置,用于根据唤醒时刻设定唤醒时钟,并在电池管理系统进入休眠时开始计时,当计时达到唤醒时刻时,向高压电池包发送放电指令;
电源转换模块,用于将高压电池包根据放电指令输出的高压电能转换为低压电能,并利用低压电能为电池管理系统供电。
根据本申请实施例的另一方面,提供一种供电保障方法,用于上述供电保障系统,该供电保障方法包括:
利用主控模块接收唤醒时刻,并将接收的唤醒时刻发送至定时装置;
通过高压供电模块,根据高压电池包中的电能为定时装置提供常电;
定时装置根据唤醒时刻设定唤醒时钟,并在电池管理系统进入休眠时开始计时,当定时装置计时达到唤醒时刻时,向高压电池包发送放电指令;
利用电源转换模块,将高压电池包根据放电指令输出的高压电能转换为低压电能,并利用低压电能为电池管理系统供电。
根据本申请实施例的供电保障系统和供电保障方法,当电池管理系统处于休眠状态,定时唤醒电池管理系统,保证电池管理系统处于得电状态,便于电池管理系统对整车电池包中的相关信息进行采集和存储。根据本申请实施例的供电保障系统和供电保障方法,可以无需借助整车铅酸电池唤醒BMS,从而减少铅酸的损耗,增加铅酸的寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出本申请一实施例的整车铅酸电池为电池管理系统供电的系统结构示意图;
图2是示出本申请一实施例的供电保障系统的结构示意图;
图3是示出根据本申请另一实施例的供电保障系统的详细结构示意图;
图4是示出根据本申请再一实施例的供电保障系统的详细结构示意图;
图5是示出根据本申请一实施例的供电保障方法的流程示意图;
图6是示出根据本申请另一实施例的供电保障方法的流程示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1示出了一实施例的整车铅酸电池为电池管理系统供电的系统结构示意图。如图1所示,整车铅酸电池101可以为电池管理系统102供电。电池管理系统102可以包括电池管理单元1021、直流/直流变换(DC/DC)模块1022和电池包1023。其中,DC/DC模块1022可以进行电压转换,例如可以将24V的系统电源转换为12V,为车载12V系统的用电设备供电。
新能源汽车中,整车铅酸电池101可以为电池管理系统102提供电源,还可以通过供电总线与低压控制单元连接,为低压控制单元供电。电池管理系统102可以通过CAN总线与整车控制模块(Vehicle Control Unit,VCU)103实现信息交互,将电池包1023的荷电状态(State Of Change, SOC)、电压、电流等相关信息上传至整车控制模块。
当整车不提供铅酸电池,新能源汽车长时间停放而不使用时,整车控制模块与电池管理系统下电,由于不存在铅酸电池提供电源,此时整个BMS由于处于休眠状态,而无法对整车中电池包的SOC、电压、电流等状态进行监控及进行相应地处理。
因此,本申请实施例提供一种供电保障系统和供电保障方法,为电池管理系统提供电力来源,当电池管理系统处于休眠状态,定时唤醒电池管理系统,保证电池管理系统处于得电状态,便于电池管理系统对整车电池包中的相关信息进行采集和存储。根据本申请实施例的供电保障系统和供电保障方法,可以无需借助整车铅酸电池唤醒BMS,从而减少铅酸的损耗,增加铅酸的寿命。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的供电保障系统和供电保障方法,应注意,这些实施例并不是用来限制本申请公开的范围。
图2是示出本申请一实施例的供电保障系统的结构示意图。如图2所示,本申请实施例中的供电保障系统200可以包括:高压电池包10、高压供电模块20、定时装置30、主控模块40和电源转换模块50。
主控模块40,可以用于将接收的唤醒时刻发送至定时装置;高压供电模块20,用于根据高压电池包10中的电能向定时装置30供电;定时装置30,可以用于根据唤醒时刻设定唤醒时钟,并在电池管理系统进入休眠时开始计时,当计时达到唤醒时刻时,向高压电池包10发送放电指令;电源转换模块50,用于将高压电池包10根据放电指令输出的高压电能转换为低压电能,并利用低压电能为电池管理系统供电。
在一个实施例中,定时装置接收的唤醒时刻是通过整车控制模块设定的唤醒时刻。也就是说,整车控制模块(图中未示出)可以用于设定唤醒时刻,并可以将唤醒时刻通过主控模块发送至定时装置。在该实施例中,主控模块例如可以是微控制单元(Microprogrammed Control Unit,MCU)。
根据本申请实施例的供电保障系统,当整车不存在铅酸电池,而BMS进入休眠状态时,可以继续为BMS提供电源,使得BMS一直处于得电状 态,从而维持整个BMS系统的正常工作。
图3示出了根据本申请另一实施例的供电保障系统的详细结构示意图。图3与图2相同或等同的结构使用相同的标号。应注意,这些实施例并不是用来限制本申请公开的范围。
如图3所示,在一个实施例中,供电保障系统200中,电源转换模块50具体可以包括:正激电源控制模块51、第一高压传输模块、同步整流模块52、第一隔离驱动模块53和第二高压传输模块。
在该实施例中,定时装置30,还用于当计时达到唤醒时刻时,向正激电源控制模块51提供使能信号,在使能信号的控制下,正激电源控制模块51开始工作。
正激电源控制模块51,用于通过第一高压传输模块,向同步整流模块52提供电源,以及通过第一隔离驱动模块53,控制高压电池包10与第二高压传输模块的连接导通。
第二高压传输模块,用于在与高压电池包10的连接导通时,将高压电池包10中的高压电能转换为低压电能;
同步整流模块52,用于对低压电能进行同步整流处理,并利用同步整流处理后的低压电能为电池管理系统供电。
在本申请实施例中,当整车需要下电时,整车控制模块可以提前设定唤醒时刻,根据该唤醒时刻生成定时唤醒指令,并可以将该唤醒指令下发给BMS后,VCU下电。BMS通过主控模块将定时唤醒指令下发给定时装置,定时器在设定好时间后,整个BMS将进入休眠状态。当定时装置计时达到唤醒时刻时,会向高压电池包下发放电命令,高压电池包中的电能通过电源转换模块,将高压电能转换成低压电,为BMS提供电力来源,使得BMS从休眠中被唤醒,并开始对整车电池包中的SOC、电压、电流等相关信息进行监控及相应地处理。
继续参考图3,在一个实施例中,高压供电模块包括第一电源接入点B、第一分压电阻网络R1、第二分压电阻网络R2和第一稳压单元DZ1,定时装置30包括时钟电源端VCC1。
在一个实施例中,第一电源接入点B位于高压电池包10的正极,第一 分压电阻网络R1的一端与第一电源接入点B连接,第一分压电阻网络R1的另一端与第二分压电阻网络R2的一端连接,第二分压电阻网络R2的另一端与时钟电源端VCC1连接;第一稳压单元DZ1的一端与时钟电源端VCC1连接,第一稳压单元DZ1的另一端与基准电压端连接。
在一个实施例中,第一分压电阻网络R1和第二分压电阻网络R2,分别可以包括多个串联的电阻,第一稳压单元DZ1可以包括稳压二极管。
在该实施例中,第一电源接入点B通过第一分压电阻网络R1和第二分压电阻网络R2,为定时装置提供常电V RTC,并经第一稳压单元DZ1的稳压,定时装置30的时钟电源端VCC1可以得到稳定的工作电压。
继续参考图3,电源转换模块包括谐振滤波模块,谐振滤波模块的输入端连接于高压电池包,谐振滤波模块的输出端连接于高压供电模块。
在一个实施例中,谐振滤波模块包括第一电容网络C1、第二电容网络C2和第一电感网络L1。
第一电容网络C1的一端连接于高压电池包10,第一电容网络C1的另一端连接于基准电压端,第一电感网络L1的一端连接于高压电池包10,第一电感网络L1的另一端连接于第二电容网络C2的一端,第二电容网络C2的另一端连接于基准电压端。
在该实施例中,谐振滤波模块可以通过电容和电感的串联谐振,将电路中频率与这个谐振频率相同和相近的谐波电流滤除,避免大量谐波流进电容从而对电容造成损害,提高供电保障提供的安全。
如图3所示,在一个实施例中,定时装置30可以包括实时时钟(Real Time Clock,RTC)、时钟电源端VCC1、时钟输入端IN1和时钟输出端OUT1。
定时装置30,还用于通过时钟输入端IN1接收唤醒时刻,并根据唤醒时刻设定实时时钟RTC,以及实时时钟RTC在电池管理系统进入休眠时开始计时,当计时达到唤醒时刻时,通过时钟输出端OUT1输出使能信号。
在一个实施例中,高压供电模块20包括第一电源接入点B、第一分压电阻网络R1和第二稳压电源DZ2,正激电源控制模块51包括使能端Enable和正激电源端VCC2。
其中,第一电源接入点B位于高压电池包10的正极,第一分压电阻网络R1的一端与第一电源接入点B连接,第二分压电阻网络R1的另一端与正激电源端VCC2连接。
并且其中,高压供电模块20,还用于将高压电池包10中的电能,通过第一电源接入点B和第二分压电阻网络R2,向正激电源控制模块51提供工作电压。
正激电源控制模块51,还用于通过使能端Enable接收使能信号,并利用使能信号使正激电源控制模块51开始工作。
在该实施例中,第一电源接入点B通过第一分压电阻网络R1为正激电源控制模块51提供常电V AUX,并经第二稳压单元DZ2稳压,正激电源控制模块51的正激电源端VCC2可以获得稳定的启动电压。
在该实施例中,第二分压电阻网络R2起到分压作用,通过调整第二分压电阻网络R2的阻值大小,可以对正激电源控制模块的工作电压的变化范围进行调整,以使正激电源控制模块获得稳定的工作电压。
在图3所示的供电保障系统中,第一分压电阻网络R1和第二分压电阻网络R2均各自包括一个电阻。在另一些实施例中,第一分压电阻网络R1和第二分压电阻网络R2各自可以包括串联和/或并联的两个以上的电阻。
需要说明的是,第一分压电阻网络R1和第二分压电阻网络R2的组合形式和阻值大小可以在供电保障系统的实际应用场景中,根据实际情况进行设定。
如图3所示,在一个实施例中,第一高压传输模块包括第一开关装置Q1和第一变压器T1,正激电源控制模块51包括第一控制信号输出端口GATE2。其中,正激电源控制模块51,还用于通过第一控制信号输出端口GATE2,控制第一开关装置Q1的导通和关断。
第一开关装置Q1导通时,第一变压器T1的原边线圈第一部分Np1存储能量,第一开关装置Q1关断时,原边线圈第一部分Np1存储的能量耦合至原边线圈第二部分Np2和第一变压器T1的副边线圈Ns1。
第一开关装置Q1断开时,利用耦合至第一变压器T1的副边线圈Ns1中的电能,向同步整流模块52提供电源,以及利用耦合至第一变压器的原 边线圈第二部分Np2的电能为正激电源控制模块51提供电能。
继续参考图3,电源转换模块50还包括第一整流滤波单元,第一整流滤波单元与同步整流模块52的同步整流电源端VCC3连接。
其中,第一整流滤波单元,用于对耦合至第一变压器T1的副边线圈Ns1中的电能进行整流滤波处理,并将整流滤波处理后的电能输入同步整流电源端VCC3。
在本申请实施例中,当定时装置30的实时时钟RTC达到设定时间(即达到唤醒时刻)时,定时装置30的时钟输出端OUT1使能正激电源控制模块51例如正激控制芯片的使能脚(Enable)。此时,第一变压器T1开始工作,同时在高压侧输出电能为正激电源控制模块51供电。
如图3所示,在一个实施例中,正激电源控制模块51包括第二控制信号输出端口GATE1和第三控制信号输出端口HOUT,第一隔离驱动模块53包括第一隔离输入端IN2、第一驱动信号输出端口OUT4,第二高压传输模块包括第二开关装置Q2和第三开关装置Q3。
其中,正激电源控制模块51,还用于通过第二控制信号输出端口GATE1输出的第二控制信号,控制第二开关装置Q2的导通,以及通过第三控制信号输出端口HOUT输出第三控制信号,并将第三控制信号传输至第一隔离输入端IN2。
第一隔离驱动模块53,用于根据第一隔离输入端IN2接收的第二控制信号,通过第一驱动信号输出端口OUT4,输出第一驱动信号以控制第三开关装置Q3的导通。
正激电源控制模块51,还用于在第二开关装置Q2导通且第三开关装置Q3导通时,控制高压电池包与第二高压传输模块的连接导通。
在该实施例中,通过导通的第二开关装置Q2、第三开关装置Q3,将高压电池包中的高压电能,传输至第二变压器T2的低压侧,第二变压器T2输出低压电能。
图4示出了根据本申请再一实施例的供电保障系统的详细结构示意图。图4与图3中相同或等同的结构使用相同的标号。应注意,这些实施例并不是用来限制本申请公开的范围。
如图4所示,在一个实施例中,第一整流滤波单元包括第一二极管网络D1和第三电容网络C3。其中,第一二极管网络D1的输入端与第一变压器T1的副边线圈Ns1的同名端连接,第一二极管网络D1的输出端与第三电容网络C3的一端连接,第三电容网络C3的另一端与基准电压端连接,第一变压器T1的副边线圈Ns1的异名端与基准电压端连接。
在图3所示的供电保障系统中,第一二极管网络可以起到整流作用以及提高电流通过能力,第三电容网络起到滤波作用。
在一个实施例中,第一整流二极管网络D1可以包括单个二极管器件,第三电容网络C3可以包括的单个电容。在另一些实施例中,第一整流二极管网络D1也可以包括串联和/或并联的两个以上的二极管,第三电容网络C3也可以包括串联和/或并联的两个以上的电容。
需要说明的是,第一二极管网络D1与第三电容网络C3各自的组合形式可以在供电保障的实际应用场景中,根据实际情况进行设定。
在一个实施例中,电源转换模块包括第二整流滤波单元,第二整流滤波单元连接于第二高压传输模块的输出端。
第二整流滤波单元,用于对同步整流处理后的低压电能进行整流滤波处理,并将整流滤波处理后的低压电能传输至电池管理系统。
在一个实施例中,第二整流滤波单元可以包括第二电感网络L2和第四电容网络C4。
第二电感网络L2的一端连接于第二变压器T2的副边线圈Ns2的同名端,第二电感网络L2的另一端连接于第四电容网络C4的一端,第四电容网络C4的另一端连接于基准电压端。
在图4所示的供电保障系统中,第二电感网络L2可以起到隔离交流信号和滤波作用,第四电容网络C4可以起到滤波和稳压作用。
在一个实施例中,第二电感网络L2可以包括单个电感,第四电容网络C4可以包括的单个电容。在另一些实施例中,第二电感网络L2也可以包括串联和/或并联的两个以上的电感,第四电容网络C4也可以包括并联的两个以上的电容。
需要说明的是,第二电感网络L2和第四电容网络C4的组合形式和阻 值大小可以在供电保障的实际应用场景中,根据实际情况进行设定。
如图4所示,在一个实施例中,供电保障系统还包括低压差线性稳压模块60和第一隔离装置70。
其中,低压差线性稳压模块60,用于将低压电能进行降压处理,得到降压处理后的电能;主控模块40,还用于根据降压处理后的电能开始工作,并通过第一隔离装置70,将唤醒时刻发送至定时装置30。
在该实施例中,降压处理后的电能为主控模块提供工作电压,以使主控模块开始工作;第一隔离装置起到电气隔离作用,通过电气隔离避免减少低压侧的主控模块与高压侧的定时装置之间的直接连接,从而减少电气干扰,提高供电保障系统的安全性。
如图4所示,在一个实施例中,电源转换模块还包括第二隔离装置54。其中,第二隔离装置54,用于将正激电源控制模块51输出的频率同步信号进行电气隔离,并将经电气隔离后的频率同步信号传输至同步整流模块52。
如图4所示,在一个实施例中,同步整流模块52包括同步整流电源端VCC3、同步整流第一输出端口OUT2和同步整流第二输出端口OUT3,第二高压传输模块包括第二变压器T2、第四开关装置Q4和第五开关装置Q5。
其中,同步整流第一输出端口OUT2连接与第四开关装置的控制端连接,第四开关装置Q4的第一负载接入端与第二变压器T2的副边线圈Ns2的异名端连接,第四开关装置Q4的第二负载接入端与基准电压端连接。
同步整流第二输出端口OUT3与第五开关装置Q5的控制端连接,第五开关装置Q5的第一负载接入端与第二变压器T2的副边线圈Ns2的同名端连接,第五开关装置Q5的第二负载接入端与基准电压端连接。
并且其中,同步整流模块52,还用于接收第二隔离装置54输出的经电气隔离后的频率同步信号,根据该频率同步信号同步控制第四开关装置Q4和第五开关装置Q5的导通,通过导通的第四开关装置Q4和导通的第五开关装置Q5,将低压电能传输至电池管理系统。
在一个实施例中,正激电源控制模块51的第一频率同步接口SYNC1连接于第二隔离装置54的第二隔离输入端IN3,第二隔离装置54的第二 驱动信号输出端口OUT5连接于同步整流芯片的第二频率同步接口SYNC2。
在该实施例中,通过第二隔离装置54,可以将正激电源控制模块输出的频率同步信号,传输到同步整流模块,实现正激电源控制模块与同步整流模块之间的信号频率同步。
根据本申请实施例的供电保障系统,整车控制模块给BMS下发定时唤醒指令后下电,而BMS接到定时唤醒指令后通过主控模块将定时唤醒指令传递给定时装置,定时装置按照定时唤醒指令在设定好唤醒时刻后,整个BMS将进入休眠状态。当定时装置计时达到唤醒时刻时,会向高压电池包下发放电命令,高压电池包中的电通过电源转换模块转换成低压电,从而为BMS供电,保证BMS的正常工作。
在本申请实施例的供电保障系统中,高压电池包将会向低压侧输出稳定的24V电源,该电源经低压差线性稳压模块转换后为主控模块供电。从而低压差线性稳压模块正常工作,主控模块正常工作,电源转换模块正常工作,从而使得整个BMS正常工作。此后,BMS将进对电池中的相关数据进行监控并做储存和相应地的处理。上述工作完毕后,若VCU未工作,则BMS将定时唤醒的指令传递给定时器后便再次进行休眠状态,并等待下一次的定时唤醒。
根据本申请实施例的供电保障系统,如果整车不存在铅酸电池,运用本申请实施例的供电保障系统,在BMS处于休眠状态时,通过定时装置唤醒BMS,为BMS提供稳定的电力来源,保证BMS处于得电状态,便于BMS对整车电池包中的相关信息进行采集和存储,实现BMS对整车情况的实时监控。本申请实施例的供电保障系统通过定时器装置实现BMS的唤醒,而无需借助整车铅酸电池唤醒,从而减少铅酸的损耗,增加铅酸的寿命。
图5是示出根据本申请实施例的供电保障方法的流程图。本申请示例的供电保障方法可应用于上述实施例中结合图1至图4描述的供电保障系统。如图5所示,本申请实施例中的供电保障方法500包括以下步骤:
步骤S510,利用主控模块接收唤醒时刻,并将接收的唤醒时刻发送至定时装置。
步骤S520,通过高压供电模块,根据高压电池包中的电能为定时装置提供常电。
步骤S530,定时装置根据唤醒时刻设定唤醒时钟,并在电池管理系统进入休眠时开始计时,当定时装置计时达到唤醒时刻时,向高压电池包发送放电指令。
步骤S540,利用电源转换模块,将高压电池包根据放电指令输出的高压电能转换为低压电能,并利用低压电能为电池管理系统供电。
在一个实施例中,主控模块接收的唤醒时刻是整车控制模块设定的唤醒时刻。在该实施例中,可以利用主控模块接收块设定唤醒时刻,并通过主控模块将唤醒时刻发送至定时装置。
在一个实施例中,供电保障方法还可以包括:
步骤S550,在利用整车控制模块设定唤醒时刻之后,整车控制模块下电;以及在通过主控模块将唤醒时刻发送至定时装置之后,电池管理系统下电。
在一个实施例中,供电保障方法还可以包括:
步骤S560,当定时装置计时未达到唤醒时刻,且整车控制模块为工作状态时,整车控制模块向高压电池包提供工作电压,高压电池包开始工作。
在一个实施例中,供电保障方法还可以包括:
步骤S570,当定时装置计时达到唤醒时刻,且整车控制模块为休眠状态时,定时装置根据唤醒时刻重新设定唤醒时钟。
在本申请实施例中,在定时器开始计时期间,整车控制模块开始工作时,则BMS从休眠状态中醒来,若整车控制模块未工作时,定时器继续计时。BMS从休眠中被唤醒后,如果整车控制模块依然未工作时,BMS将定时唤醒的指令传递给定时器后进行休眠状态,并等待下一次的定时唤醒,一旦发现VCU开始工作时,此休眠唤醒的状态将会结束。
图6示出了根据本申请另一实施例的供电保障方法的流程示意图。如图6所示,在一个实施例中,供电保障方法可以包括:
如步骤S601所示,整车控制模块正常工作时确定是否需要下电。
如步骤S602所示,如果需要下电,整车控制模块向BMS下达定时唤 醒指令之后,整车控制模块下电;如果不需要下电,VCU正常工作,结束供电保障方法流程。
如步骤S603所示,BMS将定时唤醒指令传递给定时装置,定时装置根据唤醒时刻设定唤醒时钟,BMS下电且处于休眠状态。
如步骤S604所示,在定时装置计时达到预定唤醒时刻时,通过定时装置启动电源转换模块开始工作。
在该步骤中,定时装置启动电源转换模块开始工作的步骤具体可以包括:定时器达到预定唤醒时刻时,向正激电源控制模块发送使能信号;在使能信号的控制下,正激电源控制模块开始工作;正激电源控制模块控制开关装置Q1的开通和关断,通过开关装置Q1的开通和关断控制变压器T1原边绕组Np1中电能的储存和释放;正激电源控制模块还控制开关装置Q2和开关装置Q3的导通和关断,开关装置Q3的导通时,通过变压器T2将高压电池包输出的高压电能转换为低压电能。
如步骤S605所示,通过电源转换模块,将高压电池包的高压电能转换为稳定的低压电能,BMS正常工作。
如步骤S606所示,确定整车控制模块是否正常工作,如果整车控制模块正常工作,BMS完成正常工作后不再进入休眠状态。
如步骤S607所示,如果整车控制模块未正常工作,即正常控制模块仍为休眠状态,BMS完成正常工作后,定时装置根据唤醒时刻重新设定唤醒时钟,BMS重新下电且处于休眠状态。
根据本申请实施例的供电保障方法,在BMS处于休眠状态时,通过定时装置唤醒BMS,利用高压电池包为BMS提供稳定的电力来源,保证BMS处于得电状态,实现BMS对整车情况的实时监控。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的方法实施例中的对应过程,可以参考前述系统、模块和单元的具体工作过程,在此不再赘述。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有 形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种供电保障系统,应用于电池管理系统,其中,所述供电保障系统包括:主控模块、高压电池包、高压供电模块、定时装置和电源转换模块,其中,
    所述主控模块,用于将接收的唤醒时刻发送至所述定时装置;
    所述高压供电模块,用于根据所述高压电池包中的电能向所述定时装置供电;
    所述定时装置,用于根据所述唤醒时刻设定唤醒时钟,并在所述电池管理系统进入休眠时开始计时,当计时达到所述唤醒时刻时,向所述高压电池包发送放电指令;
    所述电源转换模块,用于将所述高压电池包根据所述放电指令输出的高压电能转换为低压电能,并利用所述低压电能为所述电池管理系统供电。
  2. 根据权利要求1所述的供电保障系统,其中,所述高压供电模块包括第一电源接入点、第一分压电阻网络、第二分压电阻网络和第一稳压单元,所述定时装置包括时钟电源端;其中,
    所述第一电源接入点位于所述高压电池包的正极,所述第一分压电阻网络的一端与所述第一电源接入点连接,所述第一分压电阻网络的另一端与所述第二分压电阻网络的一端连接,所述第二分压电阻网络的另一端与所述时钟电源端连接,所述第一稳压单元的一端与所述时钟电源端连接,所述第一稳压单元的另一端与基准电压端连接。
  3. 根据权利要求要求1所述的供电保障系统,其中,所述电源转换模块包括谐振滤波模块,所述谐振滤波模块的输入端连接于所述高压电池包,所述谐振滤波模块的输出端连接于所述高压供电模块。
  4. 根据权利要求3所述的供电保障系统,其中,所述谐振滤波模块包括第一电容网络、第二电容网络和第一电感网络;
    所述第一电容网络的一端连接于所述高压电池包,所述第一电容网络的另一端连接于基准电压端,所述第一电感网络的一端连接于所述高压电池包,所述第一电感网络的另一端连接于所述第二电容的一端,所述第二 电容的另一端连接于基准电压端。
  5. 根据权利要求1所述的供电保障系统,其中,所述电源转换模块包括:正激电源控制模块、第一高压传输模块、同步整流模块、第一隔离驱动模块和第二高压传输模块,其中,
    所述定时装置,还用于当计时达到所述唤醒时刻时,向所述正激电源控制模块提供使能信号,在所述使能信号的控制下,所述正激电源控制模块开始工作;
    所述正激电源控制模块,用于通过第一高压传输模块,向所述同步整流模块提供电源,以及通过所述第一隔离驱动模块,控制所述高压电池包与所述第二高压传输模块的连接导通;
    所述第二高压传输模块,用于在与所述高压电池包的连接导通时,将所述高压电池包中的高压电能转换为低压电能;
    所述同步整流模块,用于对所述低压电能进行同步整流处理,并利用所述同步整流处理后的低压电能为所述电池管理系统供电。
  6. 根据权利要求5所述的供电保障系统,其中,所述定时装置包括实时时钟、时钟电源端、时钟输入端和时钟输出端;其中,
    所述定时装置,还用于通过所述时钟输入端接收所述唤醒时刻,并根据所述唤醒时刻设定所述实时时钟,以及
    所述实时时钟在所述电池管理系统进入休眠时开始计时,当计时达到所述唤醒时刻时,通过所述时钟输出端输出提供所述使能信号。
  7. 根据权利要求5所述的供电保障系统,其中,所述高压供电模块包括第一电源接入点、第一分压电阻网络和第二稳压单元,所述正激电源控制模块包括使能端和正激电源端;其中,
    所述第一电源接入点位于所述高压电池包的正极,所述第一分压电阻网络的一端与所述第一电源接入点连接,所述第一分压电阻网络的另一端与所述正激电源端连接;并且其中,
    所述高压供电模块,还用于将所述高压电池包中的电能,通过所述第一电源接入点、所述第一分压电阻网络和所述第二稳压单元,向所述正激电源控制模块提供工作电压;
    所述正激电源控制模块,还用于根据所述使能端接收所述使能信号,并利用所述使能信号使所述正激电源控制模块开始工作。
  8. 根据权利要求5所述的供电保障系统,其中,所述第一高压传输模块包括第一开关装置和第一变压器,所述正激电源控制模块包括第一控制信号输出端口;其中,
    所述正激电源控制模块,还用于通过所述第一控制信号输出端口,控制所述第一开关装置的导通和关断,
    所述第一开关装置导通时,所述第一变压器的原边线圈第一部分存储能量,所述第一开关装置关断时,所述原边线圈第一部分存储的能量耦合至所述原边线圈第二部分和所述第一变压器的副边线圈;
    所述第一开关装置断开时,利用耦合至所述第一变压器的副边线圈中的电能,向所述同步整流模块提供电源,以及
    利用耦合至所述第一变压器的原边线圈第二部分的电能为所述正激电源控制模块提供电能。
  9. 根据权利要求8所述的供电保障系统,其中,所述电源转换模块还包括第一整流滤波单元,所述第一整流滤波单元与所述同步整流模块的同步整流电源端连接;其中,
    所述第一整流滤波单元,用于对所述耦合至所述第一变压器的副边线圈中的电能进行整流滤波处理,并将整流滤波处理后的电能输入所述同步整流电源端。
  10. 根据权利要求9所述的供电保障系统,其中,所述第一整流滤波单元包括第一二极管网络和第三电容网络;其中,
    所述第一二极管网络的输入端与所述第一变压器的副边线圈的同名端连接,所述第一二极管网络的输出端与所述第三电容网络的一端连接,所述第三电容网络的另一端与基准电压端连接,所述第一变压器的副边线圈的异名端与基准电压端连接。
  11. 根据权利要求5所述的供电保障系统,其中,所述正激电源控制模块包括第二控制信号输出端口和第三控制信号输出端口,所述第一隔离驱动模块包括第一隔离输入端、第一驱动信号输出端口,所述第二高压传输 模块包括第二开关装置和第三开关装置;其中,
    所述正激电源控制模块,还用于通过所述第二控制信号输出端口输出的第二控制信号,控制所述第二开关装置的导通,以及通过所述第三控制信号输出端口输出第三控制信号,并将所述第三控制信号传输至所述第一隔离输入端;
    所述第一隔离驱动模块,用于根据所述第一隔离输入端接收的所述第二控制信号,通过所述第一驱动信号输出端口,输出第一驱动信号以控制所述第三开关装置的导通;
    所述正激电源控制模块,还用于在所述第二开关装置导通且所述第三开关装置导通时,控制所述高压电池包与所述第二高压传输模块的连接导通。
  12. 根据权利要求5所述的供电保障系统,其中,所述同步整流模块包括同步整流电源端、同步整流第一输出端口和同步整流第二输出端口,所述第二高压传输模块包括第二变压器、第四开关装置和第五开关装置;其中,
    所述同步整流第一输出端口连接与所述第四开关装置的控制端连接,所述第四开关装置的第一负载接入端与所述第二变压器的副边线圈的异名端连接,所述第四开关装置的第二负载接入端与基准电压端连接;
    所述同步整流第二输出端口与所述第五开关装置的控制端连接,所述第五开关装置的第一负载接入端与所述第二变压器的副边线圈的同名端连接,所述第五开关装置的第二负载接入端与基准电压端连接;并且其中,
    所述同步整流模块,还用于检测所述第二高压传输模块输出的低压电能,当所述低压电能满足低压阈值条件时,控制所述第四开关装置和所述第五开关装置的导通,通过导通的所述第四开关装置和导通的所述第五开关装置,将所述低压电能传输至所述电池管理系统。
  13. 根据权利要求5所述的供电保障系统,其中,所述电源转换模块包括第二整流滤波单元,所述第二整流滤波单元连接于所述第二高压传输模块的输出端;其中,
    所述第二整流滤波单元,用于对所述同步整流处理后的低压电能进行 整流滤波处理,并将整流滤波处理后的低压电能传输至所述电池管理系统。
  14. 根据权利要求12所述的供电保障系统,其中,所述供电保障系统还包括第二整流滤波单元,所述第二整流滤波单元包括第二电感网络和第四电容网络;
    所述第二电感网络的一端连接于所述第二变压器的副边线圈的同名端,所述第二电感网络的另一端连接于所述第四电容网络的一端,所述第四电容网络的另一端连接于基准电压端。
  15. 根据权利要求1所述的供电保障系统,其中,所述供电保障系统还包括低压差线性稳压模块和第一隔离装置,其中,
    所述低压差线性稳压模块,用于将所述低压电能进行降压处理,得到降压处理后的电能;
    所述主控模块,还用于根据所述降压处理后的电能开始工作,并通过所述第一隔离装置,将所述唤醒时刻发送至所述定时装置。
  16. 根据权利要求5所述的供电保障系统,其中,所述电源转换模块还包括第二隔离装置;其中,
    所述第二隔离装置,用于将所述正激电源控制模块输出的频率同步信号进行电气隔离,并将经所述电气隔离后的频率同步信号传输至所述同步整流模块。
  17. 一种供电保障方法,其中,用于权利要求1-16任一所述的供电保障系统;所述供电保障方法包括:
    利用主控模块接收唤醒时刻,并将接收的所述唤醒时刻发送至所述定时装置;
    通过高压供电模块,根据所述高压电池包中的电能为所述定时装置提供常电;
    所述定时装置根据所述唤醒时刻设定唤醒时钟,并在所述电池管理系统进入休眠时开始计时,当所述定时装置计时达到所述唤醒时刻时,向所述高压电池包发送放电指令;
    利用所述电源转换模块,将所述高压电池包根据所述放电指令输出的高压电能转换为低压电能,并利用所述低压电能为所述电池管理系统供电。
  18. 根据权利要求17所述的供电保障方法,其中,所述供电保障方法还包括:
    在所述主控模块将所述唤醒时刻发送至所述定时装置之后,所述电池管理系统下电。
  19. 根据权利要求17所述的供电保障方法,其中,所述供电保障方法还包括:
    当所述定时装置计时未达到所述唤醒时刻,且所述整车控制模块为工作状态时,所述整车控制模块向所述高压电池包提供工作电压,所述高压电池包开始工作。
  20. 根据权利要求17所述的供电保障方法,其中,所述供电保障方法还包括:
    当所述定时装置计时达到所述唤醒时刻,且所述整车控制模块为休眠状态时,所述定时装置根据所述唤醒时刻重新设定唤醒时钟。
PCT/CN2020/099276 2019-07-16 2020-06-30 供电保障系统和供电保障方法 WO2021008354A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20841021.7A EP3925819A4 (en) 2019-07-16 2020-06-30 POWER SUPPLY ASSURANCE SYSTEM AND POWER SUPPLY ASSURANCE METHOD
US17/566,723 US20220121262A1 (en) 2019-07-16 2021-12-31 Power supply guarantee system and power supply guarantee method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641181.9 2019-07-16
CN201910641181.9A CN112238788B (zh) 2019-07-16 2019-07-16 供电保障系统和供电保障方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/566,723 Continuation US20220121262A1 (en) 2019-07-16 2021-12-31 Power supply guarantee system and power supply guarantee method

Publications (1)

Publication Number Publication Date
WO2021008354A1 true WO2021008354A1 (zh) 2021-01-21

Family

ID=74167015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099276 WO2021008354A1 (zh) 2019-07-16 2020-06-30 供电保障系统和供电保障方法

Country Status (4)

Country Link
US (1) US20220121262A1 (zh)
EP (1) EP3925819A4 (zh)
CN (1) CN112238788B (zh)
WO (1) WO2021008354A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895381A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230400523A1 (en) * 2022-06-13 2023-12-14 Caterpillar Inc. System and method for monitoring health parameters of battery pack
CN115695494A (zh) * 2022-10-31 2023-02-03 重庆长安汽车股份有限公司 一种车辆馈电风险监测方法、装置、设备、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202050275U (zh) * 2011-01-04 2011-11-23 常州丰泰机电工程有限公司 一种多功能充电器
CN103522909A (zh) * 2013-01-18 2014-01-22 武汉英泰斯特电子技术有限公司 一种纯电动车辆停放状态下监控电池数据的方法和车载终端
CN105553279A (zh) * 2016-02-02 2016-05-04 广东美的制冷设备有限公司 电源电路、车载空调及电源电路控制方法
CN107933335A (zh) * 2017-10-26 2018-04-20 深圳市沃特玛电池有限公司 电动汽车及其动力电池的监测方法
US20180131204A1 (en) * 2016-06-23 2018-05-10 Faraday&Future Inc. Systems and methods for intelligently charging battery cells
CN108656976A (zh) * 2017-04-01 2018-10-16 北京海博思创科技有限公司 电池管理系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548435B2 (en) * 2006-03-31 2009-06-16 Astec International Limited Zero-voltage-switching DC-DC converters with synchronous rectifiers
US7787264B2 (en) * 2007-07-25 2010-08-31 System General Corp. Apparatus to provide synchronous rectifying circuit for flyback power converters
US9257865B2 (en) * 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
WO2015077770A2 (en) * 2013-11-25 2015-05-28 Flextronics Ap, Llc High speed sync fet control
CN105305846A (zh) * 2015-06-19 2016-02-03 惠科电子(深圳)有限公司 一种大功率反激电源电路及ac-dc电源
CN106026712B (zh) * 2016-07-15 2018-05-29 深圳南云微电子有限公司 开关电源的副边控制方法及电路
CN106684478B (zh) * 2017-03-20 2019-06-11 东莞博力威电池有限公司 一种带通讯指令控制usb电池的控制方法
CN107370388B (zh) * 2017-08-23 2024-07-16 南宫市康力电子有限公司 一种用于高压转低压的dc-dc电源
CN108215915B (zh) * 2018-01-25 2020-05-05 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202050275U (zh) * 2011-01-04 2011-11-23 常州丰泰机电工程有限公司 一种多功能充电器
CN103522909A (zh) * 2013-01-18 2014-01-22 武汉英泰斯特电子技术有限公司 一种纯电动车辆停放状态下监控电池数据的方法和车载终端
CN105553279A (zh) * 2016-02-02 2016-05-04 广东美的制冷设备有限公司 电源电路、车载空调及电源电路控制方法
US20180131204A1 (en) * 2016-06-23 2018-05-10 Faraday&Future Inc. Systems and methods for intelligently charging battery cells
CN108656976A (zh) * 2017-04-01 2018-10-16 北京海博思创科技有限公司 电池管理系统
CN107933335A (zh) * 2017-10-26 2018-04-20 深圳市沃特玛电池有限公司 电动汽车及其动力电池的监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3925819A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895381A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车

Also Published As

Publication number Publication date
US20220121262A1 (en) 2022-04-21
EP3925819A1 (en) 2021-12-22
CN112238788B (zh) 2022-04-22
CN112238788A (zh) 2021-01-19
EP3925819A4 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2021008354A1 (zh) 供电保障系统和供电保障方法
WO2021008355A1 (zh) 常电提供系统和常电提供方法
WO2021008271A1 (zh) 电池管理系统的唤醒方法和唤醒系统
CN205081682U (zh) 开关功率转换器和用于开关功率转换器的电路
CN104868737B (zh) 用于开关电源的系统和方法
CN206498339U (zh) 一种超低待机功耗的原边反馈ac‑dc转换器
CN106208706A (zh) 电源电路、相关发送电路、集成电路和发送信号的方法
CN105610328A (zh) 开关模式电源的系统和方法
CN110323736A (zh) 电源切换电路和电子设备
WO2019029304A1 (zh) 一种功率转换模块及电源系统
WO2022127049A1 (zh) 谐振槽电路、宽电压输入输出电源和电子设备
EP2697900B1 (en) Switched mode power supply with a simplified start-up supply
CN109391136B (zh) 一种dc/dc变换器唤醒系统、车辆低压供电系统及车辆
CN103219892B (zh) 开关电源和开关电源控制方法
Chang et al. Highly integrated ZVS flyback converter ICs with pulse transformer to optimize USB power delivery for fast-charging mobile devices
KR20090102949A (ko) 다중출력 직류/직류 컨버터
WO2016173159A1 (zh) 隔离电源及其输出反馈方法
CN208046313U (zh) 一种直流双电源开关转换控制器
CN203135728U (zh) 电压切换电路及开关电路
CN209526519U (zh) 支持以太网供电的电源供应装置
CN117134605B (zh) 供电电路、供电控制方法和供电装置
CN104333222B (zh) 随钻测井仪电源
CN220190652U (zh) 供电电路、功率输出电路及电源设备
CN217010899U (zh) 带ups应急电源的poe交换机
CN220325512U (zh) 一种单入多出变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020841021

Country of ref document: EP

Effective date: 20210914

NENP Non-entry into the national phase

Ref country code: DE