WO2019029304A1 - 一种功率转换模块及电源系统 - Google Patents

一种功率转换模块及电源系统 Download PDF

Info

Publication number
WO2019029304A1
WO2019029304A1 PCT/CN2018/094823 CN2018094823W WO2019029304A1 WO 2019029304 A1 WO2019029304 A1 WO 2019029304A1 CN 2018094823 W CN2018094823 W CN 2018094823W WO 2019029304 A1 WO2019029304 A1 WO 2019029304A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
input
output
voltage
signal
Prior art date
Application number
PCT/CN2018/094823
Other languages
English (en)
French (fr)
Inventor
郭启利
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019029304A1 publication Critical patent/WO2019029304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer

Definitions

  • the invention relates to a power conversion module and a power supply system, in particular to a high voltage input and modular application.
  • high-voltage input occasions such as photovoltaic power supply
  • the high voltage can reach 1500V or higher. Therefore, it is necessary to increase the rated voltage of the switch of the latter-stage converter.
  • the on-state resistance of the high-voltage MOSFET is large, resulting in large conduction loss and high cost.
  • the most basic method for building a power system with a standard power module is to use a series-parallel combination of input/output. Taking two identical power modules as an example, the following four power systems can be combined by using the input/output series-parallel method:
  • System 1 Input parallel, output parallel system
  • System 2 input series, output parallel system
  • System 3 input parallel, output series system
  • System 4 Input series, output system in series.
  • the first system has been widely used.
  • Typical products include high-power communication power systems, high-power UPS systems, etc.
  • the other three systems are not widely used.
  • Each module in system 2 is preferably independent of each other, that is, each has its own control and power supply.
  • each module cannot be made into a precise voltage regulation of the output voltage as a single standard power supply.
  • the current after each module is connected in parallel at the output terminal will cause a very large unevenness due to the factory setting value error of the module voltage.
  • This will also cause the modules to be extremely uneven in their input voltage, which will affect the reliability and even damage of the module. Therefore, it is generally impossible to directly connect the input and the output to the power supply module with precision voltage regulation.
  • the input impedance of the small signal model of the Royer circuit is positive, which is more suitable for series-parallel systems.
  • the Royer circuit is used in the high-voltage system. The selection of the switching tube is difficult, and it is not suitable for the series-parallel system under high voltage. in.
  • the switching power supply has attracted much attention for its volume and flexibility.
  • high-power ultra-thin products the volume of high-voltage devices and the size of the transformer seriously affect the overall product height.
  • One is to use the series-parallel form of the transformer to spread the power in several transformers, reduce the volume of the transformer, thereby reducing the volume of the entire switching power supply; another way is to connect the modules in series and parallel. Power expansion through series and parallel connection of several small power modules.
  • the current parallel connection structure of two modules is required to add an additional current sharing circuit outside the module.
  • the external control of the application is complicated, and there are certain professional restrictions for the customer. Some non-electronic professional Ordinary customers cannot simply implement. Or through some topologies with positive impedance characteristics, the primary side series side parallel is used for its unique natural voltage equalization.
  • FIG. 1 is a schematic diagram of two modules directly inputting serial output in parallel
  • FIG. 2 is a direct input of two modules in parallel and serial output.
  • FIG. 3 is a schematic diagram of a parallel connection structure of a plurality of modules directly inputting a series output
  • FIG. 4 is a schematic structural diagram of a plurality of modules directly inputting a series output parallel and adding a voltage stabilizing module.
  • the first embodiment of the utility model patent No. 201621402396.3 adopts two 60W standard power conversion modules with an input voltage range of 120 VDC to 240 VDC as a 120 W power supply system in series and parallel, and the input connection thereof under open loop control.
  • the output parallel effect was verified experimentally.
  • the accuracy of the input voltage accuracy of the module will decrease.
  • the two extreme deviations of the control parameters can be further deviated from the two extremes of the power level parameters, and then combined according to the size of the module gain.
  • the two modules A and B with the largest gain and the smallest gain correspond to the following parameters:
  • the module with the largest gain L m(min) , L r(min) , C r(min) , D mac , f s(min) ;
  • the module with the smallest gain L m(max) , L r(max) , C r(max) , D min , f s(max) .
  • Combination 1 Input series/output parallel experiment with power level and control as nominal parameters
  • Combination 2 Input series/output parallel experiment with power stage and duty cycle as nominal parameters, but switching frequency is upper and lower deviation respectively
  • Combination 3 Input series/output parallel experiment with power stage and switching frequency as nominal parameters, but the duty ratio is upper and lower deviation respectively
  • Combination 4 The switching frequency and duty cycle are nominal parameters, but the power level parameters are the input series/output parallel experiment of the upper and lower deviations respectively.
  • Combination 5 Input series/output parallel experiment with duty cycle as nominal parameter, but power level parameter and switching frequency are upper and lower deviation respectively
  • Table 1 The experimental data of the input voltage equalization effect and the output current sharing effect of the system are shown in Table 1 and Table 2.
  • the combination 1 is the data with good consistency between the two modules. It can be seen from the data that the consistency is guaranteed.
  • the input equalization accuracy is less than 1%, and the current sharing accuracy is also within ⁇ 1%. Even if the inconsistency of the two modules is considered, the equalization and current sharing accuracy are within ⁇ 10% accuracy.
  • Table 3 shows the output voltage values of various parameter combinations for different input voltages and full output.
  • Vg 530V ⁇ 0.15% ⁇ 1.21% ⁇ 8.0% ⁇ 6.9% ⁇ 5.6%
  • the technical problem to be solved by the present invention is to provide a power conversion module, which realizes input voltage equalization and output current sharing requirements in an input series and output parallel power supply system, and can ensure high output voltage precision and realize
  • the direct series-parallel connection of multiple modules makes the power system more flexible. Compared with the two-stage solution, the efficiency is higher, the output is more stable, and it is not affected by the topology.
  • the input stage uses multiple modules in series, so the voltage stress of each module is greatly reduced.
  • connection relationship is: the input end of the main power circuit is connected with the positive input voltage terminal and the negative input voltage terminal, the output end of the main power circuit is connected with the positive output voltage terminal and the negative output voltage terminal; the input end of the input isolation sampling circuit is connected with the positive input voltage
  • the negative output terminal of the terminal and the negative input voltage terminal and the input isolation sampling circuit are connected to the negative output voltage terminal and the signal output terminal negatively, and the positive output terminal of the input isolation sampling circuit is simultaneously connected to the input of the signal output terminal and the input equalization ring.
  • the other input end of the input voltage equalizing ring is connected to the signal input terminal positive, the third input end of the output voltage equalizing ring is connected to the signal input terminal negative, and the output end of the input voltage equalizing ring is connected to one of the loop isolation circuits.
  • the output terminal is connected to the output voltage regulator ring, and the output end of the output voltage regulator ring is connected to the other input end of the loop isolation circuit; the output end of the loop isolation circuit is sequentially passed through the primary and secondary isolation circuits, and the control is driven. The circuit is then connected to the main power circuit;
  • each terminal are: positive input voltage terminal and negative input voltage terminal for input voltage; positive output voltage terminal and negative output voltage terminal for output voltage; signal input terminal and signal input terminal are negative for input voltage equalization
  • the ring receives an external signal; the signal output terminal is positively opposite to the signal output terminal, and is used for isolating the sampling circuit output sampling signal; and the output voltage sampling terminal is used for inputting a voltage to be sampled;
  • the main power circuit isolates the input voltage to obtain an output voltage
  • the primary secondary side isolating circuit, and isolating and transmitting the switch control signal
  • Input an isolated sampling circuit, collect an input voltage, and output a sampling signal to the signal output terminal;
  • Input the voltage equalization loop compare the size of the sampled signal with the external signal, and control the magnitude of the input voltage
  • Loop isolation circuit isolated output regulator ring and input averaging ring.
  • the negative output voltage terminal, the signal input terminal negative and the signal output terminal are negatively multiplexed with three external terminals, that is, the three terminals are the same terminal.
  • the main power circuit employs an asymmetric half-bridge flyback topology.
  • the driving pulse signals of the two switching tubes in the asymmetric half-bridge flyback topology are staggered to prevent a dead time of the common short circuit.
  • the dead time is 300 nS.
  • the output voltage sampling terminal and the negative output voltage terminal can be connected to shield the function of the output voltage regulator ring.
  • the signal input terminal can be connected to the negative output voltage terminal to shield the function of the input voltage equalization ring.
  • the invention also provides a power supply system, comprising N power conversion modules adopting the above technical solutions, wherein N is a natural number greater than 1, and the connection relationship is: the positive input voltage terminal of the first power conversion module is the positive input of the power system The negative input voltage terminal of the first power conversion module is connected to the positive input voltage terminal of the second power conversion module, and the negative input voltage terminal of the second power conversion module is connected to the positive input voltage terminal of the third power conversion module, and so on.
  • the negative input voltage terminal of the N-1 power conversion module is connected to the positive input voltage terminal of the Nth power conversion module, and the negative input voltage terminal of the Nth power conversion module is used as the negative input terminal of the power system;
  • the N powers The positive output voltage terminal of the conversion module is connected as the positive output end of the power system, and the negative output voltage terminals of the N power conversion modules are connected as the negative output end of the power system;
  • the signal output terminal of the first power conversion module is positive Suspended, the signal input terminal of the first power conversion module is positively connected to the signal output end of the second power conversion module Being connected, the signal input terminal of the second power conversion module is being connected to the module signal output terminal of the third power conversion module, and so on, the signal input terminal of the N-1th power conversion module is positively connected with the Nth power conversion module
  • the signal output terminal is connected, the signal input terminal of the Nth power conversion module is connected to the negative output end of the power system; the output voltage sampling terminal of the Nth power conversion module is connected to the positive output end of
  • the present invention has the following beneficial effects:
  • the present invention adopts modular thinking and splits the system into N identical standard modules
  • the user can directly use the standard module to set up the system freely according to the requirements.
  • the use is flexible and the portability is high.
  • the system has low requirements for the customer.
  • the input of the module can be directly connected and the output can be connected in parallel. Professional knowledge;
  • each standard module uses DC voltage signal, multi-module input series, output parallel system is easy to lay, no mutual interference.
  • Figure 1 is a block diagram of a utility model patent dual module input series output parallel system with application number 201621402396.3;
  • Figure 2 is a block diagram of a dual-module input series output parallel system with a voltage regulator module with a utility model patent of 201621402396.3;
  • Figure 3 is a block diagram of an input series output parallel system of N standard modules of the utility model patent of 201621402396.3;
  • Figure 4 is a block diagram of an input series output parallel system of N standard modules with a voltage regulator module of the utility model patent of 201621402396.3;
  • Figure 5 is a schematic block diagram of a power conversion module of the present invention.
  • Figure 6 is a pin diagram of the power conversion module of the present invention.
  • Figure 7 is a connection relationship of the dual module input series and output parallel system of the present invention.
  • FIG. 9 is a schematic diagram of a single power conversion module of the present invention connected to an output voltage regulation operation mode
  • FIG. 10 is a schematic diagram of a single power conversion module of the present invention connected to an input voltage equalization mode
  • Figure 11 is a schematic diagram of a single module in a primary side series secondary side parallel system of the first embodiment.
  • the technical idea of the present invention is to propose a novel dual-loop control technical solution, that is, there are two loops in one power converter, one loop is used to control the output voltage stability, and the loop is defined as an output voltage regulator. Another loop is used to control the input voltage of the module. The loop is defined as an input grading loop. For N modules, the series output is connected in parallel with the power system, and the input voltage of each module can be realized through the loop. Pressure.
  • FIG. 5 is a schematic block diagram of a power conversion module according to the present invention, where the power conversion module includes:
  • main power circuit main power circuit, control drive circuit, original secondary side isolation circuit, loop isolation circuit, input isolation sampling circuit, input equalization ring, output voltage regulator ring;
  • the signal input terminal is negative, and the signal output terminal is negatively multiplexed with the negative input voltage terminal. Therefore, the negative signal input terminal and the signal output terminal are not reflected in Figure 5;
  • connection relationship is: the input end of the main power circuit is connected with the positive input voltage terminal and the negative input voltage terminal, the output end of the main power circuit is connected with the positive output voltage terminal and the negative output voltage terminal; the input end of the input isolation sampling circuit is connected with the positive input voltage
  • the negative output terminal of the terminal and the negative input voltage terminal and the input isolation sampling circuit are connected to the negative output voltage terminal, and the positive output terminal of the input isolation sampling circuit is simultaneously connected to one input end of the signal output terminal and the input equalization ring, and the input voltage equalization ring is input.
  • the other input is connected to the signal input terminal positive, the output of the input grading ring is connected to one input of the loop isolation circuit; the output voltage sampling terminal is connected to the output voltage regulator ring, and the output of the output voltage stabilization ring is connected to The other input end of the loop isolation circuit; the output end of the loop isolation circuit sequentially passes through the primary and secondary isolation circuits, controls the drive circuit, and is connected to the main power circuit.
  • the main power circuit is used for input and output voltage isolation conversion;
  • the control drive circuit provides a control signal for the main power circuit;
  • the original secondary side isolation circuit isolates the signal;
  • the loop isolation circuit is used to isolate the two loops;
  • the input equalization loop It is used to control the input voltage;
  • the output voltage regulator is used to stabilize the output voltage;
  • the input isolation sampling circuit is used to collect the input voltage of the power conversion module, and its input and output signals are linear.
  • FIG. 6 is a pin diagram of a power conversion module according to the present invention, including seven terminals: a positive input voltage terminal Vg+, a negative input voltage terminal Vg-, a positive output voltage terminal Vo+, a negative output voltage terminal Vo-, a signal input terminal positive Vg_s_in+, The signal output terminal is positive Vg_s_out+ and the output voltage sampling terminal Vo_s.
  • the signal input terminal negative and the signal output terminal negative and negative output voltage terminal Vo- are multiplexed to share one terminal.
  • FIG. 7 is a connection relationship of a dual module input series and output parallel system according to the present invention
  • FIG. 8 is a connection relationship of an input series connection and an output parallel system of N modules of the present invention. It should be noted that, in the same module, the two loops do not work at the same time, and the external connection is required to constitute the output voltage stabilization working mode as shown in FIG. 9 and the input voltage equalization working mode as shown in FIG.
  • the main working principle is described as follows:
  • the input voltage equalization loop does not work.
  • the output voltage of the power conversion module is realized by connecting the signal input terminal of the power conversion module to the negative output voltage terminal.
  • the sampling terminal is connected to the positive output voltage terminal to realize the function of sampling the output voltage.
  • the power conversion module has only one output voltage regulator ring, and its working process is the same as that of the ordinary switching power supply, and will not be described herein.
  • the output voltage regulator loop does not work.
  • the signal input of the power conversion module is implemented.
  • the terminal is connected positively (as a loop sampling signal) to the signal output terminal of another power conversion module.
  • the signal output terminal of the power conversion module is compared (as a loop reference signal).
  • the positive signal size of the signal output terminal of another power conversion module generates a voltage equalization control signal for controlling the duty ratio, and controls the magnitude of the input voltage.
  • the input voltages of the two modules are equal, that is, the inputs of the two modules are realized. Pressure.
  • the power conversion module has only one input equalization loop.
  • the loop sampling signal is different from the loop reference signal, and other working processes are the same as the ordinary switching power supply, and will not be described herein.
  • Figure 11 shows the circuit implementation schematic diagram of each module in the dual-module input series and output parallel power supply system.
  • the module comprises 7 sub-modules: main power circuit 101, control drive circuit 102, primary and secondary isolation circuit 103, loop isolation circuit 105, input isolation sampling circuit 104, input voltage equalization loop 107, output voltage regulator loop 106;
  • the module includes 7 terminals: positive input voltage terminal Vg+, negative input voltage terminal Vg-, positive output voltage terminal Vo+, negative output voltage terminal Vo-, signal input terminal positive Vg_s_in+, signal output terminal positive Vg_s_out+, output voltage sampling terminal Vo_s .
  • the module signal input terminal negative and signal output terminal negative and negative output voltage terminal Vo- are multiplexed, and connected to the secondary ground terminal, the internal components and connection relationship of each sub-module are as follows:
  • the main power circuit 101 is an asymmetric half-bridge flyback topology, and is composed of a capacitor Cin, switches S1 and S2, an inductor Lr, a capacitor Cr, a transformer T, a transformer primary winding Np, a transformer secondary winding Ns, a diode D1, and a capacitor C1.
  • the inductor L1 and the capacitor C2 are composed; the capacitor Cin is connected in parallel with the positive input voltage terminal Vg+ and the negative input voltage terminal Vg-, the negative input voltage terminal Vg- is connected to the primary ground terminal; the drain of the switch S1 is connected to the capacitor Cin and the positive input voltage terminal.
  • connection point of Vg+ the source of switch S1 is connected to one end of inductor Lr, the source of switch S1 is also connected to the drain of switch S2, the source of switch S2 is connected to the ground of the primary side, and the other end of the inductor Lr is connected to the primary side of the transformer.
  • the winding Np has the same name end; the end of the capacitor Cr is connected to the opposite end of the transformer primary winding Np, the other end of the capacitor Cr is connected to the primary grounding end, the different name end of the transformer secondary winding Ns is connected with the anode of the diode D1, and the cathode of the diode D1 is One end of the capacitor C1 and the inductor L1 are connected, and the other end of the inductor L1 is connected to one end of the capacitor C2 to form a positive output voltage terminal Vo+, and the same end of the transformer auxiliary winding Ns is connected to the other end of the capacitor C1 and the capacitor C2, and The secondary side ground.
  • Control drive circuit 102 consists of control chip UC3843, drive circuit, circuit sampling circuit, capacitor Cq1, capacitor Cq2, capacitor Ct, capacitor Cv2, resistor Rt, resistor Rv2, resistor Rv3, resistor R3; one end of capacitor Cq1 and Vcc of chip UC3843 Pin and voltage Vcc_p are connected.
  • the Vcc pin of the control chip UC3843 is powered from the power supply Vcc_p.
  • the other end of the capacitor Cq1 is simultaneously connected to the GND pin of the chip UC3843 and the primary ground terminal.
  • the drive circuit is connected to the output OUT pin of the chip UC3843.
  • the two drive signals Vgs1 and Vgs2 need to be staggered for a certain dead time, through the prototype test, the value of this embodiment is 300nS; the first input and the second input of the current sampling circuit and the capacitance of the main power circuit Cr is connected in parallel, the output of the current sampling circuit is connected to the CS pin of the control chip UC3843; one end of the capacitor Cq2 is connected to the ground terminal of the primary side, and the other end of the capacitor Cq2 is connected to the reference voltage Vr at the same time.
  • the end of the resistor Rt and the Vref pin of the control chip UC3843, the other end of the resistor Rt is simultaneously connected to the RT/CT pin of the control chip UC3843 and the end of the capacitor CT, and the other end of the capacitor CT is connected to the ground of the primary side; the capacitor Cv2 and the resistor Rv2 Parallel, one end of the resistor Rv2 is connected to the Comp pin of the control chip UC3843, and the other end of the resistor Rv2 is simultaneously connected with the Vfb pin of the control Rv3 end and the control chip UC3843, where the voltage Vc2 is formed, and the Vfb pin is the feedback pin of the chip UC3843.
  • the other end of the resistor Rv3 is simultaneously connected to the resistor R3, the triode emitter of the optocoupler in the primary and secondary isolation circuits, and the other end of the resistor R3 is connected to the primary ground terminal.
  • the primary secondary isolation circuit 103 can be realized by using an optocoupler plus a peripheral circuit; consisting of an optocoupler OC1, a resistor R1, and a resistor R2; the diode cathode of the optocoupler OC1 is simultaneously connected to one end of the resistor R2, and the other end of the resistor R2 is simultaneously coupled with the optocoupler
  • the diode anode of OC1 is connected to one end of resistor R1, the other end of resistor R1 is connected with voltage terminal Vcc_s, the collector of photocoupler OC1 is connected with reference voltage terminal Vref, the transistor emitter of optocoupler OC1 is connected with Rv3 and R3 of control drive circuit. Connection point connection.
  • Output voltage regulator ring 106 LM358 operational amplifier A1, capacitor Cv1, resistor Rv1, resistor Ra, controllable precision voltage regulator source TL431, resistor Rf1 and resistor Rf1; one end of resistor Rf1 is connected with output voltage sampling terminal Vo_s, resistor Rf1 One end is connected to one end of the resistor Rf2, and the other end of the resistor Rf2 is simultaneously connected with the negative output voltage terminal Vo- and the secondary ground terminal.
  • the negative input terminal of the operational amplifier is connected with the connection point of Rf1 and Rf2, the Rv1 end, and the other end of the Rv1 and the capacitor Cv1.
  • the other end of the capacitor Cv1 is connected to the output end of the operational amplifier A1, and is connected with the cathode of the diode D2 in the loop isolation circuit; the anode of the controllable precision voltage regulator source TL431 is connected with the ground of the secondary side, and the controllable precision voltage regulator is connected.
  • the adjustable end of the source TL431 is connected to one end of the resistor Ra and the positive input terminal of the operational amplifier A1, and the other end of the resistor Ra is connected to the voltage Vcc_s, and the cathode of the controllable precision voltage regulator source TL431 is connected to the positive input terminal of the operational amplifier A1.
  • the input isolation sampling circuit 104 is composed of a linear sampling circuit and a signal isolation circuit; the first input end of the input isolation sampling circuit is connected with the positive input voltage terminal Vg+, and the second input end of the input isolation sampling circuit is connected with the primary ground terminal, and the input The first output end of the isolation sampling circuit is connected to the signal output terminal positive Vg_s_out+, and the second output end of the input isolation sampling circuit is connected to the secondary ground terminal.
  • the input voltage equalizing ring 107 is composed of an LM358 operational amplifier A2, a capacitor Ci1, a resistor Ri1, a resistor R4, a resistor R5, a resistor R6 and a resistor R7; one end of the resistor R6 is connected to the signal output terminal positive Vg_s_out+, and the other end of the resistor R6 is connected to one end of the resistor R5.
  • the positive input terminal of the operational amplifier A2 is connected, the other end of the resistor R5 is connected with the ground terminal of the secondary side; the one end of the resistor R7 is connected to the positive output terminal of the signal output terminal Vg_s_in+, and the other end of the resistor R7 is connected to the end of the resistor R4, the end of the resistor Ril and the negative input of the operational amplifier A2.
  • the other end of the resistor R4 is connected to the ground of the secondary side, the other end of the resistor Ril is connected to one end of the capacitor Cil, and the other end of the capacitor Cil is simultaneously connected to the output of the operational amplifier A2 and the cathode of the diode D3 in the loop isolation circuit.
  • the loop isolation circuit 105 can be realized by using two diodes D2 and D3 as shown in the figure to perform common anode connection.
  • the common anode end is connected to the diode cathode of the optocoupler OC1, and the cathodes of the two diodes D2 and D3 are respectively connected to the output voltage regulator.
  • connection of the dual module input series output parallel power supply system can be realized by the pin connection mode of Fig. 7, wherein the lower module is connected into an output voltage regulation closed loop control, called the voltage regulator module; the upper module is connected into an input voltage equalization closed loop. Control, called equalization module; each module has only one closed loop working.
  • the input series and output parallel structure extended to N modules are shown in Fig. 8. Only one module is connected into an output voltage regulation closed loop control, and the remaining modules are connected to form an input voltage equalization loop control.
  • the whole system is composed of a series input and a parallel output of two upper and lower power conversion modules, and the main power stage working principle of the single power conversion module is the same as the asymmetric half bridge flyback circuit, which is known to those skilled in the art. It is a well-known technology and will not be developed here.
  • the control process is as follows:
  • the output voltage sampling terminal v o_s1 of the upper module is connected to the output ground, and the operational amplifier A1 in the output voltage stabilization loop unit of the upper module is saturated, and the output voltage of the operational amplifier is close to its supply voltage, so the diode D21 in the loop isolation circuit unit is cut off. At this time, the output voltage regulator loop of the upper module is shielded.
  • the upper module signal input terminal is positive V g_s_in1+ is connected to the module signal output terminal of the lower module is positive V g_s_out2+
  • the module signal output terminal of the upper module itself is positive V g_s_out1+ as a reference, and is compared with the module signal output terminal of the lower module is positive V g_s_out2+
  • the module signal output terminal of the upper module is positive V g_s_out1+ is larger than the module signal output terminal of the lower module is positive V g_s_out2+
  • the upper module The output voltage of the input grading ring unit is increased, and the current flowing into the OC11 illuminating tube of the optocoupler is reduced, so that the voltage of the FB pin in the control circuit of the upper module is lowered, the voltage of the COMP pin is increased, and the duty ratio of the output of the control circuit is
  • the module signal input terminal of the lower module is positive V g_s_in+ connected to the output ground, then the operational amplifier A2 in the input equalization ring unit of the lower module is saturated, and the output voltage of the operational amplifier is close to its supply voltage, so the diode D32 in the loop isolation circuit unit At the end, the input voltage equalization loop of the lower module is blocked.
  • the output voltage sampling terminal v o_s of the lower module is connected to the output voltage terminal to realize the operation of the ordinary output voltage stabilization loop. This working process is a well-known technique and is not developed here.
  • two 60W standard power conversion modules with input voltage range of 120VDC to 240VDC are used as a 120W power supply system in series and parallel connection.
  • the parallel connection effect of the input series output under full-closed operation is verified by experiments.
  • the tolerance experiment is verified.
  • the two extreme deviations of the control parameters and the two extreme deviations of the power level parameters are combined into a new two extreme deviation modules according to the gain of the power conversion module.
  • the two modules with the largest gain and the smallest gain correspond to the following parameters:
  • excitation inductance minimum excitation inductance minimum
  • leakage inductance minimum resonance capacitance minimum
  • frequency minimum namely: L m(min) , L r(min) , C r(min) , f s(min) ;
  • the module with the smallest gain the maximum value of the magnetizing inductance, the maximum leakage inductance, the maximum value of the resonant capacitor, and the maximum frequency, namely: L m(max) , L r(max) , C r(max) , f s(max) .
  • Combination 1 Input series/output parallel experiment with power level and control as nominal parameters
  • Combination 2 Input series/output parallel experiment with power level as standard parameter but switching frequency is up and down deviation
  • Combination 3 Input series/output parallel experiment with switching frequency as nominal parameter, but power level is upper and lower deviation respectively
  • Combination 4 Input series/output parallel experiment with switching frequency and power level parameters respectively
  • Combination 5 Input series/output parallel experiment with switching frequency as nominal parameter, but power level is upper and lower deviation respectively
  • Combination 6 Input series/output parallel experiment with switching frequency and power level parameters respectively lower and upper deviation
  • Tables 4 to 7 show the experimental results of various parameter combinations under different input voltages.
  • Table 5 shows the different input voltages.
  • Table 6 is the output voltage of various parameters combined under different input voltages and full load output;
  • Table 7 is the voltage equalization of the actual PCM control closed-loop experiment of the external power supply DC-DC part Loop and voltage regulator loop test results.
  • the invention can be fully proved that not only the input voltage equalization accuracy and the output current sharing precision can be satisfied, but more importantly, the output voltage precision can be controlled at about 1%, realizing the equalizing current and the output voltage. Purpose, a higher level than the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种功率转换模块,该功率转换中存在两个环路,一个为用来控制输出电压稳定的输出稳压环;另一个为控制模块的输入电压大小的输入均压环,对于N个模块输入串联输出并联的电源系统,可以通过该环路实现各模块输入电压均压,从而实现输入串联和输出并联这种电源系统中的输入均压,输出均流要求,并能保证其具有高输出电压精度,实现多个模块的直接串并联,使电源系统更加灵活,相比两级方案,效率更高,输出更稳定,并且不受拓扑的影响。

Description

[根据细则37.2由ISA制定的发明名称] 一种功率转换模块及电源系统 技术领域
本发明专利涉及一种功率转换模块及电源系统,特别涉及用于高压输入、模块化应用的场合。
背景技术
在开关电源的应用系统中,高压输入场合,如光伏电源,一般其输入范围宽且输入电压高,高压可达到1500V甚至更高,因此需要提高后一级变换器开关管的额定电压。而高压MOSFET的通态电阻大,导致导通损耗大,且成本极高;有人说可以采用IGBT作为开关管,但IGBT饱和压降虽小,但存在电流拖尾现象,限制了开关频率的提高,不利于减小变压器和滤波器件(电感、电容)的体积,再加上成本因素,明显不是好的选择。
为了解决光伏开关电源的高输入电压问题,有些开关电源厂家就想出了在开关电源内部进行功率器件的串并联,用多个低压功率器件来取代所需要的高压应用场合,但是这样的标准开关电源模块限制了用户的选择,一般的厂家为了减少产品型号的数量,都会做超宽范围的输入,导致产品的成本提高,但是对于客户来说却是冗余设计。也有人想到了组合变换器的设计思路,但是一般都是采用复杂的外部控制电路实现的,系统复杂且应用不够灵活。因此,对于电源模块厂家来说能否用标准电源模块直接组成客户端需要的电源系统是值得考虑的问题。如果可以,则可以大大减少电源生产公司所生产的电源品种,方便用户自行设计其需要的供电系统。
用标准电源模块来搭建电源系统,最基本的方法就是采用输入/输出的串并联组合。拿两个完全相同的电源模块作为例子,通过采用输入/输出的串并联方法,共有下列四种电源系统可以组合得到:
系统1:输入并联,输出并联的系统;
系统2:输入串联,输出并联的系统;
系统3:输入并联,输出串联的系统;
系统4:输入串联,输出串联的系统。
这四种系统中,已得到广泛应用的是第一种系统。典型的产品有大功率通信电源系统,大功率UPS系统等,另外三种系统,应用还不多。
系统2中的每个模块,从冗余性要求出发,最好相互独立,即各自有自己的控制与供电。但各个模块不能按单个标准电源一样,做成输出电压的精密稳压,因为那样的话, 各模块在输出端并联后的电流,会由于模块电压的出厂设置值误差,而导致非常大的不均,这也将导致各模块在其输入电压上的极大不均,从而影响模块的可靠性,甚至损坏。所以,一般不能对具有精密稳压的电源模块进行直接的输入串联、输出并联。
在现有常用的拓扑中,正激、反激均从原理上就否决了输入串联输出并联系统的可行性。在常用的拓扑中Royer电路的小信号模型中的输入阻抗为正,较为适合串并联系统中,但是Royer电路用于高压系统中,开关管的选取较为困难,并不适合高压下的串并联系统中。
开关电源作为其他电子设备的能量转换供给单元,其体积与灵活性也备受关注,比如大功率超薄产品,其高压器件的体积以及变压器的体积严重的影响了整体产品的高度。这里有两种解决方式,一种是利用变压器的串并联形式,将功率分散在几个变压器中,减少变压器的体积,从而达到减少整个开关电源体积的目的;另一种思路就是模块的串并联,通过几个小功率模块的串并联而进行功率拓展。但是目前市面上进行两个模块的输入串联输出并联的结构,都需要在模块外额外的添加均流电路,如此应用的外部控制复杂,对于客户来说有一定的专业限制,一些非电子专业的普通客户无法简单的实现。或者通过一些具有正阻抗特性的拓扑,利用其特有自然均压进行原边串联副边并联。
在申请号为201621402396.3的实用新型专利中提及的串并联结构中,采用的是开环控制的不对称半桥反激变换器开关电源模块进行串并联。
上述专利虽然可以实现两个开关电源模块的简单并联,但是由于负载调整率等原因,整个系统的输出电压范围比输入的电压范围还要大,因此需要添加第二级稳压系统,这对系统的整体效率影响很大。该实用新型专利的电路结构如图1、图2、图3、图4所示,其中图一为两个模块直接输入串联输出并联的结构示意图,图2为两个模块直接输入串联输出并联并添加稳压模块的结构示意图,图3为多个模块直接输入串联输出并联结构示意图,图4为多个模块直接输入串联输出并联并添加稳压模块的结构示意图。
申请号为201621402396.3的实用新型专利中第一实施例采用两个60W,输入电压范围为120VDC~240VDC的标准功率转换模块作为串并联组成一个120W的电源系统,对其在开环控制下的输入串联输出并联效果进行了实验验证。考虑开环控制参数的偏差后,模块的输入电压精度估计会有所下降,此时可将控制参数的两个极端偏差再与功率级参数的两种极端偏差,按模块增益的大小,再组合成一种新的两个极端模块。从理论上,增益最大和增益最小的这两个模块A和B分别对应下列参数:
增益最大的模块:L m(min),L r(min),C r(min),D mac,f s(min)
增益最小的模块:L m(max),L r(max),C r(max),D min,f s(max)
将上述的五个参数组合成以下五组实验参数:
组合1:功率级和控制均为标称参数的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=100KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=100KHz
组合2:功率级和占空比为标称参数,但开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=90KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=110KHz
组合3:功率级和开关频率为标称参数,但占空比分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.55,f s=100KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.45,f s=100KHz
组合4:开关频率和占空比为标称参数,但功率级参数分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=6.3uH,C r=0.22uF,D=0.5,f s=100KHz
B模块参数:L m=159.5uH,L r=7.7uH,C r=0.22uF,D=0.5,f s=100KHz
组合5:占空比为标称参数,但功率级参数和开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=6.3uH,C r=0.22uF,D=0.55,f s=90KHz
B模块参数:L m=159.5uH,L r=7.7uH,C r=0.22uF,D=0.45,f s=110KHz
系统的输入均压效果与输出均流效果的实验数据如表1与表2所示,组合1是两个模块的一致性很好的数据,从该数据可以看出,在保证了一致性的基础上输入均压精度都在1%以内,均流精度也都在±1%以内,即便是考虑到了两个模块的不一致性,其均压与均流精度也都在±10%的精度内。表3为不同输入电压且输出满载情况下,各种参数组合的输出电压值。
表1 不同输入电压下,各种参数组合的最大输入电压均压精度
均压精度 组合1 组合2 组合3 组合4 组合5
Vg=300V ±0.67% ±1.23% ±8.7% ±6.8% ±5.6%
Vg=400V ±0.38% ±1.20% ±8.2% ±6.8% ±5.5%
Vg=530V ±0.15% ±1.21% ±8.0% ±6.9% ±5.6%
表2 不同输入电压下,各种参数组合的满载输出电流均流精度
均流精度 组合1 组合2 组合3 组合4 组合5
Vg=300V ±0.10% ±0.92% ±8.5% ±6.6% ±6.1%
Vg=400V ±0.12% ±1.30% ±7.9% ±7.0% ±7.4%
Vg=530V ±0.25% ±1.63% ±7.6% ±7.3% ±6.9%
表3 不同输入电压且输出满载情况下,各种参数组合的输出电压(V)
输出电压 组合1 组合2 组合3 组合4 组合5
Vg=300V 13.99 13.97 13.95 13.63 14.52
Vg=400V 19.28 19.25 19.24 18.81 19.99
Vg=530V 25.93 25.91 25.89 25.26 26.81
从以上三个表格中可以看出,两个模块输入串联输出并联后可以满足两个模块的输入均压与输出均流精度,但是输出电压范围却大于输入电压范围,目前ACDC的母线电压范围为5:1左右,那么后级的稳压模块的设计难度极大。
发明内容
因此,本发明要解决的技术问题为:提供一种功率转换模块,实现输入串联和输出并联这种电源系统中的输入均压,输出均流要求,并能保证其具有高输出电压精度,实现多个模块的直接串并联,使电源系统更加灵活,相比两级方案,效率更高,输出更稳定,并且不受拓扑的影响。引入模块化思想,输入级采用多个模块串联方式,如此每个模块的电压应力就会大大降低。
为了达到上述目的,本发明是通过以下技术方案实现的:
一种功率转换模块,其特征在于:
包括7个单元电路:主功率电路、控制驱动电路、原副边隔离电路、环路隔离电路、输入隔离取样电路、输入均压环、输出稳压环;包括9个外端子:正输入电压端子、负输入电压端子、正输出电压端子、负输出电压端子、信号输入端子正、信号输入端子负、信号输出端子正、信号输出端子负、输出电压采样端子;
其连接关系为:主功率电路的输入端连接正输入电压端子和负输入电压端子、主功率电路的输出端连接正输出电压端子和负输出电压端子;输入隔离取样电路的输入端连接正输入电压端子和负输入电压端子、输入隔离取样电路的负输出端同时连接负输出电 压端子和信号输出端子负,输入隔离取样电路的正输出端同时连接至信号输出端子正与输入均压环的一个输入端,输入均压环的另一个输入端连接至信号输入端子正,输出均压环的第三个输入端连接至信号输入端子负,输入均压环的输出端连接至环路隔离电路的一个输入端;输出电压采样端子连接至输出稳压环,输出稳压环的输出端连接至环路隔离电路的另一个输入端;环路隔离电路的输出端依次通过原副边隔离电路、控制驱动电路后连接至主功率电路;
各端子的功能为:正输入电压端子和负输入电压端子,用来输入电压;正输出电压端子和负输出电压端子,用来输出电压;信号输入端子正和信号输入端子负,用于输入均压环接受外部信号;信号输出端子正和信号输出端子负,用于隔离取样电路输出采样信号;输出电压采样端子,用于输入需要采样的电压;
各单元电路功能为:
主功率电路,对输入电压进行隔离变换,获得输出电压;
控制驱动电路,为主功率电路的功率开关提供开关控制信号;
原副边隔离电路,对开关控制信号进行隔离传输;
输出稳压环,控制输出电压稳定;
输入隔离取样电路,采集输入电压,并输出采样信号至信号输出端子正;
输入均压环,比较采样信号与外部信号的大小,控制输入电压的大小;
环路隔离电路,隔离输出稳压环和输入均压环。
优选地,负输出电压端子、信号输入端子负和信号输出端子负3个外端子复用,即此三个端子为同一个端子。
优选地,主功率电路采用不对称半桥反激拓扑。
优选地,不对称半桥反激拓扑中的两个开关管的驱动脉冲信号之间错开一防止共通短路的死区时间。
优选地,所述的死区时间为300nS。
作为上述技术方案的应用:可以将输出电压采样端子与负输出电压端子连接,屏蔽输出稳压环的功能。
作为上述技术方案的应用:可以将信号输入端子正与负输出电压端子连接,屏蔽输入均压环的功能。
本发明还提供一种电源系统,包括N个采用上述技术方案的功率转换模块,N为大于1的自然数,其连接关系为:第一功率转换模块的正输入电压端子即为电源系统的正输 入端,第一功率转换模块的负输入电压端子与第二功率转换模块的正输入电压端子相连,第二功率转换模块的负输入电压端子与第三功率转换模块的正输入电压端子相连,依次类推,第N-1功率转换模块的负输入电压端子与第N功率转换模块的正输入电压端子相连,第N功率转换模块的负输入电压端子作为电源系统的负输入端;所述的N个功率转换模块的正输出电压端子连接后作为电源系统的正输出端,所述的N个功率转换模块的负输出电压端子连接后作为电源系统的负输出端;第一功率转换模块的信号输出端子正悬空,第一功率转换模块的信号输入端子正与第二功率转换模块的信号输出端子正相连,第二功率转换模块的信号输入端子正与第三功率转换模块的模块信号输出端子正相连,依此类推,第N-1功率转换模块的信号输入端子正与第N功率转换模块的信号输出端子正相连,第N功率转换模块的信号输入端子正与电源系统的负输出端相连;第N功率转换模块的输出电压采样端子与电源系统的正输出端相连,其余N-1个功率转换模块的输出电压采样端子与电源系统的负输出端相连。。
与现有技术相比,本发明具有以下有益效果:
(1)、输入串联输出并联系统的输出电压恒定,均有稳压输出;
(2)、输入串联输出并联系统的实现方式简单,只需几条连线即可实现模块的串并联;
(3)、本发明采用了模块化思维,将系统拆分成N个相同的标准模块;
(4)、单个标准化模块的电压应力及电流应力低,可以降低器件成本;
(5)、用户可以按照需求直接使用标准模块自由组建系统,使用灵活,可移植性高,且该系统对客户的要求低,直接将模块的输入串联、输出并联即可,不需要本专业的专业知识;
(6)、使用标准电源模块组成所需电源系统,减少产品型号、降低产品管理成本;
(7)、每个标准模块之间采用直流电压信号,多模块输入串联、输出并联系统很容易布板,不会产生相互间的干扰。
附图说明
图1申请号为201621402396.3的实用新型专利双模块输入串联输出并联系统框图;
图2申请号为201621402396.3的实用新型专利带有稳压模块的双模块输入串联输出并联系统框图;
图3申请号为201621402396.3的实用新型专利N个标准模块的输入串联输出并联 系统框图;
图4申请号为201621402396.3的实用新型专利带有稳压模块的N个标准模块的输入串联输出并联系统框图;
图5本发明的功率转换模块的原理框图;
图6本发明功率转换模块的引脚图;
图7本发明双模块输入串联、输出并联系统的连接关系;
图8本发明N个模块的输入串联、输出并联系统的连接关系;
图9本发明单个功率转换模块被连接成输出稳压工作模式示意图;
图10本发明单个功率转换模块被连接成输入均压工作模式示意图;
图11第一实施例原边串联副边并联系统中单个模块原理图。
具体实施方式
本发明的技术构思为提出了一种新型的双环路控制技术方案,即一个电源转换器中存在两个环路,一个环路用来控制输出电压稳定,该环路本发明定义为输出稳压环;另一个环路用来控制模块的输入电压大小,该环路本发明定义为输入均压环,对于N个模块输入串联输出并联的电源系统,可以通过该环路实现各模块输入电压均压。
图5为本发明的功率转换模块的原理框图,功率转换模块包括:
7个单元电路:主功率电路、控制驱动电路、原副边隔离电路、环路隔离电路、输入隔离取样电路、输入均压环、输出稳压环;
7个外端子:正输入电压端子、负输入电压端子、正输出电压端子、负输出电压端子、信号输入端子正、信号输出端子正、输出电压采样端子;
本框图中即为信号输入端子负、信号输出端子负复用了负输入电压端子,因此信号输入端子负和信号输出端子负在图5中没有体现出来;
其连接关系为:主功率电路的输入端连接正输入电压端子和负输入电压端子、主功率电路的输出端连接正输出电压端子和负输出电压端子;输入隔离取样电路的输入端连接正输入电压端子和负输入电压端子、输入隔离取样电路的负输出端连接负输出电压端子,输入隔离取样电路的正输出端同时连接至信号输出端子正与输入均压环的一个输入端,输入均压环的另一个输入端连接至信号输入端子正,输入均压环的输出端连接至环路隔离电路的一个输入端;输出电压采样端子连接至输出稳压环,输出稳压环的输出端连接至环路隔离电路的另一个输入端;环路隔离电路的输出端依次通过原副边隔离电路、控制驱动电路后连接至主功率电路。
主功率电路用来进行输入输出电压隔离变换;控制驱动电路为主功率电路提供控制信号;原副边隔离电路对信号进行隔离传输;环路隔离电路用来隔离两个环路;输入均压环用来控制输入电压大小;输出稳压环用来稳定输出电压;输入隔离取样电路用来采集功率转换模块的输入电压,其输入输出信号成线性关系。
图6为本发明功率转换模块的引脚图,包括7个端子:正输入电压端子Vg+、负输入电压端子Vg-、正输出电压端子Vo+、负输出电压端子Vo-、信号输入端子正Vg_s_in+、信号输出端子正Vg_s_out+、输出电压采样端子Vo_s。
图6中即为信号输入端子负和信号输出端子负与负输出电压端子Vo-进行了复用,公用一个端子的情况。
图7为本发明双模块输入串联、输出并联系统的连接关系;图8为本发明N个模块的输入串联、输出并联系统的连接关系。需要说明的是,在同一个模块中这两个环路并没有同时工作,需要靠外部的连接分别构成如图9所示的输出稳压工作模式和如图10所示的输入均压工作模式,主要工作原理描述如下:
当模块被连接成输出稳压工作模式时,如图9所示,输入均压环不起作用,通过将功率转换模块的信号输入端子正连接到负输出电压端子实现,功率转换模块的输出电压采样端子与正输出电压端子连接,实现采样输出电压的作用。如此,该功率转换模块只有一个输出稳压环,其工作过程与普通开关电源一样,在此不再赘述。
当模块被连接成输入均压工作模式时,如图10所示,输出稳压环不起作用,通过将功率转换模块的输出电压采样端子与负输出电压端子连接实现,功率转换模块的信号输入端子正与另一个功率转换模块的信号输出端子正(作为环路采样信号)相连,在功率转换模块中的输入均压环模块中,比较其本身的信号输出端子正(作为环路基准信号)与另一个功率转换模块的信号输出端子正的信号大小,产生控制占空比的均压控制信号,控制输入电压的大小,如使得两个模块的输入电压相等,即实现两个模块的输入均压。如此,该功率转换模块只有一个输入均压环,除环路采样信号与环路基准信号不同,其它工作过程与普通开关电源一样,在此不再赘述。
单使用文字描述原理,会让本技术领域人员理解困难,所以,请允许使用原理图,配合电子工程中常用的信号流向来说明本发明专利的工作原理。以下详细说明本发明的具体实施例。
第一实施例
本发明专利第一实施例电源系统的工作原理:
图11所示,为双模块输入串联、输出并联电源系统中每个模块的电路实现原理图。
该模块包含7个子模块:主功率电路101、控制驱动电路102、原副边隔离电路103、环路隔离电路105、输入隔离取样电路104、输入均压环107、输出稳压环106;
该模块包含7个端子:正输入电压端子Vg+、负输入电压端子Vg-、正输出电压端子Vo+、负输出电压端子Vo-、信号输入端子正Vg_s_in+、信号输出端子正Vg_s_out+、输出电压采样端子Vo_s。
该模块信号输入端子负和信号输出端子负与负输出电压端子Vo-进行了复用,并且与副边接地端连接,各子模块内部元器件及连接关系如下:
主功率电路101:为不对称半桥反激拓扑,由电容Cin、开关S1和S2、电感Lr、电容Cr、变压器T、变压器原边绕组Np、变压器副边绕组Ns、二极管D1、电容C1、电感L1和电容C2组成;电容Cin与正输入电压端子Vg+和负输入电压端子Vg-并联,负输入电压端子Vg-与原边接地端连接;开关S1的漏极连接电容Cin与正输入电压端子Vg+的连接点,开关S1的源极与电感Lr一端连接,开关S1的源极还与开关S2的漏极连接,开关S2的源极连接原边接地端,电感Lr的另一端连接变压器原边绕组Np同名端;电容Cr一端与变压器原边绕组Np异名端连接,电容Cr另一端连接原边接地端,变压器副变绕组Ns的异名端与二极管D1的阳极连接,二极管D1的阴极与电容C1、电感L1的一端连接,电感L1的另一端与电容C2一端连接,形成正输出电压端子Vo+,变压器副变绕组Ns的同名端与电容C1、电容C2另一端连接,并接入副边接地端。
控制驱动电路102:由控制芯片UC3843、驱动电路、电路采样电路、电容Cq1、电容Cq2、电容Ct、电容Cv2、电阻Rt、电阻Rv2、电阻Rv3、电阻R3组成;电容Cq1一端与芯片UC3843的Vcc引脚、电压Vcc_p连接,控制芯片UC3843的Vcc引脚从电源Vcc_p取电,电容Cq1另一端同时与芯片UC3843的GND引脚、原边接地端连接;驱动电路与芯片UC3843的输出OUT引脚连接,并输出两路驱动信号Vgs1和Vgs2分别至开关S1和开关S2的栅极,为开关S1和开关S2提供开关控制信号,为防止不对称半桥反激拓扑中的两个开关管S1和S2共通短路,两路驱动信号Vgs1和Vgs2之间需错开一定的死区时间,通过样机试验,本实施例取值300nS;电流采样电路的第一输入端和第二输入端与主功率电路的电容Cr并联,电流采样电路的输出端与控制芯片UC3843的CS引脚连接;电容Cq2一端连接原边接地端,电容Cq2另一端同时连接基准电压Vref、电阻Rt一端和控制芯片UC3843的Vref引脚,电阻Rt另一端同时连接控制芯片UC3843的RT/CT引脚和电容CT一端,电容CT另一端接入原边接地端;电容Cv2与电阻Rv2并联,电阻Rv2一端连接控制芯片UC3843的Comp 引脚,电阻Rv2另一端同时与电阻Rv3一端、控制芯片UC3843的Vfb引脚连接,此处形成电压Vc2,Vfb引脚为芯片UC3843的反馈引脚,电阻Rv3另一端同时与电阻R3、原副边隔离电路中光耦的三极管发射极连接,电阻R3另一端与原边接地端连接。
原副边隔离电路103:采用光耦加外围电路即可实现;由光耦OC1、电阻R1、电阻R2组成;光耦OC1的二极管阴极同时与电阻R2一端连接,电阻R2另一端同时与光耦OC1的二极管阳极和电阻R1一端连接,电阻R1另一端与电压端Vcc_s连接,光耦OC1的三极管集电极与基准电压端Vref连接,光耦OC1的三极管发射极与控制驱动电路中Rv3和R3的连接点连接。
输出稳压环106:由LM358运算放大器A1、电容Cv1、电阻Rv1、电阻Ra、可控精密稳压源TL431、电阻Rf1和电阻Rf1组成;电阻Rf1一端与输出电压采样端子Vo_s连接,电阻Rf1另一端与电阻Rf2一端连接,电阻Rf2另一端同时与负输出电压端子Vo-和副边接地端连接,运算放大器的负输入端与Rf1与Rf2的连接点、Rv1一端连接,Rv1另一端与电容Cv1连接,电容Cv1另一端接入运算放大器A1的输出端,并与环路隔离电路中的二极管D2的阴极连接;可控精密稳压源TL431的阳极与副边接地端连接,可控精密稳压源TL431的可调端同时连接电阻Ra一端和运算放大器A1的正输入端,电阻Ra另一端与电压Vcc_s连接,可控精密稳压源TL431的阴极与运算放大器A1的正输入端连接。
输入隔离取样电路104:由线性取样电路和信号隔离电路构成;输入隔离取样电路的第一输入端与正输入电压端子Vg+连接,输入隔离取样电路的第二输入端与原边接地端连接,输入隔离取样电路的第一输出端与信号输出端子正Vg_s_out+连接,输入隔离取样电路的第二输出端与副边接地端连接。
输入均压环107:由LM358运算放大器A2、电容Ci1、电阻Ri1、电阻R4、电阻R5、电阻R6和电阻R7组成;电阻R6一端连接信号输出端子正Vg_s_out+,电阻R6另一端与电阻R5一端、运算放大器A2的正输入端连接,电阻R5另一端与副边接地端连接;电阻R7一端连接信号输出端子正Vg_s_in+,电阻R7另一端同时连接电阻R4一端、电阻Ril一端和运算放大器A2的负输入端,电阻R4另一端连接副边接地端,电阻Ril另一端与电容Cil一端连接,电容Cil另一端同时与运算放大器A2的输出端、环路隔离电路中的二极管D3的阴极连接。
环路隔离电路105:采用如图所示的两只二极管D2和D3进行共阳极连接即可实现,共阳极端连接光耦OC1的二极管阴极,两个二极管D2和D3的阴极分别连接输出稳压环和输入均压环中运算放大器A1及A2的输出端。
从标准化考虑,每个模块内都设计了两个环:一个输出稳压环,一个输入均压环。可以通过简单的外部接线,来实现不同作用的模块工作。当需要变成稳压模块时,只要将模块信号输入端子正V g_s_in+接到输出地,输出电压采样端子v o_s接到输出电压端即可;当需要变成均压模块时,只需将输出电压采样端子v o_s接到输出地,模块信号输入端子正V g_s_in+接到下一个模块的模块信号输出端子正V g_s_out+即可。本实施例中输入均压模块和输出稳压模块的连接采用图9和图10的引脚接线方法即可实现,不再用图11所示的具体模块原理图进行绘制展示。
双模块输入串联输出并联电源系统的连接采用图7的引脚接线方式即可实现,其中下模块被连接成一个输出稳压闭环控制,称稳压模块;上模块被连接成一个输入均压闭环控制,称均压模块;每一个模块仅有一个闭环在工作。推广到N个模块的输入串联、输出并联结构如图8所示,其中只有一个模块被连接成一个输出稳压闭环控制,其余的模块均被连接成一个输入均压环控制。
工作原理:
在该实施例中,整个系统由上下两个功率转换模块串联输入、并联输出组成,单个功率转换模块的主功率级工作原理同不对称半桥反激电路,这对于本领域的技术人员而言是公知技术,在此不展开。控制过程如下:
上模块的输出电压采样端子v o_s1接到输出地,则上模块的输出稳压环单元中运算放大器A1饱和,运算放大器的输出电压接近其供电电压,因此环路隔离电路单元中的二极管D21截止,此时上模块的输出稳压环路被屏蔽。上模块信号输入端子正V g_s_in1+接到下模块的模块信号输出端子正V g_s_out2+,上模块自己本身的模块信号输出端子正V g_s_out1+作为参考,与下模块的模块信号输出端子正V g_s_out2+进行比较,当上模块的输入电压Vg1高于下模块的输入电压Vg2时,通过输入隔离取样电路后,上模块的模块信号输出端子正V g_s_out1+就大于下模块的模块信号输出端子正V g_s_out2+,则上模块中输入均压环单元输出电压升高,流进光耦OC11发光管的电流减少,从而上模块的控制电路中FB脚电压降低,COMP脚电压升高,控制电路的输出占空比增加,从而使上模块传输的功率增加,上模块的输入电容Cin1的电压下降,从而实现上下模块的输入电压趋于相同。
下模块的模块信号输入端子正V g_s_in+接到输出地,则下模块的输入均压环单元中 运算放大器A2饱和,运算放大器的输出电压接近其供电电压,因此环路隔离电路单元中的二极管D32截止,此时下模块的输入均压环路被屏蔽。下模块的输出电压采样端子v o_s接到输出电压端即实现普通的输出稳压环工作,该工作过程为现有公知技术,在此不再展开。
本实施例用两个60W,输入电压范围为120VDC~240VDC的标准功率转换模块作为串并联组成一个120W的电源系统,对其在全闭环工作下的输入串联输出并联效果进行了实验验证。为了充分验证本发明在容差下对输入均压精度、输出均流精度以及输出电压精度的影响,对其进行了容差实验验证。考将控制参数的两种极端偏差与功率级参数的两种极端偏差,按功率转换模块增益的大小,再组合成一种新的两种极端偏差的模块。从理论上,增益最大和增益最小的这两个模块分别对应下列参数:
增益最大的模块:励磁电感最小值,漏感最小值,谐振电容最小值,频率最小值,即:L m(min),L r(min),C r(min),f s(min)
增益最小的模块:励磁电感最大值,漏感最大值,谐振电容最大值,频率最大值,即:L m(max),L r(max),C r(max),f s(max)
将上述的四个参数组合成以下六组实验参数:
组合1:功率级和控制均为标称参数的输入串联/输出并联实验
A模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=100KHz
B模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=100KHz
组合2:功率级为标准参数,但开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=90KHz
B模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=110KHz
组合3:开关频率为标称参数,但功率级分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=100KHz
B模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=100KHz
组合4:开关频率和功率级参数分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=90KHz
B模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=110KHz
组合5:开关频率为标称参数,但功率级分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=100KHz
B模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=100KHz
组合6:开关频率和功率级参数均分别为下上偏差的输入串联/输出并联实验
A模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=110KHz
B模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=90KHz
按照上述的六组组合进行试验,得出的实验结果如表4至表7所示,表4为不同输入电压下,各种参数组合的最大输入电压均压精度;表5为不同输入电压下,各种参数组合的满载输出电流均流精度;表6为不同输入电压且输出满载情况下,各种参数组合的输出电压;表7为外供电DC-DC部分实际PCM控制闭环实验的均压环与稳压环环路测试结果。
表4 不同输入电压下,各种参数组合的最大输入电压均压精度
均压精度 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V ±0.87% ±0.2% ±0.2% ±0.67% ±0.6% ±0.47%
V g=400V ±0.8% ±0.25% ±0.3% ±0.5% ±0.55% ±0.6%
V g=530V ±0.42% ±0.23% ±0.15% ±0.42% ±0.38% ±0.45%
表5 不同输入电压下,各种参数组合的满载输出电流均流精度
均流精度 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V ±0.46% ±0.09% ±0.09% ±0.37% ±0.09% ±0.18%
V g=400V ±0.37% ±0.37% ±0.09% ±0.65% ±0.18% ±0.46%
V g=530V ±0.37% ±0.46% ±0.09% ±0.74% ±0.37% ±0.65%
表6 不同输入电压且输出满载情况下,各种参数组合的输出电压(V)
输出电压 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V 12.01 12.01 12.01 12.01 12.01 12.01
V g=400V 12.01 12.01 12.01 12.00 12.00 12.00
V g=530V 11.98 11.98 11.99 11.98 11.98 11.98
表7 外供电DC-DC部分实际PCM控制闭环实验的均压环与稳压环环路测试结果
Figure PCTCN2018094823-appb-000001
Figure PCTCN2018094823-appb-000002
从实验结果可以看出,组合1至组合6的输入均压精度与输出均流精度都在1%以内,输出电压精度也在1%以内,输入均压环的带宽1KHz以上,并具有很大的相位裕度与增益裕度,环路稳定性很好,满足输入均压系统的要求。
通过上述实验可以充分证明本发明方案,不但可以满足输入均压精度以及输出均流精度,更重要的是输出电压精度能控制在1%左右,实现了既均压均流,又稳定输出电压的目的,比现有技术更上一层楼。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (8)

  1. 一种功率转换模块,其特征在于:
    包括7个单元电路:主功率电路、控制驱动电路、原副边隔离电路、环路隔离电路、输入隔离取样电路、输入均压环、输出稳压环;包括9个外端子:正输入电压端子、负输入电压端子、正输出电压端子、负输出电压端子、信号输入端子正、信号输入端子负、信号输出端子正、信号输出端子负、输出电压采样端子;
    其连接关系为:主功率电路的输入端连接正输入电压端子和负输入电压端子、主功率电路的输出端连接正输出电压端子和负输出电压端子;输入隔离取样电路的输入端连接正输入电压端子和负输入电压端子、输入隔离取样电路的负输出端同时连接负输出电压端子和信号输出端子负,输入隔离取样电路的正输出端同时连接至信号输出端子正与输入均压环的一个输入端,输入均压环的另一个输入端连接至信号输入端子正,输出均压环的第三个输入端连接至信号输入端子负,输入均压环的输出端连接至环路隔离电路的一个输入端;输出电压采样端子连接至输出稳压环,输出稳压环的输出端连接至环路隔离电路的另一个输入端;环路隔离电路的输出端依次通过原副边隔离电路、控制驱动电路后连接至主功率电路;
    各端子的功能为:正输入电压端子和负输入电压端子,用来输入电压;正输出电压端子和负输出电压端子,用来输出电压;信号输入端子正和信号输入端子负,用于输入均压环接受外部信号;信号输出端子正和信号输出端子负,用于隔离取样电路输出采样信号;输出电压采样端子,用于输入需要采样的电压;
    各单元电路功能为:
    主功率电路,对输入电压进行隔离变换,获得输出电压;
    控制驱动电路,为主功率电路的功率开关提供开关控制信号;
    原副边隔离电路,对开关控制信号进行隔离传输;
    输出稳压环,控制输出电压稳定;
    输入隔离取样电路,采集输入电压,并输出采样信号至信号输出端子正;
    输入均压环,比较采样信号与外部信号的大小,控制输入电压的大小;
    环路隔离电路,隔离输出稳压环和输入均压环。
  2. 根据权利要求1所述的功率转换模块,其特征在于:负输出电压端子、信号输入端子负和信号输出端子负3个外端子复用。
  3. 根据权利要求1或2所述的功率转换模块,其特征在于:主功率电路采用不对称 半桥反激拓扑。
  4. 根据权利要求3所述的功率转换模块,其特征在于:不对称半桥反激拓扑中的两个开关管的驱动脉冲信号之间错开一防止共通短路的死区时间。
  5. 根据权利要求4所述的功率转换模块,其特征在于:所述的死区时间为300nS。
  6. 根据权利要求1或2所述的功率转换模块,其特征在于:将输出电压采样端子与负输出电压端子连接,屏蔽输出稳压环的功能。
  7. 根据权利要求1或2所述的功率转换模块,其特征在于:将信号输入端子正与负输出电压端子连接,屏蔽输入均压环的功能。
  8. 一种电源系统,其特征在于:包括N个权利要求1或权利要求2所述的功率转换模块,N为大于1的自然数,其连接关系为:第一功率转换模块的正输入电压端子即为电源系统的正输入端,第一功率转换模块的负输入电压端子与第二功率转换模块的正输入电压端子相连,第二功率转换模块的负输入电压端子与第三功率转换模块的正输入电压端子相连,依次类推,第N-1功率转换模块的负输入电压端子与第N功率转换模块的正输入电压端子相连,第N功率转换模块的负输入电压端子作为电源系统的负输入端;所述的N个功率转换模块的正输出电压端子连接后作为电源系统的正输出端,所述的N个功率转换模块的负输出电压端子连接后作为电源系统的负输出端;第一功率转换模块的信号输出端子正悬空,第一功率转换模块的信号输入端子正与第二功率转换模块的信号输出端子正相连,第二功率转换模块的信号输入端子正与第三功率转换模块的模块信号输出端子正相连,依此类推,第N-1功率转换模块的信号输入端子正与第N功率转换模块的信号输出端子正相连,第N功率转换模块的信号输入端子正与电源系统的负输出端相连;第N功率转换模块的输出电压采样端子与电源系统的正输出端相连,其余N-1个功率转换模块的输出电压采样端子与电源系统的负输出端相连。
PCT/CN2018/094823 2017-08-09 2018-07-06 一种功率转换模块及电源系统 WO2019029304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710677927.2A CN107370387B (zh) 2017-08-09 2017-08-09 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN201710677927.2 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019029304A1 true WO2019029304A1 (zh) 2019-02-14

Family

ID=60309334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094823 WO2019029304A1 (zh) 2017-08-09 2018-07-06 一种功率转换模块及电源系统

Country Status (2)

Country Link
CN (1) CN107370387B (zh)
WO (1) WO2019029304A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751484A (zh) * 2020-12-29 2021-05-04 北京大工科技有限公司 一种系留电源输入电压均衡装置和系留无人机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370387B (zh) * 2017-08-09 2023-10-20 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN107294391B (zh) * 2017-08-09 2020-02-14 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN108322032A (zh) * 2018-03-15 2018-07-24 广州金升阳科技有限公司 一种电源系统输出过压保护电路及其控制方法
CN108512397B (zh) * 2018-03-29 2023-09-08 广州金升阳科技有限公司 一种电源模块、由其组成的电源系统及该电源系统的控制方法
TWI752840B (zh) * 2020-11-25 2022-01-11 立錡科技股份有限公司 諧振切換式電源轉換器與其中之驅動電路
CN114070093B (zh) * 2021-12-03 2022-07-15 湖南北顺源智能科技有限公司 基于高压直流变换技术的海底观测网多模块电源系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197825A1 (en) * 2007-02-21 2008-08-21 Kasemsan Siri Uniform converter input voltage distribution power system
CN105337493A (zh) * 2014-06-13 2016-02-17 株式会社村田制作所 功率转换系统及功率转换方法
CN106357109A (zh) * 2016-11-14 2017-01-25 东南大学 一种基于输出电流反馈的isop系统输入均压控制方法
CN107026580A (zh) * 2017-05-19 2017-08-08 南京理工大学 一种isop分布式逆变器系统的输出同相位控制方法
CN107294391A (zh) * 2017-08-09 2017-10-24 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN107370387A (zh) * 2017-08-09 2017-11-21 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202889201U (zh) * 2012-08-28 2013-04-17 华南理工大学 一种基于dsp的大功率llc谐振全桥变换器
CN102904454B (zh) * 2012-10-11 2015-03-25 南京航空航天大学 光伏发电系统中高效隔离直流变换器系统
CN207283410U (zh) * 2017-08-09 2018-04-27 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197825A1 (en) * 2007-02-21 2008-08-21 Kasemsan Siri Uniform converter input voltage distribution power system
CN105337493A (zh) * 2014-06-13 2016-02-17 株式会社村田制作所 功率转换系统及功率转换方法
CN106357109A (zh) * 2016-11-14 2017-01-25 东南大学 一种基于输出电流反馈的isop系统输入均压控制方法
CN107026580A (zh) * 2017-05-19 2017-08-08 南京理工大学 一种isop分布式逆变器系统的输出同相位控制方法
CN107294391A (zh) * 2017-08-09 2017-10-24 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN107370387A (zh) * 2017-08-09 2017-11-21 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751484A (zh) * 2020-12-29 2021-05-04 北京大工科技有限公司 一种系留电源输入电压均衡装置和系留无人机

Also Published As

Publication number Publication date
CN107370387A (zh) 2017-11-21
CN107370387B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2019029304A1 (zh) 一种功率转换模块及电源系统
CN107294391B (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
WO2019029250A1 (zh) 一种电源系统
US10135359B2 (en) Hybrid full bridge-voltage doubler rectifier and single stage LLC converter thereof
Zhang et al. Use of daisy-chained transformers for current-balancing multiple LED strings
CN107546959B (zh) 一种开关电源、电子设备及开关电源控制方法
CN105576645B (zh) 一种多个直流电源系统能量互联网络及互联方法
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
TWI814076B (zh) 適用於寬輸入及輸出電壓範圍的sigma、delta及sigma-delta dc/dc轉換器
CN203617902U (zh) 集成降压-反激式高功率因数恒流电路及装置
CN207283410U (zh) 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN108667304A (zh) 同步整流反激式直流-直流电源转换装置及控制方法
CN207283409U (zh) 一种电源系统
CN110504836A (zh) 基于STC电路与谐振Buck电路的降压变换器
WO2023015833A1 (zh) 一种开关电容型模块化高降压比直流电源
CN207283408U (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
CN212435587U (zh) 恒流输出控制电路、开关电源控制器及开关电源系统
CN213151913U (zh) 一种输出宽范围可调的三电平软开关变化电路
Luewisuthichat et al. Analysis and implement DC-DC integrated boost-flyback converter with LED street light stand-by application
CN210380662U (zh) 一种二级辅助电源电路
CN209105035U (zh) 一种dc-dc降压隔离电路
Luo et al. High step-down multiple-output LED driver with the current auto-balance characteristic
CN103427654A (zh) 零交叉调整率的双路输出dc/dc电源实现电路
CN112886811A (zh) 一种自动校正功率因数的led驱动电源
CN206517301U (zh) 一种电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844901

Country of ref document: EP

Kind code of ref document: A1