WO2021008271A1 - 电池管理系统的唤醒方法和唤醒系统 - Google Patents

电池管理系统的唤醒方法和唤醒系统 Download PDF

Info

Publication number
WO2021008271A1
WO2021008271A1 PCT/CN2020/095051 CN2020095051W WO2021008271A1 WO 2021008271 A1 WO2021008271 A1 WO 2021008271A1 CN 2020095051 W CN2020095051 W CN 2020095051W WO 2021008271 A1 WO2021008271 A1 WO 2021008271A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
low
transformer
wake
module
Prior art date
Application number
PCT/CN2020/095051
Other languages
English (en)
French (fr)
Inventor
王连松
但志敏
刘昌鑑
蔡福鹏
叶伏明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20824419.4A priority Critical patent/EP3799253B1/en
Priority to US17/137,411 priority patent/US11171569B2/en
Publication of WO2021008271A1 publication Critical patent/WO2021008271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application relates to the field of battery management, and in particular to a wake-up method and wake-up system for a battery management system.
  • New energy vehicles will become an important way to reduce vehicle exhaust emissions, reduce energy consumption and relieve environmental pressure.
  • new energy vehicles include high-voltage electrical systems and low-voltage electrical systems. Since there are many high-voltage electrical components on new energy vehicles, in order to ensure the safety of users and avoid the risk of electrocution, the high-voltage side and the low-voltage side are generally isolated by transformers.
  • BMS Battery Management System
  • the embodiments of the present application provide a wake-up method and a wake-up system for a battery management system, which can provide a stable power source for the low-voltage side through a high-voltage battery pack, and reduce the consumption of lead-acid batteries by the entire vehicle.
  • a wake-up method for a battery management system which is used in the wake-up system of the battery management system.
  • the wake-up system includes: a power battery pack, a low-voltage input port, a conversion unit, a high-voltage control module, and a high-voltage transmission module , Synchronous rectifier module and low-voltage controller; among them, the wake-up method of the battery management system includes:
  • the low-voltage power signal detected by the low-voltage input port is converted into a high-voltage wake-up signal.
  • the high-voltage control module Under the control of the high-voltage wake-up signal, the high-voltage control module receives the working voltage provided by the power battery pack;
  • the low-voltage power is transmitted to the low-voltage controller, and the low-voltage controller is used to wake up the battery management system.
  • a wake-up system of a battery management system including: a power battery pack, a low-voltage input port, a conversion unit, a high-voltage control module, a high-voltage transmission module, a synchronous rectifier module, and a low-voltage controller; wherein ,
  • the low-voltage input port is connected with the high-voltage control module through the conversion unit, the high-voltage control module is connected with the power battery pack and the high-voltage transmission module, the high-voltage transmission module is connected with the low-voltage controller through the synchronous rectification module, and the low-voltage controller is connected with the battery management system;
  • Low voltage input port used to receive low voltage power signal
  • the conversion unit is used to convert the low-voltage power signal into a high-voltage wake-up signal
  • the high-voltage control module is used to receive the working voltage provided by the power battery pack and control the conduction of the high-voltage transmission module under the control of the high-voltage wake-up signal;
  • the high-voltage transmission module is used to provide the working voltage to the synchronous rectifier module when it is turned on, and to convert the high-voltage electric energy in the power battery pack into low-voltage electric energy;
  • the synchronous rectifier module is used to transmit low-voltage power to the low-voltage controller under the control of the synchronous rectifier module, and the low-voltage controller is used to wake up the battery management system.
  • the low-voltage power input through the power charging interface on the low-voltage side can be converted into a high-voltage power signal, and the high-voltage battery pack on the high-voltage side can be awakened to start working, so that the high-voltage battery
  • the package provides a stable power source for the low-voltage side, thereby realizing the wake-up of the vehicle BMS through the low-voltage power signal, reducing the consumption of the lead-acid battery of the vehicle.
  • FIG. 1 is a schematic structural diagram showing a sleep charging and wake-up method of an electric vehicle battery management system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram showing a wake-up system of a battery management system according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram showing the circuit structure of an optocoupler circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the structure of a flyback power supply circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the structure of a forward power supply circuit according to another embodiment of the present application.
  • Fig. 6 is a schematic diagram showing a detailed structure of a battery management system according to an exemplary embodiment of the present application.
  • Fig. 7 is a flowchart showing a wake-up method of a battery management system according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram showing a sleep charging and awakening method of an electric vehicle battery management system according to an embodiment of the present application.
  • the wake-up system 100 of the battery management system in the embodiment of the present application may include: a power battery pack 110, a low-voltage input port 120, a conversion unit 130, a high-voltage control module 140, a high-voltage transmission module 150, and a synchronous rectification module 160 And low pressure controller 170.
  • the low voltage input port 120 is connected to the high voltage control module 140 through the conversion unit 130, the high voltage control module 140 is connected to the power battery pack 110 and the high voltage transmission module 150, and the high voltage transmission module 150 is connected to the low voltage controller 170 through the synchronous rectification module 160.
  • the controller 170 is connected to a battery management system (not shown in the figure). among them,
  • the low voltage input port 120 is connected to the high voltage control module 140 through the conversion unit 130.
  • the high voltage control module 140 is connected to the power battery pack 110 and the high voltage transmission module 150.
  • the high voltage transmission module 150 is connected to the low voltage controller 170 through the synchronous rectification module 160.
  • the low voltage controller 170 is connected to the battery management system; and among them,
  • the low-voltage input port 120 is used to receive low-voltage power signals
  • the conversion unit 130 is configured to convert a low-voltage power signal into a high-voltage wake-up signal
  • the high-voltage control module 140 is used to receive the working voltage provided by the power battery pack under the control of the high-voltage wake-up signal, and control the conduction of the high-voltage transmission module;
  • the high-voltage transmission module 150 is used to provide working voltage to the synchronous rectification module when it is turned on, and to convert the high-voltage electric energy in the power battery pack into low-voltage electric energy;
  • the synchronous rectification module 160 is used to transmit low-voltage electrical energy to the low-voltage controller under the control of the synchronous rectification module, and the low-voltage controller is used to wake up the battery management system.
  • the new energy vehicle since the new energy vehicle includes a high-voltage electrical system and a low-voltage electrical system, in order to ensure the safety of users and avoid the risk of electrocution, the high-voltage electrical components in the high-voltage electrical system can be separated by isolation devices. It is isolated from the low-voltage electrical devices in the low-voltage electrical system.
  • the isolation device may include a conversion unit 130 and a high-voltage transmission module 150.
  • the conversion unit 130 and the high-voltage transmission module 150 can realize electrical isolation between high-voltage electrical devices and low-voltage electrical devices; and wherein, the conversion unit 130 can convert the received low-voltage signals into high-voltage signals, and the high-voltage transmission module 150 can Convert the received high-voltage electrical energy into low-voltage electrical energy.
  • the low-voltage side may refer to the low-voltage signal input side of the conversion unit 130 and the low-voltage power output side of the high-voltage transmission module 150; the high-voltage side may be the high-voltage signal output side of the conversion unit 130 and the high-voltage transmission The high-voltage power input side of the module 150.
  • the low-voltage electrical device in FIG. 1 may include a low-voltage input port 120, a synchronous rectification module 160 and a low-voltage controller 170, and the high-voltage electrical device may include a power battery pack 110 and a high-voltage control module 140.
  • a 12V or 24V low-voltage charging system can be input to the low-voltage signal input terminal side.
  • the lead-acid battery can be connected to the BMS through the low-voltage controller.
  • the low-voltage controller can cut off the connection between the BMS and the lead-acid battery. At this time, the BMS is powered off and BMS enters dormant state due to power failure.
  • the wake-up method given by the battery management system of the wake-up system in the embodiment of this application can be used to prevent the BMS Enter the dormant state for a long time so that the BMS can monitor and process the condition of the vehicle battery pack.
  • SOC State Of Charge
  • the wake-up method given by the battery management system of the wake-up system in the embodiment of this application can be used to prevent the BMS Enter the dormant state for a long time so that the BMS can monitor and process the condition of the vehicle battery pack.
  • the BMS can be waked up by a low-voltage power signal, and the low-voltage power supply may be direct current or alternating current.
  • the low-voltage input port detects a voltage signal
  • the entire BMS system will be awakened and start to work normally through the wake-up method and wake-up system in the embodiments of the present application.
  • the wake-up method and wake-up system of the battery management system in the embodiments of the present application do not need to use the lead-acid of the whole vehicle to realize the wake-up function of the BMS, which can reduce the loss of the lead-acid battery.
  • Fig. 2 shows a schematic structural diagram of a wake-up system of a battery management system according to another embodiment of the present application.
  • the wake-up system 100 of the battery management system may further include:
  • the first rectifying and filtering unit 121 is connected between the low-voltage input port and the input terminal of the conversion unit, and is used for rectifying and filtering the low-voltage power signal.
  • the conversion unit 130 is also used to convert the low-voltage power signal after the rectification and filtering process into a high-voltage wake-up signal.
  • the wake-up system 100 of the battery management system may further include:
  • the filter module 122 is connected to the output end of the conversion unit 130 and is used for rectifying and filtering the converted high-voltage wake-up signal.
  • the high-voltage control module 140 is also applied to receive the working voltage provided by the power battery pack under the control of the high-voltage wake-up signal after the rectification and filtering process, and control the conduction of the high-voltage transmission module.
  • the conversion unit 130 may include any one of the following items: an optocoupler circuit, a flyback power supply circuit, and a forward power supply circuit.
  • an optocoupler circuit for converting light to AC to DC.
  • a flyback power supply circuit for converting DC to DC.
  • a forward power supply circuit for converting DC to DC to DC.
  • FIG. 3 shows a schematic diagram of the circuit structure of an optocoupler circuit according to an embodiment of the present application.
  • the conversion unit 130 may include an optocoupler circuit.
  • the optocoupler circuit may include, for example, an optical coupler (Optical Coupler, OC), and the optical coupler may also be referred to as an opto-isolator or an opto-coupler.
  • the optical coupler can use light as a medium to transmit electrical signals, so it can have a good isolation effect on high-voltage electrical signals and low-voltage electrical signals, and realize electrical isolation between high-voltage electrical devices and low-voltage electrical devices.
  • the first rectifying and filtering unit 121 may include a first rectifying diode D1, a first resistor R1, and a first capacitor C1.
  • One end of the first diode D1 is connected to the low voltage input port, the other end of the first diode D1 is connected to one end of the first resistor R1, and the other end of the first resistor R1 is connected to the input end of the conversion unit 130, One end of the first capacitor C1 is connected to the other end of the first resistor R1, and the other end of the first capacitor C1 is connected to the reference voltage terminal.
  • the filtering module 122 may include a second capacitor network C2. Wherein, one end of the second capacitive network C2 is connected to the output terminal of the optical coupler OC, and the other end of the second capacitive network C2 is connected to the reference voltage terminal.
  • the low-voltage wake-up power when the BMS system is in the sleep state, when the low-voltage input port A inputs the low-voltage wake-up power Vin, the low-voltage wake-up power first passes through the first diode D1 in the first rectification filter unit 121 for rectification, and then The first resistor R1 and the first capacitor C1 are filtered, and the conversion unit 130 converts the low-voltage wake-up power source Vin filtered by the first rectification filter unit into a high-voltage wake-up signal Vout on the high-voltage side.
  • FIG. 4 shows a schematic structural diagram of a flyback power supply circuit according to an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a forward power supply circuit according to another embodiment of the present application.
  • the flyback power supply circuit includes a flyback control chip and a flyback transformer T41.
  • the flyback control chip and the flyback transformer T41 can be connected through a flyback power switch Q42.
  • the flyback transformer T41 can store the energy in the low voltage wake-up power Vin in the primary coil of the flyback transformer T41; the flyback control chip controls the flyback power switch
  • the tube Q42 is turned off, the primary coil of the flyback transformer T41 couples the stored electric energy to the secondary coil of the flyback transformer T41, and the flyback transformer T41 outputs a high-voltage wake-up signal Vout.
  • the filter module 122 may include a second capacitor network C2.
  • One end of the second capacitor network C2 is connected to the output terminal of the flyback transformer T41, and the other end of the second capacitor network C2 is connected to the reference voltage terminal.
  • the primary side of the transformer represents the voltage input side
  • the secondary side of the transformer represents the voltage output side converted by the transformer
  • the forward power supply circuit includes a forward control chip and a forward transformer T51.
  • the forward control chip and the forward transformer T51 can be connected through a forward power switch Q52.
  • the forward control chip controls the forward power switch Q52 to turn on
  • the primary coil of the forward transformer T51 couples the energy in the low voltage wake-up power Vin to the secondary coil of the forward transformer T51, and the forward transformer T51 outputs high-voltage wake-up Signal Vout.
  • the filtering module 122 may include a second capacitor network C2.
  • One end of the second capacitive network C2 is connected to the output terminal of the forward transformer T51, and the other end of the second capacitive network C2 is connected to the reference voltage terminal.
  • the second capacitor network C2 in FIG. 3, FIG. 4, and FIG. 5 may include multiple capacitors connected in parallel.
  • the embodiments of the present application can use optocoupler circuits, flyback power circuits, or forward power circuits to combine high-voltage electrical devices in a high-voltage electrical system with low-voltage electrical devices in a low-voltage electrical system.
  • the device is isolated and converts between low voltage and high voltage.
  • isolation transformer components can also be used to achieve the same function as the conversion unit 130, that is, the isolation transformer component can convert the low-voltage wake-up power Vin on the low-voltage side into the high-voltage wake-up signal Vout on the high-voltage side. , I won’t repeat it here.
  • Fig. 6 shows a detailed structural diagram of a battery management system according to an exemplary embodiment of the present application.
  • the high voltage control module 140 includes a flyback control module 141 and a forward control module 142.
  • the flyback control module 141 includes an enable terminal Enable, a flyback power terminal VCC1, and a first flyback output.
  • the forward control module 142 includes a forward power supply terminal VCC2.
  • the flyback control module 141 can be used to receive the high-voltage wake-up signal through the enable terminal, and use the high-voltage wake-up signal to control the connection of the forward power terminal VCC1 and the power battery pack to conduct, so that the forward power terminal VCC1 receives power The operating voltage provided by the battery pack.
  • the flyback control module 141 can also be used to output a working voltage to the forward power supply terminal VCC2 through the first forward output terminal OUT11, so that the forward control module 142 starts to work.
  • the high-voltage wake-up signal when the high-voltage side detects the high-voltage wake-up signal Vout, the high-voltage wake-up signal will be input to the enable terminal Enable of the flyback control module, and the flyback control module will be enabled and start working at this time.
  • the high-voltage transmission module further includes a first transformer T1 and a second transformer T2.
  • the first transformer T1 and the second transformer T2 may be step-up transformers.
  • the flyback control module 141 is also used to control the conduction of the first transformer T1, and the power battery pack provides the operating voltage to the synchronous rectification module 160 through the turned-on first transformer T1.
  • the forward control module 142 is also used to control the conduction of the second transformer T2, and convert the high-voltage electrical energy in the power battery pack into low-voltage electrical energy through the turned-on second transformer T2.
  • the high-voltage transmission module further includes a first switching device Q1, and the second flyback output terminal OUT12 of the flyback control module 141 passes through the first switching device Q1 and the primary side of the first transformer T1.
  • the coil Np1 is connected. among them,
  • the flyback control module 141 is also used to control the turn-on and turn-off of the first switching device Q1 through a pulse width modulation (Pulse Width Modulation, PWM) signal output from the second flyback output terminal OUT12.
  • PWM Pulse Width Modulation
  • the power battery pack When the first switching device Q1 is turned on, the power battery pack is connected to the primary winding Np1 of the first transformer T1, and the primary winding Np1 of the first transformer T1 uses high-voltage electric energy to store energy.
  • the power battery pack is disconnected from the primary winding Np1 of the first transformer T1, and the energy stored in the primary winding Np1 of the first transformer is coupled to the secondary winding Ns1 of the first transformer T1.
  • the high-voltage transmission module is configured to provide a working voltage to the synchronous rectification module 160 through the energy coupled to the secondary winding Ns1 of the first transformer T1.
  • the synchronous rectification module 160 may include a rectifier module power terminal VCC3; the high-voltage transmission module may also include:
  • the second rectifying and filtering unit 151, the second rectifying and filtering unit 151 can be connected between the secondary winding Ns1 of the first transformer T1 and the power terminal VCC3 of the rectifier module, and is used to output the electric energy coupled to the secondary winding of the first transformer T1 Perform filtering processing.
  • the high-voltage transmission module is also used to utilize the rectified and filtered energy output from the secondary winding Ns1 coupled to the first transformer T1 to provide a working voltage to the synchronous rectification module 160.
  • the second rectifying and filtering unit 151 may include a second rectifying diode D2 and a third capacitor C3.
  • one end of the second rectifying diode D2 may be connected to the secondary winding Ns1 of the first transformer T1
  • the other end of the second rectifying diode D2 may be connected to one end of the third capacitor C3, and the other end of the third capacitor C3
  • One end may be connected to the reference voltage terminal;
  • the power terminal VCC3 of the synchronous rectification module 160 is connected to the other end of the second rectifier diode D2 and one end of the third capacitor C3.
  • the PWM wave output from the second flyback output terminal OUT12 can be used to control the on and off of the switching device Q1, thereby controlling the energy transfer in the coil of the first transformer T1 Storage and release.
  • the primary winding Np1 of the first transformer T1 stores energy, and the diode D1 of the secondary winding of the first transformer T1 is in a non-conductive state due to the reverse voltage; when Q1 is turned off, the first transformer The diode D1 of the secondary winding of T1 is in the conducting state due to the forward voltage.
  • the high-voltage transmission module further includes a second switching device Q2, and the forward control module 142 includes a first forward output terminal OUT21; wherein,
  • the first forward output terminal OUT21 of the forward control module 142 is connected to the primary winding Np2 of the second transformer T2 through the second switching device Q2. And among them,
  • the forward control module 142 is also used to control the turn-on and turn-off of the second switching device Q2 through the pulse width modulation signal provided by the first forward output terminal OUT21.
  • the power battery pack When the second switching device Q2 is turned on, the power battery pack is connected to the primary winding Np2 of the second transformer T2, and the high-voltage power is coupled to the secondary winding Ns2 of the second transformer T2 through the primary winding Np2 of the second transformer T2 , Obtain the low-voltage electric energy output by the secondary winding Ns2 of the second transformer T2.
  • the first flyback output terminal of the flyback control module when the second flyback output terminal of the flyback control module outputs a pulse width modulation signal, the first flyback output terminal can output electrical energy to power the forward control module, and the forward control module starts to work.
  • the first forward output terminal of the forward control module outputs a pulse width modulation signal to control the turn-on and turn-off of the second switching device, thereby controlling the storage and release of energy in the second transformer coil.
  • the synchronous rectification module 160 is used to detect low-voltage electric energy, and when the low-voltage electric energy meets the low-voltage threshold condition, the low-voltage electric energy is transmitted to the low-voltage controller, so that the low-voltage controller can wake up the battery management system.
  • the synchronous rectification module 160 may include a rectification module power terminal VCC3, a first rectification module output terminal OUT31, a second rectification module output terminal OUT32, a fourth switching device Q4, and a fifth switching device Q5. .
  • the output terminal OUT31 of the first rectification module is used to control the conduction of the fourth switching device Q4, and the output terminal OUT32 of the second rectification module is used to control the conduction of the fifth switching device Q5.
  • the synchronous rectifier chip starts to work.
  • the second switching device of the high-voltage transmission module is turned on, the energy in the primary side of the second transformer is coupled to the secondary side of the second transformer.
  • the synchronous rectification module can control the output terminal of the first rectification module and the output terminal of the second rectification module by monitoring the output voltage of the secondary side of the second transformer, and control the turn-on and turn-off of the fourth switching device and the fifth switching device, thereby controlling The turn-on and turn-off of the second transformer and the low-voltage controller.
  • the wake-up system 100 of the battery management system may further include: a clamping circuit module 180; and a clamping circuit module 180 for absorbing the leakage inductance energy of the second transformer T2 so as to clamp the clamping switch device Q3 The bit voltage meets the preset voltage threshold.
  • the clamp circuit module 180 may include a clamp switch device Q3, a clamp capacitor C4, a charging capacitor C5, and a third resistor R3.
  • the control of the clamp switch device Q3 is connected to the second forward output terminal OUT22 of the forward control module, and is used to control the conduction of the clamp circuit module 180.
  • the forward control module 180 controls the clamp switching device Q3 to start working through the second forward output terminal OUT22.
  • the clamping circuit module 180 can be used to absorb the leakage inductance energy of the second transformer T2, thereby maintaining a stable voltage clamping of the second switching device Q2, thereby avoiding a large voltage stress on the second switching device Q2 and reducing the second switching device Q2. The loss of the switching device Q2 and the prolonged service life.
  • the energy in the power battery pack on the high-voltage side is converted to provide stable electric energy for the low-voltage side, which realizes that when the BMS system is in a sleep state, the low-voltage input is based on the low-voltage side.
  • the conversion of the unit obtains the wake-up voltage on the high-voltage side.
  • the wake-up voltage is used to start the power battery pack, the high-voltage control module and the high-voltage transmission unit on the high-voltage side, thereby converting the electric energy in the high-voltage battery pack into a stable low-voltage direct current.
  • Provide a stable power input for the low-voltage controller to ensure the normal operation of the entire BMS system and reduce the consumption of lead-acid batteries in the vehicle.
  • Fig. 7 shows a flowchart of a wake-up method of a battery management system according to an embodiment of the present application.
  • the wake-up method of the battery management system may include:
  • step S210 the conversion unit is used to convert the low-voltage power signal detected by the low-voltage input port into a high-voltage wake-up signal.
  • the high-voltage control module Under the control of the high-voltage wake-up signal, the high-voltage control module receives the working voltage provided by the power battery pack.
  • step S220 the high-voltage control module is used to control the high-voltage transmission module to be turned on, the working voltage is provided to the synchronous rectifier module through the turned-on high-voltage transmission module, and the high-voltage electric energy provided by the power battery pack is converted into low-voltage electric energy.
  • step S230 under the control of the synchronous rectification module, the low-voltage electric energy is transmitted to the low-voltage controller to wake up the battery management system.
  • the step of using a conversion unit to convert the low-voltage power signal detected by the low-voltage input port into a high-voltage wake-up signal in step S210 may specifically include:
  • Step S211 Perform rectification and filtering on the low-voltage power signal detected by the low-voltage input port.
  • Step S212 Convert the low-voltage power signal after the rectification and filtering process into a high-voltage wake-up signal.
  • the utilization conversion unit includes any one of the following items: an optocoupler circuit, a flyback power supply circuit, and a forward power supply circuit.
  • the high voltage control module may include a flyback control module and a forward control module; wherein, in step S210, under the control of the high voltage wake-up signal, the high voltage control module receives the working voltage provided by the power battery pack.
  • Step S213 receiving a high voltage wake-up signal through the enable terminal of the flyback control module.
  • Step S214 using the high-voltage wake-up signal to control the connection between the flyback power terminal of the flyback control module and the power battery pack to conduct, so that the flyback power terminal receives the working voltage provided by the power battery pack.
  • Step S215 output a working voltage to the forward power terminal of the forward control module through the first flyback output terminal of the flyback control module, so that the forward control module starts to work.
  • the high voltage control module includes a flyback control module and a forward control module
  • the high voltage transmission module includes a first transformer and a second transformer.
  • step S220 may specifically include:
  • step S221 the flyback control module is used to control the conduction of the first transformer, and the power battery pack provides the operating voltage to the synchronous rectification module through the turned-on first transformer.
  • the high-voltage transmission module further includes a first switching device.
  • step S221 may specifically include:
  • Step S221-01 controlling the on and off of the first switching device through the pulse width modulation signal output from the second flyback output terminal of the flyback control module.
  • step S221-02 when the first switching device is turned on, the power battery pack is connected to the primary coil of the first transformer, and the primary coil of the first transformer uses high-voltage electric energy to store energy.
  • step S221-03 when the first switching device is turned off, the power battery pack is disconnected from the primary winding of the first transformer, and the energy stored in the primary winding of the first transformer is coupled to the secondary winding of the first transformer.
  • step S221-04 the high-voltage transmission module provides a working voltage to the synchronous rectification module through energy coupled to the secondary coil of the first transformer.
  • S221-04 may specifically include: performing rectification and filtering processing on the energy coupled to the secondary coil of the first transformer, and using the energy after the rectification and filtering processing to provide a working voltage to the synchronous rectification module.
  • step S222 the forward control module is used to control the conduction of the second transformer, and the high-voltage electrical energy in the power battery pack is converted into low-voltage electrical energy through the turned-on second transformer.
  • the high-voltage transmission module further includes a second switching device.
  • step S223 may specifically include:
  • step S222-01 the second switching device is controlled to be turned on and off through the pulse width modulation signal provided by the forward control module.
  • Step S222-02 When the second switching device is turned on, the power battery pack is connected to the primary coil of the second transformer, and the high-voltage power is coupled to the secondary coil of the second transformer through the primary coil of the second transformer to obtain Low voltage power output from the secondary winding of the second transformer.
  • the low-voltage power is transmitted to the low-voltage controller, and the low-voltage controller is used to wake up the battery management system, including:
  • the synchronous rectifier module is used to detect low-voltage power, and when the low-voltage power meets the low-voltage threshold condition, the low-voltage power is transmitted to the low-voltage controller, so that the low-voltage controller can wake up the battery management system.
  • the wake-up system further includes a clamping circuit module.
  • the wake-up method of the battery management system further includes:
  • Step S250 using the clamping circuit module to absorb the leakage inductance energy of the second transformer, so that the clamping voltage of the clamping switch device meets the preset voltage threshold.
  • the wake-up method of the battery management system of the embodiment of the present application when the BMS is in a dormant state and the battery pack on the high-voltage side needs to provide a stable power supply for the low-voltage side, only the wake-up power supply is provided at the input terminal of the low-voltage side, and the high-voltage transmission unit It will be awakened to convert the voltage in the high-voltage power battery pack to provide a stable input voltage for the low-voltage side, thereby restoring the normal operation of the entire BMS system.
  • the circuit structure design of the wake-up system of the battery management system is simple, the components used are few, the portability is good, and it is well compatible with various low-voltage power supply systems.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program tangibly contained on a machine-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network, and/or installed from a removable storage medium.
  • the computer program product includes one or more computer instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing various embodiments.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池管理系统的唤醒方法和唤醒系统(100)。该方法包括:利用转换单元(130),将低压输入端口(120)检测到的低压电源信号转化为高压唤醒信号,在高压唤醒信号的控制下,高压控制模块(140)接收动力电池包(110)提供的工作电压;利用高压控制模块(140)控制高压传输模块(150)导通,通过导通的高压传输模块(150)向同步整流模块(160)提供工作电压,以及将动力电池包(110)提供的高压电能转化为低压电能;在同步整流模块(160)的控制下,将低压电能传输至低压控制器(170),利用低压控制器(170)唤醒电池管理系统。根据上述唤醒方法,通过高压电池包(110)为低压侧提供稳定的电力来源,减少整车对铅酸电池的耗损。

Description

电池管理系统的唤醒方法和唤醒系统
相关申请的交叉引用
本申请要求享有于2019年07月16日提交的名称为“电池管理系统的唤醒方法和唤醒系统”的中国专利申请201910641799.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池管理领域,尤其涉及一种电池管理系统的唤醒方法和唤醒系统。
背景技术
目前,面对能源短缺、环境污染日益严重的现状,发展纯电动的新能源汽车势在必行,新能源汽车将成为降低汽车尾气排放、降低能量消耗和缓解环境压力的重要途径。与传统燃油汽车不同的是,新能源汽车包括高压电气系统和低压电气系统。由于新能源汽车上有很多高压用电器件,为保证使用者的安全,规避发生人员触电死亡的风险,一般将高压侧与低压侧通过变压器进行隔离。
当电池管理系统(Battery Management System,BMS)突然掉电进入休眠状态或是铅酸深度馈电时,BMS将无法再次启动,导致BMS无法对整车电池包的情况进行监控和处理。
发明内容
本申请实施例提供一种电池管理系统的唤醒方法和唤醒系统,可以通过高压电池包为低压侧提供稳定的电力来源,减少整车对铅酸电池的耗损。
根据本申请实施例的一方面,提供一种电池管理系统的唤醒方法,用于电池管理系统的唤醒系统,唤醒系统包括:动力电池包、低压输入端口、 转换单元、高压控制模块、高压传输模块、同步整流模块和低压控制器;其中,电池管理系统的唤醒方法包括:
利用转换单元,将低压输入端口检测到的低压电源信号转化为高压唤醒信号,在高压唤醒信号的控制下,高压控制模块接收动力电池包提供的工作电压;
利用高压控制模块控制高压传输模块导通,通过导通的高压传输模块向同步整流模块提供工作电压,以及将动力电池包提供的高压电能转化为低压电能;
在同步整流模块的控制下,将低压电能传输至低压控制器,利用低压控制器唤醒电池管理系统。
根据本申请实施例的另一方面,提供一种电池管理系统的唤醒系统,包括:动力电池包、低压输入端口、转换单元、高压控制模块、高压传输模块、同步整流模块和低压控制器;其中,
低压输入端口通过转换单元与高压控制模块连接,高压控制模块与动力电池包和高压传输模块连接,高压传输模块通过同步整流模块与低压控制器连接,低压控制器与电池管理系统连接;并且其中,
低压输入端口,用于接收低压电源信号;
转换单元,用于将低压电源信号转换为高压唤醒信号;
高压控制模块,用于在高压唤醒信号的控制下,接收动力电池包提供的工作电压,并控制高压传输模块的导通;
高压传输模块,用于在导通时向同步整流模块提供工作电压,以及将动力电池包中的高压电能转化为低压电能;
同步整流模块,用于在同步整流模块的控制下,将低压电能传输至低压控制器,利用低压控制器唤醒电池管理系统。
根据本申请实施例中的电池管理系统的唤醒方法和唤醒系统,可以将通过低压侧的电源充电接口输入的低压电源转换为高压电源信号后,唤醒高压侧的高压电池包开始工作,使高压电池包为低压侧提供稳定的电力来源,从而通过低压电源信号实现整车BMS的唤醒,减少整车对铅酸电池的耗损。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本申请一实施例的电动汽车电池管理系统的休眠充电唤醒方法的结构示意图;
图2是示出根据本申请另一实施例的电池管理系统的唤醒系统的结构示意图;
图3是示出根据本申请一实施例的光耦电路的电路结构示意图;
图4是示出根据本申请一实施例的反激电源电路的结构示意图;
图5是示出根据本申请另一实施例的正激电源电路的结构示意图;
图6是示出根据本申请示例性实施例的电池管理系统的详细结构示意图;
图7是示出根据本申请一实施例的电池管理系统的唤醒方法的流程图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物 品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的电池管理系统的唤醒方法和唤醒系统,应注意,这些实施例并不是用来限制本申请公开的范围。
图1是示出本申请一实施例的电动汽车电池管理系统的休眠充电唤醒方法的结构示意图。如图1所示,本申请实施例中的电池管理系统的唤醒系统100可以包括:动力电池包110、低压输入端口120、转换单元130、高压控制模块140、高压传输模块150、同步整流模块160和低压控制器170。
其中,低压输入端口120通过转换单元130与高压控制模块140连接,高压控制模块140与动力电池包110和高压传输模块150连接,高压传输模块150通过同步整流模块160与低压控制器170连接,低压控制器170与电池管理系统(图中未示出)连接。其中,
低压输入端口120通过转换单元130与高压控制模块140连接,高压控制模块140与动力电池包110和高压传输模块150连接,高压传输模块150通过同步整流模块160与低压控制器170连接,低压控制器170与电池管理系统连接;并且其中,
低压输入端口120,用于接收低压电源信号;
转换单元130,用于将低压电源信号转换为高压唤醒信号;
高压控制模块140,用于在高压唤醒信号的控制下,接收动力电池包提供的工作电压,并控制高压传输模块的导通;
高压传输模块150,用于在导通时向同步整流模块提供工作电压,以及将动力电池包中的高压电能转化为低压电能;
同步整流模块160,用于在同步整流模块的控制下,将低压电能传输至低压控制器,利用低压控制器唤醒电池管理系统。
在本申请实施例中,由于新能源汽车包括高压电气系统和低压电气系统,为保证使用者的安全,规避发生人员触电死亡的风险,可以通过隔离 器件,将高压电气系统中的高压用电器件与低压电气系统中的低压用电器件进行隔离。
在一个实施例中,隔离器件可以包括转换单元130和高压传输模块150。其中,转换单元130和高压传输模块150可以实现高压用电器件和低压用电器件之间的电气隔离;并且其中,转换单元130可以将接收到的低压信号转换为高压信号,高压传输模块150可以将接收到的高压电能转换为低压电能。
如图1所示,低压侧可以表示转换单元130的低压信号输入端侧,以及高压传输模块150的低压电能输出端侧;高压侧可以表示为转换单元130的高压信号输出端侧,以及高压传输模块150的高压电能输入端侧。图1中的低压用电器件可以包括低压输入端口120、同步整流模块160和低压控制器170,高压用电器件可以包括动力电池包110和高压控制模块140。
在一个实施例中,低压信号输入端侧可以输入12V或24V的低压充电系统。铅酸电池可以通过低压控制器与BMS连接,当电动汽车长时间停放不使用、或者当电动汽车充电时,低压控制器可以切断BMS与铅酸电池之间的连接,此时BMS掉电,并且BMS因掉电而进入休眠状态。
为了使BMS保持对电池包的荷电状态(State Of Charge,SOC)、电流和电压等相关信息的监控和处理,应用本申请实施例的唤醒系统的电池管理系统给的唤醒方法,可以阻止BMS长时间进入休眠状态,以便BMS可以对整车电池包的情况进行监控和处理。
根据本申请实施例的电池管理系统的唤醒方法和唤醒系统,可以通过低压电源信号来实现BMS的唤醒,该低压电源可以是直流电,也可以是交流电。当低压输入端口检测到电压信号时,通过本申请实施例的唤醒方法和唤醒系统,整个BMS系统将会被唤醒并开始正常工作。本申请实施例的电池管理系统的唤醒方法和唤醒系统,无需借助整车的铅酸实现BMS的唤醒功能,可以减小铅酸电池的损耗。
图2示出了本申请另一实施例的电池管理系统的唤醒系统的结构示意图。如图2所示,在一个实施例中,电池管理系统的唤醒系统100还可以包括:
第一整流滤波单元121,第一整流滤波单元连接于低压输入端口和转换单元的输入端之间,用于对低压电源信号进行整流滤波处理。
转换单元130,还用于将整流滤波处理后的低压电源信号转换为高压唤醒信号。
继续参考图2,在一个实施例中,电池管理系统的唤醒系统100还可以包括:
滤波模块122,滤波模块122与转换单元130的输出端连接,用于对转换得到的高压唤醒信号进行整流滤波处理。
高压控制模块140,还应用于在经整流滤波处理后的高压唤醒信号的控制下,接收动力电池包提供的工作电压,并控制高压传输模块的导通。
在一个实施例中,转换单元130可以包括如下项中的任一项:光耦电路、反激电源电路和正激电源电路。下面结合图3、图4和图5,详细描述本申请实施例中的转换单元。
图3示出了根据本申请一实施例的光耦电路的电路结构示意图。如图3所示,转换单元130可以包括光耦电路。
在一个实施例中,光耦电路例如可以包括光耦合器(Optical Coupler,OC),光耦合器也可以称为是光电隔离器或者光电耦合器。光耦合器可以将光作为媒介传输电信号,因此可以对高压电信号和低压电信号具有良好的隔离作用,实现高压用电器件和低压用电器件之间的电气隔离。
继续参考图3,在一个实施例中,第一整流滤波单元121可以包括第一整流二极管D1、第一电阻R1和第一电容C1。
其中,第一二极管D1的一端与低压输入端口连接,第一二极管D1的另一端与第一电阻R1的一端连接,第一电阻R1的另一端连接于转换单元130的输入端,第一电容C1的一端连接于第一电阻R1的另一端,第一电容C1的另一端连接于基准电压端。
继续参考图3,在一个实施例中,滤波模块122可以包括第二电容网络C2。其中,第二电容网络C2的一端连接于光耦合器OC的输出端,第二电容网络C2的另一端连接于基准电压端。
在该实施例中,BMS系统处于休眠状态时,当低压输入端口A输入低 压唤醒电源Vin时,该低压唤醒电源首先经过第一整流滤波单元121中的第一二极管D1进行整流处理,然后经过第一电阻R1和第一电容C1进行滤波处理,通过转换单元130,将经第一整流滤波单元进行滤波处理后的低压唤醒电源Vin转换成高压侧的高压唤醒信号Vout。
图4示出了本申请一实施例的反激电源电路的结构示意图;图5示出了本申请另一实施例的正激电源电路的结构示意图。
如图4所示,反激电源电路包括反激控制芯片和反激变压器T41,反激控制芯片和反激变压器T41之间,可以通过反激电源开关管Q42连接。
当反激控制芯片控制反激电源开关管Q42导通时,反激变压器T41可以将低压唤醒电源Vin中的电能存储在反激变压器T41的原边线圈中;反激控制芯片控制反激电源开关管Q42关断时,反激变压器T41的原边线圈将存储的电能耦合至反激变压器T41的副边线圈,反激变压器T41输出高压唤醒信号Vout。
继续参考图4,在一个实施例中,滤波模块122可以包括第二电容网络C2。其中,第二电容网络C2的一端连接于反激变压器T41的输出端,第二电容网络C2的另一端连接于基准电压端。
在本申请实施例的描述中,变压器的原边表示电压输入侧,变压器的副边表示经变压器转换后的电压输出侧。
如图5所示,正激电源电路包括正激控制芯片和正激变压器T51,正激控制芯片和正激变压器T51之间,可以通过正激电源开关管Q52连接。
当正激控制芯片控制正激电源开关管Q52接通时,正激变压器T51的原边线圈将低压唤醒电源Vin中的电能耦合至正激变压器T51的副边线圈,正激变压器T51输出高压唤醒信号Vout。
继续参考图5,在一个实施例中,滤波模块122可以包括第二电容网络C2。其中,第二电容网络C2的一端连接于正激变压器T51的输出端,第二电容网络C2的另一端连接于基准电压端。在一个实施例中,上述图3、图4和图5中的第二电容网络C2可以包括并联的多个电容。
通过图3、图4和图5可知,本申请实施例可以使用光耦电路、反激电源电路或者正激电源电路,将高压电气系统中的高压用电器件与低压电气 系统中的低压用电器件进行隔离,以及低电压和高电压之间的相互转换。
应理解,在本申请实施例中,也可以采用其他隔离变压器件,实现与转换单元130相同的功能,即该隔离变压器件可以将低压侧的低压唤醒电源Vin转换为高压侧的高压唤醒信号Vout,在此不再赘述。
图6示出了根据本申请示例性实施例的电池管理系统的详细结构示意图。如图6所示,在一个实施例中,高压控制模块140包括反激控制模块141和正激控制模块142,反激控制模块141包括使能端Enable、反激电源端VCC1、第一反激输出端OUT11,正激控制模块142包括正激电源端VCC2。
其中,反激控制模块141,可以用于通过使能端Enable接收高压唤醒信号,利用高压唤醒信号,控制正激电源端VCC1与动力电池包的连接导通,以使正激电源端VCC1接收动力电池包提供的工作电压。
反激控制模块141,还可以用于通过第一正激输出端OUT11,向正激电源端VCC2输出工作电压,以使正激控制模块142开始工作。
在本申请实施例中,当高压侧检测到高压唤醒信号Vout时,高压唤醒信号将会输入到反激控制模块的使能端Enable,此时反激控制模块将被使能并开始工作。
继续参考图6,在一个实施例中,高压传输模块还包括第一变压器T1和第二变压器T2。在该实施例中,第一变压器T1和第二变压器T2可以是升压变压器。
反激控制模块141,还用于控制第一变压器T1的导通,通过导通的第一变压器T1,使动力电池包向同步整流模块160提供工作电压。
正激控制模块142,还用于控制第二变压器T2的导通,通过导通的第二变压器T2,将动力电池包中的高压电能转化为低压电能。
如图6所示,在一个实施例中,高压传输模块还包括第一开关器件Q1,反激控制模块141的第二反激输出端OUT12通过第一开关器件Q1与第一变压器T1的原边线圈Np1连接。其中,
反激控制模块141,还用于通过第二反激输出端OUT12输出的脉冲宽度调制(Pulse Width Modulation,PWM)信号,控制第一开关器件Q1的 导通和关断。
第一开关器件Q1导通时,动力电池包与第一变压器T1的原边线圈Np1接通,第一变压器T1的原边线圈Np1利用高压电能存储能量。
第一开关器件Q1关断时,动力电池包与第一变压器T1的原边线圈Np1断开,第一变压器的原边线圈Np1存储的能量耦合至第一变压器T1的副边线圈Ns1。
高压传输模块,用于通过耦合至第一变压器T1的副边线圈Ns1的能量,向同步整流模块160提供工作电压。
如图6所示,在一个实施例中,同步整流模块160可以包括整流模块电源端VCC3;高压传输模块还可以包括:
第二整流滤波单元151,第二整流滤波单元151可以连接于第一变压器T1的副边线圈Ns1与整流模块电源端VCC3之间,用于对耦合至第一变压器T1的副边线圈输出的电能进行滤波处理。
高压传输模块,还用于利用耦合至第一变压器T1的副边线圈Ns1输出的经整流滤波处理后的能量,向同步整流模块160提供工作电压。
在一个实施例中,第二整流滤波单元151可以包括第二整流二级管D2和第三电容C3。其中,第二整流二级管D2的一端可以连接于第一变压器T1的副边线圈Ns1,第二整流二级管D2的另一端可以连接于第三电容C3的一端,第三电容C3的另一端可以连接于基准电压端;同步整流模块160的电源端VCC3连接于第二整流二级管D2的另一端以及第三电容C3的一端。
在本申请实施例中,反激控制模块开始工作时,可以通过第二反激输出端OUT12输出的PWM波来控制开关器件Q1的导通和关断,进而控制第一变压器T1线圈中能量的储存和释放。具体地,当Q1导通时,第一变压器T1原边线圈Np1储存能量,而第一变压器T1副边线圈二极管D1由于承受反向电压处于不导通状态;当Q1关断时,第一变压器T1副边线圈二极管D1由于承受正向电压而处于导通状态,此时第一变压器T1原边线圈Np1中的电能将会耦合到副边线圈Ns1中,并经过第二整流二极管D2整流,第三电容C3滤波后输出,并为同步整流模块提供电能。
在一个实施例中,高压传输模块还包括第二开关器件Q2,正激控制模块142包括第一正激输出端OUT21;其中,
正激控制模块142的第一正激输出端OUT21通过第二开关器件Q2与第二变压器T2的原边线圈Np2连接。并且其中,
正激控制模块142,还用于通过第一正激输出端OUT21提供的脉冲宽度调制信号,控制第二开关器件Q2的导通和关断。
第二开关器件Q2导通时,动力电池包与第二变压器T2的原边线圈Np2导通,并通过第二变压器T2的原边线圈Np2将高压电能耦合至第二变压器T2的副边线圈Ns2,得到第二变压器T2的副边线圈Ns2输出的低压电能。
在本申请实施例中,在反激控制模块的第二反激输出端输出脉冲宽度调制信号时,第一反激输出端可以输出电能为正激控制模块供电,正激控制模块开始工作。正激控制模块的第一正激输出端输出脉冲宽度调制信号控制第二开关器件的导通、关断,从而控制第二变压器线圈中能量的储存和释放。
在一个实施例中,同步整流模块160,用于检测低压电能,当低压电能满足低压阈值条件时,将低压电能传输至低压控制器,以利用低压控制器唤醒电池管理系统。
继续参考图6,在一个实施例中,同步整流模块160可以包括整流模块电源端VCC3、第一整流模块输出端OUT31、第二整流模块输出端OUT32、第四开关器件Q4和第五开关器件Q5。其中,第一整流模块输出端OUT31用于控制第四开关器件Q4的导通,第二整流模块输出端OUT32用于控制第五开关器件Q5的导通。
在本申请实施例中,反激控制模块工作后,同步整流芯片开始工作。当高压传输模块的第二开关器件导通时,第二变压器的原边中的能量耦合到第二变压器的副边中。同步整流模块可以通过监测第二变压器副边的输出电压情况来控制第一整流模块输出端和第二整流模块输出端,控制第四开关器件和第五开关器件的导通和关断,从而控制第二变压器与低压控制器的导通和关断。
在一个实施例中,电池管理系统的唤醒系统100还可以包括:钳位电路模块180;钳位电路模块180,用于吸收第二变压器T2的漏感能量,以使钳位开关器件Q3的钳位电压满足预设电压阈值。
在一个实施例中,钳位电路模块180可以包括钳位开关器件Q3、钳位电容C4、充电电容C5和第三电阻R3。其中,钳位开关器件Q3的控制连接于正激控制模块的第二正激输出端OUT22,用于控制钳位电路模块180的导通。
参照图6,当第二开关器件Q2关断时,正激控制模块180通过第二正激输出端OUT22,控制钳位开关器件Q3开始工作。钳位电路模块180可以用于吸收第二变压器T2漏感能量,从而维持第二开关器件Q2的电压钳位稳定,从而避免了第二开关器件Q2上出现较大的电压应力,减小第二开关器件Q2的损耗以及延长使用寿命。
根据本申请实施例的电池管理系统的唤醒系统,高压侧动力电池包中的能量转换后为低压侧提供稳定的电能,实现了在BMS系统处于休眠状态时,基于低压侧输入低电压,经转换单元的转换,得到高压侧的唤醒电压,利用该唤醒电压,使该高压侧的动力电池包、高压控制模块以及高压传输单元开始工作,从而将高压电池包中的电能转换成稳定的低压直流电,为低压控制器提供稳定的电源输入,从而保证整个BMS系统的正常工作,减少整车对铅酸电池的耗损。
图7示出了根据本申请一实施例的电池管理系统的唤醒方法的流程图。如图7所示,电池管理系统的唤醒方法可以包括:
步骤S210,利用转换单元,将低压输入端口检测到的低压电源信号转化为高压唤醒信号,在高压唤醒信号的控制下,高压控制模块接收动力电池包提供的工作电压。
步骤S220,利用高压控制模块控制高压传输模块导通,通过导通的高压传输模块向同步整流模块提供工作电压,以及将动力电池包提供的高压电能转化为低压电能。
步骤S230,在同步整流模块的控制下,将低压电能传输至低压控制器,以对电池管理系统进行唤醒。
在一个实施例中,步骤S210中利用转换单元,将低压输入端口检测到的低压电源信号转化为高压唤醒信号的步骤,具体可以包括:
步骤S211,对低压输入端口检测到的低压电源信号进行整流滤波处理。
步骤S212,将经整流滤波处理后的低压电源信号转换为高压唤醒信号。
在一个实施例中,利用转换单元包括如下项中的任一项:光耦电路、反激电源电路和正激电源电路。
在一个实施例中,高压控制模块可以包括反激控制模块和正激控制模块;其中,步骤S210中,在高压唤醒信号的控制下,高压控制模块接收动力电池包提供的工作电压的步骤,具体可以包括:
步骤S213,通过反激控制模块的使能端接收高压唤醒信号。
步骤S214,利用高压唤醒信号,控制反激控制模块的反激电源端与动力电池包的连接导通,以使反激电源端接收动力电池包提供的工作电压。
步骤S215,通过反激控制模块的第一反激输出端,向正激控制模块的正激电源端输出工作电压,以使正激控制模块开始工作。
在一个实施例中,高压控制模块包括反激控制模块和正激控制模块,高压传输模块包括第一变压器和第二变压器。在该实施例中,步骤S220,具体可以包括:
步骤S221,利用反激控制模块控制第一变压器的导通,通过导通的第一变压器,使动力电池包向同步整流模块提供工作电压。
在一个实施例中,高压传输模块还包括第一开关器件。在该实施例中,步骤S221具体可以包括:
步骤S221-01,通过反激控制模块的第二反激输出端输出的脉冲宽度调制信号,控制第一开关器件的导通和关断。
步骤S221-02,第一开关器件导通时,动力电池包与第一变压器的原边线圈接通,第一变压器的原边线圈利用高压电能存储能量。
步骤S221-03,第一开关器件关断时,动力电池包与第一变压器的原边线圈断开,第一变压器的原边线圈存储的能量耦合至第一变压器的副边线圈。
步骤S221-04,高压传输模块通过耦合至第一变压器的副边线圈的能 量,向同步整流模块提供工作电压。
在一个实施例中,S221-04具体可以包括:对耦合至第一变压器的副边线圈的能量进行整流滤波处理,并利用整流滤波处理后的能量,向同步整流模块提供工作电压。
步骤S222,利用正激控制模块控制第二变压器的导通,通过导通的第二变压器,将动力电池包中的高压电能转化为低压电能。
在一个实施例中,高压传输模块还包括第二开关器件。在该实施例中,步骤S223具体可以包括:
步骤S222-01,通过正激控制模块提供的脉冲宽度调制信号,控制第二开关器件的导通和关断。
步骤S222-02,第二开关器件导通时,动力电池包与第二变压器的原边线圈导通,并通过第二变压器的原边线圈将高压电能耦合至第二变压器的副边线圈,得到第二变压器的副边线圈输出的低压电能。
在一个实施例中,在同步整流模块的控制下,将低压电能传输至低压控制器,利用低压控制器唤醒电池管理系统,包括:
利用同步整流模块检测低压电能,当低压电能满足低压阈值条件时,将低压电能传输至低压控制器,以利用低压控制器唤醒电池管理系统。
在一个实施例中,唤醒系统还包括钳位电路模块。在该实施例中,电池管理系统的唤醒方法还包括:
步骤S250,利用钳位电路模块吸收第二变压器的漏感能量,以使钳位开关器件的钳位电压满足预设电压阈值。
根据本申请实施例的电池管理系统的唤醒方法,当BMS处于休眠状态,需要用高压侧的电池包为低压侧提供稳定的电源时,只需在低压侧的输入端提供唤醒电源,高压传输单元就会被唤醒,从而将高压动力电池包中的电压转换后为低压侧提供稳定的输入电压,进而恢复整个BMS系统的正常工作。本申请实施例中,电池管理系统的唤醒系统电路结构设计简单,使用元器件少,可移植性好,能很好的兼容多种低压电源系统。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详 细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非 对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种电池管理系统的唤醒方法,其中,用于电池管理系统的唤醒系统,所述唤醒系统包括:动力电池包、低压输入端口、转换单元、高压控制模块、高压传输模块、同步整流模块和低压控制器;其中,
    所述电池管理系统的唤醒方法包括:
    利用所述转换单元,将所述低压输入端口检测到的低压电源信号转化为高压唤醒信号,在所述高压唤醒信号的控制下,所述高压控制模块接收所述动力电池包提供的工作电压;
    利用所述高压控制模块控制所述高压传输模块导通,通过导通的所述高压传输模块向所述同步整流模块提供工作电压,以及将所述动力电池包提供的高压电能转化为低压电能;
    在所述同步整流模块的控制下,将所述低压电能传输至所述低压控制器,利用所述低压控制器唤醒所述电池管理系统。
  2. 根据权利要求1所述的电池管理系统的唤醒方法,其中,所述利用所述转换单元,将所述低压输入端口检测到的低压电源信号转化为高压唤醒信号,包括:
    对所述低压输入端口检测到的低压电源信号进行整流滤波处理;
    将经所述整流滤波处理后的低压电源信号转换为高压唤醒信号。
  3. 根据权利要求1所述的电池管理系统的唤醒方法,其中,
    所述转换单元包括如下项中的任一项:光耦电路、反激电源电路和正激电源电路。
  4. 根据权利要求1所述的电池管理系统的唤醒方法,其中,所述高压控制模块包括反激控制模块和正激控制模块;其中,
    所述在所述高压唤醒信号的控制下,所述高压控制模块接收所述动力电池包提供的工作电压,包括:
    通过所述反激控制模块的使能端接收所述高压唤醒信号;
    利用所述高压唤醒信号,控制所述反激控制模块的反激电源端与所述动力电池包的连接导通,以使所述反激电源端接收所述动力电池包提供的 工作电压;
    通过所述反激控制模块的第一反激输出端,向所述正激控制模块的正激电源端输出工作电压,以使所述正激控制模块开始工作。
  5. 根据权利要求1所述的电池管理系统的唤醒方法,其中,所述高压控制模块包括反激控制模块和正激控制模块,所述高压传输模块包括第一变压器和第二变压器;其中,
    所述利用所述高压控制模块控制所述高压传输模块导通,通过导通的所述高压传输模块向所述同步整流模块提供工作电压,以及将所述动力电池包提供的高压电能转化为低压电能,包括:
    利用所述反激控制模块控制所述第一变压器的导通,通过导通的所述第一变压器,使所述动力电池包向所述同步整流模块提供工作电压;
    利用所述正激控制模块控制所述第二变压器的导通,通过导通的所述第二变压器,将所述动力电池包中的高压电能转化为低压电能。
  6. 根据权利要求5所述的电池管理系统的唤醒方法,其中,所述高压传输模块还包括第一开关器件;
    所述利用所述反激控制模块控制所述第一变压器的导通,通过导通的所述第一变压器,使所述动力电池包向所述同步整流模块提供工作电压,包括:
    通过所述反激控制模块的第二反激输出端输出的脉冲宽度调制信号,控制所述第一开关器件的导通和关断;
    所述第一开关器件导通时,所述动力电池包与所述第一变压器的原边线圈接通,所述第一变压器的原边线圈利用所述高压电能存储能量;
    所述第一开关器件关断时,所述动力电池包与所述第一变压器的原边线圈断开,所述第一变压器的原边线圈存储的能量耦合至所述第一变压器的副边线圈;
    所述高压传输模块通过耦合至所述第一变压器的副边线圈的能量,向所述同步整流模块提供工作电压。
  7. 根据权利要求6所述的电池管理系统的唤醒方法,其中,所述通过耦合至所述第一变压器的副边线圈的能量,向所述同步整流模块提供工作 电压,包括:
    对耦合至所述第一变压器的副边线圈的能量进行整流滤波处理,并利用所述整流滤波处理后的能量,向所述同步整流模块提供工作电压。
  8. 根据权利要求5所述的电池管理系统的唤醒方法,其中,所述高压传输模块还包括第二开关器件;
    所述利用所述正激控制模块控制所述第二变压器的导通,通过导通的所述第二变压器,将所述动力电池包中的高压电能转化为低压电能,包括:
    通过所述正激控制模块提供的脉冲宽度调制信号,控制所述第二开关器件的导通和关断;
    所述第二开关器件导通时,所述动力电池包与所述第二变压器的原边线圈导通,并通过所述第二变压器的原边线圈将所述高压电能耦合至所述第二变压器的副边线圈,得到所述第二变压器的副边线圈输出的低压电能。
  9. 根据权利要求1所述的电池管理系统的唤醒方法,其中,所述在所述同步整流模块的控制下,将所述低压电能传输至所述低压控制器,利用所述低压控制器唤醒所述电池管理系统,包括:
    利用所述同步整流模块检测所述低压电能,当所述低压电能满足低压阈值条件时,将所述低压电能传输至所述低压控制器,以利用所述低压控制器唤醒所述电池管理系统。
  10. 根据权利要求5所述的电池管理系统的唤醒方法,其中,所述唤醒系统还包括钳位电路模块;所述电池管理系统的唤醒方法还包括:
    利用所述钳位电路模块吸收所述第二变压器的漏感能量,以使所述钳位开关器件的钳位电压满足预设电压阈值。
  11. 一种电池管理系统的唤醒系统,其中,所述唤醒系统包括动力电池包、低压输入端口、转换单元、高压控制模块、高压传输模块、同步整流模块和低压控制器;其中,
    所述低压输入端口通过所述转换单元与所述高压控制模块连接,所述高压控制模块与所述高压传输模块连接,所述高压传输模块通过所述同步整流模块与所述低压控制器连接,所述低压控制器与所述电池管理系统连接;并且其中,
    所述低压输入端口,用于接收低压电源信号;
    所述转换单元,用于将所述低压电源信号转换为高压唤醒信号;
    所述高压控制模块,用于在所述高压唤醒信号的控制下,接收所述动力电池包提供的工作电压,并控制所述高压传输模块的导通;
    所述高压传输模块,用于在导通时向所述同步整流模块提供工作电压,以及将所述动力电池包中的高压电能转化为低压电能;
    所述同步整流模块,用于在所述同步整流模块的控制下,将所述低压电能传输至所述低压控制器,利用所述低压控制器唤醒所述电池管理系统。
  12. 根据权利要求11所述的唤醒系统,其中,所述唤醒系统还包括:
    第一整流滤波单元,所述第一整流滤波单元连接于所述低压输入端口和所述转换单元的输入端之间,用于对所述低压电源信号进行整流滤波处理;
    所述转换单元,还用于将所述整流滤波处理后的低压电源信号转换为高压唤醒信号。
  13. 根据权利要求11所述的唤醒系统,其中,所述转换单元包括如下项中的任一项:光耦电路、反激电源电路和正激电源电路。
  14. 根据权利要求11所述的唤醒系统,其中,所述高压控制模块包括反激控制模块和正激控制模块,其中,所述反激控制模块包括使能端、反激电源端、第一反激输出端,所述正激控制模块包括正激电源端;并且其中,
    所述反激控制模块,用于通过所述使能端接收所述高压唤醒信号,利用所述高压唤醒信号,控制所述反激电源端与所述动力电池包的连接导通,以使所述反激电源端接收所述动力电池包提供的工作电压;
    所述反激控制模块,还用于通过所述第一反激输出端,向所述正激电源端输出工作电压,所述正激控制模块开始工作。
  15. 根据权利要求11所述的唤醒系统,其中,所述高压控制模块包括反激控制模块和正激控制模块,所述高压传输模块包括第一变压器和第二变压器;其中,
    所述反激控制模块,还用于控制所述第一变压器的导通,通过导通的 所述第一变压器,使所述动力电池包向所述同步整流模块提供工作电压;
    所述正激控制模块,还用于控制所述第二变压器的导通,通过导通的所述第二变压器,将所述动力电池包中的高压电能转化为低压电能。
  16. 根据权利要求15所述的唤醒系统,其中,所述高压传输模块还包括第一开关器件,所述反激控制模块的第二反激输出端通过所述第一开关器件与所述第一变压器的原边线圈连接;其中,
    所述反激控制模块,还用于通过所述第二反激输出端输出的脉冲宽度调制信号,控制所述第一开关器件的导通和关断,
    所述第一开关器件导通时,所述动力电池包与所述第一变压器的原边线圈接通,所述第一变压器的原边线圈利用所述高压电能存储能量,
    所述第一开关器件关断时,所述动力电池包与所述第一变压器的原边线圈断开,所述第一变压器的原边线圈存储的能量耦合至所述第一变压器的副边线圈;
    所述高压传输模块,用于通过耦合至所述第一变压器的副边线圈的能量,向所述同步整流模块提供工作电压。
  17. 根据权利要求16所述的唤醒系统,其中,所述唤醒系统还包括:
    第二整流滤波单元,所述第二整流滤波单元连接于所述第一变压器的副边线圈与所述同步整流模块之间,用于对耦合至所述第一变压器的副边线圈输出的电能进行整流滤波处理;
    所述高压传输模块,还用于利用耦合至所述第一变压器的副边线圈输出的经整流滤波处理后的电能,向所述同步整流模块提供工作电压。
  18. 根据权利要求15所述的唤醒系统,其中,所述高压传输模块还包括第二开关器件,所述正激控制模块包括第一正激输出端;其中,
    所述第一正激输出端通过所述第二开关器件与所述第二变压器的原边线圈连接;并且其中,
    所述正激控制模块,还用于通过所述第一正激输出端提供的脉冲宽度调制信号,控制所述第二开关器件的导通和关断,
    所述第二开关器件导通时,所述动力电池包与所述第二变压器的原边线圈导通,并通过所述第二变压器的原边线圈将所述高压电能耦合至所述 第二变压器的副边线圈,得到所述第二变压器的副边线圈输出的低压电能。
  19. 根据权利要求11所述的唤醒系统,其中,
    所述同步整流模块,用于检测所述低压电能,当所述低压电能满足低压阈值条件时,将所述低压电能传输至所述低压控制器,以利用所述低压控制器唤醒所述电池管理系统。
  20. 根据权利要求15所述的唤醒系统,其中,所述唤醒系统还包括钳位电路模块;
    所述钳位电路模块,用于吸收所述第二变压器的漏感能量,以使所述钳位开关器件的钳位电压满足预设电压阈值。
PCT/CN2020/095051 2019-07-16 2020-06-09 电池管理系统的唤醒方法和唤醒系统 WO2021008271A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20824419.4A EP3799253B1 (en) 2019-07-16 2020-06-09 Wake-up method and wake-up system for battery management system
US17/137,411 US11171569B2 (en) 2019-07-16 2020-12-30 Wake-up method and wake-up system for battery management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641799.5A CN112238785B (zh) 2019-07-16 2019-07-16 电池管理系统的唤醒方法和唤醒系统
CN201910641799.5 2019-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/137,411 Continuation US11171569B2 (en) 2019-07-16 2020-12-30 Wake-up method and wake-up system for battery management system

Publications (1)

Publication Number Publication Date
WO2021008271A1 true WO2021008271A1 (zh) 2021-01-21

Family

ID=74167336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095051 WO2021008271A1 (zh) 2019-07-16 2020-06-09 电池管理系统的唤醒方法和唤醒系统

Country Status (5)

Country Link
US (1) US11171569B2 (zh)
EP (1) EP3799253B1 (zh)
CN (1) CN112238785B (zh)
HU (1) HUE062357T2 (zh)
WO (1) WO2021008271A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065569A (zh) * 2022-08-08 2022-09-16 南方电网数字电网研究院有限公司 电力物联网芯片化设备的硬件控制系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理系统
KR20210007719A (ko) * 2019-07-12 2021-01-20 삼성전자주식회사 배터리 관리 시스템의 전원 제어 방법 및 장치
CN113147479B (zh) * 2021-05-11 2022-08-09 昆山宝创新能源科技有限公司 休眠唤醒控制电路、充电控制系统及车辆
CN113147504B (zh) * 2021-05-17 2022-08-09 昆山宝创新能源科技有限公司 充电控制电路、充电系统、车辆及充电控制方法
CN113968136B (zh) * 2021-10-29 2023-11-10 华人运通(江苏)技术有限公司 一种电动汽车的低压能量控制方法、系统、设备及介质
WO2023097615A1 (zh) * 2021-12-02 2023-06-08 东莞新能安科技有限公司 一种激活电路、电池管理系统、电池包和用电装置
CN114750594B (zh) * 2022-04-29 2024-06-04 深蓝汽车科技有限公司 一种电池系统及车辆
CN114825969B (zh) * 2022-06-22 2022-10-18 深圳市力生美半导体股份有限公司 一种反激式开关电源及其输出控制系统、方法和芯片
CN114844340B (zh) * 2022-07-05 2022-09-20 深圳市德兰明海科技有限公司 一种交流唤醒电路和储能电源
CN115695494A (zh) * 2022-10-31 2023-02-03 重庆长安汽车股份有限公司 一种车辆馈电风险监测方法、装置、设备、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978099A (zh) * 2016-06-29 2016-09-28 浙江合众新能源汽车有限公司 一种电动汽车低压电源管理系统
CN106340916A (zh) * 2016-09-05 2017-01-18 北京新能源汽车股份有限公司 一种汽车的充电方法、充电装置、充电系统及汽车
CN106494234A (zh) * 2016-11-09 2017-03-15 简式国际汽车设计(北京)有限公司 电动车下电状态下的低压蓄电池的保护系统及方法
CN206894283U (zh) * 2017-05-23 2018-01-16 郑州宇通客车股份有限公司 电池管理系统唤醒系统和dc/dc变换器
KR20180057231A (ko) * 2016-11-22 2018-05-30 현대오트론 주식회사 배터리 고장 방지 장치
CN108944486A (zh) * 2017-05-25 2018-12-07 宁德时代新能源科技股份有限公司 馈电处理方法和馈电处理装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548435B2 (en) * 2006-03-31 2009-06-16 Astec International Limited Zero-voltage-switching DC-DC converters with synchronous rectifiers
JP5188173B2 (ja) * 2007-12-27 2013-04-24 キヤノン株式会社 充電器
KR101582577B1 (ko) * 2010-08-02 2016-01-21 엘지전자 주식회사 전기자동차 및 그 배터리의 충전제어방법.
KR101210077B1 (ko) * 2010-12-01 2012-12-07 기아자동차주식회사 전기자동차의 제어기 구동 장치
US8929103B2 (en) 2011-03-23 2015-01-06 Pai Capital Llc Integrated magnetics with isolated drive circuit
WO2012127764A1 (ja) * 2011-03-23 2012-09-27 三洋電機株式会社 バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置
US8749198B2 (en) * 2011-11-10 2014-06-10 Lear Corporation Control pilot detection circuit
US9233611B2 (en) * 2011-11-10 2016-01-12 Lear Corporation Proximity detection circuit having short protection
US9440538B2 (en) * 2011-11-11 2016-09-13 Lear Corporation Housekeeping circuit having trickle charge capabilities
CN103904373B (zh) * 2012-12-30 2017-02-08 比亚迪股份有限公司 一种电池电流管理装置
US9969276B2 (en) * 2013-10-09 2018-05-15 Ford Global Technologies, Llc Plug-in vehicle with secondary DC-DC converter
KR101551011B1 (ko) * 2013-12-18 2015-09-07 현대자동차주식회사 친환경차량의 충전방법
US20160056703A1 (en) * 2014-08-25 2016-02-25 Infineon Technologies Austria Ag Information exchange via flyback transformer for secondary side control
DE102015109692A1 (de) 2015-06-17 2016-12-22 Infineon Technologies Austria Ag Schaltwandler mit Signalübertragung von Sekundärseite zu Primärseite
CN105305846A (zh) * 2015-06-19 2016-02-03 惠科电子(深圳)有限公司 一种大功率反激电源电路及ac-dc电源
CN105515094A (zh) * 2015-12-04 2016-04-20 合肥工业大学 一种电池管理系统充电唤醒电路
CN105914805B (zh) * 2016-03-02 2018-08-31 深圳市银盾科技开发有限公司 一种汽车智能蓄电池
CN105789689B (zh) * 2016-04-13 2018-07-03 江苏峰谷源储能技术研究院有限公司 多功能24V和9.6Ah磷酸铁锂电池组
US10279695B2 (en) * 2016-08-08 2019-05-07 Hyundai Motor Company Electric vehicle parallel charging method and apparatus
CN110226275B (zh) * 2016-11-30 2023-10-13 庞巴迪动力产品公司 电气系统和用于使电气系统通电的方法
CN206481069U (zh) * 2016-12-06 2017-09-08 宁德时代新能源科技股份有限公司 电池采样集成芯片唤醒电路和电池储能系统
CN108270357B (zh) 2016-12-30 2020-03-31 比亚迪股份有限公司 开关电源及其的前馈补偿电路
DE102017000714A1 (de) * 2017-01-26 2018-07-26 Borgward Trademark Holdings Gmbh Verfahren, Batteriemanagementsystem und Fahrzeug für Auflade-Aufwachmodus
CN108215915B (zh) * 2018-01-25 2020-05-05 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978099A (zh) * 2016-06-29 2016-09-28 浙江合众新能源汽车有限公司 一种电动汽车低压电源管理系统
CN106340916A (zh) * 2016-09-05 2017-01-18 北京新能源汽车股份有限公司 一种汽车的充电方法、充电装置、充电系统及汽车
CN106494234A (zh) * 2016-11-09 2017-03-15 简式国际汽车设计(北京)有限公司 电动车下电状态下的低压蓄电池的保护系统及方法
KR20180057231A (ko) * 2016-11-22 2018-05-30 현대오트론 주식회사 배터리 고장 방지 장치
CN206894283U (zh) * 2017-05-23 2018-01-16 郑州宇通客车股份有限公司 电池管理系统唤醒系统和dc/dc变换器
CN108944486A (zh) * 2017-05-25 2018-12-07 宁德时代新能源科技股份有限公司 馈电处理方法和馈电处理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065569A (zh) * 2022-08-08 2022-09-16 南方电网数字电网研究院有限公司 电力物联网芯片化设备的硬件控制系统
CN115065569B (zh) * 2022-08-08 2022-11-11 南方电网数字电网研究院有限公司 电力物联网芯片化设备的硬件控制系统

Also Published As

Publication number Publication date
HUE062357T2 (hu) 2023-10-28
EP3799253A1 (en) 2021-03-31
EP3799253A4 (en) 2022-08-03
EP3799253B1 (en) 2023-02-01
US20210119549A1 (en) 2021-04-22
CN112238785A (zh) 2021-01-19
US11171569B2 (en) 2021-11-09
CN112238785B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021008271A1 (zh) 电池管理系统的唤醒方法和唤醒系统
WO2021008355A1 (zh) 常电提供系统和常电提供方法
CN204030965U (zh) 一种三相工频逆变器驱动板的辅助电源电路
TWI643425B (zh) 具低待機功耗之充電電源系統及其控制方法
CN110626206B (zh) 充电唤醒装置及电池系统
CN109039092B (zh) 一种电压检测电路及应用该电路的双向变换器
CN111509825A (zh) 45w宽频带电压自适应pps超级快充移动电源结构
CN108215915B (zh) 一种电能传输电路及装置
US20220121262A1 (en) Power supply guarantee system and power supply guarantee method
CN111130332A (zh) 尖峰电压抑制电路和开关电源
CN105098957B (zh) 一种太阳能控制器电路
WO2006136100A1 (en) Power supplying device and power supplying method
CN211531005U (zh) 尖峰电压抑制电路和开关电源
CN212210576U (zh) 一种低功耗的蓄电池充电器的供电电路
CN103337971A (zh) 一种用于电动车充电器控制器的电源模块电路
CN204425188U (zh) 反激式电源电路及应用该电路的能量回馈式电子负载
US11967906B2 (en) Hybrid power conversion circuit
CN218733951U (zh) 双向逆变器
CN214228513U (zh) 一种投影仪电源控制电路
WO2017133236A1 (zh) 一款带可变电压的信号转换器
TWI742830B (zh) 具數位信號隔離之網路通訊電源供應器
CN219145107U (zh) 一种基于直流母线的无线供电电路
CN207801563U (zh) 逆变电源
CN110460450B (zh) 一种支持低压有线联网的交换机
CN116418234A (zh) 电源转换控制电路及装置、电源适配器及充电控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020824419

Country of ref document: EP

Effective date: 20201223

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE