WO2012127764A1 - バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置 - Google Patents

バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置 Download PDF

Info

Publication number
WO2012127764A1
WO2012127764A1 PCT/JP2012/000494 JP2012000494W WO2012127764A1 WO 2012127764 A1 WO2012127764 A1 WO 2012127764A1 JP 2012000494 W JP2012000494 W JP 2012000494W WO 2012127764 A1 WO2012127764 A1 WO 2012127764A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
power
equalization
battery cells
Prior art date
Application number
PCT/JP2012/000494
Other languages
English (en)
French (fr)
Inventor
鋭 馬
智徳 國光
公彦 古川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/006,439 priority Critical patent/US20140009092A1/en
Publication of WO2012127764A1 publication Critical patent/WO2012127764A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery system, an equalization device, an equalization system, an electric vehicle, a moving body, a power storage device, and a power supply device.
  • a battery system including a plurality of chargeable / dischargeable battery cells is used as a driving source or a power storage device for a moving body such as an electric automobile.
  • the plurality of battery cells are connected in series, for example.
  • a series circuit including a resistor and a transistor is connected between terminals of each battery cell.
  • one battery cell having a higher terminal voltage than the other battery cells can be selectively discharged through the resistor.
  • the terminal voltages of a plurality of battery cells can be equalized.
  • An object of the present invention is to provide a battery system, an equalization device, an equalization system, an electric vehicle, a moving body, a power storage device, and a power supply device that can efficiently equalize the state of charge of a plurality of battery cells. It is.
  • a battery system includes a plurality of battery cell groups each including a plurality of battery cells connected in series, and an equalization device that equalizes the state of charge of the plurality of battery cell groups.
  • a plurality of discharge units provided in a one-to-one correspondence with a plurality of battery cells in a plurality of battery cell groups, and a charging circuit having a plurality of charging units provided in a one-to-one correspondence with a plurality of battery cell groups;
  • Each of the plurality of discharging units is connected between the cell terminals of the corresponding battery cell, and each of the plurality of charging units is the lowest potential cell terminal and the highest potential cell terminal of the corresponding battery cell group Are connected to each other.
  • the cell terminal is a general term for the positive terminal and the negative terminal of the battery cell.
  • the state of charge of the battery cell group may be the state of charge of the entire battery cell group or the state of charge of individual battery cells included in the battery cell group.
  • one or a plurality of discharging units corresponding to each of the plurality of battery cells are provided, and one or a plurality of charging units corresponding to each of the plurality of battery cell groups are provided.
  • Each of the plurality of discharge units is connected between the cell terminals of the corresponding battery cell.
  • Each of the plurality of charging units of the charging circuit is connected between the lowest potential cell terminal and the highest potential cell terminal of the corresponding battery cell group.
  • the battery cell having a higher terminal voltage than the other battery cells can be selectively discharged by the corresponding discharge unit.
  • the charge states of a plurality of battery cells can be equalized in each battery cell group.
  • the battery cell group whose terminal voltage of each battery cell is lower than other battery cell groups among a plurality of battery cell groups can be selectively charged by the corresponding charging unit. Thereby, the charge state of a battery cell can be equalized between several battery cell groups.
  • the time required to equalize the state of charge of a plurality of battery cells of each battery cell group by discharging is greater than the time required to equalize the state of charge of all battery cells of the plurality of battery cell groups by discharge. Also short. Moreover, the equalization of the charging state of the plurality of battery cells by charging can be performed in a shorter time than the equalization of the charging state of the plurality of battery cells by discharging.
  • the charge state of all the battery cells in each battery cell group is equalized by discharging, and the charge state of the battery cells among the plurality of battery cell groups By equalizing by charging, it is possible to efficiently equalize the state of charge of all the battery cells.
  • the number of charging units is larger than the case where a plurality of charging units are provided corresponding to the plurality of battery cells. Less. Thereby, the enlargement of the charging circuit is suppressed.
  • the charging circuit is provided as a plurality of charging units corresponding to a first coil connected to a power source and a plurality of battery cell groups on a one-to-one basis, and a plurality of induced currents flow along with a magnetic field change by the first coil.
  • a second coil, and a plurality of first switches for independently switching a plurality of second coils between a state in which an induced current flows in each second coil and a state in which no induced current flows in each second coil May be included.
  • the induced current by the first coil can be selectively generated in the plurality of second coils.
  • the battery cell group whose terminal voltage of each battery cell is lower than other battery cell groups among a plurality of battery cell groups can be selectively charged. Accordingly, the state of charge can be equalized between the plurality of battery cell groups with a simple configuration.
  • the first coil may be connected to a plurality of battery cell groups as a power source.
  • a plurality of battery cell groups can be selectively charged with a simple configuration without using another power source.
  • the first coil may be connected to a power source different from the plurality of battery cell groups as a power source.
  • the plurality of battery cell groups can be selectively charged without lowering the terminal voltage of the plurality of battery cell groups.
  • the charging circuit may be configured to be periodically switchable between a state in which current flows from the power source to the first coil and a state in which current does not flow from the power source to the first coil.
  • the magnetic field is continuously changed by periodically switching between a state in which current flows from the power source to the first coil and a state in which current does not flow from the power source to the first coil.
  • an induced current can be continuously passed through the selected second coil, and the corresponding battery cell group can be charged in a short time.
  • the discharge unit includes a plurality of resistors corresponding to a plurality of battery cells in a plurality of battery cell groups, a state in which each resistor is electrically connected between cell terminals of the corresponding battery cells, and a battery corresponding to each resistor.
  • a plurality of second switches that can be independently switched to a state of being electrically disconnected from the cell terminal of the cell may be included.
  • a plurality of battery cells can be selectively connected to the resistor.
  • the battery cell whose terminal voltage is higher than other battery cells among a plurality of battery cells can be selectively discharged. Therefore, the state of charge can be equalized in each battery cell group with a simple configuration.
  • An equalization apparatus is an equalization apparatus that equalizes the state of charge of a plurality of battery cell groups each including a plurality of battery cells connected in series, and a plurality of battery cell groups
  • Each of the plurality of discharge units includes a plurality of discharge units provided in one-to-one correspondence with the battery cells, and a charging circuit having a plurality of charge units provided in one-to-one correspondence with the plurality of battery cell groups. And connected between the cell terminals of the corresponding battery cells, and each of the plurality of charging units is connected between the lowest potential cell terminal and the highest potential cell terminal of the corresponding battery cell group.
  • each of the plurality of discharge units is connected between the cell terminals of the corresponding battery cells.
  • Each of the plurality of charging units of the charging circuit is connected between the lowest potential cell terminal and the highest potential cell terminal of the corresponding battery cell group.
  • the battery cell having a higher terminal voltage than the other battery cells can be selectively discharged by the corresponding discharge unit.
  • the charge states of a plurality of battery cells can be equalized in each battery cell group.
  • the battery cell group whose terminal voltage of each battery cell is lower than other battery cell groups among a plurality of battery cell groups can be selectively charged by the corresponding charging unit. Thereby, the charge state of a battery cell can be equalized between several battery cell groups.
  • the time required to equalize the state of charge of a plurality of battery cells of each battery cell group by discharging is greater than the time required to equalize the state of charge of all battery cells of the plurality of battery cell groups by discharge. Also short. Moreover, the equalization of the charging state of the plurality of battery cells by charging can be performed in a shorter time than the equalization of the charging state of the plurality of battery cells by discharging.
  • the charge state of all the battery cells in each battery cell group is equalized by discharging, and the charge state of the battery cells among the plurality of battery cell groups By equalizing by charging, it is possible to efficiently equalize the state of charge of all the battery cells.
  • the number of charging units is larger than the case where a plurality of charging units are provided corresponding to the plurality of battery cells. Less. Thereby, the enlargement of the charging circuit is suppressed.
  • An equalization system includes a battery system according to the above-described one aspect of the present invention, and a control unit that controls a plurality of discharging units and a charging circuit of the battery system.
  • the equalization system a plurality of discharging units and charging circuits of the battery system are controlled by the control unit. Thereby, the charge states of a plurality of battery cell groups each including a plurality of battery cells connected in series are equalized. In this case, since the battery system is used, it is possible to efficiently equalize the charged state of all the battery cells while suppressing an increase in the size of the charging circuit.
  • the control unit may control the plurality of discharge units and the charging circuit so that the charge state is equalized between the plurality of battery cell groups after the charge state is equalized in each battery cell group. .
  • each battery cell group the plurality of battery cells are selectively discharged, so that the charge states of the plurality of battery cells are equalized. Thereafter, the plurality of battery cell groups are selectively charged, so that the charge states of all the battery cells are equalized. Thereby, the charge state of all the battery cells can be equalized efficiently and accurately.
  • An electric vehicle includes an equalization system according to still another aspect of the present invention, a motor driven by electric power from the equalization system, and drive wheels that rotate by the rotational force of the motor. It is to be prepared.
  • the motor In the electric vehicle, the motor is driven by the electric power from the equalization system.
  • the drive wheel is rotated by the rotational force of the motor, so that the electric vehicle moves.
  • the equalization system since the equalization system is used, it is possible to efficiently equalize the charged state of all the battery cells while suppressing an increase in the size of the charging circuit. Thereby, the reliability of an electric vehicle can be improved, suppressing the enlargement of an electric vehicle.
  • a moving body is a power source that receives electric power from an equalization system according to the above-mentioned further another aspect of the present invention, a moving main body, and the equalization system, and converts the electric power into power. And a drive unit that moves the moving main body by the power converted by the power source.
  • the electric power from the equalization system is converted into power by the power source, and the drive unit moves the moving main body by the power.
  • the equalization system since the equalization system is used, it is possible to efficiently equalize the charged state of all the battery cells while suppressing an increase in the size of the charging circuit. Thereby, the reliability of a moving body can be improved, suppressing the enlargement of a moving body.
  • An electric power storage device includes an equalization system according to the above-mentioned further another aspect of the present invention, and a system control unit that performs control related to charging or discharging of a plurality of battery cells of the equalization device. It is.
  • control related to charging or discharging of a plurality of battery cells is performed by the system control unit.
  • the system control unit deterioration, overdischarge, and overcharge of a plurality of battery cells can be prevented.
  • the charge condition of all the battery cells can be equalized efficiently, suppressing the enlargement of a charging circuit.
  • the reliability of an electric power storage apparatus can be improved, suppressing the enlargement of an electric power storage apparatus.
  • a power supply device is a power supply device that can be connected to the outside, and is controlled by the power storage device according to still another aspect of the present invention and a system control unit of the power storage device, and stores power.
  • a power conversion device that performs power conversion between a plurality of battery cells of the device and the outside is provided.
  • power conversion is performed by the power conversion device between the plurality of battery cells and the outside.
  • Control related to charging or discharging of a plurality of battery cells is performed by controlling the power conversion device by the system control unit of the power storage device.
  • the charge condition of all the battery cells can be equalized efficiently, suppressing the enlargement of a charging circuit.
  • the reliability of a power supply device can be improved, suppressing the enlargement of a power supply device.
  • the state of charge of a plurality of battery cells can be equalized efficiently.
  • FIG. 1 is a block diagram showing a configuration of an equalization apparatus, a battery system including the same, and an equalization system according to the first embodiment of the present invention.
  • FIG. 2 is a timing chart for explaining a first example of the second equalization process.
  • FIG. 3 is a flowchart showing the control operation of the voltage detection unit during the first equalization process.
  • FIG. 4 is a flowchart showing the control operation of the battery ECU during the second equalization process.
  • FIG. 5 is a timing chart for explaining a second example of the second equalization processing.
  • FIG. 6 is a timing chart for explaining a third example of the second equalization process.
  • FIG. 7 is a block diagram showing a configuration of an equalization apparatus according to a second embodiment of the present invention, a battery system including the equalization apparatus, and an equalization system.
  • FIG. 8 is a timing chart for explaining the second equalization process in the equalization system of FIG.
  • FIG. 9 is a block diagram showing a configuration of an electric automobile according to the third embodiment.
  • FIG. 10 is a block diagram showing a configuration of a power supply device according to the fourth embodiment.
  • an equalization apparatus according to an embodiment of the present invention, a battery system including the same, an equalization system, an electric vehicle, a moving body, a power storage apparatus, and a power supply apparatus will be described.
  • FIG. 1 shows a configuration of an equalization apparatus, a battery system including the same, and an equalization system according to the first embodiment of the present invention.
  • the equalization system 500 includes a battery system 100 and a control unit 200.
  • the battery system 100 includes a plurality (three sets in this example) of battery cell groups 110, an equalizing device 60, and a contactor 65.
  • the plurality of battery cell groups 110 are connected in series with each other.
  • Each battery cell group 110 includes a plurality of battery cells 10 connected in series with each other.
  • Each battery cell 10 is a secondary battery.
  • a lithium ion battery is used as the battery cell 10.
  • the positive terminal and the negative terminal of each battery cell 10 are collectively referred to as a cell terminal.
  • the cell terminal having the highest potential and the cell terminal having the lowest potential in the plurality of battery cell groups 110 are connected to a load (not shown) (D1, D2 in FIG. 1).
  • a contactor 65 is inserted between the cell terminal having the highest potential and the load.
  • the equalizing device 60 includes a discharging circuit 61 and a charging circuit 62.
  • Discharge circuit 61 includes a plurality of discharge units DU provided corresponding to a plurality of battery cells 10 of a plurality of battery cell groups 110, respectively.
  • Each discharge unit DU includes a series circuit including a resistor R and a switching element C1, and is connected between cell terminals of the corresponding battery cell 10.
  • the charging circuit 62 includes a primary coil L1, a switching element C2, a plurality of secondary coils L2, a plurality of switching elements C3, and a plurality of diodes D.
  • One end of the primary coil L1 is connected to the highest potential cell terminal in the plurality of battery cell groups 110, and the other end is connected to the lowest potential cell terminal in the plurality of battery cell groups 110 via the switching element C2.
  • the plurality of secondary coils L2, the plurality of switching elements C3, and the plurality of diodes D are provided so as to correspond to the plurality of battery cell groups 110, respectively.
  • each secondary coil L2 is connected to the highest potential cell terminal of the corresponding battery cell group 110 via the switching element C3 and the diode D, and the other end is the lowest potential cell of the corresponding battery cell group. Connected to the terminal.
  • the primary coil L1 and the plurality of secondary coils L2 constitute a transformer TR.
  • the polarities of the plurality of secondary coils L2 are set opposite to the polarities of the primary coil L1.
  • the control unit 200 includes a plurality of voltage detection units 201 and a battery ECU (Electronic Control Unit) 202.
  • the plurality of voltage detection units 201 are provided so as to correspond to the plurality of battery cell groups 110, respectively.
  • Each voltage detection unit 201 includes, for example, an ASIC (application-specific integrated circuit).
  • Each voltage detection unit 201 is connected to the cell terminals of the plurality of battery cells 10 of the corresponding battery cell group 110.
  • the battery ECU 202 includes, for example, a CPU (Central Processing Unit) and a memory, or a microcomputer. Battery ECU 202 is connected to a plurality of voltage detection units 201.
  • Each voltage detection unit 201 detects the terminal voltage of each battery cell 10 of the corresponding battery cell group 110, and controls on / off of the switching element C1 of the corresponding discharge unit DU based on the detected terminal voltage.
  • Each voltage detection unit 201 controls on / off of the corresponding switching element C ⁇ b> 3 in accordance with a command from the battery ECU 202.
  • each voltage detection unit 201 gives the value of the detected terminal voltage to the battery ECU 202.
  • the battery ECU 202 controls on / off of the switching element C2 based on the value of the terminal voltage given from the plurality of voltage detection units 201, and gives an on / off command of each switching element C3 to each voltage detection circuit 201.
  • the battery ECU 202 turns off the contactor 65 when an abnormality occurs in the battery system 100.
  • the contactor 65 is turned off, no current flows between the plurality of battery cell groups 110 and the load. Therefore, abnormal heat generation of the plurality of battery cell groups 110 is prevented.
  • the battery cell group 110 having the lowest potential from the battery cell group 110 having the highest potential in FIG. 1 will be referred to as battery cell groups B1 to B3 in order.
  • the three secondary coils L2, the three switching elements C3, and the three voltage detectors 201 corresponding to the battery cell groups B1 to B3 are respectively connected to the secondary coils L21 to L23, the switching elements C31 to C33, and the voltage detectors A1 to A1. Call it A3.
  • three battery cell groups 110 are provided, but not limited to this, two battery sets or four or more battery cell groups 110 may be provided. Further, the number of battery cells 10 included in each of the plurality of battery cell groups 110 may be equal to each other or may be different from each other.
  • each voltage detection unit 201 controls on / off of switching element C1 and corresponding switching element C3 of corresponding discharge unit DU
  • battery ECU 202 controls on / off of switching element C2 and contactor 65.
  • the battery ECU 202 may control on / off of the switching element C1 or each switching element C3 of each discharge unit DU based on the value of the terminal voltage given from the plurality of voltage detection units 201, and any one of the voltage detection units 201 may be controlled.
  • On / off of the switching element C2 or the contactor 65 may be controlled.
  • the equalization apparatus 60 performs an equalization process for equalizing the charge states of all the battery cells 10 in the battery cell groups B1 to B3.
  • the state of charge includes, for example, terminal voltage, SOC (charge rate), remaining capacity, depth of discharge (DOD), integrated current value, or difference in charged amount.
  • the terminal voltage is equalized as the charge state equalization.
  • a first equalization process in each of the battery cell groups B1 to B3 and a second equalization process between the plurality of battery cell groups B1 to B3 are performed.
  • the second equalization process is performed after the first equalization process is performed.
  • the 1st equalization process in battery cell group B1 is demonstrated.
  • the switching element C1 of the discharge unit DU corresponding to the one battery cell 10 is turned on. Thereby, the electric charge charged in one battery cell 10 is discharged through the resistor R.
  • the switching element C1 of the discharge unit DU corresponding to the one battery cell 10 is turned off.
  • the first equalization process in the battery cell groups B2 and B3 is performed. Thereby, the terminal voltages of the plurality of battery cells 10 in the battery cell group B2 are equalized, and the terminal voltages of the plurality of battery cells 10 in the battery cell group B3 are equalized.
  • FIG. 2 is a timing chart for explaining a first example of the second equalization process. 2 and FIGS. 5, 6, and 8 to be described later, the terminal voltages of the battery cells 10 of the battery cell groups B1 to B3, the states of the switching elements C2, C31 to C33, the current flowing through the primary coil L1, and two The current flowing through the next coils L21 to L23 is shown.
  • the terminal voltages of the plurality of battery cells 10 are maintained substantially uniformly in each of the battery cell groups B1 to B3.
  • the terminal voltage of each battery cell 10 in the battery cell group B1 is referred to as a terminal voltage V1
  • the terminal voltage of each battery cell 10 in the battery cell group B2 is referred to as a terminal voltage V2
  • each battery cell 10 in the battery cell group B3 is referred to as a terminal voltage V2.
  • the terminal voltage is referred to as terminal voltage V3.
  • the current flowing through the primary coil L1 is represented as I1
  • the currents flowing through the secondary coils L21 to L23 are represented as I21 to I23, respectively.
  • the second equalization process starts from time t0.
  • the terminal voltage V3 is higher than the terminal voltage V2
  • the terminal voltage V1 is higher than the terminal voltage V3.
  • the switching elements C2, C31 to C33 are turned off.
  • the switching element C32 is turned on. Thereby, an induced current due to the pulse current of the primary coil L1 flows to the secondary coil L32. In this case, current flows from the lowest potential cell terminal of the battery cell group B2 to the highest potential cell terminal. Thereby, the battery cell group B2 is charged, and the terminal voltage V2 gradually rises.
  • the terminal voltages V1 and V2 become substantially equal to each other.
  • the terminal voltage V3 is lower than the terminal voltages V1 and V2. Therefore, the switching element C32 is turned off and the switching element C33 is turned on. As a result, the induced current does not flow through the secondary coil L32, and the terminal voltage V2 gradually decreases together with the terminal voltage V1. On the other hand, an induced current flows through the secondary coil L33. As a result, the terminal voltage V3 gradually increases.
  • the terminal voltages V1 to V3 become substantially equal to each other. Therefore, the switching elements C2 and C33 are turned off, and the second equalization process ends.
  • the battery cell groups B2 and B3 other than the battery cell group B1 having the highest terminal voltage (hereinafter referred to as the reference battery cell group) B1 are sequentially charged by the induced current generated by the transformer TR. Thereby, the terminal voltages are equalized between the battery cell groups B1 to B3. As a result, the terminal voltages of all the battery cells 10 are equalized.
  • the battery cell group B2 having the lowest terminal voltage is charged first at the start of the second equalization process, but this is not restrictive.
  • Other battery cell groups excluding the reference battery cell group may be charged in any order.
  • FIG. 3 is a flowchart showing the control operation of the voltage detection unit A1 during the first equalization process.
  • the voltage detector A1 detects the terminal voltage of each battery cell 10 of the battery cell group B1 (step S1).
  • the voltage detection unit A1 has a difference between the largest terminal voltage and the smallest terminal voltage among the detected terminal voltages (hereinafter referred to as the maximum terminal voltage difference) larger than a predetermined threshold value T1. It is determined whether or not (step S2).
  • the voltage detection unit A1 selects the battery cell 10 to be discharged among the plurality of battery cells 10 of the battery cell group B1 based on the detected terminal voltage. (Step S3).
  • the voltage detection unit A1 controls ON / OFF of the plurality of switching elements C1 corresponding to the battery cell group B1 so that the selected battery cell 10 is discharged (step S4). In this case, the switching element C1 corresponding to the selected battery cell 10 is turned on, and the switching element C1 corresponding to the unselected battery cell 10 is turned off.
  • the voltage detection unit A1 repeats the processes of steps S1 to S4 until the maximum terminal voltage difference becomes equal to or less than the threshold value T1.
  • the voltage detection unit A1 turns off all the switching elements C1 corresponding to the battery cell group B1, and ends the first equalization process.
  • the control operation of the voltage detectors A2 and A3 is the same as the control operation of the voltage detector A1 shown in FIG. In this way, the voltage detectors A1 to A3 control the on / off of the plurality of switching elements C1, whereby the terminal voltages of the plurality of battery cells 10 are equalized in each of the battery cell groups B1 to B3.
  • FIG. 4 is a flowchart showing the control operation of the battery ECU 202 during the second equalization process.
  • the switching elements C2, C31 to C33 are turned off.
  • the battery ECU 202 acquires the value of the terminal voltage of each battery cell 10 of the battery cell groups B1 to B3 from the voltage detection units A1 to A3 (step S11).
  • the terminal voltage values of the plurality of battery cells 10 in each of the battery cell groups B1 to B3 are substantially equal.
  • the battery ECU 202 determines whether or not the difference between the acquired terminal voltage values (maximum terminal voltage difference) is larger than a predetermined threshold value T2 (step S12).
  • the threshold value T2 is equal to the threshold value T1, for example.
  • battery ECU 202 periodically switches on / off switching element C2 (step S13).
  • the battery ECU 202 selects a battery cell group to be charged based on the acquired terminal voltage value (step S14).
  • the battery ECU 202 gives an on / off command of the switching elements C31 to C33 to each of the voltage detection units A1 to A3 so that the selected battery cell group is charged (step S15).
  • the switching element corresponding to the selected battery cell group is turned on, and the switching element corresponding to the battery cell group not selected is turned off.
  • the battery ECU 202 acquires the value of the terminal voltage of each battery cell 10 of the battery cell groups B1 to B3 from the voltage detection units A1 to A3 (step S16), and the largest value among the acquired terminal voltage values. And whether or not the difference between the terminal voltage value of each battery cell 10 in the battery cell group selected in step S14 (hereinafter referred to as a selected terminal voltage difference) is equal to or less than a predetermined threshold value T3. (Step S17).
  • the threshold value T3 is smaller than the threshold value T2, for example.
  • battery ECU 202 repeats the processes of steps S16 and S17 until the selection terminal voltage difference becomes equal to or less than threshold value T3.
  • battery ECU 202 returns to the process of step S12.
  • the battery ECU 202 repeats the processes of steps S12 to S17 until the maximum terminal voltage difference becomes equal to or less than the threshold value T2.
  • the maximum terminal voltage difference becomes equal to or smaller than threshold value T2
  • battery ECU 202 turns off switching elements C2, C31 to C33, and ends the second equalization process.
  • the switching between the switching elements C2, C31 to C33 is controlled by the battery ECU 202 and the voltage detectors A1 to A3, so that equalization is performed between the battery cell groups B1 to B3.
  • the terminal voltages of all the battery cells 10 are equalized.
  • the plurality of battery cells 10 are selectively discharged by the discharge circuit 61, whereby the terminal voltages are equalized in each battery cell group 110.
  • the terminal voltages are equalized among the plurality of battery cell groups 110.
  • the time required to equalize the terminal voltage of each battery cell group 110 by discharging is shorter than the time required to equalize the terminal voltage of all battery cells 10 by discharging. Further, the equalization of the terminal voltages of the plurality of battery cells 10 by charging can be performed in a shorter time than the equalization of the terminal voltages of the plurality of battery cells 10 by discharging.
  • the terminal voltages of all the battery cells 10 are equalized by discharging, the terminal voltages are equalized by discharging in each battery cell group 110, and the terminal voltages are equalized by charging among the plurality of battery cell groups 110. As a result, the terminal voltages of all the battery cells 10 can be equalized efficiently.
  • the second equalization process is performed between the plurality of battery cells 10.
  • the first equalization process is performed after the second equalization process
  • the second equalization process is performed in a state where the terminal voltages of the battery cell groups 110 vary
  • the terminal voltage is equalized among the plurality of battery cell groups 110 after the terminal voltage is equalized in each battery cell group 110.
  • the second equalization process is performed in a state where the terminal voltages are equalized in each battery cell group 110, overcharge of each battery cell 10 is prevented.
  • a plurality of battery cell groups 110 are used as a power source for the primary coil L1. Thereby, a plurality of battery cell groups 110 can be selectively charged with a simple configuration without using another power source.
  • FIG. 5 is a timing chart for explaining a second example of the second equalization process.
  • the initial state of the example of FIG. 5 is the same as the initial state of the example of FIG.
  • the difference between the example of FIG. 5 and the example of FIG. 2 will be described.
  • the switching elements C32 and C33 are turned on at time t11. Thereby, the induced current due to the pulse current of the primary coil L1 flows through the secondary coils L22 and L23, and the battery cell groups B2 and B3 are charged. In this case, a larger induced current flows through the secondary coil corresponding to the battery cell group having the lower terminal voltage among the secondary coils L22 and L23. In this example, the induced current flowing through the coil L22 is larger than the induced current flowing through the coil L23. Therefore, the difference between the terminal voltages V2 and V3 is gradually reduced.
  • the battery cell groups other than the reference battery cell group among the plurality of battery cell groups are charged simultaneously.
  • charging of the battery cell group whose terminal voltage is substantially equal to the terminal voltage of the reference battery cell group is stopped in order.
  • the terminal voltage can be equalized between the plurality of battery cell groups more efficiently.
  • FIG. 6 is a timing chart for explaining a third example of the second equalization process.
  • the initial state of the example of FIG. 6 is the same as the initial state of the example of FIG.
  • the difference between the example of FIG. 6 and the example of FIG. 2 will be described.
  • the switching elements C31 to C33 are all turned on at time t21. Thereby, the induced current by the primary coil L1 flows to all of the secondary coils L21 to L23, and the battery cell groups B21 to B23 are charged.
  • a larger induced current flows through the secondary coil corresponding to the battery cell group having the lower terminal voltage among the secondary coils L21 to L23.
  • the induced current flowing through the coil L23 is larger than the induced current flowing through the coil L21
  • the induced current flowing through the coil L22 is larger than the induced current flowing through the coil L23.
  • the supplied charge amount is smaller than the discharged charge amount. Therefore, the terminal voltage V1 gradually decreases.
  • the supplied charge amount is larger than the discharged charge amount. Therefore, the terminal voltages V2 and V3 gradually increase. Further, the difference between the terminal voltages V2 and V3 is gradually reduced.
  • the switching elements C31 to C33 are turned off.
  • the difference between the terminal voltage V1 and the terminal voltage V2 becomes smaller than the threshold value, and the switching elements C31 to C33 are turned off.
  • the battery cell groups other than the battery cell group having the highest terminal voltage are charged in order.
  • the switching element C32 is turned on and the battery cell group B2 is charged.
  • the switching element C32 is turned off and the switching element C33 is turned on.
  • charging of the battery cell group B2 is stopped and charging of the battery cell group B3 is started.
  • the switching elements C2 and C33 are turned off, and charging of the battery cell group B2 is stopped.
  • all battery cell groups are initially charged at the same time.
  • the maximum terminal voltage difference of all the battery cell groups becomes smaller than the threshold value, other battery cell groups excluding the reference battery cell group are charged in order.
  • the terminal voltage can be equalized between the plurality of battery cell groups more efficiently.
  • FIG. 7 is a block diagram showing a configuration of an equalization apparatus, a battery system including the same, and an equalization system according to a second embodiment of the present invention. A difference between the equalization system 500 of FIG. 7 and the equalization system 500 of FIG. 1 will be described.
  • one end of the primary coil L1 is connected to the positive terminal of the external power source PS, and the other end is connected to the negative terminal of the external power source PS via the switching element C2.
  • the switching element C2 When the switching element C2 is turned on, a current flows from the external power source PS to the primary coil L1.
  • FIG. 8 is a timing chart for explaining the second equalization process in the equalization system 500 of FIG.
  • the initial state of the example of FIG. 8 is the same as the initial state of the example of FIG.
  • the example of FIG. 8 will be described while referring to differences from the example of FIG.
  • the switching element C32 is turned on. Thereby, the battery cell group B2 is charged, and the terminal voltage V2 gradually rises.
  • the switching element C32 is turned off and the switching element C33 is turned on. Thereby, charging of the battery cell group B2 is stopped, and charging of the battery cell group B3 is started.
  • the switching elements C2 and C33 are turned off, and the charging of the battery cell group B3 is stopped. Thereby, the second equalization process ends.
  • the battery cell groups B1 to B3 can be selectively charged without reducing the terminal voltages V1 to V3 of the battery cell groups B1 to B3 during the second equalization process. it can. Thereby, the terminal voltages can be equalized more easily and accurately between the battery cell groups B1 to B3.
  • the second equalization process may be performed similarly to the example of FIG. 5, or the second equalization process may be performed similarly to the example of FIG. 6. In that case, the terminal voltage can be equalized between the plurality of battery cell groups more efficiently.
  • the transformer TR is used as the charging circuit, but the example of the charging circuit is not limited to this.
  • an external power source and a switching element may be provided as a charging circuit so as to correspond to each battery cell group 110, and the battery cell group 110 to be charged may be selectively connected to the external power source.
  • a power receiving coil may be connected to each battery cell group 110, and the charging circuit may be configured so that the battery cell group 110 to be charged is selectively charged by non-contact power feeding other than a transformer.
  • the electric vehicle according to the present embodiment includes equalization system 500 according to the first or second embodiment.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 9 is a block diagram showing a configuration of an electric automobile according to the third embodiment.
  • electric vehicle 600 according to the present embodiment includes a vehicle body 610.
  • power conversion unit 601 includes an inverter circuit.
  • the equalization system 500 is connected to the motor 602 via the power conversion unit 601 and is also connected to the main control unit 608.
  • the battery ECU 202 (FIG. 1) of the equalization system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10.
  • the charge amount of each battery cell 10 is given to the main control unit 608 from the battery ECU 202.
  • an accelerator device 604, a brake device 605, a rotation speed sensor 606, and a start instruction unit 607 are connected to the main control unit 608.
  • the main control unit 608 includes, for example, a CPU and a memory, or a microcomputer.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detection unit 604b detects the amount of operation of the accelerator pedal 604a based on the state where the user is not operating. The detected operation amount of the accelerator pedal 604a is given to the main control unit 608.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the user.
  • an operation amount depression amount
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 608.
  • the rotation speed sensor 606 detects the rotation speed of the motor 602. The detected rotation speed is given to the main control unit 608.
  • the main control unit 608 is given the charge amount of each battery cell, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation speed of the motor 602.
  • the main control unit 608 performs charge / discharge control of the plurality of battery cells 10 and power conversion control of the power conversion unit 601 based on these pieces of information. For example, when the electric vehicle 600 is started and accelerated based on the accelerator operation, the power of the plurality of battery cells 10 is supplied from the equalization system 500 to the power conversion unit 601.
  • the main control unit 608 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and uses the command torque as the command torque.
  • the control signal based on this is given to the power converter 601.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the equalization system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the plurality of battery cells 10 and supplies the converted power to the plurality of battery cells 10. Thereby, the plurality of battery cells 10 are charged.
  • the equalization system 500 according to the first or second embodiment may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
  • a ship equipped with the equalization system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 9, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the hull corresponds to the moving main body
  • the motor corresponds to the power source
  • the screw corresponds to the drive unit.
  • the motor receives electric power from the equalization system 500 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
  • an aircraft equipped with the equalization system 500 includes, for example, a fuselage instead of the vehicle body 610 of FIG. 9, a propeller instead of the drive wheel 603, and an acceleration input unit instead of the accelerator device 604, A deceleration input unit is provided instead of the brake device 605.
  • the airframe corresponds to the moving main body
  • the motor corresponds to the power source
  • the propeller corresponds to the drive unit.
  • the motor receives electric power from the equalization system 500 and converts the electric power into motive power, and the propeller is rotated by the converted motive power, so that the airframe moves.
  • An elevator equipped with the equalization system 500 includes, for example, a saddle instead of the vehicle body 610 of FIG. 9, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • the kite corresponds to the moving main body
  • the motor corresponds to the power source
  • the lifting rope corresponds to the drive unit.
  • the motor receives electric power from the equalization system 500 and converts the electric power into motive power, and the elevating rope is wound up by the converted motive power, so that the kite moves up and down.
  • the walking robot equipped with the equalization system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 9, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device. Instead of 605, a deceleration input unit is provided.
  • the body corresponds to the moving main body
  • the motor corresponds to the power source
  • the foot corresponds to the drive unit.
  • the motor receives electric power from the equalization system 500 and converts the electric power into power, and the torso moves by driving the foot with the converted power.
  • the power source receives the electric power from the equalization system 500 and converts the electric power into power, and the drive unit moves by the power converted by the power source. Move the body.
  • the equalization system 500 according to the first or second embodiment is used, thereby suppressing the enlargement of the charging circuit 62.
  • the terminal voltages of all the battery cells 10 can be equalized efficiently. Therefore, it is possible to improve the reliability of the moving body while suppressing an increase in size of the moving body.
  • FIG. 10 is a block diagram showing a configuration of a power supply device according to the fourth embodiment.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes an equalization system group 711 and a controller 712.
  • the equalization system group 711 includes a plurality of equalization systems 500 according to the first or second embodiment. Between the plurality of equalization systems 500, the plurality of battery cells 10 may be connected in parallel to each other or may be connected in series to each other.
  • each equalization system 500 for example, each battery cell group 110, and a plurality of discharge units DU and voltage detection units 201 corresponding to the battery cell group 110 are provided as one package.
  • the controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer.
  • the controller 712 is connected to the battery ECU 202 (FIG. 1) of each equalization system 500.
  • the battery ECU 202 of each equalization system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10, and gives the calculated charge amount to the controller 712.
  • the controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 202, thereby controlling the discharge or charging of the plurality of battery cells 10 included in each equalization system 500. I do.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the equalization system group 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets.
  • various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, whereby the plurality of battery cells 10 included in the equalization system group 711 are discharged and charged.
  • power supplied from the equalization system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further, DC / AC (direct current / alternating current) is converted by the DC / AC inverter 722. ) Converted.
  • the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1.
  • the power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2.
  • DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2.
  • the electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
  • the controller 712 performs the following control as an example of control related to discharging of the plurality of battery cells 10 included in each equalization system 500.
  • the controller 712 determines whether or not to stop discharging based on the amount of charge of each battery cell 10 given from each battery ECU 202 (FIG. 1), and power based on the determination result.
  • the conversion device 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 1) included in the equalization system group 711 is smaller than a predetermined threshold, the controller 712
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
  • the controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each equalization system 500.
  • the controller 712 determines whether or not to stop charging based on the charge amount of each battery cell 10 given from each battery ECU 202 (FIG. 1), and power based on the determination result.
  • the conversion device 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the equalization system group 711 exceeds a predetermined threshold value, the controller 712 stops charging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled such that the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
  • the controller 712 may have the same function as the battery ECU 202 instead of the battery ECU 202 being provided in each equalization system 500. In this case, the controller 712 controls the discharge circuit 61 and the charging circuit 62 of the equalization device 60, whereby the first and second equalization processes are performed in each equalization system 500.
  • the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • equalization system 500 is provided with a plurality of equalization systems 500.
  • the present invention is not limited to this, and only one equalization system 500 may be provided.
  • the equalizing device 60 is an example of an equalizing device
  • the battery cell 10 is an example of a battery cell
  • the battery cell group 110 (B1 to B3) is an example of a battery cell group
  • the unit DU is an example of a discharging unit
  • the charging circuit 62 is an example of a charging circuit
  • the secondary coils L2 (L21 to L23) are examples of a charging unit and a second coil
  • the primary coil L1 is a first coil
  • a switching element C3 (C31 to C33) is an example of a first switch
  • a resistor R is an example of a resistor
  • a switching element C1 is an example of a second switch.
  • the battery system 100 is an example of a battery system
  • the equalization system 500 is an example of an equalization system
  • the control part 200 is an example of a control part
  • the electric vehicle 600 is an example of an electric vehicle or a moving body.
  • the motor 602 is an example of a motor or a power source
  • the drive wheel 603 is an example of a drive wheel or a drive unit
  • the vehicle body 610 is an example of a moving main body
  • the power storage device 710 is an example of a power storage device.
  • the power supply device 700 is an example of a power supply device
  • the controller 712 is an example of a system control unit
  • the power conversion device 720 is an example of a power conversion device.

Abstract

 均等化装置は、放電回路および充電回路を含む。放電回路は、複数のバッテリセル群の複数のバッテリセルにそれぞれ対応して設けられた複数の放電部を含む。充電回路は、一次コイル、スイッチング素子、複数の二次コイル、複数のスイッチング素子および複数のダイオードを含む。複数の二次コイル、複数のスイッチング素子および複数のダイオードは、複数のバッテリセル群にそれぞれ対応するように設けられる。一次コイルおよび複数の二次コイルによりトランスが構成される。

Description

バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置
 本発明は、バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置に関する。
 電動自動車等の移動体の駆動源または蓄電装置として、充放電可能な複数のバッテリセルを含むバッテリシステムが用いられる。複数のバッテリセルは、例えば互いに直列に接続される。
 複数のバッテリセルの充放電特性にはばらつきがある。そのため、バッテリシステムの使用時には、複数のバッテリセルの端子電圧にばらつきが生じる。各バッテリセルの本来的な容量を最大限に使用するためには、複数のバッテリセルの端子電圧を均等化する必要がある。
 例えば、特許文献1に記載される充電装置においては、各バッテリセルの端子間に抵抗およびトランジスタからなる直列回路が接続される。この場合、他のバッテリセルより端子電圧が高い一のバッテリセルを選択的に抵抗を通して放電させることができる。それにより、複数のバッテリセルの端子電圧を均等化することができる。
特許第3279071号公報
 しかしながら、上記の充電装置においては、端子電圧のばらつきが大きい場合、端子電圧の均等化に要する時間が長くなる。また、端子電圧を均等化するための方法が、バッテリセルの放電に限られる。
 本発明の目的は、複数のバッテリセルの充電状態を効率よく均等化することが可能なバッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置を提供することである。
 本発明の一局面に従うバッテリシステムは、直列接続された複数のバッテリセルを各々含む複数のバッテリセル群と、複数のバッテリセル群の充電状態を均等化する均等化装置とを備え、均等化装置は、複数のバッテリセル群の複数のバッテリセルに一対一に対応して設けられる複数の放電部と、複数のバッテリセル群に一対一に対応して設けられる複数の充電部を有する充電回路とを含み、複数の放電部の各々は、対応するバッテリセルのセル端子間に接続され、複数の充電部の各々は、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続されるものである。ここで、セル端子とは、バッテリセルの正極端子および負極端子の総称である。また、バッテリセル群の充電状態とは、バッテリセル群全体の充電状態であってもよく、またはバッテリセル群に含まれる個々のバッテリセルの充電状態であってもよい。
 そのバッテリシステムにおいては、複数のバッテリセルの各々に対応する放電部が1つまたは複数設けられ、複数のバッテリセル群の各々に対応する充電部が1つまたは複数設けられる。複数の放電部の各々が、対応するバッテリセルのセル端子間に接続される。また、充電回路の複数の充電部の各々が、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続される。
 この場合、各バッテリセル群の複数のバッテリセルのうち、他のバッテリセルより端子電圧が高いバッテリセルを、対応する放電部により選択的に放電させることができる。それにより、各バッテリセル群において複数のバッテリセルの充電状態を均等化することができる。また、複数のバッテリセル群のうち、他のバッテリセル群よりも各バッテリセルの端子電圧が低いバッテリセル群を、対応する充電部によって選択的に充電することができる。それにより、複数のバッテリセル群間においてバッテリセルの充電状態を均等化することができる。
 各バッテリセル群の複数のバッテリセルの充電状態を放電により均等化させるために必要な時間は、複数のバッテリセル群の全てのバッテリセルの充電状態を放電により均等化するために必要な時間よりも短い。また、充電による複数のバッテリセルの充電状態の均等化は、放電による複数のバッテリセルの充電状態の均等化よりも短時間で行うことができる。
 そのため、全てのバッテリセルの充電状態を放電により均等化する場合に比べて、各バッテリセル群において複数のバッテリセルの充電状態を放電により均等化し、複数のバッテリセル群間においてバッテリセルの充電状態を充電により均等化することにより、効率よく全てのバッテリセルの充電状態を均等化することができる。
 また、複数のバッテリセルを含む各バッテリセル群に対応して1つの充電部が設けられるので、複数のバッテリセルにそれぞれ対応して複数の充電部が設けられる場合に比べて、充電部の数が少なくなる。それにより、充電回路の大型化が抑制される。
 充電回路は、電源に接続される第1のコイルと、複数のバッテリセル群に一対一に対応する複数の充電部として設けられ、第1のコイルによる磁界変化に伴って誘導電流が流れる複数の第2のコイルと、各第2のコイルに誘導電流が流れる状態と各第2のコイルに誘導電流が流れない状態とに複数の第2のコイルをそれぞれ独立に切り替える複数の第1のスイッチとを含んでもよい。
 この場合、第1のコイルによる誘導電流を複数の第2のコイルに選択的に発生させることができる。それにより、複数のバッテリセル群のうち他のバッテリセル群よりも各バッテリセルの端子電圧が低いバッテリセル群を選択的に充電することができる。したがって、簡単な構成で複数のバッテリセル群間において充電状態を均等化することができる。
 第1のコイルは、電源として複数のバッテリセル群に接続されてもよい。
 この場合、他の電源を用いることなく、簡単な構成で複数のバッテリセル群を選択的に充電することができる。
 第1のコイルは、電源として複数のバッテリセル群とは異なる電源に接続されてもよい。
 この場合、複数のバッテリセル群の端子電圧を低下させることなく、複数のバッテリセル群を選択的に充電することができる。
 充電回路は、電源から第1のコイルに電流が流れる状態と電源から第1のコイルに電流が流れない状態とに周期的に切り替え可能に構成されてもよい。
 この場合、電源から第1のコイルに電流が流れる状態と電源から第1のコイルに電流が流れない状態とが周期的に切り替えられることにより、継続的に磁界が変化される。それにより、選択された第2のコイルに継続的に誘導電流を流すことができ、対応するバッテリセル群を短時間で充電することができる。
 放電部は、複数のバッテリセル群の複数のバッテリセルに一対一に対応する複数の抵抗と、各抵抗を対応するバッテリセルのセル端子間に電気的に接続する状態と各抵抗を対応するバッテリセルのセル端子から電気的に切り離す状態とに独立に切り替え可能な複数の第2のスイッチとを含んでもよい。
 この場合、複数のバッテリセルを選択的に抵抗に接続することができる。それにより、複数のバッテリセルのうち他のバッテリセルより端子電圧が高いバッテリセルを選択的に放電することができる。したがって、簡単な構成で各バッテリセル群において充電状態を均等化することができる。
 本発明の他の局面に従う均等化装置は、直列接続された複数のバッテリセルを各々含む複数のバッテリセル群の充電状態を均等化する均等化装置であって、複数のバッテリセル群の複数のバッテリセルに一対一に対応して設けられる複数の放電部と、複数のバッテリセル群に一対一に対応して設けられる複数の充電部を有する充電回路とを備え、複数の放電部の各々は、対応するバッテリセルのセル端子間に接続され、複数の充電部の各々は、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続されるものである。
 その均等化装置においては、複数の放電部の各々が、対応するバッテリセルのセル端子間に接続される。また、充電回路の複数の充電部の各々が、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続される。
 この場合、各バッテリセル群の複数のバッテリセルのうち、他のバッテリセルより端子電圧が高いバッテリセルを、対応する放電部により選択的に放電させることができる。それにより、各バッテリセル群において複数のバッテリセルの充電状態を均等化することができる。また、複数のバッテリセル群のうち、他のバッテリセル群よりも各バッテリセルの端子電圧が低いバッテリセル群を、対応する充電部によって選択的に充電することができる。それにより、複数のバッテリセル群間においてバッテリセルの充電状態を均等化することができる。
 各バッテリセル群の複数のバッテリセルの充電状態を放電により均等化させるために必要な時間は、複数のバッテリセル群の全てのバッテリセルの充電状態を放電により均等化するために必要な時間よりも短い。また、充電による複数のバッテリセルの充電状態の均等化は、放電による複数のバッテリセルの充電状態の均等化よりも短時間で行うことができる。
 そのため、全てのバッテリセルの充電状態を放電により均等化する場合に比べて、各バッテリセル群において複数のバッテリセルの充電状態を放電により均等化し、複数のバッテリセル群間においてバッテリセルの充電状態を充電により均等化することにより、効率よく全てのバッテリセルの充電状態を均等化することができる。
 また、複数のバッテリセルを含む各バッテリセル群に対応して1つの充電部が設けられるので、複数のバッテリセルにそれぞれ対応して複数の充電部が設けられる場合に比べて、充電部の数が少なくなる。それにより、充電回路の大型化が抑制される。
 本発明のさらに他の局面に従う均等化システムは、本発明の上記一局面に従うバッテリシステムと、バッテリシステムの複数の放電部および充電回路を制御する制御部とを備えるものである。
 その均等化システムにおいては、上記バッテリシステムの複数の放電部および充電回路が制御部により制御される。それにより、直列接続された複数のバッテリセルを各々含む複数のバッテリセル群の充電状態が均等化される。この場合、上記バッテリシステムが用いられるので、充電回路の大型化を抑制しつつ効率よく全てのバッテリセルの充電状態を均等化することができる。
 制御部は、各バッテリセル群における充電状態の均等化が行われた後に、複数のバッテリセル群間における充電状態の均等化が行われるように複数の放電部および充電回路を制御してもよい。
 この場合、各バッテリセル群において、複数のバッテリセルが選択的に放電されることにより、複数のバッテリセルの充電状態が均等化される。その後、複数のバッテリセル群が選択的に充電されることにより、全てのバッテリセルの充電状態が均等化される。これにより、全てのバッテリセルの充電状態を効率よく正確に均等化することができる。
 また、各バッテリセル群において充電状態にばらつきがない状態で複数のバッテリセル群が選択的に充電されるので、一部のバッテリセルが過充電となることが防止される。
 本発明のさらに他の局面に従う電動車両は、本発明の上記さらに他の局面に従う均等化システムと、均等化システムからの電力により駆動されるモータと、モータの回転力により回転する駆動輪とを備えるものである。
 その電動車両においては、上記均等化システムからの電力によりモータが駆動される。そのモータの回転力によって駆動輪が回転することにより、電動車両が移動する。この場合、上記均等化システムが用いられるので、充電回路の大型化を抑制しつつ効率よく全てのバッテリセルの充電状態を均等化することができる。それにより、電動車両の大型化を抑制しつつ電動車両の信頼性を向上させることができる。
 本発明のさらに他の局面に従う移動体は、本発明の上記さらに他の局面に従う均等化システムと、移動本体部と、均等化システムからの電力を受けて、その電力を動力に変換する動力源と、動力源により変換された動力により移動本体部を移動させる駆動部とを備えるものである。
 その移動体においては、上記均等化システムからの電力が動力源により動力に変換され、その動力により駆動部が移動本体部を移動させる。この場合、上記均等化システムが用いられるので、充電回路の大型化を抑制しつつ効率よく全てのバッテリセルの充電状態を均等化することができる。それにより、移動体の大型化を抑制しつつ移動体の信頼性を向上させることができる。
 本発明のさらに他の局面に従う電力貯蔵装置は、本発明の上記さらに他の局面に従う均等化システムと、均等化装置の複数のバッテリセルの充電または放電に関する制御を行うシステム制御部とを備えるものである。
 その電力貯蔵装置においては、システム制御部により、複数のバッテリセルの充電または放電に関する制御が行われる。それにより、複数のバッテリセルの劣化、過放電および過充電を防止することができる。また、上記均等化システムが用いられるので、充電回路の大型化を抑制しつつ効率よく全てのバッテリセルの充電状態を均等化することができる。それにより、電力貯蔵装置の大型化を抑制しつつ電力貯蔵装置の信頼性を向上させることができる。
 本発明のさらに他の局面に従う電源装置は、外部に接続可能な電源装置であって、本発明の上記さらに他の局面に従う電力貯蔵装置と、電力貯蔵装置のシステム制御部により制御され、電力貯蔵装置の複数のバッテリセルと外部との間で電力変換を行う電力変換装置とを備えるものである。
 その電源装置においては、複数のバッテリセルと外部との間で電力変換装置により電力変換が行われる。電力変換装置が電力貯蔵装置のシステム制御部により制御されることにより、複数のバッテリセルの充電または放電に関する制御が行われる。それにより、複数のバッテリセルの劣化、過放電および過充電を防止することができる。また、上記均等化システムが用いられるので、充電回路の大型化を抑制しつつ効率よく全てのバッテリセルの充電状態を均等化することができる。それにより、電源装置の大型化を抑制しつつ電源装置の信頼性を向上させることができる。
 本発明によれば、複数のバッテリセルの充電状態を効率よく均等化することができる。
図1は本発明の第1の実施の形態に係る均等化装置、それを備えたバッテリシステムおよび均等化システムの構成を示すブロック図である。 図2は第2の均等化処理の第1の例について説明するためのタイミングチャートである。 図3は第1の均等化処理時における電圧検出部の制御動作を示すフローチャートである。 図4は第2の均等化処理時におけるバッテリECUの制御動作を示すフローチャートである。 図5は第2の均等化処理の第2の例について説明するためのタイミングチャートである。 図6は第2の均等化処理の第3の例について説明するためのタイミングチャートである。 図7は本発明の第2の実施の形態に係る均等化装置、それを備えたバッテリシステムおよび均等化システムの構成を示すブロック図である。 図8は図7の均等化システムにおける第2の均等化処理について説明するためのタイミングチャートである。 図9は第3の実施の形態に係る電動自動車の構成を示すブロック図である。 図10は第4の実施の形態に係る電源装置の構成を示すブロック図である。
 以下、本発明の実施の形態に係る均等化装置、それを備えたバッテリシステム、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置について説明する。
 (1)第1の実施の形態
 (1-1)均等化システムの構成
 図1は、本発明の第1の実施の形態に係る均等化装置、それを備えたバッテリシステムおよび均等化システムの構成を示すブロック図である。図1に示すように、均等化システム500は、バッテリシステム100および制御部200を備える。
 バッテリシステム100は、複数(本例では3組)のバッテリセル群110、均等化装置60およびコンタクタ65を含む。複数のバッテリセル群110は互いに直列接続される。各バッテリセル群110は、互いに直列接続された複数のバッテリセル10を含む。各バッテリセル10は二次電池であり、例えばリチウムイオン電池がバッテリセル10として用いられる。以下、各バッテリセル10の正極端子および負極端子を総称してセル端子と呼ぶ。複数のバッテリセル群110における最も高電位のセル端子および最も低電位のセル端子は、図示しない負荷に接続される(図1のD1,D2)。最も高電位のセル端子と負荷との間にコンタクタ65が介挿される。
 均等化装置60は、放電回路61および充電回路62を含む。放電回路61は、複数のバッテリセル群110の複数のバッテリセル10にそれぞれ対応して設けられた複数の放電部DUを含む。各放電部DUは、抵抗Rおよびスイッチング素子C1からなる直列回路を含み、対応するバッテリセル10のセル端子間に接続される。
 充電回路62は、一次コイルL1、スイッチング素子C2、複数の二次コイルL2、複数のスイッチング素子C3および複数のダイオードDを含む。一次コイルL1の一端は、複数のバッテリセル群110における最も高電位のセル端子に接続され、他端は、スイッチング素子C2を介して複数のバッテリセル群110における最も低電位のセル端子に接続される。複数の二次コイルL2、複数のスイッチング素子C3および複数のダイオードDは、複数のバッテリセル群110にそれぞれ対応するように設けられる。各二次コイルL2の一端は、スイッチング素子C3およびダイオードDを介して対応するバッテリセル群110の最も高電位のセル端子に接続され、他端は、対応するバッテリセル群の最も低電位のセル端子に接続される。一次コイルL1および複数の二次コイルL2によりトランスTRが構成される。複数の二次コイルL2の極性は、一次コイルL1の極性とそれぞれ逆に設定される。
 制御部200は、複数の電圧検出部201およびバッテリECU(Electronic Control Unit:電子制御ユニット)202を含む。複数の電圧検出部201は、複数のバッテリセル群110にそれぞれ対応するように設けられる。各電圧検出部201は、例えばASIC(application-specific integrated circuit;特定用途向け集積回路)からなる。各電圧検出部201は、対応するバッテリセル群110の複数のバッテリセル10のセル端子に接続される。バッテリECU202は、例えばCPU(中央演算処理装置)およびメモリ、またはマイクロコンピュータからなる。バッテリECU202は、複数の電圧検出部201に接続される。
 各電圧検出部201は、対応するバッテリセル群110の各バッテリセル10の端子電圧を検出し、検出された端子電圧に基づいて、対応する放電部DUのスイッチング素子C1のオンオフを制御する。また、各電圧検出部201は、バッテリECU202からの指令に応じて、対応するスイッチング素子C3のオンオフを制御する。また、各電圧検出部201は、検出された端子電圧の値をバッテリECU202に与える。バッテリECU202は、複数の電圧検出部201から与えられた端子電圧の値に基づいて、スイッチング素子C2のオンオフを制御するとともに、各スイッチング素子C3のオンオフの指令を各電圧検出回路201に与える。また、バッテリECU202は、バッテリシステム100に異常が発生した場合、コンタクタ65をオフする。コンタクタ65がオフされると、複数のバッテリセル群110と負荷との間で電流が流れない。そのため、複数のバッテリセル群110の異常発熱が防止される。
 以下、図1の最も高い電位を有するバッテリセル群110から最も低い電位を有するバッテリセル群110を順にバッテリセル群B1~B3と呼ぶ。また、バッテリセル群B1~B3に対応する3つの二次コイルL2、3つのスイッチング素子C3および3つの電圧検出部201をそれぞれ二次コイルL21~L23、スイッチング素子C31~C33および電圧検出部A1~A3と呼ぶ。
 本実施の形態では、3組のバッテリセル群110が設けられるが、これに限らず、2組または4組以上のバッテリセル群110が設けられてもよい。また、複数のバッテリセル群110にそれぞれ含まれるバッテリセル10の数は、互いに等しくてもよく、または互いに異なってもよい。
 また、本実施の形態では、各電圧検出部201が対応する放電部DUのスイッチング素子C1および対応するスイッチング素子C3のオンオフを制御し、バッテリECU202がスイッチング素子C2およびコンタクタ65のオンオフを制御するが、これに限らない。バッテリECU202が複数の電圧検出部201から与えられた端子電圧の値に基づいて各放電部DUのスイッチング素子C1または各スイッチング素子C3のオンオフを制御してもよく、いずれかの電圧検出部201がスイッチング素子C2またはコンタクタ65のオンオフを制御してもよい。
 (1-2)均等化処理
 図1の均等化システム500においては、均等化装置60によりバッテリセル群B1~B3の全てのバッテリセル10の充電状態を均等化する均等化処理が行われる。充電状態は、例えば、端子電圧、SOC(充電率)、残容量、放電深度(DOD)、電流積算値または蓄電量差を含む。本実施の形態では、充電状態の均等化として、端子電圧の均等化が行われる。
 均等化処理としては、バッテリセル群B1~B3の各々における第1の均等化処理、および複数のバッテリセル群B1~B3間における第2の均等化処理が行われる。本実施の形態では、第1の均等化処理が行われた後、第2の均等化処理が行われる。
 バッテリセル群B1における第1の均等化処理について説明する。バッテリセル群B1の一のバッテリセル10の端子電圧が他のバッテリセル10の端子電圧よりも高い場合、一のバッテリセル10に対応する放電部DUのスイッチング素子C1がオンされる。それにより、一のバッテリセル10に充電された電荷が抵抗Rを通して放電される。一のバッテリセル10の端子電圧が他のバッテリセル10の端子電圧と略等しくなるまで低下すると、一のバッテリセル10に対応する放電部DUのスイッチング素子C1がオフされる。上記の動作が繰り返されることにより、バッテリセル群B1の複数のバッテリセル10の端子電圧が均等化される。
 同様にして、バッテリセル群B2,B3における第1の均等化処理が行われる。それにより、バッテリセル群B2の複数のバッテリセル10の端子電圧が均等化され、バッテリセル群B3の複数のバッテリセル10の端子電圧が均等化される。
 次に、バッテリセル群B1~B3間における第2の均等化処理について説明する。図2は、第2の均等化処理の第1の例について説明するためのタイミングチャートである。図2ならびに後述の図5、図6および図8には、バッテリセル群B1~B3の各バッテリセル10の端子電圧、スイッチング素子C2,C31~C33の状態、一次コイルL1に流れる電流、および二次コイルL21~L23に流れる電流が示される。
 第2の均等化処理時には、バッテリセル群B1~B3の各々において、複数のバッテリセル10の端子電圧が略均等に維持される。以下、バッテリセル群B1の各バッテリセル10の端子電圧を端子電圧V1と呼び、バッテリセル群B2の各バッテリセル10の端子電圧を端子電圧V2と呼び、バッテリセル群B3の各バッテリセル10の端子電圧を端子電圧V3と呼ぶ。また、図中では、一次コイルL1に流れる電流がI1と表記され、二次コイルL21~L23に流れる電流がI21~I23とそれぞれ表記される。
 図2の例では、時点t0から第2の均等化処理が開始される。第2の均等化処理の開始前には、端子電圧V2より端子電圧V3が高く、端子電圧V3より端子電圧V1が高い。また、スイッチング素子C2,C31~C33がオフされている。
 第2の均等化処理が開始されると、スイッチング素子C2のオンオフが周期的に切り替えられる。それにより、バッテリセル群B1~B3の最も高電位のセル端子から一次コイルL1を通して最も低電位のセル端子に周期的にパルス電流が流れる。そのため、バッテリセル群B1~B3がそれぞれ放電され、端子電圧V1~V3が徐々に低下する。
 時点t1においてスイッチング素子C32がオンされる。それにより、一次コイルL1のパルス電流による誘導電流が二次コイルL32に流れる。この場合、バッテリセル群B2の最も低電位のセル端子から最も高電位のセル端子に電流が流れる。それにより、バッテリセル群B2が充電され、端子電圧V2が徐々に上昇する。
 時点t2において、端子電圧V1,V2が互いにほぼ等しくなる。一方、端子電圧V3は端子電圧V1,V2よりも低い。そこで、スイッチング素子C32がオフされるとともに、スイッチング素子C33がオンされる。これにより、二次コイルL32に誘導電流が流れなくなり、端子電圧V2が端子電圧V1とともに徐々に低下する。一方、二次コイルL33に誘導電流が流れる。それにより、端子電圧V3が徐々に上昇する。
 時点t3において、端子電圧V1~V3が互いにほぼ等しくなる。そこで、スイッチング素子C2,C33がオフされ、第2の均等化処理が終了する。
 このように、端子電圧が最も高いバッテリセル群(以下、基準バッテリセル群と呼ぶ)B1を除く他のバッテリセル群B2,B3がトランスTRによって発生される誘導電流により順に充電される。それにより、バッテリセル群B1~B3間において端子電圧が均等化される。その結果、全てのバッテリセル10の端子電圧が均等化される。本例では、第2の均等化処理開始時において端子電圧が最も低いバッテリセル群B2が最初に充電されるが、これに限らない。基準バッテリセル群を除く他のバッテリセル群は、任意の順で充電されてもよい。
 (1-3)制御部の動作
 第1の均等化処理時には、電圧検出部A1~A3により、バッテリセル群B1~B3に対応する複数のスイッチング素子C1のオンオフが制御される。第2の均等化処理時には、バッテリECU202および電圧検出部A1~A3により、スイッチング素子C2,C31~C33が制御される。以下、電圧検出部A1~A3およびバッテリECU202の制御動作について説明する。
 図3は、第1の均等化処理時における電圧検出部A1の制御動作を示すフローチャートである。初期状態では、バッテリセル群B1に対応する全てのスイッチング素子C1がオフされている。図3に示すように、まず、電圧検出部A1は、バッテリセル群B1の各バッテリセル10の端子電圧を検出する(ステップS1)。次に、電圧検出部A1は、検出された端子電圧のうち最も大きい端子電圧と最も小さい端子電圧との差(以下、最大端子電圧差と呼ぶ)が予め定められたしきい値T1よりも大きいか否かを判定する(ステップS2)。
 最大端子電圧差がしきい値T1よりも大きい場合、電圧検出部A1は、検出された端子電圧に基づいて、バッテリセル群B1の複数のバッテリセル10のうち放電すべきバッテリセル10を選択する(ステップS3)。次に、電圧検出部A1は、選択されたバッテリセル10が放電されるようにバッテリセル群B1に対応する複数のスイッチング素子C1のオンオフを制御する(ステップS4)。この場合、選択されたバッテリセル10に対応するスイッチング素子C1がオンされ、選択されていないバッテリセル10に対応するスイッチング素子C1がオフされる。
 その後、電圧検出部A1は、最大端子電圧差がしきい値T1以下になるまでステップS1~S4の処理を繰り返す。最大端子電圧差がしきい値T1以下になると、電圧検出部A1は、バッテリセル群B1に対応する全てのスイッチング素子C1をオフし、第1の均等化処理を終了する。
 電圧検出部A2,A3の制御動作は、図3に示す電圧検出部A1の制御動作と同様である。このようにして、電圧検出部A1~A3によって複数のスイッチング素子C1のオンオフが制御されることにより、バッテリセル群B1~B3の各々において、複数のバッテリセル10の端子電圧が均等化される。
 図4は、第2の均等化処理時におけるバッテリECU202の制御動作を示すフローチャートである。初期状態では、スイッチング素子C2,C31~C33がオフされている。
 図4に示すように、まず、バッテリECU202は、電圧検出部A1~A3からバッテリセル群B1~B3の各バッテリセル10の端子電圧の値を取得する(ステップS11)。この場合、バッテリセル群B1~B3の各々における複数のバッテリセル10の端子電圧の値は略均等である。
 次に、バッテリECU202は、取得された端子電圧の値の差(最大端子電圧差)が予め定められたしきい値T2よりも大きいか否かを判定する(ステップS12)。しきい値T2は、例えばしきい値T1と等しい。最大端子電圧差がしきい値T2よりも大きい場合、バッテリECU202は、スイッチング素子C2のオンオフを周期的に切り替える(ステップS13)。
 次に、バッテリECU202は、取得された端子電圧の値に基づいて、充電すべきバッテリセル群を選択する(ステップS14)。次に、バッテリECU202は、選択されたバッテリセル群が充電されるように、スイッチング素子C31~C33のオンオフの指令を電圧検出部A1~A3の各々に与える(ステップS15)。この場合、スイッチング素子C31~C32のうち選択されたバッテリセル群に対応するスイッチング素子がオンされ、選択されていないバッテリセル群に対応するスイッチング素子がオフされる。
 次に、バッテリECU202は、電圧検出部A1~A3からバッテリセル群B1~B3の各バッテリセル10の端子電圧の値を取得し(ステップS16)、取得された端子電圧の値のうち最も大きい値とステップS14で選択されたバッテリセル群の各バッテリセル10の端子電圧の値との差(以下、選択端子電圧差と呼ぶ)が予め定められたしきい値T3以下であるか否かを判定する(ステップS17)。しきい値T3は、例えばしきい値T2よりも小さい。選択端子電圧差がしきい値T3より大きい場合、バッテリECU202は、選択端子電圧差がしきい値T3以下になるまでステップS16,S17の処理を繰り返す。選択端子電圧差がしきい値T3以下になると、バッテリECU202は、ステップS12の処理に戻る。
 その後、バッテリECU202は、最大端子電圧差がしきい値T2以下になるまでステップS12~S17の処理を繰り返す。最大端子電圧差がしきい値T2以下になると、バッテリECU202は、スイッチング素子C2,C31~C33をオフし、第2の均等化処理を終了する。
 このようにして、バッテリECU202および電圧検出部A1~A3によってスイッチング素子C2,C31~C33のオンオフが制御されることにより、バッテリセル群B1~B3間における均等化が行われる。その結果、全てのバッテリセル10の端子電圧が均等化される。
 (1-4)効果
 本実施の形態では、放電回路61により複数のバッテリセル10が選択的に放電されることにより、各バッテリセル群110において端子電圧が均等化される。また、充電回路62により複数のバッテリセル群110が選択的に充電されることにより、複数のバッテリセル群110間において端子電圧が均等化される。
 各バッテリセル群110の端子電圧を放電により均等化するために必要な時間は、全てのバッテリセル10の端子電圧を放電により均等化するために必要な時間よりも短い。また、充電による複数のバッテリセル10の端子電圧の均等化は、放電による複数のバッテリセル10の端子電圧の均等化よりも短時間で行うことができる。
 それにより、全てのバッテリセル10の端子電圧を放電により均等化する場合に比べて、各バッテリセル群110において端子電圧を放電により均等化し、複数のバッテリセル群110間において端子電圧を充電により均等化することにより、全てのバッテリセル10の端子電圧を効率よく均等化することができる。
 また、全てのバッテリセル10の端子電圧を充電により均等化する場合には、全てのバッテリセル10にそれぞれ対応して複数の二次コイルL2を設ける必要がある。そのため、二次コイルL2の数が膨大になり、充電回路62が大型化する。それに対して、本実施の形態では、各バッテリセル群110に対応して1つの二次コイルL2が設けられるので、二次コイルL2の数が少なくなる。それにより、充電回路62の大型化が抑制される。
 また、本実施の形態では、各バッテリセル群110において第1の均等化処理が行われた後に、複数のバッテリセル10間において第2の均等化処理が行われる。逆に、第2の均等化処理後に第1の均等化処理が行われた場合、第1の均等化処理時に、複数のバッテリセル群110間で再びばらつきが生じる可能性がある。また、各バッテリセル群110の端子電圧にばらつきがある状態で第2の均等化処理が行われるので、比較的端子電圧が高いバッテリセル10が第2の均等化処理時に過充電になる可能性がある。それに対して、第1の均等化処理後に第2の均等化処理が行われた場合、各バッテリセル群110において端子電圧が均等化された後に複数のバッテリセル群110間における端子電圧の均等化が行われるので、全てのバッテリセル10の端子電圧を正確に均等化することができる。また、各バッテリセル群110において端子電圧が均等化された状態で第2の均等化処理が行われるので、各バッテリセル10の過充電が防止される。
 また、本実施の形態では、一次コイルL1の電源として複数のバッテリセル群110が用いられる。これにより、他の電源を用いることなく、簡単な構成で複数のバッテリセル群110を選択的に充電することができる。
 (1-5)第2の均等化処理の第2の例
 図5は、第2の均等化処理の第2の例について説明するためのタイミングチャートである。図5の例の初期状態は、図2の例の初期状態と同じである。図5の例について、図2の例と異なる点を説明する。
 図5の例では、時点t11において、スイッチング素子C32,C33がオンされる。それにより、一次コイルL1のパルス電流による誘導電流が二次コイルL22,L23に流れ、バッテリセル群B2,B3が充電される。この場合、二次コイルL22,L23のうち、より低い端子電圧を有するバッテリセル群に対応する二次コイルに、より大きい誘導電流が流れる。本例では、コイルL23に流れる誘導電流よりコイルL22に流れる誘導電流が大きくなる。そのため、端子電圧V2,V3の差が徐々に小さくなる。
 時点t12において、端子電圧V1,V3が互いにほぼ等しくなると、スイッチング素子C33がオフされ、バッテリセル群B3の充電が停止される。時点t13において、端子電圧V1~V3が互いにほぼ等しくなると、スイッチング素子C2,C32がオフされ、バッテリセル群B2の充電が停止される。これにより、第2の均等化処理が終了する。
 このように、第2の例では、複数のバッテリセル群のうち基準バッテリセル群を除く他のバッテリセル群が同時に充電される。充電されるバッテリセル群のうち端子電圧が基準バッテリセル群の端子電圧とほぼ等しくなったバッテリセル群の充電が順に停止される。この場合、より効率よく複数のバッテリセル群間において端子電圧を均等化することができる。
 (1-6)第2の均等化処理の第3の例
 図6は、第2の均等化処理の第3の例について説明するためのタイミングチャートである。図6の例の初期状態は、図2の例の初期状態と同じである。図6の例について、図2の例と異なる点を説明する。
 図6の例では、時点t21において、スイッチング素子C31~C33が全てオンされる。それにより、一次コイルL1による誘導電流が二次コイルL21~L23の全てに流れ、バッテリセル群B21~B23が充電される。
 上記のように、二次コイルL21~L23のうち、より低い端子電圧を有するバッテリセル群に対応する二次コイルに、より大きい誘導電流が流れる。本例では、コイルL21に流れる誘導電流よりコイルL23に流れる誘導電流が大きくなり、コイルL23に流れる誘導電流よりコイルL22に流れる誘導電流が大きくなる。この場合、バッテリセル群B21に関しては、放出される電荷量よりも供給される電荷量が少なくなる。そのため、端子電圧V1は徐々に低下する。一方、バッテリセル群B22,B23に関しては、放出される電荷量よりも供給される電荷量が多くなる。そのため、端子電圧V2,V3は徐々に上昇する。また、端子電圧V2,V3の差は徐々に小さくなる。
 最大端子電圧差が予め定められたしきい値よりも小さくなると、スイッチング素子C31~C33がオフされる。本例では、時点t22において、端子電圧V1と端子電圧V2との差がしきい値よりも小さくなり、スイッチング素子C31~C33がオフされる。
 その後、第1の例と同様に、端子電圧が最も高いバッテリセル群を除く他のバッテリセル群が順に充電される。本例では、時点t23において、スイッチング素子C32がオンされ、バッテリセル群B2が充電される。時点t24において、端子電圧V1,V2が互いにほぼ等しくなると、スイッチング素子C32がオフされるとともにスイッチング素子C33がオンされる。それにより、バッテリセル群B2の充電が停止されるとともに、バッテリセル群B3の充電が開始される。時点t25において、端子電圧V1~V3が互いにほぼ等しくなると、スイッチング素子C2,C33がオフされ、バッテリセル群B2の充電が停止される。これにより、第2の均等化処理が終了する。
 このように、第3の例では、最初に全てのバッテリセル群が同時に充電される。全てのバッテリセル群の最大端子電圧差がしきい値よりも小さくなると、基準バッテリセル群を除く他のバッテリセル群が順に充電される。この場合、より効率よく複数のバッテリセル群間において端子電圧を均等化することができる。
 全てのバッテリセル群の最大端子電圧差がしきい値よりも小さくなった後において、基準バッテリセル群を除く他のバッテリセル群が順に充電される代わりに、上記第2の例と同様に、基準バッテリセル群を除く他のバッテリセル群が同時に充電されてもよい。
 (2)第2の実施の形態
 図7は、本発明の第2の実施の形態に係る均等化装置、それを備えたバッテリシステムおよび均等化システムの構成を示すブロック図である。図7の均等化システム500について、図1の均等化システム500と異なる点を説明する。
 図7の均等化システム500においては、一次コイルL1の一端が外部電源PSの正極端子に接続され、他端がスイッチング素子C2を介して外部電源PSの負極端子に接続される。スイッチング素子C2がオンされると、外部電源PSから、一次コイルL1に電流が流れる。
 図7の均等化システム500における均等化処理について説明する。第1の均等化処理は、上記第1の実施の形態と同様に行われる。図8は、図7の均等化システム500における第2の均等化処理について説明するためのタイミングチャートである。図8の例の初期状態は、図2の例の初期状態と同じである。図8の例について、図2の例と異なる点を説明する。
 図8の例では、時点t0からスイッチング素子C1のオンオフが周期的に切り替えられても、バッテリセル群B1~B3から一次コイルL1に電流が流れない。そのため、バッテリセル群B1~B3が放電されず、端子電圧V1~V3が低下しない。
 時点t31において、スイッチング素子C32がオンされる。それにより、バッテリセル群B2が充電され、端子電圧V2が徐々に上昇する。時点t32において、端子電圧V1,V2が互いにほぼ等しくなると、スイッチング素子C32がオフされるとともに、スイッチング素子C33がオンされる。これにより、バッテリセル群B2の充電が停止され、バッテリセル群B3の充電が開始される。時点t33において、端子電圧V1~V3が互いにほぼ等しくなると、スイッチング素子C2,C33がオフされ、バッテリセル群B3の充電が停止される。これにより、第2の均等化処理が終了する。
 このように、本実施の形態では、第2の均等化処理時に、バッテリセル群B1~B3の端子電圧V1~V3を低下させることなく、バッテリセル群B1~B3を選択的に充電することができる。それにより、バッテリセル群B1~B3間においてより容易にかつより正確に端子電圧を均等化することができる。
 図7の均等化システム500において、図5の例と同様に第2の均等化処理が行われてもよく、または図6の例と同様に第2の均等化処理が行われてもよい。その場合、より効率よく複数のバッテリセル群間において端子電圧を均等化することができる。
 図1および図7の均等化システム500においては、充電回路としてトランスTRが用いられるが、充電回路の例はこれに限らない。例えば、充電回路として各バッテリセル群110に対応するように外部電源およびスイッチング素子が設けられ、充電すべきバッテリセル群110が選択的に外部電源に接続されてもよい。また、各バッテリセル群110に受電用のコイルが接続され、充電すべきバッテリセル群110がトランス以外の非接触給電により選択的に充電されるように充電回路が構成されてもよい。
 (3)第3の実施の形態
 以下、第3の実施の形態に係る電動車両等の移動体について説明する。本実施の形態に係る電動車両は、第1または第2の形態に係る均等化システム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
 (3-1)構成および動作
 図9は、第3の実施の形態に係る電動自動車の構成を示すブロック図である。図9に示すように、本実施の形態に係る電動自動車600は車体610を備える。車体610に、図1または図7の均等化システム500ならびに電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、回転速度センサ606、始動指示部607および主制御部608が設けられる。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。
 均等化システム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部608に接続される。均等化システム500のバッテリECU202(図1)は、各バッテリセル10の端子電圧に基づいて各バッテリセル10の充電量を算出する。
 主制御部608には、バッテリECU202から各バッテリセル10の充電量が与えられる。また、主制御部608には、アクセル装置604、ブレーキ装置605、回転速度センサ606および始動指示部607が接続される。主制御部608は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。
 始動指示部607のイグニションキーがオンの状態で、ユーザによりアクセルペダル604aが操作されると、アクセル検出部604bは、ユーザにより操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部608に与えられる。
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、ユーザによるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。イグニションキーがオンの状態で、ユーザによりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部608に与えられる。回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部608に与えられる。
 上記のように、主制御部608には、各バッテリセルの充電量、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部608は、これらの情報に基づいて複数のバッテリセル10の充放電制御および電力変換部601の電力変換制御を行う。例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、均等化システム500から電力変換部601に複数のバッテリセル10の電力が供給される。
 さらに、イグニションキーがオンの状態で、主制御部608は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。
 上記の制御信号を受けた電力変換部601は、均等化システム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力を複数のバッテリセル10の充電に適した電力に変換し、複数のバッテリセル10に与える。それにより、複数のバッテリセル10が充電される。
 (3-2)第3の実施の形態の効果
 第3の実施の形態に係る電動自動車600においては、第1または第2の実施の形態に係る均等化システム500が用いられるので、充電回路62の大型化を抑制しつつ全てのバッテリセル10の端子電圧を効率よく均等化することができる。したがって、電動自動車600の大型化を抑制しつつ電動自動車600の信頼性を向上させることができる。
 (3-3)他の移動体
 第1または第2の実施の形態に係る均等化システム500が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
 均等化システム500が搭載された船は、例えば、図9の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、船体が移動本体部に相当し、モータが動力源に相当し、スクリューが駆動部に相当する。このような構成において、モータが均等化システム500からの電力を受けてその電力を動力に変換し、変換された動力によってスクリューが回転されることにより船体が移動する。
 同様に、均等化システム500が搭載された航空機は、例えば、図9の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、機体が移動本体部に相当し、モータが動力源に相当し、プロペラが駆動部に相当する。このような構成において、モータが均等化システム500からの電力を受けてその電力を動力に変換し、変換された動力によってプロペラが回転されることにより機体が移動する。
 均等化システム500が搭載されたエレベータは、例えば、図9の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、籠が移動本体部に相当し、モータが動力源に相当し、昇降用ロープが駆動部に相当する。このような構成において、モータが均等化システム500からの電力を受けてその電力を動力に変換し、変換された動力によって昇降用ロープが巻き上げられることにより籠が昇降する。
 均等化システム500が搭載された歩行ロボットは、例えば、図9の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、胴体が移動本体部に相当し、モータが動力源に相当し、足が駆動部に相当する。このような構成において、モータが均等化システム500からの電力を受けてその電力を動力に変換し、変換された動力によって足が駆動されることにより胴体が移動する。
 このように、均等化システム500が搭載された移動体においては、動力源が均等化システム500からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。
 (3-4)移動体における効果
 このような種々の移動体においても、第1または第2の実施の形態に係る均等化システム500が用いられることにより、充電回路62の大型化を抑制しつつ全てのバッテリセル10の端子電圧を効率よく均等化することができる。したがって、移動体の大型化を抑制しつつ移動体の信頼性を向上させることができる。
 (4)第4の実施の形態
 以下、本発明の第4の実施の形態に係る電源装置について説明する。
 (4-1)構成および動作
 図10は、第4の実施の形態に係る電源装置の構成を示すブロック図である。図10に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、均等化システム群711およびコントローラ712を備える。均等化システム群711は、第1または第2の実施の形態に係る複数の均等化システム500を含む。複数の均等化システム500間において、複数のバッテリセル10は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。各均等化システム500においては、例えば、各バッテリセル群110、そのバッテリセル群110に対応する複数の放電部DUおよび電圧検出部201が1つのパッケージとして設けられる。
 コントローラ712は、システム制御部の例であり、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。コントローラ712は、各均等化システム500のバッテリECU202(図1)に接続される。各均等化システム500のバッテリECU202は、各バッテリセル10の端子電圧に基づいて各バッテリセル10の充電量を算出し、算出された充電量をコントローラ712に与える。コントローラ712は、各バッテリECU202から与えられた各バッテリセル10の充電量に基づいて電力変換装置720を制御することにより、各均等化システム500に含まれる複数のバッテリセル10の放電または充電に関する制御を行う。
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710の均等化システム群711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。
 DC/DCコンバータ721およびDC/ACインバータ722がコントローラ712によって制御されることにより、均等化システム群711に含まれる複数のバッテリセル10の放電および充電が行われる。
 均等化システム群711の放電時には、均等化システム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。
 DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。電力出力部PU1から外部に直流の電力が出力され、電力出力部PU2から外部に交流の電力が出力される。DC/ACインバータ722により交流に変換された電力が他の電力系統に供給されてもよい。
 コントローラ712は、各均等化システム500に含まれる複数のバッテリセル10の放電に関する制御の一例として、次の制御を行う。均等化システム群711の放電時に、コントローラ712は、各バッテリECU202(図1)から与えられる各バッテリセル10の充電量に基づいて放電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、均等化システム群711に含まれる複数のバッテリセル10(図1)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、コントローラ712は、放電が停止されるまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。
 一方、均等化システム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721から均等化システム群711に電力が与えられることにより、均等化システム群711に含まれる複数のバッテリセル10(図1)が充電される。
 コントローラ712は、各均等化システム500に含まれる複数のバッテリセル10の充電に関する制御の一例として、次の制御を行う。均等化システム群711の充電時に、コントローラ712は、各バッテリECU202(図1)から与えられる各バッテリセル10の充電量に基づいて充電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、均等化システム群711に含まれる複数のバッテリセル10のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、コントローラ712は、充電が停止されるまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。
 (4-2)効果
 本実施の形態に係る電源装置700においては、第1または第2の実施の形態に係る均等化システム500が用いられるので、充電回路62の大型化を抑制しつつ全てのバッテリセル10の端子電圧を効率よく均等化することができる。したがって、電源装置700の大型化を抑制しつつ電源装置700の信頼性を向上させることができる。
 (4-3)電源装置の他の例
 図10の電源装置700において、各均等化システム500にバッテリECU202が設けられる代わりに、コントローラ712がバッテリECU202と同様の機能を有してもよい。この場合、コントローラ712が均等化装置60の放電回路61および充電回路62を制御することにより、各均等化システム500において第1および第2の均等化処理が行われる。
 電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。
 図10の電源装置700においては、複数の均等化システム500が設けられるが、これに限らず、1つの均等化システム500のみが設けられてもよい。
 (5)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態においては、均等化装置60が均等化装置の例であり、バッテリセル10がバッテリセルの例であり、バッテリセル群110(B1~B3)がバッテリセル群の例であり、放電部DUが放電部の例であり、充電回路62が充電回路の例であり、二次コイルL2(L21~L23)が充電部および第2のコイルの例であり、一次コイルL1が第1のコイルの例であり、スイッチング素子C3(C31~C33)が第1のスイッチの例であり、抵抗Rが抵抗の例であり、スイッチング素子C1が第2のスイッチの例である。
 また、バッテリシステム100がバッテリシステムの例であり、均等化システム500が均等化システムの例であり、制御部200が制御部の例であり、電動自動車600が電動車両または移動体の例であり、モータ602がモータまたは動力源の例であり、駆動輪603が駆動輪または駆動部の例であり、車体610が移動本体部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電源装置700が電源装置の例であり、コントローラ712がシステム制御部の例であり、電力変換装置720が電力変換装置の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。

Claims (11)

  1. 直列接続された複数のバッテリセルを各々含む複数のバッテリセル群と、
     前記複数のバッテリセル群の充電状態を均等化する均等化装置とを備え、
     前記均等化装置は、
     前記複数のバッテリセル群の複数のバッテリセルに一対一に対応して設けられる複数の放電部と、
     前記複数のバッテリセル群に一対一に対応して設けられる複数の充電部を有する充電回路とを含み、
     前記複数の放電部の各々は、対応するバッテリセルのセル端子間に接続され、
     前記複数の充電部の各々は、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続される、バッテリシステム。
  2. 前記充電回路は、
     電源に接続される第1のコイルと、
     前記複数のバッテリセル群に一対一に対応する前記複数の充電部として設けられ、前記第1のコイルによる磁界変化に伴って誘導電流が流れる複数の第2のコイルと、
     各第2のコイルに誘導電流が流れる状態と各第2のコイルに誘導電流が流れない状態とに前記複数の第2のコイルをそれぞれ独立に切り替える複数の第1のスイッチとを含む、請求項1記載のバッテリシステム。
  3. 前記充電回路は、前記電源から前記第1のコイルに電流が流れる状態と前記電源から前記第1のコイルに電流が流れない状態とに周期的に切り替え可能に構成される、請求項2記載のバッテリシステム。
  4. 前記放電部は、
     前記複数のバッテリセル群の複数のバッテリセルに一対一に対応する複数の抵抗と、
     各抵抗を対応するバッテリセルのセル端子間に電気的に接続する状態と各抵抗を対応するバッテリセルのセル端子から電気的に切り離す状態とに独立に切り替え可能な複数の第2のスイッチとを含む、請求項1~3のいずれかに記載のバッテリシステム。
  5. 直列接続された複数のバッテリセルを各々含む複数のバッテリセル群の充電状態を均等化する均等化装置であって、
     前記複数のバッテリセル群の複数のバッテリセルに一対一に対応して設けられる複数の放電部と、
     前記複数のバッテリセル群に一対一に対応して設けられる複数の充電部を有する充電回路とを備え、
     前記複数の放電部の各々は、対応するバッテリセルのセル端子間に接続され、
     前記複数の充電部の各々は、対応するバッテリセル群の最も低電位のセル端子と最も高電位のセル端子との間に接続される、均等化装置。
  6. 請求項1~4のいずれかに記載のバッテリシステムと、
     前記バッテリシステムの前記複数の放電部および前記充電回路を制御する制御部とを備える、均等化システム。
  7. 前記制御部は、各バッテリセル群における充電状態の均等化が行われた後に、前記複数のバッテリセル群間における充電状態の均等化が行われるように前記複数の放電部および前記充電回路を制御する、請求項6記載の均等化システム。
  8. 請求項6または7記載の均等化システムと、
     前記均等化システムからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
  9. 請求項6または7記載の均等化システムと、
     移動本体部と、
     前記均等化システムからの電力を受けて、その電力を動力に変換する動力源と、
     前記動力源により変換された動力により前記移動本体部を移動させる駆動部とを備える、移動体。
  10. 請求項6または7記載の均等化システムと、
     前記均等化装置の前記複数のバッテリセルの充電または放電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
  11. 外部に接続可能な電源装置であって、
     請求項10記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記システム制御部により制御され、前記電力貯蔵装置の前記複数のバッテリセルと前記外部との間で電力変換を行う電力変換装置とを備える、電源装置。
PCT/JP2012/000494 2011-03-23 2012-01-26 バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置 WO2012127764A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/006,439 US20140009092A1 (en) 2011-03-23 2012-01-26 Battery system, equalizing apparatus, equalizing system, electric-powered vehicle, electric-powered movable equipment, power storage device, and power source apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011064594 2011-03-23
JP2011-064594 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012127764A1 true WO2012127764A1 (ja) 2012-09-27

Family

ID=46878948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000494 WO2012127764A1 (ja) 2011-03-23 2012-01-26 バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置

Country Status (2)

Country Link
US (1) US20140009092A1 (ja)
WO (1) WO2012127764A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143844A (zh) * 2013-05-08 2014-11-12 舒英豪 电芯复合平衡系统
JP2017184608A (ja) * 2016-03-30 2017-10-05 ゼネラル・エレクトリック・カンパニイ 充電装置、システム、および方法
JP2020018085A (ja) * 2018-07-25 2020-01-30 三洋電機株式会社 電源システム、及び管理装置
CN110789372A (zh) * 2019-09-30 2020-02-14 广州文冲船厂有限责任公司 一种船舶电力蓄电池低电流快速充电系统及方法
CN112421716A (zh) * 2020-11-09 2021-02-26 西南交通大学 一种基于无线充电器的电池组均衡控制电路及方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502918B2 (ja) * 2011-10-13 2014-05-28 株式会社日本自動車部品総合研究所 組電池の充放電装置
US20160181837A1 (en) * 2013-05-17 2016-06-23 Ying-Haw Shu Hybrid battery balancing system
US20140340023A1 (en) * 2013-05-17 2014-11-20 Ying-Haw Shu Hybrid battery balancing system
US9748785B2 (en) * 2014-03-04 2017-08-29 Ricoh Company, Ltd. Storage status adjusting circuit, storage status adjusting device, storage battery pack and switch circuit controlling method
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
US20160149421A1 (en) * 2014-11-24 2016-05-26 Southwest Electronic Energy Corporation Low voltage charging and balancing of a high voltage, series-connected string of battery modules
CN107112767B (zh) * 2015-06-30 2019-06-07 深圳市大疆创新科技有限公司 充电控制电路、充电装置、充电系统及充电控制方法
CN105375566B (zh) * 2015-11-13 2018-06-08 北京中瑞蓝科电动汽车技术有限公司 电池动态实时均衡控制装置及具有其的电动汽车
CN105576751B (zh) * 2015-12-31 2018-05-29 清华大学 一种主被动复合均衡的电池充电电路
DE102017202204A1 (de) * 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Umrichteranordnung
FR3063188B1 (fr) * 2017-02-22 2020-01-24 Peugeot Citroen Automobiles Sa Batterie a groupes de cellule(s) de stockage associes respectivement a des modules de conversion, pour la fourniture de tensions de types differents
EP3432443A1 (en) * 2017-07-20 2019-01-23 Goodrich Control Systems Wireless power system
JP6928347B2 (ja) * 2017-08-02 2021-09-01 NExT−e Solutions株式会社 管理装置、蓄電装置、蓄電システム、及び、電気機器
KR102202613B1 (ko) * 2017-09-27 2021-01-12 주식회사 엘지화학 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
JP6955972B2 (ja) * 2017-11-13 2021-10-27 NExT−e Solutions株式会社 制御装置、制御システム、蓄電装置及びプログラム
CN108599296A (zh) * 2018-04-20 2018-09-28 杭州电子科技大学 一种基于Buck-Boost的主动均衡电路
EP3817947B1 (en) 2018-07-05 2023-02-15 Volvo Truck Corporation A method of controlling a battery system in a vehicle
US11239670B2 (en) * 2018-09-16 2022-02-01 Richard Landry Gray Cell balancing battery module and electrical apparatus
CN112238785B (zh) * 2019-07-16 2022-03-04 宁德时代新能源科技股份有限公司 电池管理系统的唤醒方法和唤醒系统
KR20210015235A (ko) * 2019-08-01 2021-02-10 현대자동차주식회사 친환경 차량 및 그 충전 제어 방법
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
TWI726687B (zh) * 2020-04-16 2021-05-01 財團法人工業技術研究院 電池系統、電壓平衡程序之控制方法與平衡電量之計算方法
CN113629807A (zh) * 2021-08-06 2021-11-09 傲普(上海)新能源有限公司 一种变压器电感电阻电池均衡电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236486A (ja) * 2003-02-03 2004-08-19 Fuji Heavy Ind Ltd バッテリの電圧検出装置
JP2006254535A (ja) * 2005-03-08 2006-09-21 Denso Corp 組電池の充電電圧均等化回路の制御方法及び制御装置
JP2009071936A (ja) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd 組電池の電圧均等化システム
JP2010183766A (ja) * 2009-02-06 2010-08-19 Denso Corp 組電池の容量調整装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148745A1 (ja) * 2006-06-22 2007-12-27 Fdk Corporation 多直列蓄電セル、直列蓄電セル装置、直列セルの電圧バランス補正回路
KR101081255B1 (ko) * 2007-02-09 2011-11-08 한국과학기술원 전하 균일 장치
JP5235481B2 (ja) * 2008-04-23 2013-07-10 三洋電機株式会社 車両用の電源装置
US8798832B2 (en) * 2009-03-27 2014-08-05 Hitachi, Ltd. Electric storage device
JP2011072153A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 車両用電源装置及びこれを備える車両並びに車両用電源装置の容量均等化方法
JP5466586B2 (ja) * 2009-10-05 2014-04-09 プライムアースEvエナジー株式会社 組電池の管理装置
CN102097646A (zh) * 2009-10-30 2011-06-15 三洋电机株式会社 电池模块、电池系统以及具备该系统的电动车辆
JP5562617B2 (ja) * 2009-11-30 2014-07-30 三洋電機株式会社 均等化装置、バッテリシステムおよび電動車両
JP5537913B2 (ja) * 2009-11-30 2014-07-02 三洋電機株式会社 均等化装置、それを備えたバッテリシステムおよび電動車両
JP2011130551A (ja) * 2009-12-16 2011-06-30 Sanyo Electric Co Ltd 電源装置及びこれを備える車両
JP5484985B2 (ja) * 2010-03-29 2014-05-07 三洋電機株式会社 電源装置及びこの電源装置を備える車両
US8541979B2 (en) * 2010-06-22 2013-09-24 A123 Systems, Inc. System and method for balancing voltage of individual battery cells within a battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236486A (ja) * 2003-02-03 2004-08-19 Fuji Heavy Ind Ltd バッテリの電圧検出装置
JP2006254535A (ja) * 2005-03-08 2006-09-21 Denso Corp 組電池の充電電圧均等化回路の制御方法及び制御装置
JP2009071936A (ja) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd 組電池の電圧均等化システム
JP2010183766A (ja) * 2009-02-06 2010-08-19 Denso Corp 組電池の容量調整装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143844A (zh) * 2013-05-08 2014-11-12 舒英豪 电芯复合平衡系统
JP2017184608A (ja) * 2016-03-30 2017-10-05 ゼネラル・エレクトリック・カンパニイ 充電装置、システム、および方法
JP2020018085A (ja) * 2018-07-25 2020-01-30 三洋電機株式会社 電源システム、及び管理装置
JP7046750B2 (ja) 2018-07-25 2022-04-04 三洋電機株式会社 電源システム、及び管理装置
CN110789372A (zh) * 2019-09-30 2020-02-14 广州文冲船厂有限责任公司 一种船舶电力蓄电池低电流快速充电系统及方法
CN110789372B (zh) * 2019-09-30 2023-04-14 广州文冲船厂有限责任公司 一种船舶电力蓄电池低电流快速充电系统及方法
CN112421716A (zh) * 2020-11-09 2021-02-26 西南交通大学 一种基于无线充电器的电池组均衡控制电路及方法
CN112421716B (zh) * 2020-11-09 2022-08-19 西南交通大学 一种基于无线充电器的电池组均衡控制电路及方法

Also Published As

Publication number Publication date
US20140009092A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
WO2012127764A1 (ja) バッテリシステム、均等化装置、均等化システム、電動車両、移動体、電力貯蔵装置および電源装置
US10427547B2 (en) Quick charging device
US10756548B2 (en) Quick charging device with switching unit for individual battery module discharging
JP5991628B2 (ja) バッテリシステム、バッテリ制御装置、電動車両、移動体および電源装置
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US20110074354A1 (en) Car power source apparatus, and capacity equalizing method for the car power source apparatus
JP5964814B2 (ja) バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
US8970062B2 (en) Automotive power source apparatus and vehicle equipped with the power source apparatus
EP2685593B1 (en) Balance correction device, power storage system and transportation device
US20130057213A1 (en) Battery monitoring and charging system and motor-driven vehicle
US20170232862A1 (en) Electric drive system and method for operating an electric machine for an electric vehicle
CN105751907A (zh) 用于控制电池以延长行驶里程的系统和方法
CN102574470A (zh) 车辆的充电系统及包含该车辆的充电系统的电动车辆
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP2005151720A (ja) セルバランス補正装置、二次電池、セルバランス補正方法及びセルバランス補正プログラム
JP2013090525A (ja) 電力貯蔵装置、電源装置、電動車両、移動体、及び制御装置
WO2012132914A1 (ja) バッテリモジュール、バッテリシステム、電源装置、及び、移動体
CN110789375A (zh) 用于选择转换器以传递非零电流的系统和方法
JP2005117765A (ja) 組電池の保護制御装置および組電池の保護制御方法
JP4207408B2 (ja) 充電状態調整装置及び充電状態検出装置
JP6328454B2 (ja) 均等化装置
KR101592738B1 (ko) 파워 릴레이 어셈블리 및 이의 제어 방법
Kim et al. Charge equalization converter with parallel primary winding for series connected Lithium-Ion battery strings in HEV
JP2009254208A (ja) 蓄電装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14006439

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP