WO2021008200A1 - 一种宽色域打印流程、方法及宽色域打印设备 - Google Patents

一种宽色域打印流程、方法及宽色域打印设备 Download PDF

Info

Publication number
WO2021008200A1
WO2021008200A1 PCT/CN2020/089037 CN2020089037W WO2021008200A1 WO 2021008200 A1 WO2021008200 A1 WO 2021008200A1 CN 2020089037 W CN2020089037 W CN 2020089037W WO 2021008200 A1 WO2021008200 A1 WO 2021008200A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
printing
image
color gamut
path
Prior art date
Application number
PCT/CN2020/089037
Other languages
English (en)
French (fr)
Inventor
彭卫清
徐伟
郭晓林
陈婷
张建强
Original Assignee
深圳汉华工业数码设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汉华工业数码设备有限公司 filed Critical 深圳汉华工业数码设备有限公司
Publication of WO2021008200A1 publication Critical patent/WO2021008200A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock

Definitions

  • This application relates to the field of printing, and in particular to a wide color gamut printing process, method and wide color gamut printing device.
  • Inkjet printing is widely used in many different fields to produce printed images in various recording media.
  • Conventional color inkjet printing uses the principle of color mixing of the three primary colors of pigments, plus black ink, and a total of four colors are mixed and superimposed to form the so-called "full-color printing".
  • CMYK color groups These four basic colors: cyan (Cyan), magenta (Magenta), yellow (Yellow) and black (blacK) are called CMYK color groups.
  • the required color pattern is produced by combining different doses of various basic colors.
  • the CMYK color combination has greater limitations, and the color gamut that can be formed is not large.
  • the CMYK color combination actually has a gap with the expected color.
  • the image effect is general. It cannot be achieved for those images with high visual quality requirements. Through the existing The color effect of the image formed by CMYK color combination is poor and the visual quality is average.
  • the embodiments of the application provide a wide color gamut printing process and method. Compared with conventional color inkjet printing, by printing a compensation image with a different color gamut from the basic image on the printed basic image, wider colors can be printed The color of the field can improve the color effect and visual quality of the target image.
  • the first aspect of the embodiments of the present application provides a wide color gamut printing process, including:
  • Pre-coating printing step printing pre-coating on the surface of the recording medium
  • a basic printing step printing a basic image on the pre-coating layer
  • a compensation image is printed on the basic image, and the color gamut of the compensation image is different from that of the basic image.
  • the printing process further includes:
  • a white base layer is printed on the pre-coating layer.
  • the printing process further includes:
  • a varnish layer is printed on the base image and the compensation image.
  • the printing process further includes:
  • the metallic color printing step includes printing a metallic color image on the basic image and/or the compensation image.
  • the printing process further includes:
  • the drying step corresponds to the pre-coating printing step, the white background printing step, the basic printing step, the compensation printing step, the metallic color printing step, and the varnish printing step, respectively, for curing the pre-coating and varnish layers, and at least The white underlayer, base image, compensation image and metallic image are partially cured.
  • the second aspect of the present invention provides a wide color gamut printing method, including:
  • the compensation image is printed through the compensation path.
  • the determining a compensation path according to the compensation image includes:
  • the compensation path is determined according to the starting position and the set of compensation positions.
  • determining the compensation path according to the start position and the set of compensation positions includes:
  • the compensation path starts from the starting position, and the path direction of the compensation path includes at least a first direction and a second direction;
  • the determining the compensation path according to the start position and the set of compensation positions includes:
  • the compensation position set is divided into a first compensation position set and a second compensation position set, and the first compensation position set is located at a position where the starting position is in the first direction.
  • the second compensation position set is located on one side of the starting position in the second direction;
  • the weight of the first compensation position set is associated with the distance between each compensation position in the first compensation position set and the starting position in the first direction, and the weight of the second compensation position set is Each compensation position in the second compensation position set is associated with the distance of the starting position in the second direction.
  • the method includes:
  • the basic image is printed based on the basic image.
  • the third aspect of the present invention provides a wide color gamut printing device, including:
  • the first determining unit is used to determine the compensation image of the target image
  • a second determining unit configured to determine a compensation path according to the compensation image
  • the first printing unit is configured to print the compensation image through the compensation path.
  • the second determining unit includes:
  • the first determining subunit is used to determine the starting position
  • the second determining subunit is configured to determine the compensation path according to the initial position and the set of compensation positions.
  • the second determining subunit is specifically configured to:
  • the compensation path starts from the starting position, and the path direction of the compensation path includes at least a first direction and a second direction;
  • the second determining subunit is specifically used for:
  • the compensation position set is divided into a first compensation position set and a second compensation position set, and the first compensation position set is located at a position where the starting position is in the first direction.
  • the second compensation position set is located on one side of the starting position in the second direction;
  • the weight of the first compensation position set is associated with the distance between each compensation position in the first compensation position set and the starting position in the first direction, and the weight of the second compensation position set is Each compensation position in the second compensation position set is associated with the distance of the starting position in the second direction.
  • the printing device includes:
  • a third determining unit configured to determine a basic image of the target image, the color gamut of the basic image and the compensation image are different;
  • the second printing unit is used to print a basic image according to the basic image.
  • the fourth aspect of the present invention provides a wide color gamut printing system, including:
  • Pre-coating printing module for printing pre-coating on the surface of the recording medium
  • a basic printing module for printing a basic image on the pre-coating layer
  • the compensation printing module is configured to print a compensation image on the basic image, and the color gamut of the compensation image and the basic image are different.
  • the printing system further includes:
  • the white base printing module is used to print a white base layer on the pre-coating layer.
  • the printing system further includes:
  • the varnish printing module is used for printing a varnish layer on the base image and the compensation image.
  • the printing system further includes:
  • the metallic color printing module is used to print a metallic color image on the basic image and/or the compensation image.
  • the printing system further includes:
  • the drying module is used for curing the pre-coating layer and the varnish layer respectively, and at least partially curing the white bottom layer, basic image, compensation image and metallic color image.
  • the fifth aspect of the embodiments of the present application also provides a wide color gamut printing device, including:
  • At least one processor At least one processor
  • the printer can be used to execute the wide color gamut printing method as described in any one of the second aspect above.
  • the sixth aspect of the embodiments of the present application provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause wide color gamut printing
  • the device executes the wide color gamut printing method as described in any one of the above second aspect.
  • a seventh aspect of the embodiments of the present application provides a product printed according to the wide color gamut printing method as described in any one of the second aspect above.
  • the eighth aspect of the embodiments of the present application provides a product printed according to the wide color gamut printing process as described in any one of the first aspect above.
  • the ninth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When executed by the wide color gamut printing device, the wide color gamut printing device is caused to execute the wide color gamut printing method described in any one of the above second aspect.
  • a pre-coating layer is printed on the surface of the recording medium, and then a basic image is printed on the pre-coating layer, and then a compensation printing is performed on the basic image to print the color gamut of the basic image. Compensate the image to get the final target image. It can be seen that by printing a compensation image on top of the basic image with an ink whose color gamut is different from the color gamut of the ink used for printing the basic image, it can realize the combination, superposition or mixing of multiple color gamuts, thereby achieving a wider color gamut The printing, to achieve the purpose of improving the color effect and visual quality of the target image.
  • the pre-coating layer printed on the surface of the recording medium can better realize that the subsequent printing ink is better attached to the recording medium, and will not be scattered randomly and unstablely.
  • Figure 1 is a schematic diagram of a color gamut image in the prior art
  • FIG. 2 is a schematic diagram of an embodiment of a wide color gamut printing process in an embodiment of the present invention
  • Figure 3 is a schematic diagram of a CMYK nozzle in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of integrating multiple groups of nozzles in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a wide color gamut printing process in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a wide color gamut printing process in an embodiment of the present invention.
  • Figure 7 is a schematic diagram of an embodiment of a wide color gamut printing method in an embodiment of the present invention.
  • step S230 is a schematic diagram of an embodiment of step S230 in the wide color gamut printing method in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of quantizing a target image into plane coordinates in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of a unit for determining a compensation position in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a wide color gamut printing device 300 in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an embodiment of the second determining unit 330 in the wide color gamut printing device 300 in the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an embodiment of a wide color gamut printing system 400 in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a printing device 500 in an embodiment of the present invention.
  • the embodiment of the present invention provides a wide color gamut printing process and method, which can print colors with a wider color gamut and improve the color effect and visual quality of the target image.
  • the Lab color gamut is the color gamut of all colors that can be seen by the human eye in theory. It is a color system based on the physiological characteristics of the human eye that has nothing to do with equipment and neither rely on light nor pigment. It is also because of this that the colors of the Lab color gamut cannot be fully represented by the monitor or paint.
  • the dashed box shows the RGB color gamut.
  • the RGB color gamut is the most widely used color standard in industrial design. It uses three types of colors: Red, Green, and Blue. The change of color channels and their mutual superposition to get a variety of colors, RGB represents the three primary colors of light (red, green, and blue); the thick line frame shows the CMYK color gamut, and the CMYK color gamut is Conventional printing color standard in industrial production. In industrial production, the image on a product needs to be designed on a computer before it can be printed.
  • the CMYK color gamut of the printing color standard is actually the industrial design color standard RGB A subset of the color gamut whose range is smaller than the RGB color gamut.
  • This kind of image printed by conventional printing means not only has a color gamut difference from the image designed in the computer, but also has a clear color gamut gap with the image visible to the human eye. You can refer to the CMYK color gamut shown in Figure 1. Blank areas between Lab color gamuts.
  • an embodiment of a wide color gamut printing process in an embodiment of the present invention includes:
  • Inkjet printing is to spray colored liquid ink into fine particles through a nozzle onto a recording medium (such as paper).
  • the quality of the printed image usually depends on the printing resolution of the inkjet printing, that is, the DPI value.
  • DPI Dots Per Inch, dots per inch
  • DPI Dots Per Inch, dots per inch
  • this embodiment allows the subsequent ink to be better sprayed on the recording medium without the ink being scattered randomly and unsteadily.
  • a pre-coating layer is printed on the surface of the recording medium to improve the spraying effect. .
  • the traditional pre-coating layer is used to apply the pre-coating layer to the recording medium through a roller. Not only is the operation cumbersome and the thickness is not easy to grasp, but also can only be coated on the recording medium, which is extremely wasteful. In addition, the flatness of the printing surface of the medium is required to be high, and there is the phenomenon that the roller sticks to the recording medium when the roller is rolling, which seriously affects the subsequent ink printing.
  • the pre-coating layer is printed on the surface of the recording medium by spraying, and there is no problem of contact with the recording medium, so there is no requirement for the flatness of the printing surface of the recording medium.
  • the printing thickness of the pre-coating layer can be precisely controlled to avoid waste.
  • the pre-coating layer can be precisely controlled within the area of the target image to be printed, that is, the size and position of the target image to be printed can be accurately sprayed on the surface of the recording medium. Reduce unnecessary waste.
  • the aforementioned recording medium may include, but is not limited to, paper, leather, metal, glass, ceramic, plastic, wood, and other materials. It can also be understood that the composition of the pre-coating layer may be for different recording media, and the recording medium of one material corresponds to the pre-coating layer of one composition, which is not specifically limited here.
  • a layer of basic image can be printed on top of the pre-coating layer.
  • the basic image is printed by conventional printing means CMYK.
  • CMYK conventional printing means
  • three or four nozzles can spray cyan, magenta, yellow and black respectively.
  • the solution of sharing one nozzle can also be adopted.
  • multiple groups of nozzles are set corresponding to cyan C, magenta M, yellow Y and black K.
  • each group of CMYK can contain 16
  • One nozzle means that there are 4 groups of 16 nozzles in one nozzle, that is, a nozzle with 64 nozzles.
  • the multi-nozzle method is used because: the conventional design is to eject ink only when printing is required, that is, random inkjet. Compared with continuous inkjet, it has simple structure, lower cost and higher reliability. Therefore, It is widely used; however, due to the influence of jet inertia, the ejection speed of ink droplets is reduced. In order to compensate for this shortcoming, the method of multi-nozzle combination is adopted to increase the printing speed.
  • each group of nozzles integrated in one nozzle may not be limited to 16, and 16 nozzles are taken as an example for illustration.
  • the inkjet method used by each nozzle can be a micro-piezoelectric type, which pushes out ink droplets by controlling the contraction of the piezoelectric element; or a thermal bubble type, which ejects ink by heating, expanding, and compressing the ink in a short time. Drop, the specifics are not limited here.
  • the basic image printed in the above basic printing step is an image of cyan, magenta, yellow, black or a combination of colors printed by CMYK ink. Since the CMYK color gamut is not only smaller than the RGB color gamut of the display, but also much smaller than the Lab color gamut visible to the human eye, the image printed by the CMYK ink is actually very different from the expected color seen by the human eye.
  • a compensation printing step is added to the basic image printed with the CMYK ink, that is, the compensation image is printed on the basic image.
  • the compensation color of the printed compensation image can be colors in other color gamuts except CMYK colors (cyan, magenta, yellow, black), such as purple, orange, green, royal blue, and red.
  • CMYK colors cyan, magenta, yellow, black
  • purple, orange, green, royal blue, and red One or more colors can be selected according to the actual needs of the target image to be printed.
  • the compensation color can be provided with one nozzle corresponding to each color, or the compensation color can be a nozzle different from the CMYK color (ie at least two nozzles), or a solution integrated into one nozzle can also be adopted.
  • the compensation color can be a nozzle different from the CMYK color (ie at least two nozzles), or a solution integrated into one nozzle can also be adopted.
  • multiple sets of nozzles are integrated in one nozzle, among which P1, P2, P3, etc. correspond to different compensation colors.
  • the arrangement and combination mode is not limited to that shown in Figure 4.
  • the horizontally arranged nozzles can also be arranged vertically or in a matrix form, which is not specifically described here. limited.
  • the printed compensation image can be overlaid and printed on top of the basic image, or can be printed in a blank area of the basic image. That is, the compensation color that is different from the CMYK color gamut can be printed and presented on the recording medium separately, or the compensation color can be printed on the CMYK color, and mixed with the CMYK color to match the colors of other color gamuts to achieve a wider Color gamut printing.
  • the basic image and the compensation image printed in the foregoing steps form the final target image, and a layer of varnish can be printed on the target image.
  • the varnish layer can play a role in waterproofing and moisture-proofing the target image, or Isolate the air, avoid the oxidation and deterioration of the ink, and also ensure the gloss of the target image, making its visual quality more comfortable.
  • some local varnishes in this embodiment can have a special effect of highlighting the local area.
  • step S105 may be provided between step S101 and step S102.
  • another embodiment of a wide color gamut printing process in the embodiment of the present invention includes:
  • a white primer layer can be printed on the pre-coated surface with white primer.
  • Printing the white bottom layer can improve the contrast of the basic image and compensation image for subsequent ink printing, so that the color contrast is clear, and the white bottom layer can be printed when a white background is required for individual special products.
  • the white base ink may be a single nozzle, or may be integrated with the nozzles of basic printing and compensation printing, and the printing nozzle of the white base ink is integrated in one nozzle, which is not specifically limited here.
  • the white bottom layer can also be accurately sprayed on the surface of the recording medium corresponding to the size and position of the target image to be printed.
  • step S106 may be set as needed between step S103 and step S104.
  • another embodiment of a wide color gamut printing process in the embodiment of the present invention includes:
  • a metallic color surface treatment may be performed on the final printed target image, and a metallic color image (also referred to as a metallic color ink layer) can be sprayed on the target image with metallic ink.
  • the metallic ink can be selected from gold, silver, space gray, aluminum alloy colors, etc. according to actual needs, and printed at a specific position or the entire coverage on the target image, making the printed target image more characteristic and enhancing the sense of technology.
  • the metallic ink may also use a nozzle alone, or may further be integrated with nozzles for white background printing, basic printing, and compensation printing, and the details are not limited here.
  • the printing process also includes a drying step, which respectively corresponds to the pre-coating printing step, the white printing step, the basic printing step, the compensation printing step, the metallic printing step, and the varnish printing step to cure the pre-coating layer separately And the varnish layer, as well as at least partially cured white underlayer, base image, compensation image and metallic image.
  • a drying process may be performed, so that the pre-coating layer is stably applied on the recording medium.
  • step S102 after each color of ink is sprayed in step S102, step S103, step S105, and step S106, or after several color inks are sprayed continuously, preliminary drying can be performed together, so that the printed ink layer (image) is at least partially cured Afterwards, complete drying is performed before applying the varnish layer in step S104 to completely cure the ink layer (image). Then, after the varnish layer is coated in step S104, final drying is performed to obtain the final product. After the ink layer (image) is finally dried/cured, the varnish layer is applied to avoid incomplete drying of the ink layer (image) due to the barrier of the varnish layer during the drying together, which can ensure the waterproof of the final varnish layer The protective effect of moisture and isolation.
  • the specific drying method may depend on the nature of the ink. If it is a UV ink, it is cured by ultraviolet light irradiation. If it is a water-based ink, it is dried by infrared light, hot air, superheated steam, etc. The nature of the ink is not correct here. Make a limit.
  • An embodiment of a wide color gamut printing method in the embodiment of the present invention includes:
  • the image can be printed by the printing device controlling the nozzles (nozzles) to eject ink droplets.
  • the printing device can obtain the target image to be printed, for example by receiving data.
  • the printing device After the printing device obtains the target image, it can analyze the target image and analyze the color gamut to which the colors in the target image belong to determine the area belonging to the CMYK color gamut and the area outside the CMYK color gamut in the target image.
  • the area belonging to the CMYK color gamut is the base image, and the area outside the CMYK color gamut is the compensation image.
  • the printing device can also correspondingly determine each compensation color required to print the compensation image.
  • the number of compensation images analyzed from the target image is usually multiple, and they are unevenly distributed on the target image.
  • a compensation path can be planned to print the compensation image unevenly distributed on the target image.
  • the printing device can control the nozzle (nozzle) to move according to the determined compensation path to print the compensation image.
  • the printing device may print the basic image of the CMYK color gamut in advance, and then print the compensation image using the compensation color on the basic image.
  • the printing device may print the basic image in an existing horizontal or vertical printing layer by layer.
  • the printing device analyzes the target image to be printed, the area ratio of the basic image obtained is smaller than the preset value, it can determine the basic path for printing the basic image according to the method described in step S230, and follow the The basic path is printed to improve printing efficiency.
  • the preset value of the area ratio preset in the printing device can be specifically adjusted and set by the user according to actual production requirements, for example, set to 30%. When it is detected and analyzed that it is less than 30%, it means that the proportion of the compensation image exceeds 70%. At this time, the printing device can set the compensation path for printing the compensation image to the conventional printing method, that is, horizontally or vertically. The compensation image is printed in a layered printing mode to avoid unnecessary calculation processes performed by the printing device and enhance production efficiency.
  • a compensation path connecting all the compensation images is planned to reduce
  • the movement time of the nozzle (nozzle) reduces the time required for spraying to compensate the image and improves the printing efficiency.
  • step S230 in the embodiment of the present invention will be described below with an example.
  • step S230 includes:
  • the printing device may use the upper left corner, upper right corner, lower left corner, or lower right corner of the target image as the starting position for initial printing.
  • the starting position may also be in the middle position of the target image, which is not specifically limited here.
  • the printing device may determine the coordinates of each compensation image with respect to the starting position and using the starting position as the origin coordinate to obtain a coordinate set, that is, a set of compensation positions.
  • S233 Determine a compensation path according to the starting position and the set of compensation positions.
  • the printing device can search for the compensation position with the shortest distance from the starting position in the set of compensation positions, and use the compensation position as the new starting position to search for and The next compensation position with the shortest distance is found until the last compensation position in the compensation position set is found, and the search path is determined as the compensation path.
  • the path direction of the compensation path includes at least a first direction and a second direction.
  • the first direction is the direction from the starting position to the right, and the second direction is from The starting position is the downward direction; and taking the lower right corner as the starting position as an example, the first direction is the upward direction, and the second direction is the left direction.
  • the first direction and the second direction are also different, and when the starting position is set in the middle of the target image, the associated compensation path can also include the third direction and the fourth direction. This does not limit it.
  • the compensation position set can be divided into a first compensation position set and a second compensation position set according to the first direction and the second direction.
  • the first compensation position set That is, the set of compensation positions located on the side of the first direction of the initial position
  • the second set of compensation positions is the set of compensation positions located on the side of the second direction of the initial position.
  • the compensation path moves in the first direction or moves in the second direction according to the weight of the first compensation position set and the second compensation position set.
  • the weight of the first compensation position set is associated with the distance between each compensation position in the first compensation position set and the starting position in the first direction
  • the weight of the second compensation position set is associated with each of the second compensation position set.
  • the compensation position is associated with the distance of the starting position in the second direction.
  • the target image is quantized as plane coordinates, and the coordinates of the starting position are set to (0, 0), then the weight of the first (second) compensation position set and each compensation position are
  • the distance relation of the starting position in the first (second) direction can refer to the value of the coordinate (X, Y) of each compensation position on the X axis or the Y axis, that is, the X axis can correspond to the first Direction, the second direction may correspond to the Y axis.
  • the default setting can be set to move to the side with the smaller weight.
  • the first direction with the smaller weight is 49. Is the compensation path for movement.
  • the weight in the first direction or the weight in the second direction can be calculated by the following summation formula, which can be:
  • a can refer to the X axis or the Y axis, that is, a1 can be X1 or Y1.
  • the summation calculation is taken as an example to illustrate how the printing device plans the compensation path, but it should not constitute a limitation to the present invention. In other embodiments of the present invention, other than the summation calculation may also be used.
  • the weights of the first direction and the second direction are calculated in the manner of, which is not specifically limited here.
  • the printing device determines that the weight of the first direction is less than the second direction, it starts from the starting position 0 and moves in the first direction (X-axis direction) in the compensation path, and then moves in the second direction (Y-axis). Direction), plan the compensation path to compensation position 1.
  • the printing device can use the compensation position 1 as the starting position to find the next compensation position with the closest distance. Since the compensation positions 1, 2, 3, and 4 are close to each other, the compensation path planned in the compensation positions close to each other can be the traditional printing method horizontally layer by layer (1234) or longitudinally layer by layer (1432). The method can also be applied to the compensation positions (5, 6), (7, 8) and (9, 10, 11) that are close to each other as shown in FIG. 9.
  • the compensation position 4 is used as the new starting position to find the next compensation position with the shortest distance.
  • the specific method can be the same as the calculation method from the starting position 0 to the compensation position 1.
  • the compensation path at this time still has a third direction at the compensation position 4, that is, the third compensation position sets 7 and 8 in the -X axis direction. But it does not affect the calculation of the new weights of the first direction, second direction and third direction at this time.
  • Figure 9 as an example.
  • the coordinates of are (7-2, 3-3), (8-2, 3-3), (1-2, 6-3), (1-2, 7-3), (5-2, 7 -3), (6-2, 7-3), (5-2, 8-3), (6-2, 10-3), that is, the new coordinates (5, 0), (6, 0), (-1, 3), (-1, 4), (3, 4), (4, 4), (3, 5), (4, 7).
  • the weight of the third direction of the -X axis is calculated as
  • the weight of the fourth direction that may appear can be calculated by referring to the third direction, and the details are not exhaustive here.
  • the compensation position within a certain range can be included as a compensation position unit, such as the dotted line in FIG. 10
  • a compensation position unit such as the dotted line in FIG. 10
  • the calculation workload of the equipment when planning the compensation path can be included as a compensation position unit, such as the dotted line in FIG. 10
  • the range of the compensation position unit can be specifically set by the user according to actual printing requirements.
  • the compensation position (56) whose distance from the compensation position (1234) that is close to each other is less than 2 can be set as shown in FIG. Merge into a compensation position unit.
  • the compensation location unit may include multiple, that is, the compensation location set may include multiple compensation location units.
  • the starting position is set, the compensation path with the starting position as the starting point is calculated, and the weight of the first direction and the second direction in the current starting position is determined to determine the direction from the starting position.
  • the direction of movement of the compensation position with the shortest distance is planned to plan a compensation path with less distance compared to the horizontal or vertical layer-by-layer printing method in the prior art, and the compensation path is used to control the movement of the print head (nozzle), thereby reducing the spray compensation image The time required to improve printing efficiency.
  • An embodiment of a wide color gamut printing device 300 in the embodiment of the present invention includes:
  • the obtaining unit 310 is used to obtain a target image
  • the first determining unit 320 is configured to determine the compensation image of the target image
  • the second determining unit 330 is configured to determine a compensation path according to the compensation image
  • the first printing unit 340 is used for printing the compensation image through the compensation path.
  • the second determining unit 330 may include:
  • the first determining subunit 331 is used to determine the starting position
  • the obtaining subunit 332 is configured to obtain a set of compensation positions on the compensation image
  • the second determining subunit 333 is configured to determine the compensation path according to the initial position and the set of compensation positions.
  • the second determining subunit 333 may be specifically used to:
  • the compensation path starts from the starting position, and the path direction of the compensation path includes at least a first direction and a second direction;
  • the second determining subunit 333 may be specifically used for:
  • the compensation position set is divided into a first compensation position set and a second compensation position set according to the first direction and the second direction.
  • the first compensation position set is located on one side of the initial position in the first direction, and the second compensation position set Located on the side of the starting position in the second direction;
  • the weight of the first compensation position set is associated with the distance between each compensation position in the first compensation position set and the starting position in the first direction
  • the weight of the second compensation position set is associated with each of the second compensation position set.
  • the compensation position is associated with the distance of the starting position in the second direction.
  • the printing apparatus 300 may further include:
  • the third determining unit 350 is configured to determine a base image of the target image, where the base image and the compensation image belong to a different color gamut;
  • the second printing unit 360 is configured to print a basic image according to the basic image.
  • the above-mentioned printing device 300 can execute the wide color gamut printing method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects for executing the method.
  • the wide color gamut printing method provided in the embodiment of the present invention, and the details are not repeated here.
  • the embodiment of the present invention also provides a printing system 400 based on the embodiment shown in FIG. 2 to FIG. 11. Please refer to FIG. 13.
  • An embodiment of a wide color gamut printing system 400 in the embodiment of the present invention includes:
  • the pre-coating printing module 410 is used to print the pre-coating on the surface of the recording medium
  • the basic printing module 420 is used to print a basic image on the pre-coating layer
  • the compensation printing module 430 is used to print a compensation image on the base image, and the color gamut of the compensation image is different from that of the base image.
  • the printing system 400 may further include:
  • the white base printing module 440 is used to print a white base layer on the pre-coating layer.
  • the printing system 400 may further include:
  • the varnish printing module 450 is used to print a varnish layer on the base image and the compensation image.
  • the printing system 400 may further include:
  • the metallic color printing module 460 is used to print a metallic color image on the basic image and/or the compensation image.
  • the printing system 400 may further include:
  • the drying module 470 is used for curing the pre-coating layer and the varnish layer respectively, and at least partially curing the white base layer, basic image, compensation image and metallic color image.
  • the above-mentioned printing system 400 can execute the wide color gamut printing process provided by the embodiments of the present invention and the wide color gamut printing method therein, and has corresponding functional modules and beneficial effects for the execution method.
  • the wide color gamut printing process and the wide color gamut printing method provided in the embodiment of the present invention please refer to the wide color gamut printing process and the wide color gamut printing method provided in the embodiment of the present invention, and details are not repeated here.
  • an embodiment of the present invention provides a printing device.
  • the printing device 500 includes: one or more processors 51 and a memory 52. Among them, one processor 51 is taken as an example in FIG. 14.
  • the processor 51 and the memory 52 may be connected by a bus or in other ways.
  • the connection by a bus is taken as an example.
  • the memory 52 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the wide color gamut printing method in any of the above-mentioned embodiments of the invention Corresponding program instructions/modules.
  • the processor 51 executes various functional applications and data processing of the printing device based on the wide color gamut printing method by running the non-volatile software programs, instructions, and modules stored in the memory 52, that is, implements the methods provided by the above method embodiments.
  • the memory 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 52 may optionally include memories remotely provided with respect to the processor 51, and these remote memories may be connected to the processor 51 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions/modules are stored in the memory 52, and when executed by one or more processors 51, the wide color gamut printing method in any of the foregoing method embodiments is executed.
  • the embodiment of the present invention also provides a non-volatile computer storage medium, the computer storage medium stores computer executable instructions, and the computer executable instructions are executed by one or more processors, such as a processor in FIG. 51.
  • the aforementioned one or more processors can be made to execute the wide color gamut printing method in any of the aforementioned method embodiments.
  • the embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a printing device, The printing device is caused to execute the wide color gamut printing method in any of the foregoing method embodiments.
  • the embodiment of the present invention also provides a product printed by any embodiment of the wide color gamut printing process, or a product printed by any embodiment of the wide color gamut printing method, the product has a target image printed on it, and the product includes but It is not limited to products made of paper, leather, metal, glass, ceramics, plastics, wood and other materials.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units. It can be located in one place, or it can be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Ink Jet (AREA)
  • Color, Gradation (AREA)

Abstract

一种宽色域打印流程、方法及宽色域打印设备,其中打印流程包括:预涂打印步骤,在记录介质的表面打印预涂层;基础打印步骤,在所述预涂层上打印基础图像;补偿打印步骤,在所述基础图像上打印补偿图像,所述补偿图像与所述基础图像的色域不同。通过与所述基础图像打印所用油墨颜色的色域不相同的油墨,在所述基础图像之上打印补偿图像,其能够实现多种不同色域的混合,实现更宽色域的打印,提高图像的颜色效果和视觉质量。

Description

一种宽色域打印流程、方法及宽色域打印设备
本申请要求于2019年07月18日提交中国专利局,申请号为201910651244.9,发明名称为“一种宽色域打印流程、方法及宽色域打印设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及打印领域,尤其涉及一种宽色域打印流程、方法及宽色域打印设备。
背景技术
喷墨打印广泛地用在许多不同的领域中以在各种记录介质中产生打印图像。常规的彩色喷墨打印是利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓的“全彩印刷”。
这四种基本颜色:青色(Cyan)、品红色(Magenta)、黄色(Yellow)和黑色(blacK),并称为CMYK颜色组。在使用时,通过组合各种基本颜色的不同剂量来产生所需的颜色图案。但是CMYK颜色组合局限性较大,能形成的色域范围不大,CMYK颜色组合后实际上跟期望颜色有差距,图像效果一般,对那些高视觉质量要求的图像就无法实现,通过现有的CMYK颜色组合形成的图像的颜色效果差,视觉质量一般。
发明内容
本申请实施例提供了一种宽色域打印流程及方法,相比较于常规的彩色喷墨打印,通过在打印的基础图像之上打印与基础图像色域不同的补偿图像,能够打印更宽色域的颜色,提高目标图像的颜色效果和视觉质量。
有鉴于此,本申请实施例第一方面提供了一种宽色域打印流程,包括:
预涂打印步骤,在记录介质的表面打印预涂层;
基础打印步骤,在所述预涂层上打印基础图像;
补偿打印步骤,在所述基础图像上打印补偿图像,所述补偿图像与所述基础图像的色域不同。
进一步的,在所述基础打印步骤之前,所述打印流程还包括:
白底打印步骤,在所述预涂层上打印白色底层。
进一步的,所述在所述补偿打印步骤之后,所述打印流程还包括:
光油打印步骤,在所述基础图像和所述补偿图像上打印光油层。
进一步的,在所述补偿打印步骤之后、所述光油打印步骤之前,所述打印流程还包括:
金属色打印步骤,在所述基础图像和/或所述补偿图像上打印金属色图像。
进一步的,所述打印流程还包括:
烘干步骤,分别对应所述预涂打印步骤、白底打印步骤、基础打印步骤、补偿打印步骤、金属色打印步骤以及光油打印步骤,用以分别固化所述预涂层和光油层,以及至少部分固化所述白色底层、基础图像、补偿图像和金属色图像。
此外,本发明第二方面提供了一种宽色域打印方法,包括:
获取目标图像;
确定所述目标图像的补偿图像;
根据所述补偿图像确定补偿路径;
通过所述补偿路径打印所述补偿图像。
进一步的,所述根据所述补偿图像确定补偿路径包括:
确定起始位置;
获取所述补偿图像上的补偿位置集合;
根据所述起始位置和补偿位置集合确定所述补偿路径。
进一步的,所述根据所述起始位置和补偿位置集合确定所述补偿路径包括:
寻找所述补偿位置集合中与所述起始位置距离最短的补偿位置,并以所述补偿位置为所述起始位置寻找距离最短的下一补偿位置,直至寻找到所述补偿位置集合中最后一补偿位置。
进一步的,所述补偿路径由所述起始位置开始,且所述补偿路径的路径方向至少包括第一方向和第二方向;
所述根据所述起始位置和补偿位置集合确定所述补偿路径包括:
根据所述第一方向和第二方向将所述补偿位置集合划分为第一补偿位置集合和第二补偿位置集合,所述第一补偿位置集合位于所述起始位置在所述第一方向的一侧,所述第二补偿位置集合位于所述起始位置在所述第二方向的一侧;
根据所述第一补偿位置集合和所述第二补偿位置集合的权重确定所述补偿路径向所述第一方向或所述第二方向移动;
所述第一补偿位置集合的权重与所述第一补偿位置集合中每一补偿位置与所述起始位置在所述第一方向的距离相关联,所述第二补偿位置集合的权重与所述第二补偿位置集合中每一补偿位置与所述起始位置在所述第二方向的距离相关联。
进一步的,所述通过所述补偿路径打印所述补偿图像之前,所述方法包括:
确定所述目标图像的基础图像,所述基础图像与补偿图像的色域不同;
根据所述基础图像打印基础图像。
本发明第三方面提供了一种宽色域打印装置,包括:
获取单元,用于获取目标图像;
第一确定单元,用于确定所述目标图像的补偿图像;
第二确定单元,用于根据所述补偿图像确定补偿路径;
第一打印单元,用于通过所述补偿路径打印所述补偿图像。
进一步的,所述第二确定单元包括:
第一确定子单元,用于确定起始位置;
获取子单元,用于获取所述补偿图像上的补偿位置集合;
第二确定子单元,用于根据所述起始位置和补偿位置集合确定所述补偿路径。
进一步的,所述第二确定子单元具体用于:
寻找所述补偿位置集合中与所述起始位置距离最短的补偿位置,并以所述补偿位置为所述起始位置寻找距离最短的下一补偿位置,直至寻找到所述补偿位置集合中最后一补偿位置。
进一步的,所述补偿路径由所述起始位置开始,且所述补偿路径的路径方向至少包括第一方向和第二方向;
所述第二确定子单元具体用于:
根据所述第一方向和第二方向将所述补偿位置集合划分为第一补偿位置集合和第二补偿位置集合,所述第一补偿位置集合位于所述起始位置在所述第一方向的一侧,所述第二补偿位置集合位于所述起始位置在所述第二方向的一侧;
根据所述第一补偿位置集合和所述第二补偿位置集合的权重确定所述补偿路径向所述第一方向或所述第二方向移动;
所述第一补偿位置集合的权重与所述第一补偿位置集合中每一补偿位置与 所述起始位置在所述第一方向的距离相关联,所述第二补偿位置集合的权重与所述第二补偿位置集合中每一补偿位置与所述起始位置在所述第二方向的距离相关联。
进一步的,所述打印装置包括:
第三确定单元,用于确定所述目标图像的基础图像,所述基础图像与补偿图像的色域不同;
第二打印单元,用于根据所述基础图像打印基础图像。
本发明第四方面提供了一种宽色域打印系统,包括:
预涂打印模块,用于在记录介质的表面打印预涂层;
基础打印模块,用于在所述预涂层上打印基础图像;
补偿打印模块,用于在所述基础图像上打印补偿图像,所述补偿图像与所述基础图像的色域不同。
进一步的,所述打印系统还包括:
白底打印模块,用于在所述预涂层上打印白色底层。
进一步的,所述打印系统还包括:
光油打印模块,用于在所述基础图像和所述补偿图像上打印光油层。
进一步的,所述打印系统还包括:
金属色打印模块,用于在所述基础图像和/或所述补偿图像上打印金属色图像。
进一步的,所述打印系统还包括:
烘干模块,用于分别固化所述预涂层和光油层,以及至少部分固化所述白色底层、基础图像、补偿图像和金属色图像。
本申请实施例第五方面还提供了一种宽色域打印设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如上第二方面中任一项所述的宽色域打印方法。
本申请实施例第六方面提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于 使宽色域打印设备执行如上第二方面中任一项所述的宽色域打印方法。
本申请实施例第七方面提供了一种根据如上第二方面中任一项所述的宽色域打印方法打印的产品。
本申请实施例第八方面提供了一种根据如上第一方面中任一项所述的宽色域打印流程打印的产品。
本申请实施例第九方面提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被宽色域打印设备执行时,使所述宽色域打印设备执行如上第二方面中任一项所述的宽色域打印方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中通过在记录介质的表面打印上一层预涂层,然后在该预涂层上打印基础图像,之后再在该基础图像上通过补偿打印,打印与该基础图像色域不同的补偿图像,得到最终的目标图像。可见,通过与该基础图像打印所用油墨颜色的色域不相同的油墨,在该基础图像之上打印补偿图像,其能够实现多种色域的组合、叠加或混合,以此实现更宽色域的打印,达到提高目标图像的颜色效果和视觉质量的目的。另外,通过在记录介质的表面上打印的预涂层也能够更好的实现后续打印油墨更好的附着在记录介质上,不会不稳定地随机散开。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为现有技术中色域图像示意图;
图2为本发明实施例中宽色域打印流程的一个实施例示意图;
图3为本发明实施例中CMYK喷嘴示意图;
图4为本发明实施例中集成多组喷嘴示意图;
图5为本发明实施例中宽色域打印流程的另一实施例示意图;
图6为本发明实施例中宽色域打印流程的另一实施例示意图;
图7为本发明实施例中宽色域打印方法一个实施例示意图;
图8为本发明实施例中宽色域打印方法中步骤S230实施例示意图;
图9为本发明实施例中将目标图像量化为平面坐标实施例示意图;
图10为本发明实施例中确定补偿位置单元实施例示意图;
图11为本发明实施例中宽色域打印装置300的一个实施例示意图;
图12为本发明实施例中宽色域打印装置300中第二确定单元330实施例示意图;
图13为本发明实施例中宽色域打印系统400的一个实施例示意图;以及
图14为本发明实施例中打印设备500一个实施例示意图。
具体实施方式
本发明实施例提供了一种宽色域打印流程及方法,能够打印更宽色域的颜色,提高目标图像的颜色效果和视觉质量。
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更为详细地描述,显然,如下所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备,不必限于清楚地列出的哪些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,Lab色域是理论上人眼可以看见的所有颜色的色域,它是一种与设备无关,既不依赖光线、也不依赖颜料的基于人眼生理特征的颜色系统,也正因为此,Lab色域的颜色并不能完全被显示器或颜料所呈现。
在图1当中,虚线框所示的是RGB色域,RGB色域是工业设计中运用最广的一种颜色标准,其通过对红(Red)、绿(Green)、蓝(Blue)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即代表光的三原色(红、绿、蓝);粗线框所示的是CMYK色域,CMYK色域是工业生产中 常规的印刷颜色标准。在工业生产中,一件产品上的图像需要先经过在计算机的设计,然后才能生产印刷。
但是由于颜料是吸收光线,不是光线叠加,因此实际上颜料打印出来的图像的色域是要小于电子计算机通过显示器反馈的图像的色域,印刷颜色标准的CMYK色域其实是工业设计颜色标准RGB色域的子集,其范围小于RGB色域。这种通过常规印刷手段打印的图像不但与计算机中设计的图像有色域差别,更与人眼肉眼所看得见的图像存在很明显的色域空白,可以参见图1所示的CMYK色域与Lab色域之间的空白区域。
为提高现有技术中常规印刷手段CMYK方式打印形成的图像的颜色效果和视觉质量,即为了提高打印目标图像的颜色的色域。以喷墨打印为例进行说明,如图2所示,本发明实施例中一种宽色域打印流程的一个实施例包括:
S101、打印预涂层;
喷墨打印是将彩色液体油墨经喷嘴变成细小微粒喷涂到记录介质上(比如纸张),所打印的图像质量的通常取决于此次喷墨打印的打印分辨率,也就是DPI值。DPI(Dots Per Inch,每英寸点数)是一个重要的量度单位,它指的是每英寸的范围内喷墨打印机可打印的墨点数,一般来说,DPI值越高,表明喷墨打印的打印精度越高、打印分辨率也越高。
影响图像质量的另外一个重要因素是记录介质的吸收问题,当油墨被喷射到纸张上的时候,它应当紧奏对称。如果油墨被纸张吸收,并且扩教,那么墨点的面积就会比预计的要大,结果就使得目标图像看起来更模糊。
本实施例为了克服这一点,让后续油墨更好地喷涂于记录介质上,不会出现油墨不稳定地随机散开现象,在该记录介质的表面上打印一层预涂层,以提高喷涂效果。
与传统的方式不同,传统的预涂层是通过滚筒将预涂层涂覆于记录介质上的,不但操作繁琐且厚度不好把握,而且只能在记录介质上满版涂布,浪费极大,并且对介质印刷面的平整度要求较高,还存在滚筒滚动时与记录介质粘附在一起的现象,严重影响了后续油墨的打印。
对此,本实施例采用喷涂方式在记录介质的表面打印预涂层,不存在与记录介质接触的问题,因此对记录介质的印刷面的平整度没有要求。而通过控制喷嘴的喷墨量,还可以精准的控制预涂层的打印厚度,避免浪费。
在一个优选的实施例中,该预涂层可以被精准的控制在所要打印的目标图像区域范围内,即对应所要打印的目标图像的大小和位置精准地喷涂在记录介质的表面上,以此减少不必要的浪费。
应理解的是,上述记录介质可以包括但不限于纸张、皮革、金属、玻璃、陶瓷、塑料、木质以及其他材料。还可以理解的是,该预涂层的成分可以针对不同的记录介质,一种材料的记录介质对应一种成分的预涂层,具体此处不做限定。
S102、打印基础图像;
本实施例中,可以在预涂层之上打印一层基础图像,该基础图像即由常规印刷手段CMYK方式打印,具体可以是通过三个或四个喷头分别喷涂青色、品红色、黄色和黑色。当然,也可以采用共用一个喷头的方案,在一个喷头中设置多组喷嘴分别对应青色C、品红色M、黄色Y以及黑色K,如图3所示,在CMYK的每组中可以包含有16个喷嘴,也就是在一个喷头中设有4组16个喷嘴,即64喷嘴的喷头。
采用多喷嘴的方式是因为:常规的设计是只有在打印需要时才喷射油墨,即随机式喷墨,它与连续式喷墨相比,结构简单,成本更低,可靠性也更高,因此广为采用;但是,受射流惯性的影响,导致墨滴喷射速度降低,为了弥补这一缺点,因此采用多喷嘴组合的方法来提高打印速度。
可以理解的是,该集成在一个喷头中的每组喷嘴可以不限于16个,此处以16个为例示意说明。
并且,每个喷嘴采用的喷墨方式可以是微压电式,通过控制压电元件收缩推出墨滴;也可以是热气泡式,通过将油墨在短时间内的加热、膨胀、压缩喷射出墨滴,具体此处不做限定。
S103、打印补偿图像;
上述基础打印步骤中所打印的基础图像即由CMYK油墨打印的青色、品红色、黄色、黑色或其组合颜色的图像。由于CMYK色域不但小于显示器的RGB色域,还要远小于人眼可见的Lab色域,该由CMYK油墨打印的图像实际上与人眼所见的期望颜色存在很大差别。
对此,本实施例中,在该CMYK油墨打印的基础图像之上补充增加了补偿打印步骤,即在基础图像之上打印补偿图像。
可以理解的是,所打印补偿图像的补偿颜色可以是除CMYK颜色(青色、品红色、黄色、黑色)以外的其他色域的颜色,例如可以是紫色、橙色、绿色、宝蓝色、大红色中的一种或多种颜色,具体可以根据实际打印的目标图像的需求进行选择。
本实施例中,该补偿颜色可以对应每一颜色设置一个喷头,或者可以将该补偿颜色采用与CMYK颜色所不同的喷头(即至少两个喷头),又或者也可以采用集成为一个喷头的方案,如图4所示,在一个喷头中集成多组喷嘴,其中P1、P2、P3等即分别对应不同的补偿颜色。当然在该集成多组喷嘴的一个喷头中,其排布组合方式并不限于图4所示,该水平排布的喷嘴也可以是垂直排布,或以矩阵形式排布,具体此处不做限定。
需要说明的是,本实施例中,所打印的补偿图像可以覆盖打印在基础图像上方,也可以打印在基础图像的空白区域中。即可以将该与CMYK色域不同的补偿颜色单独打印呈现在记录介质上,或者可以将该补偿颜色打印在CMYK颜色之上,与该CMYK颜色混合调配出其他色域的颜色,以实现更宽的色域打印。
S104、打印光油层。
本实施例中,前述步骤打印的基础图像和补偿图像形成最终的目标图像,而在该目标图像之上可以打印一层光油层,该光油层可以对目标图像起到防水防潮的作用、也可以隔绝空气,避免油墨氧化变质等,而且还可以保证目标图像的光泽度,使得其视觉质量更舒适。
另外,本实施例中某些局部光油能起到突出局部的特殊效果。
本发明实施例通过在CMYK打印的基础图像之上补偿打印其他色域颜色的补偿图像,能够实现多种色域颜色的组合、叠加和混合,实现宽色域的打印,提高目标图像打印的颜色效果和视觉质量。
在本发明的一些实施例中,在步骤S101和步骤S102之间可以设有步骤S105,如图5所示,本发明实施例中一种宽色域打印流程的另一实施例包括:
S105、打印白色底层。
在打印CMYK颜色的基础图像之前,可以在该预涂层的表面通过白色底墨再打印一层白色底层。打印白色底层可以提高后续油墨打印的基础图像和补偿图像的对比度,使其色彩对比分明,以及个别特殊产品需求白底时打印白色底层。
可以理解的是,该白色底墨可以单独采用一个喷头,或者也可以与基础打印和补偿打印的喷头集成为一体,在一个喷头中集成该白色底墨的打印喷嘴,具体此处不做限定。
该白色底层也可以对应所要打印的目标图像的大小和位置精准地喷涂在记录介质的表面上。
在本发明的一些实施例中,在步骤S103和步骤S104之间还可以根据需要设置步骤S106,如图6所示,本发明实施例中一种宽色域打印流程的另一实施例包括:
S106、打印金属色图像。
在打印覆盖光油层之前,在该最终打印的目标图像之上还可以进行金属色表面处理,通过金属色油墨在该目标图像上喷涂上金属色图像(也可以称为金属色油墨层)。
该金属色油墨可以根据实际需求选取金色、银色、太空灰色、铝合金色等,在该目标图像上的特定位置或整个覆盖打印,使得所打印的目标图像更加具有特点,增强科技感。
需要说明的是,该金属色油墨也可以单独采用一个喷头,或者进一步的可以与白底打印、基础打印、补偿打印的喷头集成为一体,具体此处不做限定。
需要说明的是,打印流程还包括烘干步骤,分别对应预涂打印步骤、白底打印步骤、基础打印步骤、补偿打印步骤、金属色打印步骤以及光油打印步骤,用以分别固化预涂层和光油层,以及至少部分固化白色底层、基础图像、补偿图像和金属色图像。本发明实施例中,在步骤S101形成预涂层之后可以进行烘干加工,使预涂层稳定敷在记录介质上。并且,在步骤S102、步骤S103、步骤S105和步骤S106中每喷完一种颜色油墨之后或连续喷几种颜色油墨后可以一起进行初步烘干,使得所打印的油墨层(图像)至少部分固化,之后在步骤S104涂覆光油层之前进行完全烘干,使油墨层(图像)完全固化。然后才在步骤S104涂覆上光油层之后进行最终烘干,得到最终产品。通过将油墨层(图像)最终烘干/固化后再涂覆光油层,避免一起烘干时由于光油层的隔档导致油墨层(图像)的烘干不彻底,可以保证最终的光油层的防水防潮、隔绝的保护效果。
其具体的烘干方式可以取决于油墨的性质,如果是UV油墨则采用紫外线灯光照射的方式固化,如果是水性油墨则采用红外光、热风、过热蒸汽等方式 烘干,此处不对油墨的性质做限定。
对应的本发明实施例中,基于图2至图6所示实施例,有关于目标图像的打印可以参阅图7所示,本发明实施例的一种宽色域打印方法的一个实施例包括:
S210、获取目标图像;
本实施例中,图像可以由打印设备控制喷头(喷嘴)喷射出墨滴进行打印,在打印之前,该打印设备可以获取到所要打印的目标图像,例如通过数据接收的方式获取该目标图像。
S220、确定目标图像的补偿图像;
在该打印设备获取到目标图像之后,可以对目标图像进行分析,分析该目标图像中颜色所属的色域,以确定该目标图像中属于CMYK色域的区域以及属于该CMYK色域以外的区域。
可以理解的是,在该目标图像中,该属于CMYK色域的区域即基础图像,该属于CMYK色域以外的区域即补偿图像。
并在确定了补偿图像之后,该打印设备还可以对应确定打印该补偿图像所需的每种补偿颜色。
S230、根据补偿图像确定补偿路径;
应理解的是,从该目标图像中分析得到的补偿图像的数量通常为多个,且不均匀地分布在目标图像上。
因此,本实施例中,为了减少打印该补偿图像所花费时间,可以规划一条补偿路径用以打印该目标图像上不均匀分布的补偿图像。
可以理解的是,依据补偿图像在目标图像上的分布位置不同,可以不同于现有技术中横向或纵向的逐层打印方式规划一条连接所有补偿图像的补偿路径,因而不需要经过全部的目标图像,以减少喷头(喷嘴)在移动中花费的时间,提高打印效率。
S240、通过补偿路径打印补偿图像。
本实施例中,打印设备可以控制喷头(喷嘴)按照所确定的补偿路径移动,打印该补偿图像。
需要说明的是,打印设备在打印该补偿图像之前可以预先打印该CMYK色域的基础图像,然后在该基础图像之上使用补偿颜色打印补偿图像。
可以理解的是,打印设备打印该基础图像的方式可以是现有的横向或纵向逐层打印方式。当然,如若该打印设备在分析要打印的目标图像时,得到该基础图像的区域占比小于预设值,则可以按照步骤S230所述的方法,确定打印该基础图像的基础路径,并按照该基础路径进行打印以提高打印效率。
该打印设备中预设的区域占比的预设值具体可以由用户根据实际生产需求调整设置,例如设置为30%。当检测分析到小于30%时,也就意味着补偿图像的占比超过了70%,此时打印设备可以自行将打印补偿图像的补偿路径设置为常规的打印方式,即以横向或纵向的逐层打印方式打印该补偿图像,避免打印设备执行过多不必要的计算过程,强化生产效率。
本发明实施例中,通过分析目标图像中包含的基础图像以及对应该基础图像所要补偿的补偿图像,依据该补偿图像在目标图像上的分布位置,规划连接所有补偿图像的补偿路径,以达到减少喷头(喷嘴)移动的时间,减少喷涂补偿图像所需时间,提高打印效率的目的。
下面对本发明实施例中的步骤S230进行举例说明。请参阅图8所示,基于图7所示实施例,本发明实施例的一种宽色域打印方法的一个实施例中步骤S230包括:
S231、确定起始位置;
本实施例中,打印设备可以以目标图像左上角、右上角、左下角或右下角为初始打印的起始位置。
在一些实施例中,该起始位置也可以在目标图像的中间位置,具体此处不做限定。
S232、获取补偿图像上的补偿位置集合;
本实施例中,打印设备可以相对于该起始位置,以该起始位置为原点坐标确定每一个补偿图像的坐标得到一个坐标集合,即补偿位置集合。
S233、根据起始位置和补偿位置集合确定补偿路径。
本实施例中,以该起始位置为补偿路径的开始端,打印设备可以通过寻找在补偿位置集合中与起始位置距离最短的补偿位置,并以该补偿位置为新的起始位置寻找与它距离最短的下一补偿位置,直至寻找到该补偿位置集合中最后的一个补偿位置的方式,将该寻找路径确定为补偿路径。
具体的,该补偿路径的路径方向至少包括第一方向和第二方向,以左上角 为起始位置为例,该第一方向即从该起始位置向右的方向,该第二方向即从该起始位置向下的方向;而以右下角为起始位置为例,该第一方向即向上的方向,该第二方向即向左的方向。具体对应不同的起始位置,该第一方向和第二方向亦不同,并且在起始位置设置在目标图像的中间位置时,其关联的补偿路径还可以包括第三方向和第四方向,在此不对其做限定。
而在补偿路径的第一方向和第二方向的基础之上,可以根据第一方向和第二方向将补偿位置集合划分为第一补偿位置集合和第二补偿位置集合,该第一补偿位置集合即位于起始位置的第一方向一侧的补偿位置集合,该第二补偿位置集合即位于起始位置在第二方向一侧的补偿位置集合。
需要说明的是,本实施例中可以依据该第一补偿位置集合和第二补偿位置集合的权重来确定补偿路径向第一方向移动或向第二方向移动。该第一补偿位置集合的权重与第一补偿位置集合中每一补偿位置与起始位置在第一方向上的距离相关联,该第二补偿位置集合的权重与第二补偿位置集合中每一补偿位置与起始位置在第二方向上的距离相关联。
以图9所示为例,将目标图像量化为平面的坐标,设置该起始位置的坐标为(0,0),则该第一(第二)补偿位置集合的权重与每一补偿位置与起始位置在第一(第二)方向上的距离关联关系可以是指每一补偿位置的坐标(X,Y)在X轴或Y轴上的值的大小,即该X轴可以对应第一方向,该第二方向可以对应Y轴。
在图9中,假设补偿位置分别为1、2、3、4、5、6、7、8、9、10、11、12,相应的坐标分别为(2,2)、(3,2)、(3,3)、(2,3)、(7,3)、(8,3)、(1,6)、(1,7)、(5,7)、(6,7)、(5,8)、(6,10),从中可以计算得到第一方向的权重为49,第二方向的权重为61。
本实施例中,为减少移动距离,向距离最近的补偿位置移动,因此可以默认设置向权重小的一方移动,如比较于权重61的第二方向,以权重小的为49的第一方向确定为移动的补偿路径。
当然,假设补偿位置为n个,则可以通过以下求和计算式计算得到第一方向的权重或第二方向的权重,该计算式可以为:
Figure PCTCN2020089037-appb-000001
其中a可以指代X轴或Y轴,即a1可以为X1,或者Y1。
应理解的是,本实施例中以求和计算为例进行举例说明打印设备如何规划补偿路径,但不应构成对本发明的限定,在本发明的其他实施例中也可以采用除求和计算以外的方式计算得到第一方向和第二方向的权重,具体此处不做限定。
如图9所示,当打印设备确定第一方向权重小于第二方向,即在补偿路径中由起始位置0开始向第一方向移动(X轴方向),之后向第二方向移动(Y轴方向),将补偿路径规划至补偿位置1处。
在此之后,打印设备可以以该补偿位置1为起始位置再次寻找距离最近的下一补偿位置。而由于补偿位置1、2、3、4相互接近,因此在相互接近的补偿位置中所规划的补偿路径可以是传统的打印方式横向逐层(1234)或纵向逐层(1432),同理该方式也可适用于图9所示的相互接近的补偿位置(5、6)、(7、8)和(9、10、11)中。
假设上述补偿路径截止至补偿位置4处,以该补偿位置4为新的起始位置寻找下一距离最短的补偿位置,具体方式可以同上述起始位置0至补偿位置1的计算方式。当然,此时的补偿路径在补偿位置4处还存在第三方向,即-X轴方向的第三补偿位置集合7和8。但其并不影响计算此时第一方向、第二方向以及第三方向的新的权重,继续以图9为例,此时补偿位置5、6、7、8、9、10、11、12的坐标分别为(7-2,3-3)、(8-2,3-3)、(1-2,6-3)、(1-2,7-3)、(5-2,7-3)、(6-2,7-3)、(5-2,8-3)、(6-2,10-3),即新的坐标(5,0)、(6,0)、(-1,3)、(-1,4)、(3,4)、(4,4)、(3,5)、(4,7)。
以上,从中计算-X轴的第三方向的权重为|-2|,并计算得到第一方向的权重为25,第二方向的权重为27。取他们的绝对值,可知第三方向的权重最小为2。因此,在所规划的补偿路径中可以先向-X轴方向移动(第三方向),然后向Y轴方向移动(第二方向),规划补偿路径之补偿位置7处。在此之后以补偿位置7为新的起始位置继续寻找距离最短的下一补偿位置直至所述补偿路径衔接所有的补偿位置。当然其中可能出现的第四方向的权重可以参照第三方向计算得出,具体此处不再穷举。
在一个优选的实施例中,以图10所示为例,在该打印设备处理分析目标图像的时候,可以将一定范围内的补偿位置一并纳入为一个补偿位置单元,例如 图10中虚线所示,在确定补偿位置1为最接近的位置时,可以采用横向逐层(123456)或纵向逐层(561423或234165)的方式规划打印该补偿位置1所在的补偿位置单元,相应的可以减少打印设备在规划补偿路径时的计算工作量。
可以理解的是,该补偿位置单元的范围具体可以由用户根据实际打印需求设置,例如可以如图10所示的将与该相互接近的补偿位置(1234)距离间隔小于2的补偿位置(56)合并为一个补偿位置单元。应理解,在该目标图像中,补偿位置单元可以包括多个,即补偿位置集合中可以包括多个补偿位置单元。
本发明实施例中,设置起始位置点,计算以该起始位置为开始点的补偿路径,通过判断在当前起始位置的第一方向和第二方向的权重,确定由该起始位置向距离最短的补偿位置移动的方向,规划出一条相对现有技术中横向或纵向逐层打印方式路程较少的补偿路径,并以此补偿路径控制喷头(喷嘴)的移动,从而达到减少喷涂补偿图像所需时间,提高打印效率的目的。
以上,对于图7至图10所示实施例的打印设备,其装置结构请参阅图11所示,本发明实施例中一种宽色域打印装置300的一个实施例包括:
获取单元310,用于获取目标图像;
第一确定单元320,用于确定目标图像的补偿图像;
第二确定单元330,用于根据补偿图像确定补偿路径;
第一打印单元340,用于通过补偿路径打印补偿图像。
进一步的,如图12所示,在本发明的一些实施例中,该第二确定单元330可以包括:
第一确定子单元331,用于确定起始位置;
获取子单元332,用于获取补偿图像上的补偿位置集合;
第二确定子单元333,用于根据起始位置和补偿位置集合确定补偿路径。
进一步的,在本发明的一些实施例中,该第二确定子单元333具体可以用于:
寻找补偿位置集合中与该起始位置距离最短的补偿位置,并以该补偿位置为起始位置寻找距离最短的下一补偿位置,直至寻找到补偿位置集合中最后一补偿位置。
进一步的,在本发明的一些实施例中,该补偿路径由起始位置开始,且该补偿路径的路径方向至少包括第一方向和第二方向;
该第二确定子单元333具体可以用于:
根据第一方向和第二方向将补偿位置集合划分为第一补偿位置集合和第二补偿位置集合,该第一补偿位置集合位于起始位置在第一方向的一侧,该第二补偿位置集合位于起始位置在第二方向的一侧;
根据该第一补偿位置集合和第二补偿位置集合的权重确定补偿路径向第一方向或第二方向移动;
该第一补偿位置集合的权重与第一补偿位置集合中每一补偿位置与起始位置在第一方向上的距离相关联,该第二补偿位置集合的权重与第二补偿位置集合中每一补偿位置与起始位置在第二方向上的距离相关联。
进一步的,在本发明的一些实施例中,该打印装置300还可以包括:
第三确定单元350,用于确定目标图像的基础图像,该基础图像与补偿图像的颜色所属的色域不同;
第二打印单元360,用于根据该基础图像打印基础图像。
需要说明的是,上述打印装置300可执行本发明实施例所提供的宽色域打印方法,具备执行方法相应的功能模块和有益效果。而未在打印装置300实施例中详尽描述的技术细节,可参见本发明实施例所提供的宽色域打印方法,具体此处不再赘述。
本发明实施例还提供了一种基于图2至图11所示实施例的打印系统400,请参阅图13所示,本发明实施例中一种宽色域打印系统400的一个实施例包括:
预涂打印模块410,用于在记录介质的表面打印预涂层;
基础打印模块420,用于在预涂层上打印基础图像;
补偿打印模块430,用于在基础图像上打印补偿图像,该补偿图像与基础图像的色域不同。
进一步的,在本发明的一些实施例中,该打印系统400还可以包括:
白底打印模块440,用于在预涂层上打印白色底层。
进一步的,在本发明的一些实施例中,打印系统400还可以包括:
光油打印模块450,用于在基础图像和补偿图像上打印光油层。
进一步的,在本发明的一些实施例中,打印系统400还可以包括:
金属色打印模块460,用于在基础图像和/或补偿图像上打印金属色图像。
进一步的,在本发明的一些实施例中,打印系统400还可以包括:
烘干模块470,用于分别固化所述预涂层和光油层,以及至少部分固化所述白色底层、基础图像、补偿图像和金属色图像。
应理解,上述打印系统400可执行本发明实施例所提供的宽色域打印流程,以及其中的宽色域打印方法,具备执行方法相应的功能模块和有益效果。对于未在打印系统400实施例中详尽描述的技术细节,可参见本发明实施例所提供的宽色域打印流程以及宽色域打印方法,具体此处不再赘述。
作为本发明实施例的另一方面,本发明实施例提供一种打印设备,如图14所示,该打印设备500包括:一个或多个处理器51以及存储器52。其中,图14中以一个处理器51为例。
处理器51和存储器52可以通过总线或者其他方式连接,图14中以通过总线连接为例。
该存储器52作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如上述任一发明实施例中宽色域打印方法对应的程序指令/模块。处理器51通过运行存储在存储器52中的非易失性软件程序、指令以及模块,从而执行基于宽色域打印方法的打印装置的各种功能应用以及数据处理,即实现上述方法实施例提供的宽色域打印方法以及装置实施例的各个模块的功能。
存储器52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器52可选包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至处理器51。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述的程序指令/模块存储在存储器52中,当被一个或者多个处理器51执行时,执行上述任意方法实施例中的宽色域打印方法。
本发明实施例还提供了一种非易失性计算机存储介质,该计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图14中的一个处理器51,可使得上述一个或多个处理器可执行上述任意方法实施例中的宽色域打印方法。
本发明实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,该计算机程序包括程序指令, 当程序指令被打印设备执行时,使得该打印设备执行上述任意方法实施例中的宽色域打印方法。
本发明实施例中还提供了通过上述任一宽色域打印流程实施例打印的产品,或任一宽色域打印方法实施例打印的产品,该产品上打印有目标图像,且该产品包括但不限于纸张、皮革、金属、玻璃、陶瓷、塑料、木质以及其他材料的产品。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种宽色域打印流程,其特征在于,包括:
    预涂打印步骤,在记录介质的表面打印预涂层;
    基础打印步骤,在所述预涂层上打印基础图像;
    补偿打印步骤,在所述基础图像上打印补偿图像,所述补偿图像与所述基础图像的色域不同。
  2. 根据权利要求1所述的打印流程,其特征在于,在所述基础打印步骤之前,所述打印流程还包括:
    白底打印步骤,在所述预涂层上打印白色底层。
  3. 根据权利要求1或2所述的打印流程,其特征在于,所述在所述补偿打印步骤之后,所述打印流程还包括:
    光油打印步骤,在所述基础图像和所述补偿图像上打印光油层。
  4. 根据权利要求3所述的打印流程,其特征在于,在所述补偿打印步骤之后、所述光油打印步骤之前,所述打印流程还包括:
    金属色打印步骤,在所述基础图像和/或所述补偿图像上打印金属色图像。
  5. 根据权利要求1-4中任一项所述的打印流程,其特征在于,所述打印流程还包括:
    烘干步骤,分别对应所述预涂打印步骤、白底打印步骤、基础打印步骤、补偿打印步骤、金属色打印步骤以及光油打印步骤,用以分别固化所述预涂层和光油层,以及至少部分固化所述白色底层、基础图像、补偿图像和金属色图像。
  6. 一种宽色域打印方法,其特征在于,包括:
    获取目标图像;
    确定所述目标图像的补偿图像;
    根据所述补偿图像确定补偿路径;
    通过所述补偿路径打印所述补偿图像。
  7. 根据权利要求6所述的打印方法,其特征在于,所述根据所述补偿图像确定补偿路径包括:
    确定起始位置;
    获取所述补偿图像上的补偿位置集合;
    根据所述起始位置和补偿位置集合确定所述补偿路径。
  8. 根据权利要求7所述的打印方法,其特征在于,所述根据所述起始位置和补偿位置集合确定所述补偿路径包括:
    寻找所述补偿位置集合中与所述起始位置距离最短的补偿位置,并以所述补偿位置为所述起始位置寻找距离最短的下一补偿位置,直至寻找到所述补偿位置集合中最后一补偿位置。
  9. 根据权利要求8所述的打印方法,其特征在于,所述补偿路径由所述起始位置开始,且所述补偿路径的路径方向至少包括第一方向和第二方向;
    所述根据所述起始位置和补偿位置集合确定所述补偿路径包括:
    根据所述第一方向和第二方向将所述补偿位置集合划分为第一补偿位置集合和第二补偿位置集合,所述第一补偿位置集合位于所述起始位置在所述第一方向的一侧,所述第二补偿位置集合位于所述起始位置在所述第二方向的一侧;
    根据所述第一补偿位置集合和所述第二补偿位置集合的权重确定所述补偿路径向所述第一方向或所述第二方向移动;
    所述第一补偿位置集合的权重与所述第一补偿位置集合中每一补偿位置与所述起始位置在所述第一方向的距离相关联,所述第二补偿位置集合的权重与所述第二补偿位置集合中每一补偿位置与所述起始位置在所述第二方向的距离相关联。
  10. 根据权利要求6-9中任一项所述的打印方法,其特征在于,所述通过所述补偿路径打印所述补偿图像之前,所述方法包括:
    确定所述目标图像的基础图像,所述基础图像与补偿图像的色域不同;
    根据所述基础图像打印基础图像。
  11. 一种宽色域打印设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求6-10任一项所述的方法。
  12. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可 读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使宽色域打印设备执行权利要求6-10任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被宽色域打印设备执行时,使所述宽色域打印设备执行权利要求6-10任一项所述的方法。
PCT/CN2020/089037 2019-07-18 2020-05-07 一种宽色域打印流程、方法及宽色域打印设备 WO2021008200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910651244.9 2019-07-18
CN201910651244.9A CN110450558B (zh) 2019-07-18 2019-07-18 一种宽色域打印流程及方法

Publications (1)

Publication Number Publication Date
WO2021008200A1 true WO2021008200A1 (zh) 2021-01-21

Family

ID=68481408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089037 WO2021008200A1 (zh) 2019-07-18 2020-05-07 一种宽色域打印流程、方法及宽色域打印设备

Country Status (2)

Country Link
CN (1) CN110450558B (zh)
WO (1) WO2021008200A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110450558B (zh) * 2019-07-18 2022-06-10 深圳汉华工业数码设备有限公司 一种宽色域打印流程及方法
CN112721486B (zh) * 2020-12-28 2022-09-02 深圳汉弘数字印刷集团股份有限公司 一种打印方法及喷墨打印机
CN113103794A (zh) * 2021-03-16 2021-07-13 深圳汉华工业数码设备有限公司 一种打印方法、装置及数码打印机
CN113085401B (zh) * 2021-04-06 2023-03-24 北京华科恒润智能科技有限公司 墙体彩绘打印方法及装置、电子设备和存储介质
CN114701166A (zh) * 2022-03-31 2022-07-05 苏州研拓自动化科技有限公司 大尺寸高分子材料3d打印材料变形的控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359805A (zh) * 2000-12-21 2002-07-24 明碁电通股份有限公司 可选择最佳打印路径的打印装置
US20040114163A1 (en) * 2001-03-02 2004-06-17 Martin Alderliefste Method for printing a colour image
CN102233746A (zh) * 2010-04-14 2011-11-09 精工爱普生株式会社 印刷装置及印刷方法
CN102439963A (zh) * 2009-04-28 2012-05-02 太阳化学公司 在印刷原色油墨组中采用印刷原色和专色来进行多色彩色印刷的方法和系统
CN104044381A (zh) * 2008-12-19 2014-09-17 美凯威奇兄弟有限责任两合公司 涂层及其利用喷墨打印的制备方法
CN104309309A (zh) * 2014-10-28 2015-01-28 北京美科艺数码科技发展有限公司 一种图像喷绘打印方法及打印装置
JP2018001673A (ja) * 2016-07-06 2018-01-11 ローランドディー.ジー.株式会社 印刷装置
CN109302858A (zh) * 2016-03-17 2019-02-01 艾利丹尼森公司 利用集成专色和印刷原色的喷墨打印方法
CN110450558A (zh) * 2019-07-18 2019-11-15 深圳汉华工业数码设备有限公司 一种宽色域打印流程及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918727A (ja) * 1995-06-27 1997-01-17 Ricoh Co Ltd 色再現処理装置
CN100363800C (zh) * 2003-12-29 2008-01-23 财团法人工业技术研究院 以喷墨打印修补元件的方法
JP5985902B2 (ja) * 2012-06-28 2016-09-06 株式会社Okiデータ・インフォテック インクジェットプリンター
CN106396397A (zh) * 2016-08-31 2017-02-15 广东金意陶陶瓷有限公司 一种具有助色花釉层的陶瓷砖及其制备方法
CN106585152A (zh) * 2016-12-20 2017-04-26 深圳市贤俊龙彩印有限公司 一种新型数码喷墨整饰工艺
CN110495162A (zh) * 2017-01-26 2019-11-22 艾司科软件有限公司 用于产生印刷产品的颜色准确校样的方法
CN106827814B (zh) * 2017-02-15 2018-07-24 京东方科技集团股份有限公司 喷射量补偿方法、喷射量补偿设备和喷墨打印系统
CN109246330A (zh) * 2017-07-11 2019-01-18 宝成工业股份有限公司 喷印追色方法及其系统
TWM575586U (zh) * 2018-11-30 2019-03-11 海德保科技有限公司 使用分色數位前導技術的印刷系統

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359805A (zh) * 2000-12-21 2002-07-24 明碁电通股份有限公司 可选择最佳打印路径的打印装置
US20040114163A1 (en) * 2001-03-02 2004-06-17 Martin Alderliefste Method for printing a colour image
CN104044381A (zh) * 2008-12-19 2014-09-17 美凯威奇兄弟有限责任两合公司 涂层及其利用喷墨打印的制备方法
CN102439963A (zh) * 2009-04-28 2012-05-02 太阳化学公司 在印刷原色油墨组中采用印刷原色和专色来进行多色彩色印刷的方法和系统
CN102233746A (zh) * 2010-04-14 2011-11-09 精工爱普生株式会社 印刷装置及印刷方法
CN104309309A (zh) * 2014-10-28 2015-01-28 北京美科艺数码科技发展有限公司 一种图像喷绘打印方法及打印装置
CN109302858A (zh) * 2016-03-17 2019-02-01 艾利丹尼森公司 利用集成专色和印刷原色的喷墨打印方法
JP2018001673A (ja) * 2016-07-06 2018-01-11 ローランドディー.ジー.株式会社 印刷装置
CN110450558A (zh) * 2019-07-18 2019-11-15 深圳汉华工业数码设备有限公司 一种宽色域打印流程及方法

Also Published As

Publication number Publication date
CN110450558B (zh) 2022-06-10
CN110450558A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021008200A1 (zh) 一种宽色域打印流程、方法及宽色域打印设备
CN104275799B (zh) 一种彩色3d打印装置和打印方法
US20100149567A1 (en) Image forming apparatus and image forming method
CN102205736A (zh) 打印装置以及打印方法
CN106604826B (zh) 印刷装置和印刷物的制造方法
US8506033B2 (en) Printing device and printing method
CN102189784A (zh) 打印装置以及打印方法
CN110502195A (zh) 多倍墨量打印控制方法、装置、打印机和存储介质
US20120038703A1 (en) Inkjet printing apparatus and inkjet printing method
CN102785476A (zh) 印刷装置及印刷方法
CN103722924B (zh) 一种彩色凹凸图像或文字打印方法
CN106103098B (zh) 印刷装置和印刷方法
CN105291619A (zh) 可使uv固化透明油墨具有透明色彩的数字喷绘打印方法
JP3801161B2 (ja) 化粧建築板の製造方法
US20130278672A1 (en) Method for uv inkjet printer to generate irregular transparent matte particle surface and completed printing object thereof
US20180111311A1 (en) Forming apparatus and forming method
EP2617575B1 (en) Image forming apparatus and image forming method
CN102729641B (zh) 喷墨打印设备和喷墨打印方法
CN205311073U (zh) 打印头底板、打印小车及喷墨打印装置
JP2009285625A (ja) 塗装板
JP3731568B2 (ja) 化粧建築板及びその製造方法
CN104275941A (zh) 图像形成设备
JP2001286812A (ja) 色剤の塗布方法
JP6463864B2 (ja) インクおよび湿潤剤を用いて吸収性の被印刷材料に印刷を施す方法
US8851608B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840849

Country of ref document: EP

Kind code of ref document: A1