WO2021008010A1 - 一种动静组合电磁加载霍普金森岩石杆波传播测试装置 - Google Patents

一种动静组合电磁加载霍普金森岩石杆波传播测试装置 Download PDF

Info

Publication number
WO2021008010A1
WO2021008010A1 PCT/CN2019/115486 CN2019115486W WO2021008010A1 WO 2021008010 A1 WO2021008010 A1 WO 2021008010A1 CN 2019115486 W CN2019115486 W CN 2019115486W WO 2021008010 A1 WO2021008010 A1 WO 2021008010A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
rock
rock rod
rod
axial pressure
Prior art date
Application number
PCT/CN2019/115486
Other languages
English (en)
French (fr)
Inventor
周韬
谢和平
朱建波
高明忠
李存宝
廖志毅
张凯
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021008010A1 publication Critical patent/WO2021008010A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention belongs to the research field of stress wave propagation in rock mass. More specifically, it relates to a dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device used for the study of stress wave propagation and attenuation law in rock mass.
  • Rock materials are different from other engineering materials in that they contain a large number of pre-existing defects, such as micro-holes, micro-cracks, joints, joint groups, and structural surfaces. These pre-existing defects not only control the mechanical properties of rock materials, but also significantly affect the wave characteristics of rock masses (such as stress wave propagation and attenuation). Therefore, study the wave characteristics of rock materials and rock mass structures, especially the law of stress wave propagation and attenuation of joints or joint groups in rock masses, to analyze and evaluate the safety and stability of rock mass engineering under seismic waves or explosion waves. It seems particularly important. At present, there are two main methods to study the influence of pre-existing joints and cracks in the rock on the wave propagation and attenuation law.
  • One is to use an ultrasonic measurement system to perform high frequency, Low-amplitude ultrasonic propagation measurement is used to analyze the influence of joint fissures on ultrasonic propagation and attenuation; the other is to use traditional one-dimensional Hopkinson rods to perform high-amplitude, low-frequency one-dimensional analysis on a rock sample containing a single prefabricated joint Stress wave propagation test to study the influence of a single joint on the law of stress wave propagation and attenuation.
  • Existing methods have greatly promoted people to understand and master the law of wave propagation and attenuation caused by rock joints.
  • the present invention proposes a combination of dynamic and static electromagnetic loading.
  • Pukinson rock rod wave propagation test device makes up for the shortcomings of the existing experimental research device for stress wave propagation in rock mass, especially solving the problem that the existing device cannot carry out stress wave propagation research in rock mass under the condition of initial static stress of rock mass.
  • the technical difficulties can provide important technical support for the design, protection, safety and stability assessment of rock mass engineering.
  • the dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device is mainly composed of a loading frame system, a rock rod system, an electromagnetic pulse transmission system, an axial pressure servo control loading system, and a data monitoring and acquisition system.
  • the loading frame system is mainly composed of a supporting platform, a connecting rod, a rock rod support and a fixed baffle for axial loading, which plays the role of providing a supporting platform and guiding the centering of the rock rod.
  • the rock rod system is mainly composed of rock rods with the same diameter, different lengths and numbers, and the same or different materials to meet different test requirements.
  • the electromagnetic pulse emission system is mainly composed of an electromagnetic pulse stress wave excitation cavity and its control system.
  • Axial pressure servo control loading system is mainly composed of hydraulic loading cylinder, axial pressure loading piston and axial pressure servo control system.
  • the function of the axial pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system, which can ensure that the static axial pressure remains relatively stable during the test process.
  • the data monitoring and acquisition system is mainly composed of multi-channel high-speed synchronous recorder, strain gauges, Wheatstone bridge and strain signal amplifier, which can ensure the complete and effective recording and storage of stress wave propagation test data in rock mass.
  • Figure 1 is a three-dimensional diagram of the dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device.
  • the test device is placed on the support platform 1. It is mainly composed of a loading frame system, a rock rod system, an electromagnetic pulse emission system, an axial pressure servo control loading system, Data monitoring and acquisition system composition.
  • the incident end axial pressure loading fixed baffle 2 is fixed to the incident end of the support platform 1, and a large round hole and a small round hole are respectively provided in the center and around it.
  • the large round hole and the small round hole here are relative terms, that is, the incident end
  • the size of the round hole provided in the middle of the axially loaded fixed baffle 2 is larger than the size of the round holes provided around it, so it is clear here. Below, the large round hole and the small round hole of the fixed baffle 11 are the same as the understanding here.
  • the electromagnetic pulse stress wave excitation cavity 3 passes through the central large circular hole of the axial pressure loading fixed baffle 2 at the incident end, and is welded to form an integral structure.
  • the loading end of the electromagnetic pulse stress wave excitation cavity 3 and the incident end of the first rock rod 5 Contact; the first rock rod 5 is supported by the rock rod support 6 on the loading axis, the transmission end section of the first rock rod 5 is in contact with the incident end section of the second rock rod 7, and the two contact sections constitute the first joint 12 ,
  • the second rock rod 7 is supported on the loading axis by the rock rod support 6, the transmission end section of the second rock rod 7 is in contact with the incident end section of the third rock rod 8, and the two contact sections constitute the second joint 13;
  • the three rock rod 8 is supported by the rock rod support 6 on the loading axis, and its transmission end section is in contact with the axial pressure loading piston 9; the axial pressure loading piston 9 is connected with the hydraulic loading cylinder 10 as a whole, and is used to connect the hydraulic loading cylinder The oil pressure is
  • the present invention provides a dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device, which is mainly controlled by a loading frame system, a rock rod system, an electromagnetic pulse emission system, and an axial pressure servo control Composition of loading system, data monitoring and acquisition system;
  • the loading frame system is mainly composed of a supporting platform, connecting rods, rock rod supports, and axially loaded fixed baffles.
  • the rock rod system is mainly composed of rocks with the same diameter, length and quantity, and materials of the same or different materials that meet different test requirements.
  • Rod composition; electromagnetic pulse emission system is mainly composed of electromagnetic pulse stress wave excitation cavity and its control system;
  • axial pressure servo control loading system is mainly composed of hydraulic loading cylinder, axial pressure loading piston and axial pressure servo control system; data monitoring and acquisition system Mainly composed of multi-channel high-speed synchronous recorder, strain gauge, Wheatstone bridge and strain signal amplifier;
  • the names of the main components of the test device are: support platform, axial pressure loading fixed baffle at the incident end, electromagnetic pulse stress wave excitation cavity, first rock rod, second rock rod, third rock rod, axial pressure loading piston, hydraulic The loading cylinder and the transmission end axially load the fixed baffle; the connection relationship of the above components is as follows:
  • the test device is placed on the support platform, and the incident end axial pressure loading fixed baffle is fixed on the incident end of the support platform.
  • the center and the periphery are respectively provided with a large round hole and a small round hole, where the large round hole and the small round hole are opposite That is, the size of the circular hole set in the middle of the fixed baffle under the axial pressure loading at the incident end is larger than the size of the circular holes set around it.
  • the electromagnetic pulse stress wave excitation cavity passes through the central large circular hole of the fixed baffle under the axial pressure loading at the incident end.
  • the loading end of the pulse stress wave excitation cavity is in contact with the incident end of the first rock rod; the transmission end section of the first rock rod is in contact with the incident end section of the second rock rod, and the two contact sections constitute the first joint and the second rock
  • the transmission end section of the rod is in contact with the incident end section of the third rock rod, and the two contact sections constitute the second joint;
  • the transmission end section of the third rock rod is in contact with the axial compression loading piston;
  • the axial compression loading piston is connected to the hydraulic loading cylinder as One piece, the axial pressure loading piston transmits the oil pressure in the hydraulic loading cylinder to the rock rod;
  • the hydraulic loading cylinder passes through the central large circular hole of the axial loading fixed baffle at the transmission end;
  • the transmission end axial loading fixed baffle is placed on the support platform Transmission end; connecting rods respectively pass through the small circular holes around the incident end axial compression loading fixed baffle and the transmission end axial compression loading fixed baffle to load the loading frame system, rock rod system, electromagnetic pulse emission system and axial
  • the present invention also includes several rock rod supports, the first rock rod is supported on the loading axis by the rock rod supports, the second rock rod is supported on the loading axis by the rock rod supports, and the third The rock rod is supported on the loading axis by the rock rod support.
  • the electromagnetic pulse stress wave excitation cavity passes through the central large circular hole of the axial pressure loading fixed baffle at the incident end, and is welded to form an integral structure.
  • the hydraulic loading cylinder passes through the central large circular hole of the transmission end axial pressure loading fixed baffle, and is welded to form an integral structure.
  • the transmission end axial pressure loading fixed baffle is arranged at the transmission end of the support platform, and the length of the rock rod testing system is adjusted by moving back and forth on the support platform according to the length of the rock rod system.
  • the first joint and the second joint constitute a pair of parallel joint groups.
  • strain gauges are arranged on the surface of the rock rod, and the strain gauges are connected to the data monitoring and acquisition system through shielded wires.
  • the filling mixture between the contact surface of the first rock rod and the second rock rod forms a filling first joint
  • the filling mixture between the second rock rod and the third rock rod forms a filling second joint
  • the first joint and the second joint constitute a pair of parallel joint groups, and the material and water content of the two joint fillers can be the same or different according to the needs of the test.
  • the rod system of the Hopkinson rock rod wave propagation test device with dynamic and static combined electromagnetic loading is composed of long rock rods, which can be used to carry out research on the propagation and attenuation of stress waves in jointed rock masses close to actual conditions, which makes up for the current situation.
  • Hopkinson rod (metal rod) equipment cannot carry out experimental research on stress wave propagation in large-scale rock mass structures.
  • the axial pressure servo control loading system of the Hopkinson rock rod wave propagation test device can realize the static axial pressure synchronous servo control loading and the static axial pressure in the rock rod during the stress wave propagation process to maintain relatively stable, so that The study of stress wave propagation and attenuation laws in jointed rock masses is closer to the real working conditions, and solves the technical problem that the existing devices cannot carry out the study of stress wave propagation in rock masses under the conditions of initial static stress of the rock mass.
  • Figure 1 is a three-dimensional diagram of the dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device of the present invention
  • Figure 2 is a front view of the Hopkinson rock rod wave propagation test device of the present invention with combined dynamic and static electromagnetic loading;
  • Figure 3 is a top view of a dynamic and static combined electromagnetic loading Hopkinson rock rod wave propagation test device.
  • the Anshan rock rods with a diameter of 50 mm and a length of 1500 mm, 1000 mm, and 1500 mm were processed and polished as the first rock rod 5, the second rock rod 7 and the third rock 8.
  • the smooth contact between the first rock rod and the second rock rod forms an approximately closed first joint 12.
  • the second rock rod and the third rock rod are still in smooth contact to form an approximately closed second joint 13, the first joint 12 and The second joint 13 forms a pair of parallel joint groups.
  • closed joints means that two smooth surfaces contact and close together to form a closed joint surface.
  • strain gauges 14 are pasted on the surface of the rock rod according to the needs of the experiment and combined with the duration of the incident stress wave, and the strain gauges are connected to the data monitoring and acquisition system through shielded wires.
  • the loading system was first controlled by adjusting the axial pressure servo, and the axial pressure loading cylinder 10 and the axial pressure loading piston 9 were used to apply an axial static pressure of 3MPa to the rock rod system along the axial direction of the rock rod for simulation.
  • the self-weight stress of the rock mass structure at a depth of about 100m underground is then excited by the electromagnetic pulse stress wave to excite the cavity 3 according to the requirements of the experimental design and generate incident stress waves with corresponding amplitudes and wavelengths of 200MPa and 300 ⁇ s.
  • the stress waves then follow the first
  • the first, second, and third rock rods propagate and pass through the first and second joints in turn, and produce transmitted and reflected waves at the first and second joints.
  • the strain gauges attached to the surface of the rock rod can monitor and record the difference The signal of incident stress wave, reflected stress wave and transmission stress wave on the rock rod at the position, and finally based on the experimental monitoring data, according to the one-dimensional stress wave theory, the propagation of stress wave in the rock mass with two parallel joints can be calculated and analyzed. And the law of attenuation.
  • the non-damaged intact granite rock rods with a diameter of 50 mm and a length of 1500 mm, 1500 mm, and 1500 mm were processed and polished respectively as the first rock rod 5, the second rock rod 7 and the third rock 8.
  • the contact surface between the first rock rod and the second rock rod is filled with a mass percentage of 30% kaolin and 70% quartz sand (with a particle size of less than 1mm) with a thickness of 2mm to form a filling first joint 12.
  • the second rock rod and The third rock rod is also filled with a thickness of 2mm with a mass percentage of 30% kaolin and 70% quartz sand (with a particle size of less than 1mm) to form a second joint 13, and the first joint 12 and the second joint 13 form one
  • the water content of the two joint fillings is the same and both are 10%.
  • a set of strain gauges 14 are symmetrically pasted up and down at the midpoint of each granite rock rod surface, and the strain gauges are connected to the data monitoring and acquisition system through shielded wires.
  • the axial pressure loading cylinder 10 and the axial pressure loading piston 9 are used to apply an axial static pressure of 27 MPa to the rock rod system along the axial direction of the rock rod to simulate a 1000m underground
  • the self-weight stress borne by the deep rock mass structure is subsequently excited by the electromagnetic pulse stress wave excitation cavity 3 and generates incident stress waves with wavelength duration and amplitude of 200 ⁇ s and 100 MPa respectively.
  • the stress waves then follow the first, second, and third rock rods. It propagates and passes through the first and second filling joints in turn, and produces transmitted and reflected waves at the first and second joints.
  • the strain gauges attached to the surface of the rock rod can monitor and record the incident stress waves on different rock rods. , The signals of the reflected stress wave and the transmitted stress wave, and finally based on the experimental monitoring data, according to the one-dimensional stress wave theory, the propagation and attenuation law of the stress wave in the rock mass with two parallel joints can be calculated and analyzed.

Abstract

一种动静组合电磁加载霍普金森岩石杆波传播测试装置,主要由加载框架系统、岩石杆系统、电磁脉冲发射系统、轴压伺服控制加载系统、数据监测与采集系统组成。加载框架系统主要由支撑平台(1)、连杆(4)、岩石杆支座(6)以及轴压加载固定挡板(2、11)组成,起到提供支撑平台(1)并引导岩石杆件对中的作用。岩石杆系统由满足不同试验需求的直径相等,长度和数量不等,材质相等或不等的岩石杆(5、7、8)组成。电磁脉冲发射系统主要由电磁脉冲应力波激发腔(3)及其控制系统构成。轴压伺服控制加载系统由液压加载油缸(10)、轴压加载活塞(9)以及轴压伺服控制系统组成。轴压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态轴压在测试过程保持相对稳定。

Description

一种动静组合电磁加载霍普金森岩石杆波传播测试装置 技术领域
本发明属于岩体中应力波传播研究领域。更具体地说,涉及一种用于岩体中应力波传播和衰减规律研究的动静组合电磁加载霍普金森岩石杆波传播测试装置。
背景技术
岩石材料不同于其他工程材料,其内部包含有大量的预先存在的缺陷,例如微孔洞、微裂隙、节理、节理组以及结构面等。这些预先存在的缺陷不仅控制着岩体材料的力学特性,还显著的影响岩体的波动特性(例如应力波传播和衰减)。因此,研究岩石材料和岩体结构的波动特性,尤其岩体内部节理或节理组对应力波传播和衰减规律,对分析和评估岩体工程在地震波或爆炸波等作用下的安全性和稳定性显得尤为重要。目前,研究岩石内部预先存在的节理裂隙等缺陷对波传播和衰减规律的影响的方法主要有两种,一种是利用超声波测量系统对节理岩石试样或者含内部缺陷岩石试样进行高频率、低幅值的超声波传播测量来分析节理裂隙对超声波传播和衰减规律的影响;另一种是利用传统一维霍普金森杆对含单一预制节理岩石试样进行高幅值、低频率的一维应力波传播测试来研究单一节理对应力波传播和衰减规律的影响。现有方法极大地促进了人们理解并掌握岩石节理对波传播和衰减规律。但是,上述两种方法均是基于等效直径和长度均小于等于50mm的小尺寸岩石节理开展的试验研究,无法开展接近于实际工况下的大尺度(岩体长度达到米级)岩体中应力波传播和衰减规律研究。因此,现有技术还有待改进。
发明概述
技术问题
问题的解决方案
技术解决方案
为解决现有实验装置及测试方法无法开展接近于实际情况下的大尺度(岩体长 度达到米级)岩体结构中的应力波传播和衰减规律研究,本发明提出一种动静组合电磁加载霍普金森岩石杆波传播测试装置,弥补了现有岩体中应力波传播实验研究装置的缺陷,尤其是解决了现有装置无法开展考虑岩体初始静应力条件下的岩体中应力波传播研究的技术难题,可为岩体工程的设计、防护以及安全性和稳定性评估提供重要的技术支持。
动静组合电磁加载霍普金森岩石杆波传播测试装置主要由加载框架系统、岩石杆系统、电磁脉冲发射系统、轴压伺服控制加载系统、数据监测与采集系统组成。
加载框架系统主要由支撑平台、连杆、岩石杆支座以及轴压加载固定挡板组成,起到提供支撑平台并引导岩石杆件对中的作用。岩石杆系统主要由满足不同试验需求的直径相等,长度和数量不等,材质相等或不等的岩石杆组成。电磁脉冲发射系统主要由电磁脉冲应力波激发腔及其控制系统构成。轴压伺服控制加载系统主要由液压加载油缸、轴压加载活塞以及轴压伺服控制系统组成。轴压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态轴压在测试过程保持相对稳定。数据监测与采集系统主要由多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器构成,能确保岩体中应力波传播测试数据完整且有效的被记录和存储。
图1为动静组合电磁加载霍普金森岩石杆波传播测试装置三维图,试验装置置于支撑平台1上,主要由加载框架系统、岩石杆系统、电磁脉冲发射系统、轴压伺服控制加载系统、数据监测与采集系统组成。入射端轴压加载固定挡板2固定于支撑平台1的入射端部,其中心和四周分别设置有大圆孔和小圆孔,此处的大圆孔和小圆孔是相对的说法,即入射端轴压加载固定挡板2中间设置的圆孔的尺寸大于四周设置的圆孔的尺寸,所以此处是清楚的。下面透射端轴压加载固定挡板11的大圆孔和小圆孔同此处的理解。
电磁脉冲应力波激发腔3穿过入射端轴压加载固定挡板2的中心大圆孔,并与之焊接形成整体结构,电磁脉冲应力波激发腔3的加载端与第一岩石杆5的入射端接触;第一岩石杆5由岩石杆支座6支撑在加载轴线上,第一岩石杆5的透射端截面与第二岩石杆7的入射端截面接触,两接触截面构成了第一节理12,第二岩石 杆7由岩石杆支座6支撑在加载轴线上,第二岩石杆7的透射端截面与第三岩石杆8的入射端截面接触,两接触截面构成了第二节理13;第三岩石杆8由岩石杆支座6支撑在加载轴线上,其透射端截面与轴压加载活塞9接触;轴压加载活塞9与液压加载油缸10连为一体,用于将液压加载油缸内的油压传递至岩石杆中;液压加载油缸10穿过透射端轴压加载固定挡板11的中心大圆孔,并与之焊接形成整体结构;透射端轴压加载固定挡板11安置于支撑平台透射端,并可根据岩石杆系统的长度需要在支撑平台上前后移动调节岩石杆测试系统的长度;连杆4分别穿过入射端轴压加载固定挡板2和透射端轴压加载固定挡板11四周的小圆孔,将加载框架系统、岩石杆系统、电磁脉冲发射系统和轴压伺服控制加载系统连接为一整体结构,用于实现动静组合电磁加载霍普金森岩石杆波传播测试研究。
为了解决现有技术中问题,本发明提供了一种动静组合电磁加载霍普金森岩石杆波传播测试装置,该测试装置主要由加载框架系统、岩石杆系统、电磁脉冲发射系统、轴压伺服控制加载系统、数据监测与采集系统组成;
加载框架系统主要由支撑平台、连杆、岩石杆支座以及轴压加载固定挡板组成,岩石杆系统主要由满足不同试验需求的直径相等,长度和数量不等,材质相等或不等的岩石杆组成;电磁脉冲发射系统主要由电磁脉冲应力波激发腔及其控制系统构成;轴压伺服控制加载系统主要由液压加载油缸、轴压加载活塞以及轴压伺服控制系统组成;数据监测与采集系统主要由多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器构成;
该测试装置的主要组成部件名称为:支撑平台、入射端轴压加载固定挡板、电磁脉冲应力波激发腔、第一岩石杆、第二岩石杆、第三岩石杆、轴压加载活塞、液压加载油缸、透射端轴压加载固定挡板;以上部件的连接关系如下:
试验装置置于支撑平台上,入射端轴压加载固定挡板固定于支撑平台的入射端部,其中心和四周分别设置有大圆孔和小圆孔,此处的大圆孔和小圆孔是相对的说法,即入射端轴压加载固定挡板中间设置的圆孔的尺寸大于四周设置的圆孔的尺寸,电磁脉冲应力波激发腔穿过入射端轴压加载固定挡板的中心大圆孔,电磁脉冲应力波激发腔的加载端与第一岩石杆的入射端接触;第一岩石杆的 透射端截面与第二岩石杆的入射端截面接触,两接触截面构成了第一节理,第二岩石杆的透射端截面与第三岩石杆的入射端截面接触,两接触截面构成了第二节理;第三岩石杆其透射端截面与轴压加载活塞接触;轴压加载活塞与液压加载油缸连为一体,轴压加载活塞将液压加载油缸内的油压传递至岩石杆中;液压加载油缸穿过透射端轴压加载固定挡板的中心大圆孔;透射端轴压加载固定挡板安置于支撑平台透射端;连杆分别穿过入射端轴压加载固定挡板和透射端轴压加载固定挡板四周的小圆孔,将加载框架系统、岩石杆系统、电磁脉冲发射系统和轴压伺服控制加载系统连接为一整体结构。
作为本发明的进一步改进,还包括若干个岩石杆支座,所述第一岩石杆由岩石杆支座支撑在加载轴线上,第二岩石杆由岩石杆支座支撑在加载轴线上,第三岩石杆由岩石杆支座支撑在加载轴线上。
作为本发明的进一步改进,电磁脉冲应力波激发腔穿过入射端轴压加载固定挡板的中心大圆孔,并与之焊接形成整体结构。
作为本发明的进一步改进,液压加载油缸穿过透射端轴压加载固定挡板的中心大圆孔,并与之焊接形成整体结构。
作为本发明的进一步改进,透射端轴压加载固定挡板安置于支撑平台透射端,根据岩石杆系统的长度需要在支撑平台上前后移动调节岩石杆测试系统的长度。
作为本发明的进一步改进,第一节理和第二节理构成一对平行节理组。
作为本发明的进一步改进,岩石杆表面设置若干个应变片,并通过屏蔽导线将应变片接入至数据监测与采集系统。
作为本发明的进一步改进,第一岩石杆和第二岩石杆接触面之间填充混合物形成一填充第一节理,第二岩石杆和第三岩石杆之间填充混合物构成一填充第二节理,第一节理和第二节理构成一对平行节理组,并且根据试验需要,两条节理填充物材质和含水量可相同亦可不相同。
发明的有益效果
有益效果
本发明的有益效果是:
(1)动静组合电磁加载霍普金森岩石杆波传播测试装置的杆件系统由长岩石杆组成,可用于开展接近实际工况下的节理岩体中应力波传播和衰减规律研究,弥补了现有霍普金森杆(金属杆)设备无法开展大尺寸岩体结构中应力波传播实验研究的缺陷。
(2)动静组合电磁加载霍普金森岩石杆波传播测试装置的电磁脉冲转换应力波激发系统可精确控制并且可高度重复的产生高幅值、第频率的入射应力波,解决了现有霍普金森杆设备难以精确控制并高度重复产生入射应力波的难题。
(3)动静组合电磁加载霍普金森岩石杆波传播测试装置的轴压伺服控制加载系统可实现静态轴压同步伺服控制加载并且可实现应力波传播过程岩石杆中静态轴压保持相对稳定,使得节理岩体中应力波传播和衰减规律研究更加接近真实工况,解决了现有装置无法开展考虑岩体初始静应力条件下的岩体中应力波传播研究的技术难题。
对附图的简要说明
附图说明
图1是本发明动静组合电磁加载霍普金森岩石杆波传播测试装置三维图;
图2是本发明动静组合电磁加载霍普金森岩石杆波传播测试装置正视图;
图3是动静组合电磁加载霍普金森岩石杆波传播测试装置俯视图。
图中标号对应部件名称如下:
1-支撑平台,2-入射端轴压加载固定挡板,3-电磁脉冲应力波激发腔,4-连杆,5-第一岩石杆,6-岩石杆支座,7-第二岩石杆,8-第三岩石杆,9-轴压加载活塞,10-液压加载油缸,11-透射端轴压加载固定挡板,12-第一节理,13-第二节理,14-应变片。
发明实施例
本发明的实施方式
下面结合附图对本发明做进一步说明。
最佳实施方式1
将分别加工并打磨好直径为50mm,长1500mm、1000mm、1500mm的鞍山岩岩石杆作为第一岩石杆5、第二岩石杆7和第三岩石8。第一岩石杆和第二岩石杆光 滑接触形成一近似闭合的第一节理12,第二岩石杆和第三岩石杆仍然光滑接触构成以近似闭合的第二节理13,第一节理12和第二节理13构成一对平行节理组。我们指的闭合节理是指,两个光滑面接触紧贴合在一起就构成了一个闭合的节理面。
根据实验测试需要并结合入射应力波的持续时间在岩石杆表面若干个粘贴应变片14,并通过屏蔽导线将应变片接入至数据监测与采集系统。实验时,根据实验设计,先通过调节轴压伺服控制加载系统,利用轴压加载油缸10和轴压加载活塞9沿岩石杆轴向方向给岩石杆系统施加3MPa的轴向静态压力,用于模拟地下约100m深度岩体结构承受的自重应力,随后通过电磁脉冲应力波激发腔3根据实验设计所需激发并产生具有相应幅值和波长分别为200MPa和300μs的入射应力波,应力波随即沿第一、二、三岩石杆传播,并依次通过第一和第二节理,并在第一和第二节理处产生透射波和反射波,利用粘贴在岩石杆表面的应变片即可监测并记录不同位置处岩石杆上入射应力波,反射应力波和透射应力波的信号,最后基于实验监测的数据,按照一维应力波理论即可计算和分析应力波在含两条平行节理岩体中的传播与衰减规律。
最佳实施方式2
将分别加工并打磨好直径为50mm,长分别为1500mm、1500mm、1500mm的无损伤完整花岗岩岩石杆作为第一岩石杆5、第二岩石杆7和第三岩石8。第一岩石杆和第二岩石杆接触面之间填充厚度为2mm的质量百分比为30%高岭土和70%石英砂(粒径小于1mm)混合物形成一填充第一节理12,第二岩石杆和第三岩石杆之间同样填充厚度为2mm的质量百分比为30%高岭土和70%石英砂(粒径小于1mm)混合物构成一填充第二节理13,第一节理12和第二节理13构成一对平行节理组,并且两条节理填充物的含水量相同且均为10%。随后在每根花岗岩岩石杆表面中点位置处上下对称粘贴一组应变片14,并通过屏蔽导线将应变片接入至数据监测与采集系统。接下来根据实验设计,先通过调节轴压伺服控制系统,利用轴压加载油缸10和轴压加载活塞9沿岩石杆轴向方向给岩石杆系统施加27MPa的轴向静态压力,用于模拟地下1000m深度岩体结构承受的自重应力,随后通过电磁脉冲应力波激发腔3激发并产生波长持续时间、幅值分别为200μs和100 MPa的入射应力波,应力波随即沿第一、二、三岩石杆传播,并依次通过第一和第二填充节理,并在第一和第二节理处产生透射波和反射波,利用粘贴在岩石杆表面的应变片即可监测并记录不同岩石杆上入射应力波,反射应力波和透射应力波的信号,最后基于实验监测的数据,按照一维应力波理论即可计算和分析应力波在含两条平行节理岩体中的传播与衰减规律。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

  1. 一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:
    该测试装置主要由加载框架系统、岩石杆系统、电磁脉冲发射系统、轴压伺服控制加载系统、数据监测与采集系统组成;
    加载框架系统主要由支撑平台、连杆、岩石杆支座以及轴压加载固定挡板组成,岩石杆系统主要由满足不同试验需求的直径相等,长度和数量不等,材质相等或不等的岩石杆组成;电磁脉冲发射系统主要由电磁脉冲应力波激发腔及其控制系统构成;轴压伺服控制加载系统主要由液压加载油缸、轴压加载活塞以及轴压伺服控制系统组成;数据监测与采集系统主要由多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器构成;
    该测试装置的主要组成部件名称为:支撑平台(1)、入射端轴压加载固定挡板(2)、电磁脉冲应力波激发腔(3)、第一岩石杆(5)、第二岩石杆(7)、第三岩石杆(8)、轴压加载活塞(9)、液压加载油缸(10)、透射端轴压加载固定挡板(11);以上部件的连接关系如下:
    试验装置置于支撑平台(1)上,入射端轴压加载固定挡板(2)固定于支撑平台(1)的入射端部,其中心和四周分别设置有大圆孔和小圆孔,此处的大圆孔和小圆孔是相对的说法,即入射端轴压加载固定挡板(2)中间设置的圆孔的尺寸大于四周设置的圆孔的尺寸,电磁脉冲应力波激发腔(3)穿过入射端轴压加载固定挡板(2)的中心大圆孔,电磁脉冲应力波激发腔(3)的加载端与第一岩石杆(5)的入射端接触;第一岩石杆(5)的透射端截面与第二岩石杆(7)的入射端截面接触,两接触截面构成了第一节理(12),第二岩石杆(7)的透射端截面与第三岩石杆(8)的入射端截面接触,两接触截面构成了第二节理(13);第三岩石杆(8)其透射端截面与轴压加载活塞(9)接触;轴压加载活塞 (9)与液压加载油缸(10)连为一体,轴压加载活塞(9)将液压加载油缸内的油压传递至岩石杆中;液压加载油缸(10)穿过透射端轴压加载固定挡板(11)的中心大圆孔;透射端轴压加载固定挡板(11)安置于支撑平台透射端;连杆(4)分别穿过入射端轴压加载固定挡板(2)和透射端轴压加载固定挡板(11)四周的小圆孔,将加载框架系统、岩石杆系统、电磁脉冲发射系统和轴压伺服控制加载系统连接为一整体结构。
  2. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:还包括若干个岩石杆支座(6),所述第一岩石杆(5)由岩石杆支座(6)支撑在加载轴线上,第二岩石杆(7)由岩石杆支座(6)支撑在加载轴线上,第三岩石杆(8)由岩石杆支座(6)支撑在加载轴线上。
  3. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:电磁脉冲应力波激发腔(3)穿过入射端轴压加载固定挡板(2)的中心大圆孔,并与之焊接形成整体结构。
  4. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:液压加载油缸(10)穿过透射端轴压加载固定挡板(11)的中心大圆孔,并与之焊接形成整体结构。
  5. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:透射端轴压加载固定挡板(11)安置于支撑平台透射端,根据岩石杆系统的长度需要在支撑平台上前后移动调节岩石杆测试系统的长度。
  6. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:第一节理(12)和第二节理(13)构成一对平行节理组。
  7. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:岩石杆表面设置若干个应变片,并通 过屏蔽导线将应变片接入至数据监测与采集系统。
  8. 根据权利要求1所述的一种动静组合电磁加载霍普金森岩石杆波传播测试装置,其特征在于:第一岩石杆和第二岩石杆接触面之间填充混合物形成一填充第一节理,第二岩石杆和第三岩石杆之间填充混合物构成一填充第二节理,第一节理(12)和第二节理(13)构成一对平行节理组,并且根据试验需要,两条节理填充物材质和含水量可相同亦可不相同。
PCT/CN2019/115486 2019-07-17 2019-11-05 一种动静组合电磁加载霍普金森岩石杆波传播测试装置 WO2021008010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910645658.0A CN110441169A (zh) 2019-07-17 2019-07-17 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
CN201910645658.0 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021008010A1 true WO2021008010A1 (zh) 2021-01-21

Family

ID=68430669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115486 WO2021008010A1 (zh) 2019-07-17 2019-11-05 一种动静组合电磁加载霍普金森岩石杆波传播测试装置

Country Status (2)

Country Link
CN (1) CN110441169A (zh)
WO (1) WO2021008010A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188906A (zh) * 2021-04-25 2021-07-30 重庆科技学院 岩石单轴拉伸试验装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426582A (zh) * 2020-03-03 2020-07-17 天津大学 一种霍普金森压杆中实现单脉冲加载测试的装置
CN111855343B (zh) * 2020-06-28 2023-01-17 东南大学 一种岩石节理动态力学特性及其波传播规律室内实验装置和方法
CN112665995B (zh) * 2020-12-17 2024-03-22 武汉理工大学 一种平行布置的霍普金森杆模拟瞬间卸荷试验装置及方法
CN114544357B (zh) * 2022-01-26 2024-01-02 深圳大学 一种固体材料动静组合拉剪强度测试试验装置及测试方法
CN115452551B (zh) * 2022-08-23 2023-07-04 中国人民解放军空军工程大学 气动式霍普金森扭杆装置及操作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855589A1 (en) * 1997-01-24 1998-07-29 European Atomic Energy Community (Euratom) Improvements in or relating to measuring properties of materials or structures
CN1731133A (zh) * 2005-08-18 2006-02-08 中南大学 动静组合加载岩石力学实验方法与装置
JP4820786B2 (ja) * 2007-07-30 2011-11-24 株式会社神戸製鋼所 衝撃引張応力計測方法
CN103454164A (zh) * 2013-09-13 2013-12-18 安徽理工大学 多场耦合煤岩冲击加载实验装置及实验方法
CN106442115A (zh) * 2016-09-18 2017-02-22 中国科学院、水利部成都山地灾害与环境研究所 复杂应力下岩石节理超声实验装置及其控制系统
CN109238884A (zh) * 2018-09-11 2019-01-18 北京理工大学 一种封严涂层的动态力学性能测试方法
CN109374408A (zh) * 2018-09-28 2019-02-22 长安大学 一种人工充填节理岩体动力特性试验方法
CN109406310A (zh) * 2018-12-26 2019-03-01 深圳大学 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
CN109406312A (zh) * 2018-12-26 2019-03-01 深圳大学 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
CN109632533A (zh) * 2018-12-03 2019-04-16 天津大学 一种自对芯可变直径岩石霍普金森杆的实验装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855589A1 (en) * 1997-01-24 1998-07-29 European Atomic Energy Community (Euratom) Improvements in or relating to measuring properties of materials or structures
CN1731133A (zh) * 2005-08-18 2006-02-08 中南大学 动静组合加载岩石力学实验方法与装置
JP4820786B2 (ja) * 2007-07-30 2011-11-24 株式会社神戸製鋼所 衝撃引張応力計測方法
CN103454164A (zh) * 2013-09-13 2013-12-18 安徽理工大学 多场耦合煤岩冲击加载实验装置及实验方法
CN106442115A (zh) * 2016-09-18 2017-02-22 中国科学院、水利部成都山地灾害与环境研究所 复杂应力下岩石节理超声实验装置及其控制系统
CN109238884A (zh) * 2018-09-11 2019-01-18 北京理工大学 一种封严涂层的动态力学性能测试方法
CN109374408A (zh) * 2018-09-28 2019-02-22 长安大学 一种人工充填节理岩体动力特性试验方法
CN109632533A (zh) * 2018-12-03 2019-04-16 天津大学 一种自对芯可变直径岩石霍普金森杆的实验装置
CN109406310A (zh) * 2018-12-26 2019-03-01 深圳大学 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
CN109406312A (zh) * 2018-12-26 2019-03-01 深圳大学 真三轴霍普金森杆固体动态损伤与超声波传播测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188906A (zh) * 2021-04-25 2021-07-30 重庆科技学院 岩石单轴拉伸试验装置及方法
CN113188906B (zh) * 2021-04-25 2022-05-20 重庆科技学院 岩石单轴拉伸试验装置及方法

Also Published As

Publication number Publication date
CN110441169A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021008010A1 (zh) 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
WO2021008009A1 (zh) 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
CN109738609B (zh) 动力扰动作用下的滑移型岩爆剪切试验系统
CN109406312B (zh) 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
WO2021017242A1 (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
CN107687973B (zh) 利用霍普金森压杆测试岩石材料动态点载荷强度的方法
WO2021017241A1 (zh) 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
US20220128442A1 (en) Thermal-stress-pore pressure coupled electromagnetic loading triaxial hopkinson bar system and test method
CN210893972U (zh) 单轴双向同步控制电磁加载动态剪切试验装置
CN106442115B (zh) 复杂应力下岩石节理超声实验装置及其控制系统
Li et al. A novel acoustic emission monitoring method of cross‐section precise localization of defects and wire breaking of parallel wire bundle
WO2020134579A1 (zh) 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
CN115372152B (zh) 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
WO2020134576A1 (zh) 霍普金森束杆动态测试系统
JP2021085872A (ja) 梁柱構造部材の耐衝撃性を試験する装置
CN111766200B (zh) 一种测量爆破扰动下喷射混凝土动态粘结强度的试验装置及方法
CN113702195A (zh) 一种动静组合双向电磁加载压剪实验装置及测试方法
CN116879068A (zh) 一种模拟地层环境的冲击波破碎岩石实验方法
CN210893971U (zh) 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
CN113702176A (zh) 一种双向电磁加载动态压剪实验装置及测试方法
WO2021012459A1 (zh) 双轴四向动静组合电磁加载霍普金森平板冲击加载装置
CN114544391B (zh) 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN114544357A (zh) 一种固体材料动静组合拉剪强度测试试验装置及测试方法
CN217180338U (zh) 一种固体材料动静组合拉剪强度测试实验装置
CN211235336U (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937705

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19937705

Country of ref document: EP

Kind code of ref document: A1