WO2021008009A1 - 单轴双向同步控制电磁加载动态剪切试验装置和测试方法 - Google Patents

单轴双向同步控制电磁加载动态剪切试验装置和测试方法 Download PDF

Info

Publication number
WO2021008009A1
WO2021008009A1 PCT/CN2019/115485 CN2019115485W WO2021008009A1 WO 2021008009 A1 WO2021008009 A1 WO 2021008009A1 CN 2019115485 W CN2019115485 W CN 2019115485W WO 2021008009 A1 WO2021008009 A1 WO 2021008009A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
stress wave
dynamic shear
rod
test
Prior art date
Application number
PCT/CN2019/115485
Other languages
English (en)
French (fr)
Inventor
周韬
谢和平
朱建波
高明忠
李存宝
廖志毅
王俊
张凯
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021008009A1 publication Critical patent/WO2021008009A1/zh
Priority to US17/568,612 priority Critical patent/US11913915B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/38Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Definitions

  • the invention belongs to the research field of dynamic shearing mechanical properties and fracture laws of solid materials or structural surfaces. More specifically, it relates to a uniaxial bidirectional synchronous control electromagnetic load dynamic shear test device and a test method used for the study of the dynamic shear strength and dynamic shear failure law of solid materials such as rock, concrete, polymer, etc. or structural surfaces.
  • the concentric cylindrical specimen is used to develop the rock
  • the shear surface is located inside the sample, so the dynamic shear failure process of the rock cannot be observed in real time with high-speed photography equipment.
  • the technical problems in the study of dynamic shear mechanical characteristics and shear failure laws under loading conditions The present invention proposes a uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device and test method, which can effectively compensate for the existing Hope The flaws of the rock dynamic shear experimental research carried out by Jinsen pressure bar.
  • a single-axis bidirectional synchronous control electromagnetic loading dynamic shear test device includes a supporting platform, a loading rod system, an electromagnetic pulse emission system, a normal pressure servo control loading system, and a data monitoring and acquisition system.
  • the supporting platform provides the function of a basic supporting platform for the entire test device, and undertakes the weight of the entire device and the impact of dynamic and static loads during testing.
  • the loading rod system includes the left and right stress wave loading rods of the same material and size and processing accuracy that meet different test requirements, which can transmit and apply dynamic shear load to the test specimen.
  • the electromagnetic pulse emission system includes the left and right electromagnetic pulse excitation chambers of the same material, model and processing accuracy, and the electromagnetic pulse emission control system, which plays a role in providing dynamic shear pulse load for the test specimen.
  • the normal pressure servo control loading system includes a hydraulic loading cylinder, an actuator, a base, and a normal pressure servo control system, which plays a role in providing a constant normal pressure for the test sample.
  • the function of the normal pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system, which can ensure that the normal static pressure remains constant during the dynamic shearing process.
  • the data monitoring and acquisition system includes strain gauges, Wheatstone bridges, strain signal amplifiers, multi-channel high-speed synchronous recorders and computers, which play a role in real-time monitoring, recording and storage of shear dynamic response data during the testing process.
  • the present invention provides a uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device, which includes a support platform, a left electromagnetic pulse excitation cavity, a left electromagnetic pulse excitation cavity support, and a left stress Wave loading rod, stress wave loading rod support, right electromagnetic pulse excitation cavity, right electromagnetic pulse excitation cavity support, right stress wave loading rod, bottom plate, top plate, support column, hydraulic loading device, actuator, base Seat, test specimen and strain gauge;
  • the test device is centered on the test sample and arranged on its left and right sides.
  • the left dynamic shear loading device includes the left electromagnetic pulse excitation cavity, the left electromagnetic pulse excitation cavity support, the left stress wave loading rod and the stress wave loading Rod support, where the left electromagnetic pulse excitation cavity is placed on the left electromagnetic pulse excitation cavity support, the left electromagnetic pulse excitation cavity and the left electromagnetic pulse excitation cavity support can move and move along the axial direction of the loading rod on the support platform Fixed at a position that meets the test requirements; the left stress wave loading rod is placed flat in the slot of the stress wave loading rod support, and can slide freely left and right in the support slot; the incident of the left stress wave loading rod The end is in free contact with the right stress wave output end surface of the left electromagnetic pulse excitation cavity, and the stress wave is transmitted to the left stress wave loading rod, and then the stress wave propagates along the rod axis to the test specimen and moves it from the left Apply dynamic shear load to the right;
  • the right dynamic shear loading device includes the right electromagnetic pulse excitation cavity, the right electromagnetic pulse excitation cavity support, the right stress wave loading rod, and the stress wave loading rod support.
  • the right electromagnetic pulse excitation cavity is placed on the right electromagnetic On the pulse excitation cavity support, the right electromagnetic pulse excitation cavity and the right electromagnetic pulse excitation cavity support can move axially along the loading rod on the supporting platform and be fixed at a position that meets the test requirements;
  • the right stress wave loading rod is flat Placed in the slot of the stress wave loading rod support, and can slide freely left and right in the slot of the support;
  • the incident end of the stress wave loading rod on the right and the left stress wave output end of the electromagnetic pulse excitation cavity on the right are free Contact, the stress wave is transmitted to the stress wave loading rod on the right, and then the stress wave propagates to the test specimen along the rod axis direction and applies dynamic shear load to it from right to left;
  • the normal pressure servo-controlled loading system includes a bottom plate, a top plate, a support column, a hydraulic loading device, an actuator, and a base.
  • the bottom plate and the top plate are connected by the support column to form the loading frame system of the normal pressure servo-controlled loading device.
  • Hydraulic loading The device is fixed on the top plate, the actuator is connected with the hydraulic loading device, and is used to transmit the oil pressure provided by the hydraulic loading device to the upper surface of the test specimen.
  • the base is located on the bottom plate for placing the test specimen, and the base Together with the actuator, it forms a set of force and reaction force structures, which respectively apply static normal pressure to the test specimen from the lower surface and the upper surface;
  • strain gauges are respectively pasted on the upper and lower surfaces of the left stress wave loading rod and the right stress wave loading rod.
  • the present invention also includes a signal amplifier, a data recorder and a computer.
  • the strain gage passes the strain signal monitored on the left stress wave loading rod and the right stress wave loading rod through the shielded wire. It is transmitted to the signal amplifier via the Wheatstone bridge, the strain signal is amplified by the signal amplifier and then output to the data recorder through the shielded wire for recording and storage. Finally, the strain signal data is output from the data recorder to the computer for analysis and processing through the data cable.
  • the bottom plate and the top plate are connected by four cylindrical support columns to form the loading frame system of the normal pressure servo-controlled loading device.
  • the hydraulic loading device is fixed at the center of the top plate, and the base is located in the center of the bottom plate.
  • the strain gauges are respectively attached to the center positions of the upper and lower surfaces of the left stress wave loading rod and the right stress wave loading rod.
  • the single-axis two-way synchronous control electromagnetic loading dynamic shear test test method uses the test device described in any one of the above to perform the following operations:
  • the electromagnetic pulse excitation control system is operated to drive the left electromagnetic pulse excitation cavity and the right electromagnetic pulse excitation cavity to synchronously excite and output the incident stress wave with the set amplitude and duration of the experiment.
  • the incident stress wave then follows the left and right sides.
  • the loading rod propagates to the test specimen and performs dynamic shear loading on it;
  • the strain gauges attached to the left and right loading rods are used to monitor the incident strain signal and the reflected strain signal in the rod in real time.
  • the strain signal data monitored by the strain gauges are used to display the test specimen with a single joint surface during the dynamic shearing process
  • the dynamic shear load applied on the left and right ends is basically the same, it is considered that the dynamic shear process of the granite with a single joint surface has reached a stress equilibrium state.
  • the strain data monitored by the strain gauges are used according to the following Calculate with the above formula to obtain the dynamic shear strength ⁇ (t) of the test specimen under the test set normal pressure:
  • E and A are the elastic modulus of the stress wave loaded rod and the cross-sectional area of the rod, respectively;
  • ⁇ left incident and ⁇ left reflection are the stress waves loaded by the strain gauge from the left
  • the incident strain signal and the reflected strain signal monitored on the rod
  • ⁇ right incident and ⁇ right reflection are the incident strain signal and the reflected strain signal monitored by the strain gauge from the right stress wave loading rod, respectively.
  • the normal static pressure remains constant under the control of the normal hydraulic loading servo control system, thereby realizing a dynamic shear loading test with a constant normal pressure.
  • test sample is placed in the center of the surface of the base.
  • the dynamic shear loading process uses an ultra-high-speed camera to shoot 10 to 1 million frames of photos per second to take real-time shots of the joint surface dynamic shear failure process of the joint surface of the test sample. It is used to analyze the dynamic shear fracture law of the test specimen.
  • the loading process monitors the incident strain signal and the reflected strain signal in the rod in real time through strain gauges pasted at the center of the loading rod on the left and right sides, and transmits them to the signal amplifier through the shielded wire via the Wheatstone bridge After the strain signal is amplified by the signal amplifier, it is output to the data recorder for recording and storage through the shielded wire, and finally the strain signal data is output from the data recorder to the computer for analysis and processing through the data line.
  • the stress wave loading rod of the uniaxial two-way synchronous control electromagnetic loading dynamic shear test device is a rectangular cross-section rod, equipped with different sizes of stress wave loading rods, which can be used to develop complete rock samples of different sizes or contain a single joint
  • the dynamic shear test of the rock joint sample made up for the defect that the existing device cannot carry out the research on the dynamic shear mechanical properties and failure law of the larger-size rock sample.
  • the electromagnetic pulse stress wave excitation system of the uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device can accurately control and repeatedly generate incident stress waves of different amplitudes and durations, which solves the existing dynamics based on the traditional Hopkinson bar device It is difficult to accurately control and repeatedly generate incident stress waves in shear tests, and the two-way electromagnetic pulse excitation cavity simultaneously excites and loads incident stress waves, which not only ensures that the load on both ends of the specimen is equal during the dynamic shear process, but also greatly shortens the test. The sample test process reaches the dynamic shear stress equilibrium time, which makes the test result more reliable.
  • test specimens used in the uniaxial two-way synchronous control electromagnetic loading dynamic shear test device and test method are rectangular or cubic, and the test specimens can be complete rock specimens or jointed rock specimens with a single joint plane, dynamic shear
  • the front and rear surfaces of the sample ie, the shearing side
  • High-speed photography equipment can be used to capture the dynamic shear crack initiation, propagation and penetration process of the shearing side in real time, which solves the problem of the traditional concentric cylinder sample. Monitor the defects of shear crack propagation law.
  • the normal pressure servo control loading system of the uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device and test method can realize the normal static pressure servo control loading and can realize the dynamic shear test of the constant normal stress under different normal stress conditions , which makes up for the inability of the existing dynamic shear device to carry out the dynamic shear test with constant normal stress, making the dynamic shear test research of rock specimens closer to the real working conditions.
  • Figure 1 Three-dimensional diagram of a uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device
  • Figure 2 The front view of the uniaxial bidirectional synchronous control electromagnetic loading dynamic shear test device
  • Figure 3 Schematic diagram of stress wave propagation under uniaxial bidirectional electromagnetic control synchronous loading
  • Figure 4 Three-dimensional diagram of the stress wave loading rod support
  • Figure 5 The three-dimensional diagram of the contact between the stress wave loading rod and the loading end of the complete shear specimen
  • Figure 6 The three-dimensional diagram of the contact between the stress wave loading rod and the loading end surface of a shear specimen with a single joint surface.
  • 1-support platform 2-left electromagnetic pulse excitation cavity, 3-left electromagnetic pulse excitation cavity support, 4-left stress wave loading rod, 5-stress wave loading rod support, 6-right electromagnetic pulse excitation Cavity, 7-right electromagnetic pulse excitation cavity support, 8-right stress wave loading rod, 9-bottom plate, 10-top plate, 11-support column, 12-hydraulic loading device, 13-actuator, 14-base Seat, 15-test specimen, 16-strain gauge.
  • Figure 1 is a three-dimensional diagram of a single-axis two-way synchronous control electromagnetic loading dynamic shear test device, including a supporting platform, a loading rod system, an electromagnetic pulse emission system, a normal pressure servo control loading system, and a data monitoring and acquisition system.
  • the testing device is centered on the test sample 15 and arranged on its left and right sides.
  • the left dynamic shear loading device includes the left electromagnetic pulse excitation cavity 2, the left electromagnetic pulse excitation cavity support 3, and the left stress wave loading rod 4 And stress wave loading rod support 5, where the left electromagnetic pulse excitation cavity 2 is placed on the left electromagnetic pulse excitation cavity support 3, the left electromagnetic pulse excitation cavity 2 and the left electromagnetic pulse excitation cavity support 3 can be supported
  • the platform 1 moves axially along the loading rod and is fixed at a position that meets the requirements of the test; the left stress wave loading rod 4 lies flat in the slot of the stress wave loading rod support 5, and can be free in the support slot
  • the incident end of the left stress wave loading rod 4 ie the left end face of the rod
  • the stress wave is transferred to the left stress wave loading
  • the right dynamic shear loading device includes the right electromagnetic pulse excitation cavity 6, the right electromagnetic pulse excitation cavity support 7, the right stress wave loading rod 8 and the stress wave loading rod support 5.
  • the right electromagnetic pulse excitation cavity 6 Placed on the right electromagnetic pulse excitation cavity support 7, the right electromagnetic pulse excitation cavity 6 and the right electromagnetic pulse excitation cavity support 7 can be moved on the supporting platform 1 along the axial direction of the loading rod and fixed in a position that meets the test requirements
  • the right stress wave loading rod 8 is placed flat in the slot of the stress wave loading rod support 5, and can slide freely left and right in the support slot; the incident end of the right stress wave loading rod 8 (ie the rod The right end surface) is in free contact with the left stress wave output end surface of the right electromagnetic pulse excitation cavity 6, and the stress wave is transmitted to the right stress wave loading rod, and then the stress wave propagates to the test sample along the rod axis direction. It applies dynamic shear load from right to left.
  • the normal pressure servo control loading system includes a bottom plate 9, a top plate 10, a support column 11, a hydraulic loading device 12, an actuator 13, and a base 14.
  • the bottom plate 9 and the top plate 10 are connected by four cylindrical support columns 11 to form a method
  • the hydraulic loading device 12 is fixed at the center of the top plate 10, and the two are welded into an integral structure.
  • the actuator 13 is connected with the hydraulic loading device 12 to provide the hydraulic loading device.
  • the oil pressure is transmitted to the upper surface of the test sample 15.
  • the base 14 is located in the center of the bottom plate 9 for placing the test sample 15, and together with the actuator 13, it forms a set of force and reaction force structures, respectively
  • the sample 15 applies static normal pressure from the lower surface and the upper surface.
  • the data monitoring and acquisition system includes strain gauges 16 (such as resistance strain gauges), signal amplifiers, data recorders and computers.
  • the strain gauges 16 are respectively attached to the upper and lower surfaces of the left stress wave loading rod 4 and the right stress wave loading rod 8.
  • the strain gauge 16 transmits the strain signals monitored on the left and right stress wave loading bars 4 and 8 respectively through the shielded wire to the signal amplifier through the Wheatstone bridge, and the strain signal is transmitted through the signal After the amplifier is amplified, it is output to the data recorder for recording and storage through the shielded wire, and finally the strain signal data is output from the data recorder to the computer for analysis and processing through the data cable.
  • the stress balance state can be calculated using the strain data monitored by the strain gauge 16 according to the following formula to obtain the dynamic shear strength ⁇ (t) of the rock-like material under the test set normal pressure.
  • E and A are the elastic modulus and the cross-sectional area of the rod loaded by the stress wave respectively;
  • a s is the shear surface area of the test specimen;
  • ⁇ left incident and ⁇ left reflection are the stress waves from the left side of the strain gauge, respectively.
  • the incident strain signal and the reflected strain signal monitored on the loading rod, ⁇ right incidence and ⁇ right reflection are the incident strain signal and reflected strain signal monitored by the strain gauge from the right stress wave loading rod, in which the uniaxial bidirectional electromagnetic control synchronous loading
  • the schematic diagram of stress wave propagation is shown in Figure 3.
  • test sample 15 Place the processed and polished cubic red sandstone (test sample 15) of 100mm in length, width and height on the center of the surface of the base 14.
  • TC21 titanium alloy with a length of 2m, a width of 100mm and a height of 50mm, respectively
  • the left stress wave loading bar 4 is placed flat in the slot of the stress wave loading bar support 5, and the left stress wave loading bar 4 can slide freely in the slot, and then the left stress wave loading bar 4
  • the right loading end surface of the red sandstone cube ie test sample 15 is aligned with the lower half of the dynamic shear loading surface on the left side and fully fitted together.
  • the left electromagnetic pulse excitation cavity 2 is placed on the left electromagnetic Pulse excitation cavity support 3, and adjust the two to the end of the left stress wave loading rod 4, so that the right stress wave output end surface of the left electromagnetic pulse excitation cavity 2 is incident on the left stress wave loading rod 4
  • the stress wave loading end faces are aligned and fully fit together; in the same way, the TC21 titanium alloy right stress wave loading rod 8 with a length of 2m, a width and a height of 100mm and 50mm, respectively, is placed flat on the stress wave loading rod support 5.
  • the hydraulic loading device 12 is adjusted by the normal hydraulic loading servo control system to drive the actuator 13 to apply a static normal pressure on the upper surface of the test specimen 15 according to the set loading rate, until the normal pressure reaches the set After setting and maintaining a stable value, operate
  • the strain signal is amplified by the signal amplifier and output to the data recorder through the shielded wire for recording and storage, and finally through the data Wire the strain signal data from the data recorder to the computer for analysis and processing; in addition, the dynamic shear loading process can also use ultra-high-speed camera (E.g. Kirana05M ultra-high-speed camera) at a rate of 100,000 to 1 million frames per second to take real-time shooting of the side of the shear surface of the cube red sandstone (i.e. test specimen 15). Dynamic shear crack initiation, propagation and penetration. , And used it to analyze the dynamic shear fracture law of red sandstone.
  • ultra-high-speed camera E.g. Kirana05M ultra-high-speed camera
  • the dynamic shearing process of the cube red sandstone can be considered The stress equilibrium state is reached.
  • using the strain data monitored by the strain gauge 16 can be calculated according to the following formula to obtain the dynamics of the red sandstone material under the test set normal pressure (for example, 5MPa) Shear strength ⁇ (t).
  • E and A are the elastic modulus (107.8GPa) of the stress wave loaded rod and the cross-sectional area of the rod (5000mm 2 );
  • a s is the shear surface area of the test sample (10000mm 2 , the edge of the red sandstone sample Length is 100mm);
  • ⁇ left incidence and ⁇ left reflection are the incident strain signal and reflected strain signal monitored by the strain gauge from the stress wave loading rod on the left,
  • ⁇ right incidence and ⁇ right reflection are the stress waves of the strain gauge from the right The incident strain signal and the reflected strain signal monitored on the loading rod.
  • the electromagnetic pulse excitation control system After the normal pressure reaches the set value and remains stable, operate the electromagnetic pulse excitation control system to drive the left electromagnetic pulse excitation cavity 2 and the right electromagnetic pulse excitation cavity 6 Simultaneously excite and output an incident stress wave with a set amplitude (e.g. 300MPa) and duration (e.g. 200 ⁇ s) for the test.
  • a set amplitude e.g. 300MPa
  • duration e.g. 200 ⁇ s
  • the incident stress wave then propagates along the left and right loading rods to the granite with a single joint plane (ie test sample 15) And carry out dynamic shear loading; it needs to be explained that in the dynamic shear loading process, the normal static pressure remains constant under the control of the normal hydraulic loading servo control system, so as to realize the dynamic shear with constant normal pressure Loading test; during the loading process, the strain gage 16 pasted on the center of the loading rod on the left and right sides can monitor the incident strain signal and the reflected strain signal in the rod in real time, and transmit it to the signal amplifier through the shielded wire through the Wheatstone bridge.
  • the strain signal is amplified by the signal amplifier and then output to the data logger for recording and storage through the shielded wire, and finally the strain signal data is transferred through the data cable Output from the data recorder to the computer for analysis and processing;
  • the dynamic shear loading process can also use ultra-high-speed camera (such as Kirana05M ultra-high-speed camera) to capture 100,000 to 1 million frames per second.
  • the shear surface side of the granite with a single joint surface (test sample 15) was photographed in real time for the dynamic shear failure process of the joint surface, and it was used to analyze the dynamic shear fracture law of the granite with a single joint surface.
  • the strain signal data monitored by the strain gauge 16 shows that the dynamic shear load applied to the left and right ends of the granite with a single joint surface (test sample 15) during the dynamic shear process is basically the same, it can be considered that there is a single joint surface
  • the strain data monitored by the strain gauge 16 can be used to calculate according to the following formula to obtain a granite sample with a single joint surface.
  • E and A are the elastic modulus (107.8GPa) of the stress wave loaded rod and the cross-sectional area of the rod (5000mm 2 );
  • a s is the shear surface area of the test specimen (20000mm 2 , with a single joint surface The length and width of the granite shear plane are 200mm and 100mm respectively);
  • ⁇ left incidence and ⁇ left reflection are the incident strain signal and reflected strain signal monitored by the strain gauge from the left stress wave loading rod, ⁇ right incidence and ⁇ right reflection They are the incident strain signal and the reflected strain signal monitored by the strain gauge from the stress wave loading rod on the right.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种单轴双向同步控制电磁加载动态剪切试验装置和测试方法,试验装置包括支撑平台(1)、加载杆件系统、电磁脉冲发射系统、法向压力伺服控制加载系统、数据监测与采集系统。基于本试验装置,可以开展接近实际工况条件下的恒定法向压力的岩石类材料动态剪切试验研究,并且可根据试验需要,选用不同试验尺寸大小的完整岩石类试样或含单一结构面的节理岩石类试样开展应变率为10 1~10 3s -1条件下的动态剪切力学特性和剪切破坏规律研究,从而可为岩体工程和结构工程等的设计、施工、防护以及安全性和稳定性评估提供重要的理论基础和技术支持。

Description

单轴双向同步控制电磁加载动态剪切试验装置和测试方法 技术领域
本发明属于固体材料或结构面动态剪切力学特性和破裂规律研究领域。更具体地说,涉及一种用于岩石、混凝土、聚合物等固体材料或结构面动态剪切强度和动态剪切破坏规律研究的单轴双向同步控制电磁加载动态剪切试验装置和测试方法。
背景技术
了解并掌握固体材料,尤其是岩石和混凝土材料的剪切力学特性及其剪切破坏规律,对于建筑工程、结构工程以及岩石工程等现代大型土木工程设计、施工、运营以及安全性和稳定性评估起着十分重要的作用。目前用于测试岩石类材料剪切力学特性和破坏规律的方法主要为基于静态或准静态加载方式的恒定法向压力或刚度的直接剪切试验。事实上,在土木工程领域,工程结构不仅承受静态剪切荷载的作用,而且常常遭受动态剪切荷载(例如爆炸波和地震波)的作用而发生动态剪切失稳破坏。例如常见的岩土边坡因地震作用发生动态剪切失稳破坏而导致滑坡、泥石流等灾害产生。因此,了解并掌握岩石类材料在10 1~10 3s -1应变率作用下的动态剪切力学特性及其破坏规律则显得十分必要。目前,关于固体材料动态剪切力学特性和剪切破坏规律测试装置和方法的报道非常有限。近年来报道的基于一维霍普金森压杆系统利用同心圆柱型试样和双面切缝试样测试岩石材料动态剪切强度的方法,虽然一定程度上填补了以往岩石类材料高应变率作用下的动态剪切力学特性测试的空白,但是利用上述报道方法开展岩石类材料动态剪切力学特性测试时,存在诸多无法避免的缺陷和不足。例如,采用钻孔方式加工同心圆柱型试样的两端同心圆切缝时难以保证切缝的同心度,容易导致因加工精度不高而影响测试结果;另外,采用同心圆柱型试样开展岩石材料动态 剪切强度测试时,因剪切面位于试样里面而无法利用高速摄影仪器实时观测岩石动态剪切破坏过程。而采用双面切缝试样测试岩石材料动态剪切强度虽然解决了岩石材料动态剪切破坏过程无法实时观测分析的缺陷,但是利用该方法测试时,无法实现恒定法向压力剪切,使得测试过程与真实工况相差较大,容易导致测试结果偏大。此外,采用上述两种方式进行测试时,所用岩石材料的尺寸都较小,通常试样等效直径均小于或等于50mm,难以采用尺寸较大岩石试样或者含有节理面的岩石试样开展动态剪切力学特性与剪切破坏规律研究。因此,现有技术还有待改进。
发明内容
发明目的:为解决现有实验装置及测试方法无法开展接近于实际情况下的较大尺度(例如试样长×宽=150mm*100mm)岩石类材料在高应变率(10 1~10 3s -1)加载条件下的动态剪切力学特性和剪切破坏规律研究的技术难题,本发明提出一种单轴双向同步控制电磁加载动态剪切试验装置和测试方法,可以有效弥补基于现有霍普金森压杆开展的岩石动态剪切实验研究的缺陷。基于本发明所述试验装置,可以开展接近实际工况条件下的恒定法向压力的岩石类材料动态剪切试验研究,并且可根据试验需要,选用不同试验尺寸大小的完整岩石类试样或含单一结构面的节理岩石类试样开展应变率为10 1~10 3s -1条件下的动态剪切力学特性和剪切破坏规律研究,从而可为岩体工程和结构工程等的设计、施工、防护以及安全性和稳定性评估提供重要的理论基础和技术支持。
发明技术方案:单轴双向同步控制电磁加载动态剪切试验装置包括支撑平台、加载杆件系统、电磁脉冲发射系统、法向压力伺服控制加载系统、数据监测与采集系统。
支撑平台为整个试验装置提供基础支撑平台的作用,承接整个装置的自重以及测试时的动静荷载冲击作用。加载杆件系统包括满足不同试验需求的同等材质和尺寸以及加 工精度的左侧和右侧应力波加载杆,起到传递并为测试试样施加动态剪切荷载的作用。电磁脉冲发射系统包括同等材质、型号和加工精度的左侧和右侧电磁脉冲激发腔以及电磁脉冲发射控制系统,起到为测试试样提供动态剪切脉冲荷载的作用。法向压力伺服控制加载系统包括液压加载油缸、作动器、基座以及法向压力伺服控制系统,起到为测试试样提供恒定法向压力的作用。法向压力伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可确保法向静态压力在动态剪切过程保持恒定。数据监测与采集系统包括应变片、惠斯通电桥、应变信号放大器、多通道高速同步记录仪以及计算机,起到测试过程实时监测、记录和存储剪切动态响应数据的作用。
为了解决现有技术中问题,本发明提供了一种单轴双向同步控制电磁加载动态剪切试验装置,包括支撑平台、左侧电磁脉冲激发腔、左侧电磁脉冲激发腔支座、左侧应力波加载杆、应力波加载杆支座、右侧电磁脉冲激发腔、右侧电磁脉冲激发腔支座、右侧应力波加载杆、底板、顶板、支撑柱、液压加载装置、作动器、基座、测试试样及应变片;
试验装置以测试试样为中心,布置于其左右两侧,左侧动态剪切加载装置包括左侧电磁脉冲激发腔、左侧电磁脉冲激发腔支座、左侧应力波加载杆和应力波加载杆支座,其中左侧电磁脉冲激发腔安置于左侧电磁脉冲激发腔支座上,左侧电磁脉冲激发腔和左侧电磁脉冲激发腔支座能够在支撑平台上沿加载杆轴向移动并固定在满足试验需求的位置处;左侧应力波加载杆平放在应力波加载杆支座的卡槽内,并能够在支座卡槽内自由的左右滑动;左侧应力波加载杆的入射端与左侧电磁脉冲激发腔的右侧应力波输出端面自由接触,将应力波传入至左侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从左往右施加动态剪切荷载;
右侧动态剪切加载装置包括右侧电磁脉冲激发腔、右侧电磁脉冲激发腔支座、右侧应力波加载杆以及应力波加载杆支座,其中右侧电磁脉冲激发腔安置于右侧电磁脉冲激发腔支座上,右侧电磁脉冲激发腔和右侧电磁脉冲激发腔支座能够在支撑平台上沿加载杆轴向移动并固定在满足试验需求的位置处;右侧应力波加载杆平放在应力波加载杆支座的卡槽内,并能够在支座卡槽内自由的左右滑动;右侧应力波加载杆的入射端与右侧电磁脉冲激发腔的左侧应力波输出端面自由接触,将应力波传入至右侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从右往左施加动态剪切荷载;
法向压力伺服控制加载系统包括底板、顶板、支撑柱、液压加载装置、作动器和基座,其中底板和顶板通过支撑柱连接起来构成法向压力伺服控制加载装置的加载框架系统,液压加载装置固定在顶板上,作动器与液压加载装置连接,用于将液压加载装置提供的油压传递至测试试样的上表面,基座位于底板上,用于安放测试试样,并且基座与作动器一起构成一组作用力和反作用力结构,分别对测试试样从下表面和上表面施加静态法向压力;
所述应变片分别粘贴于左侧应力波加载杆和右侧应力波加载杆的上下表面。
作为本发明的进一步改进,还包括信号放大器、数据记录仪和计算机,动态剪切测试时,应变片将左侧应力波加载杆和右侧应力波加载杆上分别监测到的应变信号通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
作为本发明的进一步改进,其中底板和顶板通过四根圆柱状支撑柱连接起来构成法向压力伺服控制加载装置的加载框架系统。
作为本发明的进一步改进,液压加载装置固定在顶板的中心位置,基座位于底板的正中央。
作为本发明的进一步改进,所述应变片分别粘贴于左侧应力波加载杆和右侧应力波加载杆的上下表面中心位置处。
单轴双向同步控制电磁加载动态剪切试验测试方法,其利用上述任意一项所述的试验装置,进行以下操作:
将加工并打磨好的测试试样安置于基座上,将左侧应力波加载杆平放在加载杆支座的卡槽内,并确保左侧应力波加载杆可在卡槽内自由的左右滑动,随后将左侧应力波加载杆的右侧加载端面与带测试试样左侧动态剪切加载面的下半截面对齐并充分贴合在一起,同时将左侧电磁脉冲激发腔安置于左侧电磁脉冲激发腔支座上,并将二者调节至左侧应力波加载杆的末端,以使左侧电磁脉冲激发腔的右侧应力波输出端面与左侧应力波加载杆的入射应力波加载端面对齐并充分贴合在一起;
将右侧应力波加载杆平放在加载杆支座的卡槽内,并确保右侧应力波加载杆可在卡槽内自由的左右滑动,随后将右侧应力波加载杆的左侧加载端面与测试试样右侧动态剪切加载面的上半截面对齐并充分贴合在一起,同时将右侧电磁脉冲激发腔安置于右侧电磁脉冲激发腔支座上,并将二者调节至右侧应力波加载杆的末端,以使右侧电磁脉冲激发腔的左侧应力波输出端面与右侧应力波加载杆的入射应力波加载端面对齐并充分贴合在一起;
根据试验设定法向压力值,通过法向液压加载伺服控制系统调节液压加载装置驱动作动器在测试试样上表面根据设定加载速率施加静态法向压力,待法向压力达到设定值并保持稳定后,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔和右侧电磁脉冲激 发腔同步激发并输出试验设定幅值和持续时长的入射应力波,入射应力波随后沿左右两侧加载杆向测试试样传播并对其进行动态剪切加载;
加载过程通过粘贴在左右两侧加载杆的应变片,实时监测杆中入射应变信号和反射应变信号,当利用应变片所监测到的应变信号数据显示动态剪切过程带单一节理面的测试试样左右两端面所施加的动态剪切荷载基本一致时,认为带单一节理面的花岗岩动态剪切过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片所监测的应变数据,按照下述公式进行计算,获取测试试样在试验设定法向压力下的动态剪切强度τ(t):
Figure PCTCN2019115485-appb-000001
其中,E和A分别为应力波加载杆的弹性模量与杆的横截面面积;As为测试试样的剪切面面积,ε左入射和ε左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε右入射和ε右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号。
作为本发明的进一步改进,所述动态剪切加载过程,法向静态压力在法向液压加载伺服控制系统的调控下保持恒定不变,从而实现恒定法向压力的动态剪切加载试验。
作为本发明的进一步改进,测试试样安置于基座的表面正中心。
作为本发明的进一步改进,动态剪切加载过程,利用超高速摄像仪以每秒拍摄10至100万帧相片的速率对测试试样剪切面侧面进行实时拍摄节理面动态剪切破坏过程,将其用于分析测试试样的动态剪切破裂规律。
作为本发明的进一步改进,加载过程通过粘贴在左右两侧加载杆中心位置处的应变片实时监测杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行 记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
本发明的有益效果是:
单轴双向同步控制电磁加载动态剪切试验装置的应力波加载杆为矩形截面杆,配备有不同尺寸大小的应力波加载杆件,可用于开展不同尺寸大小的岩石类完整试样或含有单一节理的岩石类节理试样的动态剪切试验,弥补了现有装置无法开展较大尺寸岩体类试样动态剪切力学特性和破坏规律研究的缺陷。
单轴双向同步控制电磁加载动态剪切试验装置的电磁脉冲应力波激发系统可精确控制并重复产生不同幅值大小和持续时长的入射应力波,解决了现有基于传统霍普金森杆装置的动态剪切试验难以精确控制并重复产生入射应力波的难题,并且双向电磁脉冲激发腔同步激发和加载入射应力波,不仅能确保动态剪切过程试样两端所受荷载相等,还能够大幅缩短试样测试过程达到动态剪切应力平衡时间,使得测试结果更加可靠。
单轴双向同步控制电磁加载动态剪切试验装置和测试方法所用测试试样为长方体或者立方体形状,并且测试试样可为完整岩石类试样或者含有单一节理面的节理岩石类试样,动态剪切过程试样前后端面(即剪切侧面)为临空自由面,可利用高速摄影仪器实时拍摄剪切侧面动态剪切裂纹起裂、扩展和贯通过程,解决了采用传统同心圆柱体试样无法监测剪切裂纹扩展规律的缺陷。
单轴双向同步控制电磁加载动态剪切试验装置和测试方法的法向压力伺服控制加载系统可实现法向静态压力伺服控制加载并且能够实现不同法向应力条件下恒定法向应力的动态剪切试验,弥补了现有动态剪切装置无法开展恒定法向应力的动态剪切试验,使得岩石类试样动态剪切试验研究更加接近真实工况。
附图说明
图1单轴双向同步控制电磁加载动态剪切试验装置三维图;
图2单轴双向同步控制电磁加载动态剪切试验装置正视图;
图3单轴双向电磁控制同步加载应力波传播示意图;
图4应力波加载杆支座三维图;
图5应力波加载杆与完整剪切试样加载端面接触三维图;
图6应力波加载杆与带单一节理面剪切试样加载端面接触三维图。
图中标号对应部件名称如下:
1-支撑平台,2-左侧电磁脉冲激发腔,3-左侧电磁脉冲激发腔支座,4-左侧应力波加载杆,5-应力波加载杆支座,6-右侧电磁脉冲激发腔,7-右侧电磁脉冲激发腔支座,8-右侧应力波加载杆,9-底板,10-顶板,11-支撑柱,12-液压加载装置,13-作动器,14-基座,15-测试试样,16-应变片。
具体实施方式
下面结合附图对本发明做进一步说明。
最佳实施方式1
图1为单轴双向同步控制电磁加载动态剪切试验装置三维图,包括支撑平台、加载杆件系统、电磁脉冲发射系统、法向压力伺服控制加载系统、数据监测与采集系统。测试装置以测试试样15为中心,布置于其左右两侧,左侧动态剪切加载装置包括左侧电磁脉冲激发腔2、左侧电磁脉冲激发腔支座3、左侧应力波加载杆4和应力波加载杆支座5, 其中左侧电磁脉冲激发腔2安置于左侧电磁脉冲激发腔支座3上,左侧电磁脉冲激发腔2和左侧电磁脉冲激发腔支座3可在支撑平台1上沿加载杆轴向移动并固定在满足试验需求的位置处;左侧应力波加载杆4平放在应力波加载杆支座5的卡槽内,并可在支座卡槽内自由的左右滑动;左侧应力波加载杆4的入射端(即杆左侧端面)与左侧电磁脉冲激发腔2的右侧应力波输出端面自由接触,将应力波传入至左侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从左往右施加动态剪切荷载。
右侧动态剪切加载装置包括右侧电磁脉冲激发腔6、右侧电磁脉冲激发腔支座7、右侧应力波加载杆8以及应力波加载杆支座5,其中右侧电磁脉冲激发腔6安置于右侧电磁脉冲激发腔支座7上,右侧电磁脉冲激发腔6和右侧电磁脉冲激发腔支座7可在支撑平台1上沿加载杆轴向移动并固定在满足试验需求的位置处;右侧应力波加载杆8平放在应力波加载杆支座5的卡槽内,并可在支座卡槽内自由的左右滑动;右侧应力波加载杆8的入射端(即杆右侧端面)与右侧电磁脉冲激发腔6的左侧应力波输出端面自由接触,将应力波传入至右侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从右往左施加动态剪切荷载。
法向压力伺服控制加载系统包括底板9、顶板10、支撑柱11、液压加载装置12、作动器13和基座14,其中底板9和顶板10通过四根圆柱状支撑柱11连接起来构成法向压力伺服控制加载装置的加载框架系统,液压加载装置12固定在顶板10的中心位置,二者焊接为一整体结构,作动器13与液压加载装置12连接,用于将液压加载装置提供的油压传递至测试试样15的上表面,基座14位于底板9的正中央,用于安放测试试样15,并且与作动器13一起构成一组作用力和反作用力结构,分别对测试试样15从下表面和上表面施加静态法向压力。
数据监测与采集系统包括应变片16(例如电阻应变片)、信号放大器、数据记录仪和计算机,其中应变片16分别粘贴于左侧应力波加载杆4和右侧应力波加载杆8的上下表面中心位置处,动态剪切测试时,应变片16将左侧和右侧应力波加载杆4和8上分别监测到的应变信号通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
根据一维应力波传播理论,当利用应变片16所监测到的数据表面动态剪切过程测试试样左右两端面所施加的动态剪切荷载基本一致时,可认为试样动态剪切过程达到了应力平衡状态,从而利用应变片16所监测的应变数据,可按照下述公式进行计算,获取岩石类材料在试验设定法向压力下的动态剪切强度τ(t)。
Figure PCTCN2019115485-appb-000002
其中,E和A分别为应力波加载杆的弹性模量与杆的横截面面积;A s为测试试样的剪切面面积;ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号,其中单轴双向电磁控制同步加载应力波传播示意图如图3所示。
最佳实施方式2
将加工并打磨好的长宽高均为100mm的立方体红砂岩(即测试试样15)安置于基座14的表面正中心,将长度为2m、宽度和高度分别为100mm和50mm的TC21钛合金左侧应力波加载杆4平放在应力波加载杆支座5的卡槽内,并确保左侧应力波加载杆4可在卡槽内自由的左右滑动,随后将左侧应力波加载杆4的右侧加载端面与立方体红砂岩(即测试试样15)左侧动态剪切加载面的下半截面对齐并充分贴合在一起,同时将左侧电磁 脉冲激发腔2安置于左侧电磁脉冲激发腔支座3上,并将二者调节至左侧应力波加载杆4的末端,以使左侧电磁脉冲激发腔2的右侧应力波输出端面与左侧应力波加载杆4的入射应力波加载端面对齐并充分贴合在一起;同理,将长度为2m,宽度和高度分别为100mm和50mm的TC21钛合金右侧应力波加载杆8平放在应力波加载杆支座5的卡槽内,并确保右侧应力波加载杆8可在卡槽内自由的左右滑动,随后将右侧应力波加载杆8的左侧加载端面与立方体红砂岩(即测试试样15)右侧动态剪切加载面的上半截面对齐并充分贴合在一起,同时将右侧电磁脉冲激发腔6安置于右侧电磁脉冲激发腔支座7上,并将二者调节至右侧应力波加载杆8的末端,以使右侧电磁脉冲激发腔8的左侧应力波输出端面与右侧应力波加载杆8的入射应力波加载端面对齐并充分贴合在一起;随后根据试验设定法向压力值(例如5MPa),通过法向液压加载伺服控制系统调节液压加载装置12驱动作动器13在测试试样15上表面根据设定加载速率施加静态法向压力,待法向压力达到设定值并保持稳定后,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔2和右侧电磁脉冲激发腔6同步激发并输出试验设定幅值(例如200MPa)和持续时长(例如400μs)的入射应力波,入射应力波随后沿左右两侧加载杆向立方体红砂岩(即测试试样15)传播并对其进行动态剪切加载;需要说明的是,动态剪切加载过程,法向静态压力在法向液压加载伺服控制系统的调控下保持恒定不变,从而实现恒定法向压力的动态剪切加载试验;加载过程通过粘贴在左右两侧加载杆中心位置处的应变片16,可实时监测杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理;此外,动态剪切加载过程,亦可利用超高速摄像仪(例如Kirana05M型超高速摄像仪)以每秒拍摄10 至100万帧相片的速率对立方体红砂岩(即测试试样15)剪切面侧面进行实时拍摄动态剪切裂纹起裂、扩展和贯通过程,将其用于分析红砂岩动态剪切破裂规律。当利用应变片16所监测到的应变信号数据显示动态剪切过程立方体红砂岩(即测试试样15)左右两端面所施加的动态剪切荷载基本一致时,可认为立方体红砂岩动态剪切过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片16所监测的应变数据,可按照下述公式进行计算,获取红砂岩材料在试验设定法向压力(例如5MPa)下的动态剪切强度τ(t)。
Figure PCTCN2019115485-appb-000003
其中,E和A分别为应力波加载杆的弹性模量(107.8GPa)与杆的横截面面积(5000mm 2);A s为测试试样的剪切面面积(10000mm 2,红砂岩试样边长为100mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号。
最佳实施方式3
将加工并打磨好的长宽高分别为200mm、100mm和100mm的带单一节理面的花岗岩(即测试试样15)安置于基座14的表面正中心,将长度为2m,宽度和高度分别为100mm和50mm的TC21钛合金左侧应力波加载杆4平放在应力波加载杆支座5的卡槽内,并确保左侧应力波加载杆4可在卡槽内自由的左右滑动,随后将左侧应力波加载杆4的右侧加载端面与带单一节理面的花岗岩(即测试试样15)左侧动态剪切加载面的下半截面对齐并充分贴合在一起,同时将左侧电磁脉冲激发腔2安置于左侧电磁脉冲激发腔支座3上,并将二者调节至左侧应力波加载杆4的末端,以使左侧电磁脉冲激发腔2的右侧应力波输出端面与左侧应力波加载杆4的入射应力波加载端面对齐并充分贴合在一起;同理,将长 度为2m,宽度和高度分别为100mm和50mm的TC21钛合金右侧应力波加载杆8平放在应力波加载杆支座5的卡槽内,并确保右侧应力波加载杆8可在卡槽内自由的左右滑动,随后将右侧应力波加载杆8的左侧加载端面与带单一节理面的花岗岩(即测试试样15)右侧动态剪切加载面的上半截面对齐并充分贴合在一起,同时将右侧电磁脉冲激发腔6安置于右侧电磁脉冲激发腔支座7上,并将二者调节至右侧应力波加载杆8的末端,以使右侧电磁脉冲激发腔8的左侧应力波输出端面与右侧应力波加载杆8的入射应力波加载端面对齐并充分贴合在一起;随后根据试验设定法向压力值(例如10MPa)通过法向液压加载伺服控制系统调节液压加载装置12驱动作动器13在带单一节理面的花岗岩(即测试试样15)上表面根据设定加载速率施加静态法向压力,待法向压力达到设定值并保持稳定后,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔2和右侧电磁脉冲激发腔6同步激发并输出试验设定幅值(例如300MPa)和持续时长(例如200μs)的入射应力波,入射应力波随后沿左右两侧加载杆向带单一节理面的花岗岩(即测试试样15)传播并对其进行动态剪切加载;需要说明的是,动态剪切加载过程,法向静态压力在法向液压加载伺服控制系统的调控下保持恒定不变,从而实现恒定法向压力的动态剪切加载试验;加载过程通过粘贴在左右两侧加载杆中心位置处的应变片16,可实时监测杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理;此外,动态剪切加载过程,亦可利用超高速摄像仪(例如Kirana05M型超高速摄像仪)以每秒拍摄10至100万帧相片的速率对带单一节理面的花岗岩(即测试试样15)剪切面侧面进行实时拍摄节理面动态剪切破坏过程,将其用于分析带单一节理面的花岗岩动态剪切破裂规律。当利 用应变片16所监测到的应变信号数据显示动态剪切过程带单一节理面的花岗岩(即测试试样15)左右两端面所施加的动态剪切荷载基本一致时,可认为带单一节理面的花岗岩动态剪切过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片16所监测的应变数据,可按照下述公式进行计算,获取带单一节理面的花岗岩试样在试验设定法向压力(例如10MPa)下的动态剪切强度τ(t)。
Figure PCTCN2019115485-appb-000004
其中,E和A分别为应力波加载杆的弹性模量(107.8GPa)与杆的横截面面积(5000mm 2);A s为测试试样的剪切面面积(20000mm 2,带单一节理面的花岗岩剪切面长和宽分别为200mm和100mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种单轴双向同步控制电磁加载动态剪切试验装置,其特征在于:
    包括支撑平台(1)、左侧电磁脉冲激发腔(2)、左侧电磁脉冲激发腔支座(3)、左侧应力波加载杆(4)、应力波加载杆支座(5)、右侧电磁脉冲激发腔(6)、右侧电磁脉冲激发腔支座(7)、右侧应力波加载杆(8)、底板(9)、顶板(10)、支撑柱(11)、液压加载装置(12)、作动器(13)、基座(14)、测试试样(15)及应变片(16);
    试验装置以测试试样(15)为中心,布置于其左右两侧,左侧动态剪切加载装置包括左侧电磁脉冲激发腔(2)、左侧电磁脉冲激发腔支座(3)、左侧应力波加载杆(4)和应力波加载杆支座(5),其中左侧电磁脉冲激发腔(2)安置于左侧电磁脉冲激发腔支座(3)上,左侧电磁脉冲激发腔(2)和左侧电磁脉冲激发腔支座(3)能够在支撑平台(1)上沿加载杆轴向移动并固定在满足试验需求的位置处;左侧应力波加载杆(4)平放在应力波加载杆支座(5)的卡槽内,并能够在支座卡槽内自由的左右滑动;左侧应力波加载杆(4)的入射端与左侧电磁脉冲激发腔(2)的右侧应力波输出端面自由接触,将应力波传入至左侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从左往右施加动态剪切荷载;
    右侧动态剪切加载装置包括右侧电磁脉冲激发腔(6)、右侧电磁脉冲激发腔支座(7)、右侧应力波加载杆(8)以及应力波加载杆支座(5),其中右侧电磁脉冲激发腔(6)安置于右侧电磁脉冲激发腔支座(7)上,右侧电磁脉冲激发腔(6)和右侧电磁脉冲激发腔支座(7)能够在支撑平台(1)上沿加载杆轴向移动并固定在满足试验需求的位置处;右侧应力波加载杆(8)平放在应力波加载杆支座(5)的卡槽内,并能够在支座卡槽内自由的左右滑动;右侧应力波加载杆(8)的入射端与右侧电磁脉冲激发 腔(6)的左侧应力波输出端面自由接触,将应力波传入至右侧应力波加载杆,随后应力波沿着杆轴线方向向测试试样传播并对其进行从右往左施加动态剪切荷载;
    法向压力伺服控制加载系统包括底板(9)、顶板(10)、支撑柱(11)、液压加载装置(12)、作动器(13)和基座(14),其中底板(9)和顶板(10)通过支撑柱(11)连接起来构成法向压力伺服控制加载装置的加载框架系统,液压加载装置(12)固定在顶板(10)上,作动器(13)与液压加载装置(12)连接,用于将液压加载装置提供的油压传递至测试试样(15)的上表面,基座(14)位于底板(9)上,用于安放测试试样(15),并且基座(14)与作动器(13)一起构成一组作用力和反作用力结构,分别对测试试样(15)从下表面和上表面施加静态法向压力;
    所述应变片(16)分别粘贴于左侧应力波加载杆(4)和右侧应力波加载杆(8)的上下表面。
  2. 根据权利要求1所述的单轴双向同步控制电磁加载动态剪切试验装置,其特征在于:还包括信号放大器、数据记录仪和计算机,动态剪切测试时,应变片(16)将左侧应力波加载杆(4)和右侧应力波加载杆(8)上分别监测到的应变信号通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
  3. 根据权利要求1所述的单轴双向同步控制电磁加载动态剪切试验装置,其特征在于:其中底板(9)和顶板(10)通过四根圆柱状支撑柱(11)连接起来构成法向压力伺服控制加载装置的加载框架系统。
  4. 根据权利要求1所述的单轴双向同步控制电磁加载动态剪切试验装置,其特征在于: 液压加载装置(12)固定在顶板(10)的中心位置,基座(14)位于底板(9)的正中央。
  5. 根据权利要求1所述的单轴双向同步控制电磁加载动态剪切试验装置,其特征在于:所述应变片(16)分别粘贴于左侧应力波加载杆(4)和右侧应力波加载杆(8)的上下表面中心位置处。
  6. 单轴双向同步控制电磁加载动态剪切试验测试方法,其特征在于:其利用权利要求1至5任意一项所述的试验装置,进行以下操作:
    将加工并打磨好的测试试样(15)安置于基座(14)上,将左侧应力波加载杆(4)平放在加载杆支座(5)的卡槽内,并确保左侧应力波加载杆(4)可在卡槽内自由的左右滑动,随后将左侧应力波加载杆(4)的右侧加载端面与带测试试样(15)左侧动态剪切加载面的下半截面对齐并充分贴合在一起,同时将左侧电磁脉冲激发腔(2)安置于左侧电磁脉冲激发腔支座(3)上,并将二者调节至左侧应力波加载杆(4)的末端,以使左侧电磁脉冲激发腔(2)的右侧应力波输出端面与左侧应力波加载杆(4)的入射应力波加载端面对齐并充分贴合在一起;
    将右侧应力波加载杆(8)平放在加载杆支座(5)的卡槽内,并确保右侧应力波加载杆(8)可在卡槽内自由的左右滑动,随后将右侧应力波加载杆(8)的左侧加载端面与测试试样(15)右侧动态剪切加载面的上半截面对齐并充分贴合在一起,同时将右侧电磁脉冲激发腔(6)安置于右侧电磁脉冲激发腔支座(7)上,并将二者调节至右侧应力波加载杆(8)的末端,以使右侧电磁脉冲激发腔(8)的左侧应力波输出端面与右侧应力波加载杆(8)的入射应力波加载端面对齐并充分贴合在一起;
    根据试验设定法向压力值,通过法向液压加载伺服控制系统调节液压加载装置(12) 驱动作动器(13)在测试试样(15)上表面根据设定加载速率施加静态法向压力,待法向压力达到设定值并保持稳定后,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔(2)和右侧电磁脉冲激发腔(6)同步激发并输出试验设定幅值和持续时长的入射应力波,入射应力波随后沿左右两侧加载杆向测试试样(15)传播并对其进行动态剪切加载;
    加载过程通过粘贴在左右两侧加载杆的应变片(16),实时监测杆中入射应变信号和反射应变信号,当利用应变片(16)所监测到的应变信号数据显示动态剪切过程带单一节理面的测试试样(15)左右两端面所施加的动态剪切荷载基本一致时,认为带单一节理面的花岗岩动态剪切过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片(16)所监测的应变数据,按照下述公式进行计算,获取测试试样在试验设定法向压力下的动态剪切强度τ(t):
    Figure PCTCN2019115485-appb-100001
    其中,E和A分别为应力波加载杆的弹性模量与杆的横截面面积;A s为测试试样的剪切面面积,ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号。
  7. 根据权利要求6所述的单轴双向同步控制电磁加载动态剪切试验测试方法,其特征在于:所述动态剪切加载过程,法向静态压力在法向液压加载伺服控制系统的调控下保持恒定不变,从而实现恒定法向压力的动态剪切加载试验。
  8. 根据权利要求6所述的单轴双向同步控制电磁加载动态剪切试验测试方法,其特征在于:测试试样(15)安置于基座(14)的表面正中心。
  9. 根据权利要求6所述的单轴双向同步控制电磁加载动态剪切试验测试方法,其特征 在于:动态剪切加载过程,利用超高速摄像仪以每秒拍摄10至100万帧相片的速率对测试试样(15)剪切面侧面进行实时拍摄节理面动态剪切破坏过程,将其用于分析测试试样(15)的动态剪切破裂规律。
  10. 根据权利要求6所述的单轴双向同步控制电磁加载动态剪切试验测试方法,其特征在于:加载过程通过粘贴在左右两侧加载杆中心位置处的应变片(16)实时监测杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
PCT/CN2019/115485 2019-07-17 2019-11-05 单轴双向同步控制电磁加载动态剪切试验装置和测试方法 WO2021008009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/568,612 US11913915B2 (en) 2019-07-17 2022-01-04 Uniaxial bidirectional synchronous control electromagnetic loaded dynamic shear test system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910646450.0A CN110441170B (zh) 2019-07-17 2019-07-17 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
CN201910646450.0 2019-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/568,612 Continuation US11913915B2 (en) 2019-07-17 2022-01-04 Uniaxial bidirectional synchronous control electromagnetic loaded dynamic shear test system and method

Publications (1)

Publication Number Publication Date
WO2021008009A1 true WO2021008009A1 (zh) 2021-01-21

Family

ID=68430649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115485 WO2021008009A1 (zh) 2019-07-17 2019-11-05 单轴双向同步控制电磁加载动态剪切试验装置和测试方法

Country Status (3)

Country Link
US (1) US11913915B2 (zh)
CN (1) CN110441170B (zh)
WO (1) WO2021008009A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945757A (zh) * 2021-03-05 2021-06-11 中建海外有限公司 一种疲劳试验的剪切装置
CN113075027A (zh) * 2021-04-27 2021-07-06 长沙理工大学 一种测定土体模型动态弹性模量的试验装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067469B (zh) * 2020-08-18 2022-03-08 东南大学 一种适用于不同边界条件的岩石节理动态剪切实验装置
CN112067468B (zh) * 2020-08-18 2022-03-11 东南大学 一种考虑不同边界条件的岩石节理动态剪切实验方法
CN113281195B (zh) * 2021-05-26 2023-03-28 太原理工大学 基于霍普金森压杆系统的胶连动态剪切测试装置及方法
CN113484160A (zh) * 2021-06-04 2021-10-08 西北工业大学 非同轴双向同步压缩加载装置及其方法
CN113504131B (zh) * 2021-07-09 2022-06-14 中国矿业大学 一种测试岩石不同法向应力下ii型动态断裂韧度的测试系统及试验方法
CN113702176A (zh) * 2021-07-15 2021-11-26 深圳大学 一种双向电磁加载动态压剪实验装置及测试方法
CN113702195A (zh) * 2021-07-15 2021-11-26 深圳大学 一种动静组合双向电磁加载压剪实验装置及测试方法
CN113702200A (zh) * 2021-07-15 2021-11-26 深圳大学 一种温压耦合双向电磁加载动态压剪实验装置及测试方法
CN114005347B (zh) * 2021-11-03 2022-08-23 天津大学 研究地震动态触发的实验装置与方法
CN114544391B (zh) * 2022-01-21 2024-01-02 深圳大学 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN114544357B (zh) * 2022-01-26 2024-01-02 深圳大学 一种固体材料动静组合拉剪强度测试试验装置及测试方法
CN114544358B (zh) * 2022-01-26 2023-07-18 深圳大学 一种岩石类固体材料动静组合拉剪实验装置及测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278024A1 (en) * 2003-12-12 2006-12-14 Bj Services Company Testing apparatus and method of deriving young's modulus from tensile stress/strain relationships
CN104048883A (zh) * 2014-03-03 2014-09-17 四川大学 测试脆性材料动态剪切断裂韧度的方法及其实施装置
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法
CN105973722A (zh) * 2016-07-26 2016-09-28 山东科技大学 岩体不连续面恒定法向刚度剪切试验装置及其试验方法
CN106290012A (zh) * 2016-09-06 2017-01-04 四川大学 一种冲击载荷下i型裂纹动态止裂韧度测试方法
CN107796711A (zh) * 2017-09-20 2018-03-13 天津大学 一种用于测试完整试样和结构面动态剪切强度的方法
CN108519283A (zh) * 2018-03-27 2018-09-11 西北工业大学 一种材料动态力学参数获取装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011099B3 (de) * 2004-03-06 2005-12-08 Robert Bosch Gmbh Vorrichtung zum Prüfen von Stoffeigenschaften hinsichtlich Zugscherbelastungen, insbesondere zur Prüfung von Klebstoffen
US8960013B2 (en) * 2012-03-01 2015-02-24 Halliburton Energy Services, Inc. Cement testing
KR101727405B1 (ko) * 2015-10-28 2017-05-02 전북대학교산학협력단 Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법
CN106442115B (zh) * 2016-09-18 2024-02-13 中国科学院、水利部成都山地灾害与环境研究所 复杂应力下岩石节理超声实验装置及其控制系统
CN108519296A (zh) * 2018-03-27 2018-09-11 西北工业大学 一种材料动态力学参数获取装置及方法
CN210893972U (zh) * 2019-07-17 2020-06-30 深圳大学 单轴双向同步控制电磁加载动态剪切试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278024A1 (en) * 2003-12-12 2006-12-14 Bj Services Company Testing apparatus and method of deriving young's modulus from tensile stress/strain relationships
CN104048883A (zh) * 2014-03-03 2014-09-17 四川大学 测试脆性材料动态剪切断裂韧度的方法及其实施装置
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法
CN105973722A (zh) * 2016-07-26 2016-09-28 山东科技大学 岩体不连续面恒定法向刚度剪切试验装置及其试验方法
CN106290012A (zh) * 2016-09-06 2017-01-04 四川大学 一种冲击载荷下i型裂纹动态止裂韧度测试方法
CN107796711A (zh) * 2017-09-20 2018-03-13 天津大学 一种用于测试完整试样和结构面动态剪切强度的方法
CN108519283A (zh) * 2018-03-27 2018-09-11 西北工业大学 一种材料动态力学参数获取装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945757A (zh) * 2021-03-05 2021-06-11 中建海外有限公司 一种疲劳试验的剪切装置
CN113075027A (zh) * 2021-04-27 2021-07-06 长沙理工大学 一种测定土体模型动态弹性模量的试验装置及方法
CN113075027B (zh) * 2021-04-27 2022-05-31 长沙理工大学 一种测定土体模型动态弹性模量的试验装置及方法

Also Published As

Publication number Publication date
US11913915B2 (en) 2024-02-27
CN110441170A (zh) 2019-11-12
US20220128443A1 (en) 2022-04-28
CN110441170B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2021008009A1 (zh) 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
CN210893972U (zh) 单轴双向同步控制电磁加载动态剪切试验装置
WO2019205189A1 (zh) 一种双向静动加载的顶板关键块冒落试验装置及方法
WO2020010854A1 (zh) 一种岩石冲击加载-卸围压力学试验系统及其使用方法
He et al. Laboratory study on the dynamic response of rock under blast loading with active confining pressure
CN109406312B (zh) 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
CN108709931B (zh) 深部节理岩体中应力波传播规律的室内试验系统及方法
CN107796711B (zh) 一种用于测试完整试样和结构面动态剪切强度的方法
WO2021017241A1 (zh) 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
WO2021017242A1 (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
JP6860256B1 (ja) 梁柱構造部材の耐衝撃性を試験する装置
CN104677584B (zh) 一种钻具螺纹动态疲劳模拟测试装置及方法
WO2024011651A1 (zh) 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
Hashida et al. Numerical simulation with experimental verification of the fracture behavior in granite under confining pressures based on the tension-softening model
CN106442115B (zh) 复杂应力下岩石节理超声实验装置及其控制系统
CN114544391B (zh) 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN113702176A (zh) 一种双向电磁加载动态压剪实验装置及测试方法
WO2021012459A1 (zh) 双轴四向动静组合电磁加载霍普金森平板冲击加载装置
CN114544357B (zh) 一种固体材料动静组合拉剪强度测试试验装置及测试方法
CN113640118B (zh) 材料原位动态拉伸加载试验装置
CN115436191A (zh) 一种结合光弹试验研究岩石结构面剪切力学特性的试验方法
CN217180338U (zh) 一种固体材料动静组合拉剪强度测试实验装置
CN114544358B (zh) 一种岩石类固体材料动静组合拉剪实验装置及测试方法
CN211235336U (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
KR102625946B1 (ko) 절리암석의 직접 전단 시험을 위한 장봉 낙하 충격 시험장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937715

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19937715

Country of ref document: EP

Kind code of ref document: A1