WO2020010854A1 - 一种岩石冲击加载-卸围压力学试验系统及其使用方法 - Google Patents

一种岩石冲击加载-卸围压力学试验系统及其使用方法 Download PDF

Info

Publication number
WO2020010854A1
WO2020010854A1 PCT/CN2019/076547 CN2019076547W WO2020010854A1 WO 2020010854 A1 WO2020010854 A1 WO 2020010854A1 CN 2019076547 W CN2019076547 W CN 2019076547W WO 2020010854 A1 WO2020010854 A1 WO 2020010854A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
loading
unloading
unit
test piece
Prior art date
Application number
PCT/CN2019/076547
Other languages
English (en)
French (fr)
Inventor
刘学生
宋世琳
谭云亮
范德源
宁建国
顾清恒
江宁
王俊
徐强
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US16/652,961 priority Critical patent/US11215542B2/en
Publication of WO2020010854A1 publication Critical patent/WO2020010854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen

Definitions

  • the invention relates to the technical field of tunnel surrounding rock support, in particular to a rock impact loading-unloading pressure test system and a method for using the same.
  • Rockburst phenomenon is a special form of the emergence of mine pressure, which can be described as: the high-intensity coal (rock) deformation energy induced by mining mining (mining face) is instantaneously released, causing strong surrounding rock vibration and The phenomenon of extrusion is one of the most serious natural disasters in the production process of coal mines. Before the occurrence, there is generally no obvious macro omen, and the coal and rock bodies are thrown out in a sudden, sharp, and violent form, causing equipment damage, chipping, Roadway blockages and casualties seriously affect the safe and efficient production of coal mines.
  • test specimen When using this device to study the ground pressure, the test specimen is always under triaxial pressure, which can well reveal the stress and strain of the surrounding rock when the ground pressure is coming and the roadway support has not failed, but it cannot be used to study the ground pressure. Changes in stress and strain of surrounding rocks and characteristics of deformation and failure when roadway support failure occurs.
  • Another test method is to load the test specimen first, and after a certain value is reached, make the test specimen single face unloaded to achieve confining pressure unloading in one direction, and observe the deformation and failure characteristics of the test specimen.
  • a shear-type rockburst (patent number CN201611073980.3).
  • This method uses a true triaxial loading path and boundary conditions with single-sided and five-sided forces.
  • the laboratory reproduces the incubation and occurrence of shear rockbursts.
  • the roadway will often be in a support state, and there will be no single-sided force. This method lacks the simulation of the roadway support situation, and cannot apply dynamic load, which is inconsistent with the actual site.
  • the invention mainly solves the technical problems existing in the prior art, thereby providing a rock impact loading-unloading pressure test system with simple operation and high test accuracy and a method for using the same.
  • the load-bearing frame unit includes a base, an upright and a cross beam, the uprights are vertically arranged on both sides of the upper surface of the base, and the crossbeam is horizontally fixed at the upper part of the upright;
  • An axial pressure loading unit which is fixed at an intermediate position on the upper surface of the base and is used to apply a bottom-up axial pressure to the test piece;
  • An impact loading unit which is fixed on the beam and is used to apply a top-down axial impact load to the test piece;
  • a confining pressure loading unit is provided between the axial pressure loading unit and the impact loading unit, and the confining pressure loading unit is used to apply a confining pressure in a horizontal plane to the test piece;
  • a confining pressure unloading unit for unloading the confining pressure in the direction of one of the side walls in the horizontal plane of the test piece
  • a loading control unit configured to control the axial pressure loading unit, the impact loading unit, and the confining pressure loading unit to perform loading respectively;
  • a data analysis unit is connected to the loading control unit, and the data analysis unit is configured to receive data from the monitoring unit and process analysis.
  • the axial pressure loading unit includes an axial pressure loading cylinder, an axial pressure loading tank, and a lower head.
  • the axial pressure loading cylinder is fixed on the base, and the axial pressure loading tank is connected to the axial pressure loading cylinder.
  • One end of the lower pressure head is connected to the axial pressure loading cylinder, and the other end thereof vertically extends into the confining pressure loading unit and is in contact with the lower surface of the test piece.
  • the impact loading unit includes an impact loading cylinder, an impact loading tank, an upper head and a pressure bearing column, the impact loading cylinder is fixedly connected to the beam, and the impact loading cylinder is connected to the impact fuel tank, One end of the pressure-bearing column is connected to the piston rod of the impact-loading cylinder, and the other end thereof is connected to the top of the upper pressure head, and the bottom of the upper pressure head is in contact with the upper surface of the test piece.
  • the confining pressure loading unit includes a pressure chamber, three confining pressure loading oil cylinders, a confining pressure loading oil tank, and three first lateral pressure heads, and the test piece is disposed in the pressure chamber, and the confining pressure loading oil tank It is connected to the confining pressure loading cylinder.
  • the piston rod of the confining pressure loading cylinder is connected to the first lateral pressure head.
  • Three first lateral pressure heads are respectively arranged on three side walls outside the pressure chamber. Three The first side of the indenter extends horizontally into the pressure chamber and contacts the three side walls of the test piece.
  • the confining pressure unloading unit is arranged on the fourth side wall outside the pressure chamber.
  • the confining pressure unloading unit includes a second lateral pressure head, a strut, a confining pressure unloading cylinder, a first pressure sensor, and a unloading controller, and the second lateral pressure head is provided on a fourth side of the pressure chamber.
  • the second lateral indenter On each of the side walls, one end of the second lateral indenter extends horizontally into the pressure chamber and contacts the fourth side wall of the test piece. The other end of the second lateral indenter is hinged to one end of the strut.
  • the other end of the strut is provided with a pulley
  • the confining pressure unloading cylinder is connected to the confining pressure loading tank
  • the end of the piston rod of the confining pressure unloading cylinder is provided with a chute
  • the pulley of the strut is matched with the chute.
  • the inside of the chute is also provided with a baffle that can be opened and closed. When the baffle is opened, the pulley can slide freely along the chute. When the baffle is closed, the pulley is locked in the chute.
  • a pressure sensor is disposed between the second lateral pressure head and the test piece, and the unloading controller is connected to the first pressure sensor and the baffle, respectively.
  • the monitoring unit includes a second pressure sensor, a strain gauge, a dynamic strain gauge, a high-speed camera, and a signal collector.
  • the second pressure sensor is respectively disposed between the pressure bearing column and the upper indenter, and the first lateral direction is Between the indenter and the test piece, the strain gauges are arranged on the six outer surfaces of the test piece, the dynamic strain gauge is connected to the strain gauge, and one end of the signal collector is connected to a second pressure sensor.
  • the dynamic strain gauge is connected to a high-speed camera and the other end is connected to a data analysis unit.
  • the high-speed camera is arranged on the same side of the confining pressure unloading unit and corresponds to the position of the test piece.
  • the pressure chamber is made of transparent material, and a side wall of the pressure chamber is provided with a warehouse door that can be opened and closed, and a channel for a signal transmission line is also provided inside the pressure chamber.
  • the method for using the rock impact loading-unloading pressure test system of the present invention includes the following steps:
  • the first step is to make square test pieces
  • the second step is to place the test piece in the pressure chamber, apply pre-tension to the test piece, and set the limit value of the unloading controller of the confining pressure unloading unit;
  • the third step is to apply axial pressure and confining pressure to the test piece. After reaching the set pressure value, apply an impact load to the test piece;
  • the fourth step the unloading controller receives the information from the first pressure sensor, and judges whether the current pressure value is greater than the set limit value. If not, it continues to increase the impact load, and if so, the confining unloading unit removes the test piece. Confining pressure on one side;
  • Step 5 The high-speed camera records the deformation and failure process of the test piece on one side.
  • the data analysis unit obtains the stress and strain curves of the test piece after processing and analyzing the data from the monitoring unit.
  • the pressure relief process of the confining pressure unloading unit includes: the unloading controller controls the baffle in the chute at the end of the piston rod of the confining pressure unloading cylinder to open, so that the edge of the pulley connected to the second lateral pressure head Sliding against the chute.
  • the present invention can accurately obtain the mechanical response of coal rock under the impact load when the confining pressure in one direction is suddenly removed.
  • This mechanical condition is basically consistent with the sudden failure of the surrounding rock support structure when the on-site impact ground pressure occurs.
  • the laboratory faithfully reproduces the failure process of the surrounding rock support failure when the rockburst occurs, and can accurately monitor the stress, deformation and damage process, which can provide research on the mechanism, damage characteristics and prevention of impact dynamic disasters. More accurate test data support;
  • the confining pressure in one direction of the present invention can be suddenly and quickly unloaded during the test, which realistically simulates the failure of the surrounding rock support of the roadway.
  • the confining pressure unloading pressure can be continuously adjusted, the unloading process is automatically controlled, and the test operation is simple.
  • FIG. 1 is a schematic structural diagram of a rock impact loading and unloading pressure test system of the present invention
  • FIG. 2 is a schematic structural diagram of a confining pressure loading unit of a rock impact loading unloading confining pressure test system of the present invention
  • FIG. 3 is a partial structural schematic diagram of a confining pressure unloading unit of a rock impact loading unloading confining pressure test system of the present invention
  • FIG. 4 is a schematic diagram of another part of the confining pressure unloading unit of the rock impact loading and unloading confining pressure test system of the present invention.
  • FIG. 5 is a schematic diagram of the installation position of the strain gauge of the rock impact loading unloading pressure test system of the present invention.
  • FIG. 6 is a method flowchart of a method of using the rock impact loading unloading pressure test system of the present invention.
  • 1-bearing frame unit 11-base, 12 columns, 13 beams;
  • 2-Axial pressure loading unit 21-Axial pressure loading cylinder, 22-Axial pressure loading tank, 23-Down head
  • 3-impact loading unit 31-impact loading cylinder, 32-impact loading tank, 33-upper head, 34-pressure column;
  • 4-Confining pressure loading unit 41-Pressure chamber, 42-Confining pressure loading cylinder, 43-Confining pressure loading tank, 44-First lateral pressure head;
  • 6-monitoring unit 61-second pressure sensor, 62-strain gauge, 63-dynamic strain gauge, 64-high-speed camera, 65 signal collector;
  • the rock impact loading-unloading pressure test system of the present invention includes:
  • the load-bearing frame unit 1 includes a base 11, a column 12, and a beam 13.
  • the column 12 is vertically arranged on both sides of the upper surface of the base 11, and the beam 13 is horizontally fixed on the upper portion of the column 12.
  • the axial pressure loading unit 2 is fixed at the middle position of the upper surface of the base 11 and is used to apply a bottom-up axial pressure to the test piece 8;
  • the impact loading unit 3 is fixed on the beam 13 and is used to apply a top-down axial impact load to the test piece 8;
  • a confining pressure loading unit 4 is provided between the axial pressure loading unit 2 and the impact loading unit 3, and the confining pressure loading unit 4 is used to apply a confining pressure in a horizontal plane to the test piece 8;
  • Confining pressure unloading unit 9 for unloading the confining pressure in the direction of one of the side walls in the horizontal plane of the test piece 8;
  • a loading control unit 5 configured to control the axial pressure loading unit 2, the impact loading unit 3, and the confining pressure loading unit 4 respectively for loading;
  • the data analysis unit 7 is connected to the loading control unit 5, and the data analysis unit 7 is configured to receive data from the monitoring unit 6 and process the analysis.
  • the axial-pressure loading unit 2 of the present invention includes an axial-pressure loading cylinder 21, an axial-pressure loading tank 22, and a lower pressure head 23.
  • the axial-pressure loading cylinder 21 is fixed on the base 11.
  • the axial pressure loading cylinder 21 is connected.
  • One end of the lower pressure head 23 is connected to the axial pressure loading cylinder 21, and the other end thereof vertically extends into the confining pressure loading unit 4 and contacts the lower surface of the test piece 8.
  • the axial pressure is applied to the test piece 8 by driving the lower pressure head 23 upward by the axial pressure loading cylinder 21.
  • the impact-loading unit 3 includes an impact-loading cylinder 31, an impact-loading tank 32, an upper head 33, and a pressure-bearing column 34.
  • the impact-loading cylinder 31 is fixedly connected to the beam 13 and the impact-loading cylinder 31 can pass through the oil pipe
  • one end of the pressure bearing column 34 is connected to the piston rod of the impact-loading cylinder 31, and the other end thereof is connected to the top of the upper pressure head 33, and the bottom of the upper pressure head 33 is connected to the test piece 8.
  • the upper surfaces are in contact.
  • an impact load can be applied to the test piece 8 by the impact loading cylinder 31.
  • the confining pressure loading unit 4 includes a pressure chamber 41, three confining pressure loading cylinders 42, a confining pressure loading tank 43, and three first lateral pressure heads 44.
  • the test piece 8 is disposed in the pressure chamber 41, and the confining pressure is
  • the loading oil tank 43 is connected to the confining pressure loading cylinder 42.
  • the piston rod of the confining pressure loading cylinder 42 is connected to the first lateral pressure head 44.
  • the three first lateral pressure heads 44 are respectively disposed on the front side outside the pressure chamber 41. In three directions, the rear and the left, the three first lateral indenters 44 extend horizontally into the pressure chamber 41 and contact the front, rear, and left side walls of the test piece 8 in confining pressure.
  • the unloading unit 9 is provided on the right side outside the pressure chamber 41.
  • confining pressure can be applied to the front, rear, and left sides of the test piece 8, and the confining pressure unloading unit 9 can apply confining pressure to the right side of the pressure chamber 41.
  • Pressure and pressure relief in other embodiments of the present invention, the distribution positions of the first lateral pressure head 44 and the confining pressure unloading unit 9 can be reasonably set, for example, three first lateral pressure heads 44 are distributed on the test piece.
  • the front side, right side, and left side of 8 and the confining pressure unloading unit 9 are distributed on the rear side of the test piece 8 and so on.
  • the confining pressure unloading unit 9 includes a second lateral pressure head 91, a strut 92, a confining pressure unloading cylinder 93, a first pressure sensor 94, and an unloading controller 95.
  • One end of the second lateral pressure head 91 is horizontal. After passing through the pressure chamber 41, it is in contact with the right side wall of the test piece 8.
  • the other end of the second lateral indenter 91 is hinged with one end of the stay 92.
  • the other end of the stay 92 is provided with a pulley 96 for confining pressure.
  • the unloading cylinder 93 is connected to the confining pressure loading tank 43, and the end of the piston rod of the confining pressure unloading cylinder 93 is provided with a chute 97, and the pulley 96 cooperates with the chute 97.
  • the inside of the chute 97 is also provided with an opening.
  • the closed baffle 98 when the baffle 98 is opened, the pulley 96 can slide freely along the slide groove 97, and when the baffle 98 is closed, the pulley 96 is locked in the slide groove 97;
  • the first pressure sensor 94 is disposed between the second lateral pressure head 91 and the test piece 8 for detecting the pressure on the outer surface of the test piece 8.
  • the unloading controller 95 is connected to the first pressure sensor 94 and the baffle 98, respectively.
  • the unloading controller 95 may control the shutter 98 to be opened or closed.
  • the number of the sliding grooves 97 is the same as the number of the supporting rods 92, and the baffle 98 may be a baffle made of metal or the like.
  • the monitoring unit 6 includes a second pressure sensor 61, a strain gauge 62, a dynamic strain gauge 63, a high-speed camera 64, and a signal collector 65.
  • the second pressure sensor 61 is disposed on the pressure bearing column 34 and the upper pressure head 33, respectively.
  • strain gauges 62 are arranged on the six outer surfaces of the test piece 8, a dynamic strain gauge 63 is connected to the strain gauge 62, and one end of the signal collector 65 is connected to The second pressure sensor 61, the dynamic strain gauge 63, and the high-speed camera 64 are connected.
  • the other end of the signal collector 65 is connected to the data analysis unit 7.
  • the high-speed camera 64 is provided on the same side of the confining pressure unloading unit 9 and is connected to the test piece. Corresponding to the position of 8, the high-speed camera 64 is used to collect images of deformation and damage of the test piece 8.
  • the monitoring unit 6 is used to monitor the stress, deformation and damage of the test piece 8 during loading and unloading.
  • the pressure chamber 41 is made of a transparent material, and a side wall of the pressure chamber 41 is provided with a warehouse door that can be opened and closed, and the inside of the pressure chamber 41 is also provided with a channel for a signal transmission line. Wiring of the second pressure sensor.
  • the method for using the rock impact loading-unloading pressure test system of the present invention includes the following steps:
  • the first step is to prepare a square test piece 8;
  • the second step is to place the test piece 8 in the pressure chamber 41, apply a pre-tightening force to the test piece 8, and set the limit value of the unloading controller 95 of the confining pressure unloading unit 9; specifically, open the door of the pressure chamber 41 Place the test piece 8 on the lower indenter 23, connect the confining pressure unloading unit 9 in sequence, close the baffle 98 in the chute 97, leave the pulley 96 at the baffle 98, and adjust the position of each indenter, at the same time
  • the confining pressure loading cylinder 42 and the axial pressure loading cylinder 21 are controlled to apply a pre-tightening force to the test piece 8.
  • the third step is to apply axial pressure and confining pressure to the test piece 8, and after the set pressure value is reached, an impact load is applied to the test piece 8; specifically, the test piece 8 is subjected to the axial pressure loading unit 2 and the confining pressure loading unit 4 An axial pressure and a confining pressure are applied respectively, and an impact load is applied to the test piece 8 through the impact loading unit 3.
  • the fourth step the pressure relief controller receives the information from the first pressure sensor 94, and judges whether the current pressure value is greater than the set limit value. If not, it continues to increase the impact load. If it is, the confining pressure unloading unit 9 is quickly discharged. Confining pressure on one side of test piece 8;
  • the high-speed camera 64 records the deformation and failure process of the test piece 8 on one side.
  • the data analysis unit obtains the stress and strain curves of the test piece 8 after processing and analyzing the data from the monitoring unit.
  • the pressure relief process of the confining pressure unloading unit 9 includes: the unloading controller 95 controls the baffle 98 in the chute 97 at the end of the piston rod of the confining pressure unloading cylinder 93 to open to the second lateral pressure head 91
  • the connected pulleys 96 slide along the slide grooves 97.
  • the present invention can accurately obtain the mechanical response of coal rock under the impact load when the confining pressure in one direction is suddenly removed.
  • This mechanical condition is basically consistent with the sudden failure of the surrounding rock support structure when the on-site impact ground pressure occurs.
  • the laboratory faithfully reproduces the failure process of the surrounding rock support failure when the rockburst occurs, and can accurately monitor the stress, deformation and damage process, which can provide research on the mechanism, damage characteristics and prevention of impact dynamic disasters. More accurate test data support;
  • the confining pressure in one direction of the present invention can be suddenly and quickly unloaded during the test, which realistically simulates the failure of the surrounding rock support of the roadway.
  • the confining pressure unloading pressure can be continuously adjusted, the unloading process is automatically controlled, and the test operation is simple.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种岩石冲击加载-卸围压力学试验系统及其使用方法,该系统包括:承载框架单元(1),包括底座(11)、立柱(12)和横梁(13),立柱(12)竖直设置在底座(11)的上表面两侧,横梁(13)水平固定在立柱(12)的上部;轴压加载单元(2),固定在底座(11)的上表面中间位置处,且用于对试件(8)施加自下而上的轴向压力;冲击加载单元(3),固定在横梁(13)上,且用于对试件(8)施加自上而下的轴向冲击载荷;围压加载单元(4),设置在轴压加载单元(2)和冲击加载单元(3)之间,围压加载单元(4)用于对试件(8)施加水平面内的围压;还包括围压卸载单元(9)、加载控制单元(5)、监测单元(6)和数据分析单元(7);该系统提供了更加准确的试验数据支持,且围压卸载压力可以连续调节,卸载过程自动控制,试验操作简单。

Description

一种岩石冲击加载-卸围压力学试验系统及其使用方法 技术领域
本发明涉及巷道围岩支护技术领域,尤其涉及一种岩石冲击加载-卸围压力学试验系统及其使用方法。
背景技术
冲击地压现象是矿山压力显现的一种特殊形式,可描述为:矿山采动(采掘工作面)诱发高强度的煤(岩)变形能瞬时释放,在相应采动空间引起强烈围岩震动和挤出的现象,是煤矿生产过程中最严重的自然灾害之一,发生前一般没有明显的宏观预兆,以突然、急剧、猛烈的形式将煤岩体抛出,造成设备损坏、片帮冒顶、巷道堵塞和人员伤亡等,严重影响煤矿安全高效生产。目前,随着我国煤矿开采深度的不断增加,开采强度不断加大,冲击地压灾害事故频繁发生,给煤矿安全生产和广大井下作业人员的生命安全带来了极大的威胁。研究冲击地压破坏特征及机理,不仅要通过理论分析、现场观测,还要通过模拟实验来探索。
目前,在实验室内研究冲击地压时,一般采用两种实验方法,一种是试验过程中使试件一直受到来自各个方向的围压,直接对试件进行冲击加载,不考虑围压的卸载,得到试件的应力应变情况。现有技术中有一种三向刚性加载冲击地压真三轴模拟试验装置(专利号为CN201410655304.1),该装置通过在压力腔的内周围设柔性围压加载外套,解决试件在三个方向上变形的互相影响,又避免支撑效应的影响,较逼真的模拟了冲击地压。采用该装置研究冲击地压时,试件一直处于三轴压力下,能很好地揭示冲击地压来临且巷道支护未失效时,围岩的应力应变情况,但是无法用来研究冲击地压发生导致巷道支护失效时,围岩应力应变的变化情况和变形破坏的特征。
另一种试验方法是先对试件进行加载,到达一定数值后,使试件单面临空实现一个方向围压卸载,观察试件的变形破坏特征。现有技术中有 一种模拟剪切型岩爆的真三轴试验方法(专利号为CN201611073980.3),该方法采用单面临空、五面受力的真三轴加载路径与边界条件,在实验室再现剪切型岩爆的孕育与发生全过程。然而,在现场实际中,冲击地压发生时,巷道往往会处于支护状态,不会出现单面不受力的情况。该方法缺乏对巷道支护情况的模拟,且不能施加动载,与现场实际不符。
冲击地压发生时,巨大的冲击力使得巷道支护手段瞬间失效,围岩受到冲击而发生突然破坏,其实质上是煤岩石在冲击载荷作用下突然卸掉一个方向围压时的力学响应。然而,目前尚没有研究岩石在冲击加载-卸围压条件下力学特性的试验装置及方法,现有试验装置和方法需要进一步突破。
发明内容
本发明主要是解决现有技术中所存在的技术问题,从而提供一种操作简单、试验准确性高的岩石冲击加载-卸围压力学试验系统及其使用方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
本发明提供的岩石冲击加载-卸围压力学试验系统,其包括:
承载框架单元,包括底座、立柱和横梁,所述立柱竖直设置在所述底座的上表面两侧,所述横梁水平固定在所述立柱的上部;
轴压加载单元,固定在所述底座的上表面中间位置处,且用于对试件施加自下而上的轴向压力;
冲击加载单元,固定在所述横梁上,且用于对试件施加自上而下的轴向冲击载荷;
围压加载单元,设置在所述轴压加载单元和冲击加载单元之间,所述围压加载单元用于对试件施加水平面内的围压;
围压卸载单元,用于对所述试件水平面内的其中一个侧壁方向的围压进行卸载;
加载控制单元,用于分别控制所述轴压加载单元、冲击加载单元和围压加载单元进行加载;
监测单元,用于监测所述试件在加卸载过程中受力、变形及破坏情况;
数据分析单元,与所述加载控制单元相连接,且所述数据分析单元用于接受所述监测单元的数据并处理分析。
进一步地,所述轴压加载单元包括轴压加载油缸、轴压加载油箱和下压头,所述轴压加载油缸固定在所述底座上,所述轴压加载油箱与轴压加载油缸相连接,所述下压头的一端与轴压加载油缸相连接,其另一端竖直伸入到围压加载单元中并与试件的下表面相接触。
进一步地,所述冲击加载单元包括冲击加载油缸、冲击加载油箱、上压头和承压柱,所述冲击加载油缸与横梁固定连接,且所述冲击加载油缸与所述冲击加油箱相连接,所述承压柱的一端与冲击加载油缸的活塞杆相连接,其另一端与上压头的顶部相连接,所述上压头的底部与试件的上表面相接触。
进一步地,所述围压加载单元包括压力室、三个围压加载油缸、围压加载油箱和三个第一侧向压头,所述试件设置在压力室中,所述围压加载油箱与围压加载油缸相连接,所述围压加载油缸的活塞杆与第一侧向压头相连接,三个第一侧向压头分别设置在压力室外部的三个侧壁上,三个第一侧向压头水平伸入压力室后与试件的三个侧壁相接触,所述围压卸载单元设置在压力室外部的第四个侧壁上。
进一步地,所述围压卸载单元包括第二侧向压头、撑杆、围压卸载油缸、第一压力传感器和卸载控制器,所述第二侧向压头设在压力室外部的第四个侧壁上,第二侧向压头的一端水平伸入压力室后与试件的第四个侧壁相接触,所述第二侧向压头的另一端与撑杆的一端相铰接,撑杆的另一端设有滑轮,所述围压卸载油缸与围压加载油箱相连接,且所述围压卸载油缸的活塞杆端部设有滑槽,撑杆的滑轮与滑槽相配合,其中,所述滑槽的内部还设有可打开和关闭的挡板,当挡板打开时,滑轮可沿滑槽自由滑动,当挡板关闭时,滑轮锁紧在滑槽中;所述第一压力传感器设置在第二侧向压头与试件之间,所述卸载控制器分别与第一压力传感器和挡板相连接。
进一步地,所述监测单元包括第二压力传感器、应变片、动态应变仪、高速摄像机和信号采集器,所述第二压力传感器分别设置在承压柱和上压头之间、第一侧向压头和试件之间,所述应变片设置在所述试件的六个外表面上,所述动态应变仪与所述应变片相连接,所述信号采集器的一端与第二压力传感器、动态应变仪和高速摄像机相连接,另一端与数据分析单元相连接,所述高速摄像机设置在围压卸载单元的同侧,并与试件的位置相对应。
进一步地,所述压力室采用透明材料制作而成,所述压力室的侧壁上设有可打开和关闭的仓门,且所述压力室的内部还设有用于信号传输线的通道。
本发明的采用岩石冲击加载-卸围压力学试验系统的使用方法,其包括以下步骤:
第一步、制取方形试件;
第二步、把试件放置到压力室内,对试件施加预紧力,设定围压卸载单元的卸载控制器的极限值;
第三步、对试件施加轴向压力和围压,达到设定压力值后,对试件施加冲击载荷;
第四步、卸载控制器接受来自第一压力传感器的信息,判断当前压力值是否大于设定的极限值,若否,则继续增加冲击载荷,若是,则围压卸载单元卸掉所述试件其中一侧面的围压;
第五步、高速摄像机在一侧记录所述试件的变形破坏过程,数据分析单元通过处理分析来自监测单元的数据后得到所述试件的应力、应变曲线。
进一步地,所述围压卸载单元的卸压过程包括:卸载控制器控制围压卸载油缸的活塞杆端部的滑槽内的挡板打开,使与第二侧向压头相连接的滑轮沿着滑槽滑动。
本发明的有益效果在于:
1)、本发明可以准确获得煤岩石在冲击载荷作用下突然卸掉一个方向 围压时的力学响应,这一力学条件,与现场冲击地压发生时围岩支护结构突然失效基本一致,在实验室真实再现了冲击地压发生时围岩支护失效的破坏过程,并能对受力、变形及破坏过程进行准确监测,可为研究冲击动力灾害的作用机理、破坏特征及其防治提供了更加准确的试验数据支持;
2)、本发明在试验过程中一个方向的围压可以突然、快速卸载,真实模拟巷道围岩支护失效现象,围压卸载压力可以连续调节,卸载过程自动控制,试验操作简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的岩石冲击加载卸围压力学试验系统的结构示意图;
图2是本发明的岩石冲击加载卸围压力学试验系统的围压加载单元的结构示意图;
图3是本发明的岩石冲击加载卸围压力学试验系统的围压卸载单元的部分结构示意图;
图4是本发明的岩石冲击加载卸围压力学试验系统的围压卸载单元的另一部分结构示意图;
图5是本发明的岩石冲击加载卸围压力学试验系统的应变片的安装位置示意图;
图6是本发明的岩石冲击加载卸围压力学试验系统的使用方法的方法流程图。
图中:
1-承载框架单元,11-底座,12立柱,13横梁;
2-轴压加载单元,21-轴压加载油缸,22-轴压加载油箱,23-下压头;
3-冲击加载单元,31-冲击加载油缸,32-冲击加载油箱,33-上压头,34-承压柱;
4-围压加载单元,41-压力室,42-围压加载油缸,43-围压加载油箱,44-第一侧向压头;
5-加载控制单元;
6-监测单元,61-第二压力传感器,62-应变片,63-动态应变仪,64-高速摄像机,65信号采集器;
7-数据分析单元;
8-试件;
9-围压卸载单元,91-第二侧向压头,92-撑杆,93-围压卸载油缸,94-第一压力传感器,95-卸载控制器,96-滑轮,97-滑槽,98-挡板。
具体实施方式
下面结合附图对本发明的优选实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
参阅图1-2所示,本发明的岩石冲击加载-卸围压力学试验系统,其包括:
承载框架单元1,包括底座11、立柱12和横梁13,立柱12竖直设置在底座11的上表面两侧,横梁13水平固定在立柱12的上部;
轴压加载单元2,固定在底座11的上表面中间位置处,且用于对试件8施加自下而上的轴向压力;
冲击加载单元3,固定在横梁13上,且用于对试件8施加自上而下的轴向冲击载荷;
围压加载单元4,设置在轴压加载单元2和冲击加载单元3之间,围压加载单元4用于对试件8施加水平面内的围压;
围压卸载单元9,用于对试件8水平面内的其中一个侧壁方向的围压进行卸载;
加载控制单元5,用于分别控制轴压加载单元2、冲击加载单元3和围压加载单元4进行加载;
监测单元6,用于监测试件8在加卸载过程中受力、变形及破坏情况;
数据分析单元7,与加载控制单元5相连接,且数据分析单元7用于接受监测单元6的数据并处理分析。
具体地,本发明的轴压加载单元2包括轴压加载油缸21、轴压加载油箱22和下压头23,轴压加载油缸21固定在底座11上,轴压加载油箱22可通过油管等与轴压加载油缸21相连接,下压头23的一端与轴压加载油缸21相连接,其另一端竖直伸入到围压加载单元4中并与试件8的下表面相接触。本发明中,通过轴压加载油缸21驱动下压头23向上移动,即可对试件8施加轴向压力。
本发明的实施例中,冲击加载单元3包括冲击加载油缸31、冲击加载油箱32、上压头33和承压柱34,冲击加载油缸31与横梁13固定连接,且冲击加载油缸31可通过油管等与冲击加载油箱32相连接,承压柱34的一端与冲击加载油缸31的活塞杆相连接,其另一端与上压头33的顶部相连接,上压头33的底部与试件8的上表面相接触。本发明中,通过冲击加载油缸31可对试件8施加冲击载荷。
本发明中,围压加载单元4包括压力室41、三个围压加载油缸42、围压加载油箱43和三个第一侧向压头44,试件8设置在压力室41中,围压加载油箱43与围压加载油缸42相连接,围压加载油缸42的活塞杆与第一侧向压头44相连接,三个第一侧向压头44分别设置在压力室41外部的前侧、后侧和左侧三个方向上,三个第一侧向压头44水平伸入压力室41后与试件8的前侧、后侧和左侧三个方向侧壁相接触,围压卸载单元9设置在压力室41外部的右侧。本发明中,通过控制围压加载油缸42动作,即可对试件8的前侧、后侧和左侧三个方向施加围压,围压卸载单元9可对压力室41的右侧施加围压和卸压,在本发明的其他实施例中,第一侧向压头44和围压卸载单元9的分布位置可以进行合理设置,如:三个第一侧向 压头44分布在试件8的前侧、右侧和左侧,围压卸载单元9分布在试件8的后侧等。
参阅3-4,围压卸载单元9包括第二侧向压头91、撑杆92、围压卸载油缸93、第一压力传感器94和卸载控制器95,第二侧向压头91的一端水平穿过压力室41后与试件8的右侧侧壁相接触,第二侧向压头91的另一端与撑杆92的一端相铰接,撑杆92的另一端设有滑轮96,围压卸载油缸93与围压加载油箱43相连接,且围压卸载油缸93的活塞杆端部设有滑槽97,滑轮96与滑槽97相配合,其中,滑槽97的内部还设有可打开和关闭的挡板98,当挡板98打开时,滑轮96可沿滑槽97自由滑动,当挡板98关闭时,滑轮96锁紧在滑槽97中;
第一压力传感器94设置在第二侧向压头91与试件8之间,用于检测试件8外表面的压力,卸载控制器95分别与第一压力传感器94和挡板98相连接。卸载控制器95可控制挡板98打开或关闭。本发明中,滑槽97数量与撑杆92数量相同,挡板98可以为金属等材质的挡板。
参阅5所示,监测单元6包括第二压力传感器61、应变片62、动态应变仪63、高速摄像机64和信号采集器65,第二压力传感器61分别设置在承压柱34和上压头33之间、第一侧向压头44和试件8之间,应变片62设置在试件8的六个外表面上,动态应变仪63与应变片62相连接,信号采集器65的一端与第二压力传感器61、动态应变仪63和高速摄像机64相连接,信号采集器65的另一端与数据分析单元7相连接,高速摄像机64设置在围压卸载单元9的同侧,并与试件8的位置相对应,高速摄像机64用来采集试件8变形破坏的图像。本发明中,监测单元6用于监测试件8加卸载过程中受力、变形及破坏情况。
较佳地,压力室41采用透明材料制作而成,压力室41的侧壁上设有可打开和关闭的仓门,且压力室41的内部还设有用于信号传输线的通道,方便第一、第二压力传感器的布线。
参阅6所示,本发明的岩石冲击加载-卸围压力学试验系统的使用方法, 其包括以下步骤:
第一步、制取方形试件8;
第二步、把试件8放置到压力室41内,对试件8施加预紧力,设定围压卸载单元9的卸载控制器95的极限值;具体地,打开压力室41的仓门,把试件8安放在下压头23上,将围压卸载单元9依次连接好,将滑槽97内挡板98关闭,使滑轮96停留在挡板98处,调整各个压头的位置,同时控制围压加载油缸42和轴压加载油缸21对试件8施加预紧力。
第三步、对试件8施加轴向压力和围压,达到设定压力值后,对试件8施加冲击载荷;具体的,通过轴压加载单元2和围压加载单元4对试件8分别施加轴向压力和围压,通过冲击加载单元3对试件8施加冲击载荷。
第四步、卸压控制器接受来自第一压力传感器94的信息,判断当前压力值是否大于设定的极限值,若否,则继续增加冲击载荷,若是,则围压卸载单元9快速卸掉试件8其中一侧面的围压;
第五步、高速摄像机64在一侧记录试件8的变形破坏过程,数据分析单元通过处理分析来自监测单元的数据后得到试件8的应力、应变曲线。
本发明中,围压卸载单元9的卸压过程包括:卸载控制器95控制围压卸载油缸93的活塞杆端部的滑槽97内的挡板98打开,使与第二侧向压头91相连接的滑轮96沿着滑槽97滑动。
综上所述,本发明的优点在于:
1)、本发明可以准确获得煤岩石在冲击载荷作用下突然卸掉一个方向围压时的力学响应,这一力学条件,与现场冲击地压发生时围岩支护结构突然失效基本一致,在实验室真实再现了冲击地压发生时围岩支护失效的破坏过程,并能对受力、变形及破坏过程进行准确监测,可为研究冲击动力灾害的作用机理、破坏特征及其防治提供了更加准确的试验数据支持;
2)、本发明在试验过程中一个方向的围压可以突然、快速卸载,真实模拟巷道围岩支护失效现象,围压卸载压力可以连续调节,卸载过程自动控制,试验操作简单。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (10)

  1. 一种岩石冲击加载-卸围压力学试验系统,其特征在于,其包括:
    承载框架单元,包括底座、立柱和横梁,所述立柱竖直设置在所述底座的上表面两侧,所述横梁水平固定在所述立柱的上部;
    轴压加载单元,固定在所述底座的上表面中间位置处,且用于对试件施加自下而上的轴向压力;
    冲击加载单元,固定在所述横梁上,且用于对试件施加自上而下的轴向冲击载荷;
    围压加载单元,设置在所述轴压加载单元和冲击加载单元之间,所述围压加载单元用于对试件施加水平面内的围压;
    围压卸载单元,用于对所述试件水平面内的其中一个侧壁方向的围压进行卸载;
    加载控制单元,用于分别控制所述轴压加载单元、冲击加载单元和围压加载单元进行加载;
    监测单元,用于监测所述试件在加卸载过程中受力、变形及破坏情况;
    数据分析单元,与所述加载控制单元相连接,且所述数据分析单元用于接受所述监测单元的数据并处理分析。
  2. 如权利要求1所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述轴压加载单元包括轴压加载油缸、轴压加载油箱和下压头,所述轴压加载油缸固定在所述底座上,所述轴压加载油箱与轴压加载油缸相连接,所述下压头的一端与轴压加载油缸相连接,其另一端竖直伸入到围压加载单元中并与试件的下表面相接触。
  3. 如权利要求1所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述冲击加载单元包括冲击加载油缸、冲击加载油箱、上压头和承压柱,所述冲击加载油缸与横梁固定连接,且所述冲击加载油缸与所述冲击加油箱相连接,所述承压柱的一端与冲击加载油缸的活塞杆相连接,其另一端与上压头的顶部相连接,所述上压头的底部与试件的上表面相接触。
  4. 如权利要求1所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述围压加载单元包括压力室、三个围压加载油缸、围压加载油箱和三个第一 侧向压头,试件设置在压力室中,所述围压加载油箱与围压加载油缸相连接,所述围压加载油缸的活塞杆与第一侧向压头相连接,三个第一侧向压头分别设置在压力室外部的三个侧壁上,三个第一侧向压头水平伸入压力室后与试件的三个侧壁相接触,所述围压卸载单元设置在压力室外部的第四个侧壁上。
  5. 如权利要求4所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述围压卸载单元包括第二侧向压头、撑杆、围压卸载油缸、第一压力传感器和卸载控制器,所述第二侧向压头设在压力室外部的第四个侧壁上,第二侧向压头的一端水平伸入压力室后与试件的第四个侧壁相接触,所述第二侧向压头的另一端与撑杆的一端相铰接,撑杆的另一端设有滑轮,所述围压卸载油缸与围压加载油箱相连接,且所述围压卸载油缸的活塞杆端部设有滑槽,撑杆的滑轮与滑槽相配合,其中,所述滑槽的内部还设有可打开和关闭的挡板,当挡板打开时,滑轮可沿滑槽自由滑动,当挡板关闭时,滑轮锁紧在滑槽中;所述第一压力传感器设置在第二侧向压头与试件之间,所述卸载控制器分别与第一压力传感器和挡板相连接。
  6. 如权利要求3所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述监测单元包括第二压力传感器、应变片、动态应变仪、高速摄像机和信号采集器,所述第二压力传感器分别设置在承压柱和上压头之间、第一侧向压头和试件之间,所述应变片设置在所述试件的六个外表面上,所述动态应变仪与所述应变片相连接,所述信号采集器的一端与第二压力传感器、动态应变仪和高速摄像机相连接,另一端与数据分析单元相连接,所述高速摄像机设置在围压卸载单元的同侧,并与试件的位置相对应。
  7. 如权利要求4所述的岩石冲击加载-卸围压力学试验系统,其特征在于,所述压力室采用透明材料制作而成,所述压力室的侧壁上设有可打开和关闭的仓门,且所述压力室的内部还设有用于信号传输线的通道。
  8. 一种如权利要求1-7任一所述的岩石冲击加载-卸围压力学试验系统的使用方法,其特征在于,其包括以下步骤:
    第一步、制取方形试件;
    第二步、把试件放置到压力室内,对试件施加预紧力,设定围压卸载单元 的卸载控制器的极限值;
    第三步、对试件施加轴向压力和围压,达到设定压力值后,对试件施加冲击载荷;
    第四步、卸载控制器接受来自第一压力传感器的信息,判断当前压力值是否大于设定的极限值,若否,则继续增加冲击载荷,若是,则围压卸载单元卸掉所述试件其中一侧面的围压;
    第五步、高速摄像机在一侧记录所述试件的变形破坏过程,数据分析单元通过处理分析来自监测单元的数据后得到所述试件的应力、应变曲线。
  9. 如权利要求8所述的岩石冲击加载-卸围压力学试验系统的使用方法,其特征在于,所述围压卸载单元的卸压过程包括:卸载控制器控制围压卸载油缸的活塞杆端部的滑槽内的挡板打开,使与第二侧向压头相连接的滑轮沿着滑槽滑动。
  10. 如权利要求8所述的岩石冲击加载-卸围压力学试验系统的使用方法,其特征在于,其特征在于,其包括以下步骤:
    第一步、制取方形试件(8);
    第二步、打开压力室(41)的仓门,把试件(8)安放在下压头(23)上,将围压卸载单元(9)依次连接好,将滑槽(97)内挡板(98)关闭,使滑轮(96)停留在挡板(98)处,调整各个压头的位置,同时控制围压加载油缸(42)和轴压加载油缸(21)对试件(8)施加预紧力;
    第三步、通过轴压加载单元(2)和围压加载单元(4)对试件(8)分别施加轴向压力和围压,达到设定压力值后,通过冲击加载单元(3)对试件(8)施加冲击载荷;
    第四步、卸压控制器接受来自第一压力传感器(94)的信息,判断当前压力值是否大于设定的极限值,若否,则继续增加冲击载荷,若是,则卸载控制器(95)控制围压卸载油缸(93)的活塞杆端部的滑槽(97)内的挡板(98)打开,使与第二侧向压头(91)相连接的滑轮(96)沿着滑槽(97)滑动,使得围压卸载单元(9)快速卸掉试件(8)其中一侧面的围压;
    第五步、高速摄像机(64)在一侧记录试件(8)的变形破坏过程,数据分 析单元通过处理分析来自监测单元的数据后得到试件(8)的应力、应变曲线。
PCT/CN2019/076547 2018-12-24 2019-02-28 一种岩石冲击加载-卸围压力学试验系统及其使用方法 WO2020010854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,961 US11215542B2 (en) 2018-12-24 2019-02-28 Rock impact loading-unloading confining pressure test system and usage method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811579899.1A CN109490085B (zh) 2018-12-24 2018-12-24 一种岩石冲击加载-卸围压力学试验系统及其使用方法
CN201811579899.1 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020010854A1 true WO2020010854A1 (zh) 2020-01-16

Family

ID=65711564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076547 WO2020010854A1 (zh) 2018-12-24 2019-02-28 一种岩石冲击加载-卸围压力学试验系统及其使用方法

Country Status (3)

Country Link
US (1) US11215542B2 (zh)
CN (1) CN109490085B (zh)
WO (1) WO2020010854A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665994A (zh) * 2020-12-17 2021-04-16 武汉理工大学 一种重力卸荷的岩体动态卸荷试验系统及方法
CN112924129A (zh) * 2021-03-16 2021-06-08 中铁西北科学研究院有限公司 高位危岩体防护结构冲击响应多维度大型模拟试验设备
CN113466050A (zh) * 2021-06-25 2021-10-01 山东科大机电科技股份有限公司 一种用于传感器壳体的水压试验装置
CN115014435A (zh) * 2022-05-30 2022-09-06 中煤能源研究院有限责任公司 一种分级加卸载煤体应变及裂隙测试实验平台及测试方法
US20220380133A1 (en) * 2021-05-25 2022-12-01 Shandong University Of Science And Technology Sensing method for collecting multivariate information at a goaf side based on chutes of scraper conveyors

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031321B (zh) * 2019-04-12 2020-07-07 山东科技大学 一种动静载叠加式岩石力学试验机及试验方法
CN110220794B (zh) * 2019-05-30 2024-01-30 太原理工大学 高孔隙压力快速卸压下空心圆柱岩石破坏试验装置及方法
CN110987638A (zh) * 2019-12-11 2020-04-10 山东大学 一种可视化真三轴水力劈裂试验装置及方法
CN111812022B (zh) * 2020-06-16 2024-04-05 重庆大学 一种复杂地质构造下煤岩三维应变场可视化系统及方法
CN111812021A (zh) * 2020-06-16 2020-10-23 重庆大学 一种采动影响下煤岩三维应变场可视化系统及方法
CN111965006B (zh) * 2020-09-03 2023-08-15 中国石油天然气集团有限公司 一种泥页岩颗粒强度测试仪及其测试方法
CN112268786B (zh) * 2020-11-03 2023-03-24 青岛理工大学 一种类岩质材料双向压力试验装置及工作方法
CN112362487B (zh) * 2020-11-30 2023-08-25 湖北科技学院 一种岩土压缩试验方法
CN112857174B (zh) * 2021-01-13 2022-09-09 辽宁工程技术大学 一种钻孔位移监测装置
CN112989634B (zh) * 2021-04-22 2021-09-24 中国矿业大学(北京) 一种模拟岩爆试件破坏过程的方法、装置和电子设备
CN113686685A (zh) * 2021-08-20 2021-11-23 中国海洋石油集团有限公司 一种高压水环境下落物作用海底管道试验系统及方法
CN113804248B (zh) * 2021-08-24 2023-09-22 中国石油大学(华东) 利用数字散斑和有限元技术的无损地应力测试装置及方法
CN113686694B (zh) * 2021-09-16 2022-05-24 中国矿业大学 一种三维粗糙裂隙面卸荷诱发剪切滑移试验装置及方法
CN114002070B (zh) * 2021-09-26 2023-08-25 中国矿业大学 一种断层活化诱发岩爆和冲击地压的实验方法及装置
CN114034574A (zh) * 2021-11-26 2022-02-11 东北大学 一种不同水压条件充水边坡岩石蠕变试验设备及使用方法
CN114459937A (zh) * 2022-01-22 2022-05-10 天地上海采掘装备科技有限公司 截割磨蚀试验台框架
CN114910363B (zh) * 2022-05-11 2023-05-23 天津大学 加载装置及实验方法
CN114910345B (zh) * 2022-05-23 2023-05-09 安徽理工大学 一种二维梯度应力下岩体受动载冲击的试验装置及方法
GB2624455A (en) * 2022-05-23 2024-05-22 Univ Anhui Sci & Technology Test device and method for dynamic load impact on rock mass under two-dimensional gradient stress
WO2023230016A1 (en) * 2022-05-27 2023-11-30 Corning Incorporated Impact and retained strength testing apparatus and methods
CN115014933A (zh) * 2022-06-17 2022-09-06 重庆大学 一种用于冲击地压模拟试验的装置和方法
CN115681226B (zh) * 2022-11-03 2023-07-14 北京科技大学 一种竖井掘进机支护试验液压系统
CN115541387B (zh) * 2022-11-24 2023-03-28 中国矿业大学(北京) 冲击与岩爆倾向性岩体模拟方法
CN116079032B (zh) * 2022-12-12 2023-07-18 滁州金诺实业有限公司 一种低压铸造炉安装结构
CN116499638B (zh) * 2023-04-27 2023-10-17 浙江大学 土压力传感器颗粒敏感性测试系统及测试方法
CN116718497A (zh) * 2023-07-17 2023-09-08 天津大学 一种异形节点试样的力学性能测试装置
CN116973251B (zh) * 2023-08-02 2024-06-07 广西大学 一种试样边界瞬时跟随开环加载方法、系统及终端
CN116821729B (zh) * 2023-08-24 2023-11-03 北京普达迪泰科技有限公司 用于驱动测量标定的数据处理系统
CN117232999B (zh) * 2023-11-10 2024-01-19 中国矿业大学(北京) 地下工程支护体系高能级多模式动力冲击试验系统及方法
CN117250068B (zh) * 2023-11-20 2024-01-30 华侨大学 一种软岩岩样制样设备及其制样方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621012A (zh) * 2012-03-31 2012-08-01 重庆大学 多功能真三轴岩石蠕变仪
CN105547849A (zh) * 2016-03-01 2016-05-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
CN106546484A (zh) * 2016-11-08 2017-03-29 安徽理工大学 深部巷道动态开挖卸荷系统及实验方法
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统
CN107036903A (zh) * 2017-05-04 2017-08-11 中国矿业大学(北京) 动力扰动低温岩石三轴加卸载流变仪及试验方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
US10060898B2 (en) * 2017-03-07 2018-08-28 Ramesh Chandra Gupta Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
CN108535115A (zh) * 2018-04-13 2018-09-14 武汉理工大学 一种深部裂隙岩体高围压局部瞬态卸荷试验模拟系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982427A (en) * 1975-06-06 1976-09-28 Decker John M Apparatus for working and testing solid elastomers
DE2757541B1 (de) * 1977-12-23 1979-06-28 Schenck Ag Carl Pruefeinrichtung fuer die gleichzeitige Belastung eines Prueflings mit Laengskraeften und Drehmomenten
FR2633718B1 (fr) * 1988-06-30 1994-04-15 Institut Francais Petrole Cellule d'essais triaxiaux de contraintes sur un echantillon de roche et methode d'essais utilisant une telle cellule
CN101231226B (zh) * 2008-01-29 2010-12-15 成都理工大学 岩石高压渗透试验系统
FR2933493B1 (fr) * 2008-07-07 2010-08-13 Univ Lille Sciences Tech Cellule triaxiale d'essais de geomateriaux sous pression et sous traction
CN101482027B (zh) * 2009-02-06 2011-07-27 煤炭科学研究总院重庆研究院 煤与瓦斯突出试验快速卸压的煤样室
CN101634621B (zh) * 2009-08-12 2011-05-25 重庆大学 含瓦斯煤热流固耦合三轴伺服渗流装置
CN202145182U (zh) * 2011-07-05 2012-02-15 成都市伺服液压设备有限公司 新型岩石三轴蠕变试验液压加载控制系统
CN102589774B (zh) * 2011-12-21 2013-12-04 山东科技大学 锚固界面应力测试装置及其测试方法
WO2013143151A1 (zh) * 2012-03-31 2013-10-03 中国矿业大学(北京) 模拟冲击型岩爆的实验方法
US9588029B2 (en) * 2012-03-31 2017-03-07 China University Of Mining & Technology (Beijing) Dynamics performance testing system
EP2833118B1 (en) * 2012-03-31 2016-07-20 China University Of Mining & Technology (Beijing) Simulated impact-type rock burst experiment apparatus
CN103163026B (zh) * 2013-03-08 2014-09-24 长安大学 一种岩土压剪流变试验机及试验方法
CN103471914B (zh) * 2013-09-18 2015-09-30 山东科技大学 冲击地压真三轴模拟试验系统
CN103837418B (zh) * 2014-03-18 2016-08-17 中国矿业大学 一种测定破裂后岩石三轴流变特性的加载路径方法
CN103940719B (zh) * 2014-04-15 2015-12-02 西安科技大学 一种煤体渗透特性测试系统及方法
CN104181029B (zh) * 2014-07-22 2017-03-08 东北大学 一种摆锤加载中应变率扰动下岩石松弛的试验装置及方法
CN104390859B (zh) * 2014-11-18 2018-04-10 山东科技大学 三向刚性加载冲击地压真三轴模拟试验装置
WO2018006585A1 (zh) * 2016-07-06 2018-01-11 山东大学 一种多功能真三轴岩石钻探测试系统及方法
CN106323999B (zh) * 2016-08-12 2018-03-09 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法
CN106596281B (zh) * 2016-12-20 2018-03-13 东北大学 一种高压真三轴硬岩恒温时效破裂试验装置及方法
US10324014B2 (en) * 2017-03-24 2019-06-18 Northeastern University Low-frequency disturbance and high-speed impact type high-pressure true triaxial test apparatus and method
CN109916722A (zh) * 2019-04-22 2019-06-21 东北大学 一种适用于真三轴试验机的双层同心式加载框架结构
CN110864968B (zh) * 2019-11-27 2020-11-20 山东科技大学 一种应力梯度加载试验装置及精确确定加载能量的方法
CN111044367B (zh) * 2019-12-31 2020-12-18 成都理工大学 一种基于三轴应力-应变曲线的岩石裂缝亚临界扩展速率实验测试方法
CN112378790B (zh) * 2020-11-24 2021-05-11 中国科学院地质与地球物理研究所 高应变率循环动态加载三轴岩石力学试验系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621012A (zh) * 2012-03-31 2012-08-01 重庆大学 多功能真三轴岩石蠕变仪
CN105547849A (zh) * 2016-03-01 2016-05-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
CN106546484A (zh) * 2016-11-08 2017-03-29 安徽理工大学 深部巷道动态开挖卸荷系统及实验方法
US10060898B2 (en) * 2017-03-07 2018-08-28 Ramesh Chandra Gupta Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统
CN107036903A (zh) * 2017-05-04 2017-08-11 中国矿业大学(北京) 动力扰动低温岩石三轴加卸载流变仪及试验方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
CN108535115A (zh) * 2018-04-13 2018-09-14 武汉理工大学 一种深部裂隙岩体高围压局部瞬态卸荷试验模拟系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665994A (zh) * 2020-12-17 2021-04-16 武汉理工大学 一种重力卸荷的岩体动态卸荷试验系统及方法
CN112665994B (zh) * 2020-12-17 2024-03-22 武汉理工大学 一种重力卸荷的岩体动态卸荷试验系统及方法
CN112924129A (zh) * 2021-03-16 2021-06-08 中铁西北科学研究院有限公司 高位危岩体防护结构冲击响应多维度大型模拟试验设备
US20220380133A1 (en) * 2021-05-25 2022-12-01 Shandong University Of Science And Technology Sensing method for collecting multivariate information at a goaf side based on chutes of scraper conveyors
CN113466050A (zh) * 2021-06-25 2021-10-01 山东科大机电科技股份有限公司 一种用于传感器壳体的水压试验装置
CN113466050B (zh) * 2021-06-25 2024-04-19 山东科大机电科技股份有限公司 一种用于传感器壳体的水压试验装置
CN115014435A (zh) * 2022-05-30 2022-09-06 中煤能源研究院有限责任公司 一种分级加卸载煤体应变及裂隙测试实验平台及测试方法

Also Published As

Publication number Publication date
CN109490085A (zh) 2019-03-19
US20200319070A1 (en) 2020-10-08
CN109490085B (zh) 2020-12-29
US11215542B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020010854A1 (zh) 一种岩石冲击加载-卸围压力学试验系统及其使用方法
US10969314B2 (en) Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment
WO2021004015A1 (zh) 锚杆(索)支护结构测试及锚固系统性能综合试验装置及方法
US11913915B2 (en) Uniaxial bidirectional synchronous control electromagnetic loaded dynamic shear test system and method
CN105973722B (zh) 岩体不连续面恒定法向刚度剪切试验装置及其试验方法
CN110346216B (zh) 一种模拟掘进扰动情况下煤岩体三轴加载试验装置及方法
CN106053238B (zh) 脆性岩体双轴应力状态下单边卸载试验装置及其试验方法
WO2019205189A1 (zh) 一种双向静动加载的顶板关键块冒落试验装置及方法
WO2019223389A1 (zh) 一种巷道围岩支护强度试验装置及强度确定方法
CN107941615B (zh) 一种三轴试验机及试验系统
CN109916724A (zh) 一种用于模拟地下岩土体开挖卸荷力学响应过程的试验装置
CN104089822B (zh) 深部开采采动应力场演变过程试验方法
CN107725006B (zh) 一种煤层钻孔瓦斯抽采模拟试验装置及方法
US11921088B2 (en) Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
CN109297823A (zh) 一种模拟采动岩体渐进破坏的试验装置及试验方法
CN112763694B (zh) 一种矿井开采动态扰动的二维相似模拟试验装置和方法
CN115597986A (zh) 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法
CN112903463A (zh) 双轴静力-扰动耦合倾斜采空区群柱承载测试装置与方法
Li et al. A multifunctional rock testing system for rock failure analysis under different stress states: Development and application
CN106979888A (zh) 研究矿柱开挖过程充填体承载机制的试验仪器和试验方法
CN115436191A (zh) 一种结合光弹试验研究岩石结构面剪切力学特性的试验方法
Chen et al. Rupture process assessment of rock bursts in a coal mine: Inversion of source parameters and the slip distribution on the rupture surface
CN115901476A (zh) 一种模拟采动影响下覆岩运动特征的三维试验装置及方法
CN103471801B (zh) 深埋隧洞冲击地压模拟试验系统及其试验方法
CN111208010B (zh) 模拟顶板岩层回转破断试验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833371

Country of ref document: EP

Kind code of ref document: A1