CN115597986A - 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法 - Google Patents

利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法 Download PDF

Info

Publication number
CN115597986A
CN115597986A CN202211273030.0A CN202211273030A CN115597986A CN 115597986 A CN115597986 A CN 115597986A CN 202211273030 A CN202211273030 A CN 202211273030A CN 115597986 A CN115597986 A CN 115597986A
Authority
CN
China
Prior art keywords
horizontal
sample
rock
horizontal axial
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211273030.0A
Other languages
English (en)
Inventor
宫凤强
伍武星
代金豪
李建春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202211273030.0A priority Critical patent/CN115597986A/zh
Publication of CN115597986A publication Critical patent/CN115597986A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0044Pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0258Non axial, i.e. the forces not being applied along an axis of symmetry of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Abstract

本发明属于地下工程开挖技术领域,涉及利用T‑SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法。采用真三轴霍普金森试验机对岩石试样施加水平轴向荷载、水平侧向荷载、垂直向荷载直至目标荷载值,使试样处于三维应力状态,实现对对岩石试样进行三维静态加载;随后卸荷水平侧向、垂直向应力并保持试样在水平轴向应力不变,岩石试样从三维应力状态卸荷至一维应力状态;采用水平轴向动态冲击扰动单元对水平轴向静态液压单元中的岩石试样施加冲击力,以模拟深部岩石开挖卸荷后冲击扰动诱发矿柱式岩爆;最后通过监测采集单元采集数据。本发明考虑深部岩石在一定应力条件下的开挖卸荷过程,并在开挖卸荷形成矿柱后受到冲击扰动而诱发矿柱式岩爆的全过程。

Description

利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法
技术领域
本发明属于地下工程开挖技术领域,涉及利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法。
背景技术
随着深部工程的延深,原岩应力必然不断的增大,而围岩开挖卸荷后经常受到冲击动力扰动而诱发岩爆灾害,尤其当围岩开挖卸荷形成矿柱时而诱发更加严重的矿柱式岩爆灾害,这已引起了国内学者的高度关注。进入深部岩体开挖建设过程中,开挖卸荷打破了围岩原有的应力平衡,并受到诸如爆破、机械开挖、地震等冲击扰动而频繁诱发矿柱式岩爆。
目前,对岩石从三维应力状态卸荷至一维状态后冲击动力扰动诱发矿柱式岩爆的研究,大多集中在中、低应变下率下的冲击扰动,而且主要集中于模拟岩石在纯三维、纯二维、纯一维加载下的冲击扰动。而实际深部工程开挖过程中,岩石从三维应力状态,受到开挖卸荷过程,而形成矿柱,从而改变了岩石的应力状态,即将岩石从三维应力状态卸荷至一维应力状态,并受到诸如爆破下的高应变率的冲击扰动后诱发矿柱式岩爆。因此,为了更好的研究巷道围岩受到开挖卸荷后冲动扰动诱发矿柱式岩爆的机理,应当采用真三轴霍普金森试验机模拟深部岩石开挖卸荷后冲击扰动诱发矿柱式岩爆的试验。
发明内容
本发明所解决的技术问题是针对背景技术的不足提供一种利用真三轴霍普金森试验机(True-triaxial Split Hopkinson Pressure Bar,T-SHPB)模拟深部岩石开挖卸荷后冲击扰动诱发矿柱式岩爆的试验方法。该方法模拟了深部岩石处于三维应力状态后由于开挖卸荷至的一维应力状态后冲击动力扰动诱发矿柱式岩爆的过程,以解决深部岩石工程开挖过程中矿柱式岩爆的发生机理。
本发明采用如下技术方案:
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,该试验方法通过真三轴霍普金森试验机进行试验,该真三轴霍普金森试验机包括水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元、水平轴向动态冲击扰动单元;数据监测采集单元、高速摄像机、声发射系统;
试验步骤为:
步骤S1、采用真三轴霍普金森试验机固定加载岩石试样;
步骤S2、真三轴霍普金森试验机利用水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元以预设定的加载速率,对岩石试样施加水平轴向荷载、水平侧向荷载、垂直向荷载直至目标荷载值,使试样处于三维应力状态,实现对对岩石试样进行三维静态加载;
步骤S3、真三轴霍普金森试验机中水平侧向静态液压单元、垂直向静态液压单元以预设定的卸载速率将试样水平侧向和垂直向荷载卸荷至0MPa,且卸荷结束后水平侧向静态液压单元、垂直向静态液压单元离开试样表面,并保持试样在水平轴向应力不变,岩石试样从三维应力状态卸荷至一维应力状态;
步骤S4、采用真三轴霍普金森试验机的水平轴向动态冲击扰动单元对水平轴向静态液压单元中的岩石试样施加冲击力,以模拟深部岩石开挖卸荷后冲击扰动诱发矿柱式岩爆;
步骤S5、冲击扰动过程中,数据监测采集单元采集试样冲击扰动过程中的应力和应变的变化过程,高速摄像机记录试样冲击扰动过程中的破坏全过程,声发射系统则记录试样冲击扰动过程中裂纹扩展特征。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,步骤S1中,岩石试样表面涂抹润滑剂放入真三轴霍普金森试验机的加载框中。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,所述真三轴霍普金森试验机能预先设定不同的水平轴向、水平侧向、垂直向的加载速率和目标荷载值;
基于预先设定水平轴向、水平侧向、垂直向的加载速率和目标荷载值,真三轴霍普金森试验机的水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元以恒定的加载速率对岩石试样施加水平轴向、水平侧向、垂直向荷载直至相对应的目标荷载值,使试样处于三维应力状态。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,所述步骤S3中真三轴霍普金森试验机中水平侧向静态液压单元、垂直向静态液压单元将岩石试样的水平侧向、垂直向按照预先设定的卸载速率将水平侧向、垂直向应力值降至0MPa;并且,水平侧向静态液压单元、垂直向静态液压单元的卸荷速率可以按照现场实际工况中的实际卸荷速率进行设置,以模拟现场实际工程中矿柱形成的卸荷过程。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,所述步骤S3中岩石由原来的三维加载应力状态,经过卸荷后改变为一维加载应力状态。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,真三轴霍普金森试验机中水平轴向静态液压单元包含水平轴向入射杆,水平轴向透射杆;
水平侧向静态液压单元包含水平侧向左侧加载杆,水平侧向右侧加载杆;
垂直向静态液压单元包含垂直向上侧加载杆,垂直向下侧加载杆;
所述数据监测采集单元由粘贴于水平轴向入射杆,水平轴向透射杆的应变片、应变采集仪、示波器构成;能够采集并记录试样冲击过程中应力和应变数据;
所述高速摄像机监测试样垂直面以及水平侧面在冲击过程中的破碎过程;
所述声发射系统由粘贴于水平轴向入射杆,水平轴向透射杆的声发射探头、声发射采集仪构成,能够采集并记录试样冲击过程中裂纹扩展的声发射数据。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,步骤S5中通过数据监测采集单元获得试样冲击扰动过程中水平轴向荷载、应变和应变率,通过声发射系统获得试样冲击扰动过程中声发射信号,通过高速摄影仪获得试样冲击扰动过程中破碎全过程。
本发明所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,水平轴向动态冲击扰动单元通过发射子弹撞击水平轴向入射杆对岩石试样施加冲击扰动致使试样发生破坏。
有益效果
本发明利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,考虑深部岩石在一定应力条件下的开挖卸荷过程,并在开挖卸荷形成矿柱后受到冲击扰动而诱发矿柱式岩爆的全过程。
本发明的采用水平、侧向、垂直的加载值可以完全模拟现场实际工程中岩石所处于的应力状态,能够再现现场实际工程中岩石所处的应力环境;
水平侧向、垂直的卸荷速率可调节,并能根据现场实际开挖过程中岩石实际的应力卸荷速率进行设置,再现现场实际工程中岩石在开挖过程中的应力实际卸荷过程;水平轴向动态冲击扰动单元能实现不同爆破荷载作用荷载下的岩石所受到的动力扰动值,再现现场实际工程中岩石所受到的爆破荷载值;由此可见、利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法再现了开挖卸荷形成矿柱后受到冲击扰动而诱发矿柱式岩爆的全过程。
本发明提供的方法,能根据现场实际的应力情况施加不同的三维应力,模拟在不同埋深下岩石开挖卸荷后受到冲击扰动诱发矿柱式岩爆过程。
本发明提供的方法,通过改变气压值,从而改变冲击扰动荷载大小,模拟不同冲击动力扰动诱发矿柱式岩爆过程。本发明提供的方法简单、易操作能再现深部岩石在一定应力下开挖卸荷后冲击扰动诱发矿柱式岩爆的全过程,并且为分析矿柱式岩爆机理提供试验基础。
附图说明
图1为本发明利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法的流程图;
图2为真三轴霍普金森试验机对试样进行三维加载示意图;
图3为试样从三维应力卸载至一维应力示意图
图4为试样在卸荷至一维应力后受到冲击扰动示意图。
图中:1.水平轴向入射杆、2.水平轴向透射杆、3.水平侧向左侧加载杆、4.水平侧向右侧加载杆、5.垂直向上侧加载杆、6.垂直向下侧加载杆、7.岩石试样、8.冲击子弹。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
该试验方法通过真三轴霍普金森试验机进行试验,该真三轴霍普金森试验机包括水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元、水平轴向动态冲击扰动单元;数据监测采集单元、高速摄像机、声发射系统;
水平轴向静态液压单元含有水平轴向入射杆1、水平轴向透射杆2;
水平侧向静态液压单元含有水平侧向左侧加载杆3、水平侧向右侧加载杆4;
垂直向静态液压单元含有垂直向上侧加载杆5、垂直向下侧加载杆6;
数据监测采集单元由粘贴于水平轴向入射杆1、水平轴向透射杆2的两片应变片S1、S2,应变采集仪,示波器构成;采集并记录试样冲击过程中应力和应变数据;
高速摄像机监测试样垂直面以及水平侧面在冲击过程中的破碎过程;
声发射系统由粘贴于水平轴向入射杆、水平轴向透射杆的两个声发射探头A1、A2,声发射采集仪构成,采集并记录试样冲击过程中裂纹扩展的声发射数据。
如图1所示,利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,具体过程如下:
S1:制备试样,并固定在加载框内
将岩石试样加工成50mm×50mm×50mm的立方体试样7,然后对立方体试样表面涂抹润滑剂(比如黄油、凡士林等)再放入加载框中。
S2:对试样进行二维加载
在控制程序中设定水平轴向加载速率V1(如0.5MPa/s)和目标荷载值σ1(如30MPa)、水平侧向加载速率V2(如0.5MPa/s)和目标荷载值σ2(如20MPa)、垂直向加载速率V3(如0.5MPa/s)和目标荷载值σ3(如15MPa)。如图2所示,双轴霍普金森试验机中水平轴向静态液压加载单元和水平侧向静态液压加载单元按照设定的加载速率对推动水平轴向入射杆1、水平轴向透射杆2、水平侧向左侧加载杆3、水平侧向右侧加载杆4、垂直向上侧加载杆5、垂直向下侧加载杆6向岩石试样7施加水平轴向、水平侧向和垂直向荷载直至相对应的目标荷载值,使试样处于三维应力状态,如图2所示。
S3:对试样卸荷至一维应力状态
首先在控制程序中设定水平侧向卸载速率V21(如0.5MPa/s)和目标荷载值σ21(0MPa)、垂直向加载速率V31(如0.5MPa/s)和目标荷载值σ3(0MPa),然后真三轴霍普金森试验机中水平侧向静态液压单元和垂直向静态液压单元以恒定的卸载速率将荷载卸荷至0MPa,使试样处于三维应力卸荷至一维应力状态,如图3所示。
S5:水平轴向冲击扰动
先在控制程序中设定冲击气压值Pd,并将数据监测和采集单元、高速摄像机和声发射系统处于工作状态,以监测开挖卸荷后岩石试样的破坏过程、水平轴向荷载和位移、声发射信号。如图4所示,启动水平轴向动态冲击扰动单元发射冲击子弹8以一定的冲击荷载σd对水平轴向入射杆1施加冲击扰动,开挖卸荷后的岩石试样7受到冲击动力扰动而诱发洞壁岩爆发生。
S6:数据分析
根据监测记录的水平轴向荷载、应变和应变率、水平侧向荷载、应变和应变率、声发射信号,绘制水平轴向动态应力-应变曲线和应力-应变率曲线、声发射计数曲线,并计算水平轴向的入射能、反射能、投射能,并结合高速摄像机视频记录,综合分析岩石开挖卸荷后受到冲击扰动诱发矿柱岩爆机理。
实施例1
S1:制备试样,并固定在加载框内
将岩石试样加工成50mm×50mm×50mm的立方体试样7,然后对立方体试样表面涂抹润滑剂(比如黄油、凡士林等)再放入加载框中。
S2:对试样进行二维加载
在控制程序中设定水平轴向加载速率V1(如0.5MPa/s)和目标荷载值σ1(如30MPa)、水平侧向加载速率V2(如0.5MPa/s)和目标荷载值σ2(如20MPa)、垂直向加载速率V3(如0.5MPa/s)和目标荷载值σ3(如20MPa)。如图2所示,双轴霍普金森试验机中水平轴向静态液压加载单元和水平侧向静态液压加载单元按照设定的加载速率对推动水平轴向入射杆1、水平轴向透射杆2、水平侧向左侧加载杆3、水平侧向右侧加载杆4、垂直向上侧加载杆5、垂直向下侧加载杆6向岩石试样7施加水平轴向、水平侧向和垂直向荷载直至相对应的目标荷载值,使试样处于三维应力状态,如图2所示。
S3:对试样卸荷至一维应力状态
首先在控制程序中设定水平侧向卸载速率V21(如0.5MPa/s)和目标荷载值σ21(0MPa)、垂直向加载速率V31(如0.5MPa/s)和目标荷载值σ3(0MPa),然后真三轴霍普金森试验机中水平侧向静态液压单元和垂直向静态液压单元以恒定的卸载速率将荷载卸荷至0MPa,使试样处于三维应力卸荷至一维应力状态,如图3所示。
S5:水平轴向冲击扰动
先在控制程序中设定冲击气压值Pd,并将数据监测和采集单元、高速摄像机和声发射系统处于工作状态,以监测开挖卸荷后岩石试样的破坏过程、水平轴向荷载和位移、声发射信号。如图4所示,启动水平轴向动态冲击扰动单元发射冲击子弹8以一定的冲击荷载σd对水平轴向入射杆1施加冲击扰动,开挖卸荷后的岩石试样7受到冲击动力扰动而诱发洞壁岩爆发生。
S6:数据分析根据监测记录的水平轴向荷载、应变和应变率、水平侧向荷载、应变和应变率、声发射信号,绘制水平轴向动态应力-应变曲线和应力-应变率曲线、声发射计数曲线,并计算水平轴向的入射能、反射能、投射能,并结合高速摄像机视频记录,综合分析岩石开挖卸荷后受到冲击扰动诱发矿柱岩爆机理。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:该试验方法通过真三轴霍普金森试验机进行试验,该真三轴霍普金森试验机包括水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元、水平轴向动态冲击扰动单元;数据监测采集单元、高速摄像机、声发射系统;
试验步骤为:
步骤 S1、采用真三轴霍普金森试验机固定加载岩石试样;
步骤S2、真三轴霍普金森试验机利用水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元以预设定的加载速率,对岩石试样施加水平轴向荷载、水平侧向荷载、垂直向荷载直至目标荷载值,使试样处于三维应力状态,实现对对岩石试样进行三维静态加载;
步骤S3、真三轴霍普金森试验机中水平侧向静态液压单元、垂直向静态液压单元以预设定的卸载速率将试样水平侧向和垂直向荷载卸荷至0 MPa,且卸荷结束后水平侧向静态液压单元、垂直向静态液压单元离开试样表面,并保持试样在水平轴向应力不变,岩石试样从三维应力状态卸荷至一维应力状态;
步骤S4、采用真三轴霍普金森试验机的水平轴向动态冲击扰动单元对水平轴向静态液压单元中的岩石试样施加冲击力,以模拟深部岩石开挖卸荷后冲击扰动诱发矿柱式岩爆;
步骤S5、冲击扰动过程中,数据监测采集单元采集试样冲击扰动过程中的应力和应变的变化过程,高速摄像机记录试样冲击扰动过程中的破坏全过程,声发射系统则记录试样冲击扰动过程中裂纹扩展特征。
2.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:步骤S1中,岩石试样表面涂抹润滑剂放入真三轴霍普金森试验机的加载框中。
3.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:基于预先设定水平轴向、水平侧向、垂直向的加载速率和目标荷载值,真三轴霍普金森试验机的水平轴向静态液压单元、水平侧向静态液压单元、垂直向静态液压单元以恒定的加载速率对岩石试样施加水平轴向、水平侧向、垂直向荷载直至相对应的目标荷载值,使试样处于三维应力状态。
4.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:所述步骤S3中真三轴霍普金森试验机中水平侧向静态液压单元、垂直向静态液压单元将岩石试样的水平侧向、垂直向按照预先设定的卸载速率将目水平侧向、垂直向应力降低至0 MPa。
5.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:所述步骤S3中岩石由原来的三维加载应力状态,经过卸荷后改变为一维加载应力状态。
6.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:真三轴霍普金森试验机中水平轴向静态液压单元包含水平轴向入射杆,水平轴向透射杆;
水平侧向静态液压单元包含水平侧向左侧加载杆,水平侧向右侧加载杆;
垂直向静态液压单元包含垂直向上侧加载杆,垂直向下侧加载杆;
所述数据监测采集单元由粘贴于水平轴向入射杆,水平轴向透射杆的应变片、应变采集仪、示波器构成;采集并记录试样冲击过程中应力和应变数据;
所述高速摄像机监测试样垂直面以及水平侧面在冲击过程中的破碎过程;
所述声发射系统由粘贴于水平轴向入射杆,水平轴向透射杆的声发射探头、声发射采集仪构成,采集并记录试样冲击过程中裂纹扩展的声发射数据。
7.根据权利要求1所述的利用T-SHPB模拟冲击扰动诱发深部矿柱岩爆的试验方法,其特征在于:水平轴向动态冲击扰动单元通过发射子弹撞击水平轴向入射杆对岩石试样施加冲击扰动致使试样发生破坏。
CN202211273030.0A 2022-10-18 2022-10-18 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法 Pending CN115597986A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211273030.0A CN115597986A (zh) 2022-10-18 2022-10-18 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211273030.0A CN115597986A (zh) 2022-10-18 2022-10-18 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法

Publications (1)

Publication Number Publication Date
CN115597986A true CN115597986A (zh) 2023-01-13

Family

ID=84846801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211273030.0A Pending CN115597986A (zh) 2022-10-18 2022-10-18 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法

Country Status (1)

Country Link
CN (1) CN115597986A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773328A (zh) * 2023-06-25 2023-09-19 中国地质大学(北京) 一种真三轴霍普金森压杆试验装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773328A (zh) * 2023-06-25 2023-09-19 中国地质大学(北京) 一种真三轴霍普金森压杆试验装置

Similar Documents

Publication Publication Date Title
US11215542B2 (en) Rock impact loading-unloading confining pressure test system and usage method therefor
JP6940826B2 (ja) 動的応答の時空間再構成装置
CN108709931B (zh) 深部节理岩体中应力波传播规律的室内试验系统及方法
CN105675400B (zh) 模拟井巷开挖卸荷的试验方法
CN110441170A (zh) 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
CN112858024B (zh) 用于测量水力耦合作用下深部岩石动态性能的装置及方法
CN110554169A (zh) 一种隧道开挖过程模拟试验装置及方法
US11921088B2 (en) Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
Zhao et al. Size effects on granite behavior under unloading rockburst test
CN109632509B (zh) 超重力真三轴岩石加载实验装置及方法
CN105527176A (zh) 用于冲击荷载下深部节理岩体破裂机理的试验装置
CN110514806B (zh) 一种相似模拟试验装置及方法
CN110441172B (zh) 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
CN106526131A (zh) 一种模拟岩墙轴向微扰动触发型岩爆的实验方法
CN115326601B (zh) 锚网耦合支护岩体动力冲击试验与评价方法
CN115597986A (zh) 利用t-shpb模拟冲击扰动诱发深部矿柱岩爆的试验方法
Dong et al. Implications for identification of principal stress directions from acoustic emission characteristics of granite under biaxial compression experiments
CN115372152B (zh) 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
CN106979888A (zh) 研究矿柱开挖过程充填体承载机制的试验仪器和试验方法
AU2021100769A4 (en) An Experimental Method for Simulating Triggered Rockburst of Rock Wall under Micro-disturbance
Yang et al. Experimental study on evolution law of dynamic characteristic parameters during the tunnel surrounding rock block collapse process
Zhao et al. Acoustic emission behaviors of the Beishan granite under uniaxial and triaxial compression conditions
Zhao et al. Experimental investigations on the failure characteristics of brittle sandstone containing various heights of rectangle cavities under biaxial loading
CN111855419A (zh) 一种应力波作用下洞室围岩动态稳定性室内实验系统和方法
CN112100842A (zh) 一种识别地应力异常区及大范围测量地应力的新方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination