CN106323999B - 一种岩石水力压裂试验裂缝介入增强成像方法 - Google Patents

一种岩石水力压裂试验裂缝介入增强成像方法 Download PDF

Info

Publication number
CN106323999B
CN106323999B CN201610663060.0A CN201610663060A CN106323999B CN 106323999 B CN106323999 B CN 106323999B CN 201610663060 A CN201610663060 A CN 201610663060A CN 106323999 B CN106323999 B CN 106323999B
Authority
CN
China
Prior art keywords
rock
intervention
ray
hydraulic fracturing
reinforcing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610663060.0A
Other languages
English (en)
Other versions
CN106323999A (zh
Inventor
李守定
周忠鸣
李晓
赫建明
刘艳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN201610663060.0A priority Critical patent/CN106323999B/zh
Publication of CN106323999A publication Critical patent/CN106323999A/zh
Priority to PCT/CN2017/096812 priority patent/WO2018028633A1/zh
Application granted granted Critical
Publication of CN106323999B publication Critical patent/CN106323999B/zh
Priority to US16/025,088 priority patent/US10234407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0034Investigating dispersion of liquids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/0242With circulation of a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion

Abstract

本发明提供一种能够克服岩石水力压裂裂缝分布定位精度差、普通宽度裂缝难以分辨的缺点和不足,提高岩石水力压裂试验裂缝观测精度,有利于科学认识岩石水力压裂裂缝发育规律的裂缝介入增强成像方法。其特征是将含纳米级高原子序数介入增强剂的水溶液水压致裂岩石,形成水力压裂裂缝,裂缝中的介入增强剂提高了X射线在裂缝与岩石的质量衰减系数μ/ρ差值,同时提高了裂缝与岩石X射线质能吸收系数μen/ρ差值,进而改变探测器接收的线衰减系数,提高岩石水力压裂裂缝的成像分辨率。

Description

一种岩石水力压裂试验裂缝介入增强成像方法
技术领域 岩石力学试验技术领域
背景技术 岩石水力压裂试验的一个重要观测物理量是压裂裂缝的分布,当前岩石水力压裂试验裂缝观测主要依赖于声发射监测和X射线CT成像技术。声发射监测技术对于压裂裂缝产生时声信号采集能力强,但对于声信号反演定位精度较差,特别是对于实验室小尺寸样品,无法获得较为精确的压裂裂缝分布;而X射线CT成像技术,对于压裂裂缝定位精度较高,但是对于普通宽度裂缝难以分辨,丢失了实际存在的大量裂缝分布信息。
因此,当前岩石水力压裂试验裂缝观测方法,不能满足岩石水力压裂试验裂缝分布精确观测的需求。
发明内容 本发明提供一种能够克服岩石水力压裂裂缝分布定位精度差、普通宽度裂缝难以分辨的缺点和不足,提高岩石水力压裂试验裂缝观测精度,有利于科学认识岩石水力压裂裂缝发育规律的裂缝介入增强成像方法。其特征是将含介入增强剂的水溶液水压致裂岩石,形成水力压裂裂缝,裂缝中的介入增强剂提高了X射线在裂缝与岩石的质量衰减系数μ/ρ差值,同时提高了裂缝与岩石X射线质能吸收系数μen/ρ差值,进而改变探测器接收的线衰减系数,提高岩石水力压裂裂缝的成像分辨率。
岩石水力压裂试验裂缝介入增强成像方法的主要技术方案是基于实验室X射线工业CT和岩石水力压裂试验机的介入增强剂加载压裂工艺。实验室X射线工业CT特征为:由探测器立柱16及其上的探测器15,X射线源立柱17及其上的X射线源14,高精度转台12构成。X射线源14激发出的X射线束18透射岩样1,被探测器15接受透射后的X射线,根据线衰减系数分布μ(x,y)计算得出CT图像;岩石水力压裂试验机特征为:由岩样1,上垫块2,下垫块3,球形座4,三轴缸5,围压增压泵7,自平衡活塞上腔8,自平衡活塞下腔9,自平衡活塞10及轴向作动器11等构成,岩石水力压裂试验机置于高精度转台12之上,岩样1置于上垫块2与下垫块3之间,球形座4减小加载时岩样1端面效应,三轴缸5与围压增压泵7对岩样1实施围压加载,自平衡活塞上腔8,自平衡活塞下腔9,自平衡活塞10与轴向作动器11保证对岩样1实施轴向加载,岩石水力压裂试验机进行围压、轴压和水力压裂加载时,转台12以一定的速率旋转;介入增强剂加载压裂工艺为:首先配置一定浓度的裂缝介入增强剂,介入增强剂为含分散剂的浓度为5000ppm的纳米金水溶液,纳米金的粒径为12-15nm,其次通过含介入增强剂高压水泵将介入增强剂压入岩样1中,使岩样1致裂产生压裂裂缝6。
基本原理与技术 岩石X射线CT图像反映岩石各部位对X射线吸收程度的大小,岩石中的矿物密度与X射线吸收系数成正比,矿物中原子序数愈高,X射线衰减愈明显,质量衰减系数愈大。相邻矿物密度相差越大,X射线CT成像对比度越大,分辨率越高。利用该原理,提供一种岩石水力压裂裂缝介入增强CT成像方法,提高水力压裂裂缝成像分辨率,其特征是运用纳米级高原子序数金属元素通过提高不同物质之间的质量衰减系数μ/ρ的差值,同时提高不同物质之间的质能吸收系数μen/ρ的差值的介入增强成像的方法影响X光投影过程。压裂裂缝中的水与岩石衰减系数的差值较小,岩石CT成像对比度小,分辨率低,纳米金属粉液体的衰减系数比岩石的衰减系数高,当用纳米金属粉液体代替原始缝隙中的流体时,探测器接收的线衰减系数对比差值变大,进而提高岩石水力压裂裂缝的成像分辨率。
岩石水力压裂试验裂缝介入增强成像方法的主要技术方案是基于实验室X射线工业CT和岩石水力压裂试验机的介入增强剂加载压裂工艺。
实验室X射线工业CT特征为:由探测器立柱16及其上的探测器15,X射线源立柱17及其上的X射线源14,高精度转台12等设备构成。X射线源14激发出的X射线束18透射岩样1,被探测器15接受透射后的X射线,根据线衰减系数分布μ(x,y)计算得出CT图像。
岩石水力压裂试验机特征为:由岩样1,上垫块2,下垫块3,球形座4,三轴缸5,围压增压泵7,自平衡活塞上腔8,自平衡活塞下腔9,自平衡活塞10及轴向作动器11等构成,岩石水力压裂试验机置于高精度转台12之上,岩样1置于上垫块2与下垫块3之间,球形座4减小加载时岩样1端面效应,三轴缸5与围压增压泵7对岩样1实施围压加载,自平衡活塞上腔8,自平衡活塞下腔9,自平衡活塞10与轴向作动器11保证对岩样1实施轴向加载,岩石水力压裂试验机进行围压、轴压和水力压裂加载时,转台12以一定的速率旋转。
介入增强剂加载压裂工艺为:首先配置一定浓度的裂缝介入增强剂,介入增强剂为含分散剂的浓度为5000ppm的纳米金水溶液,纳米金的粒径为12-15nm,其次通过含介入增强剂高压水泵将介入增强剂压入岩样1中,使岩样1致裂产生压裂裂缝6。
附图说明 1:岩样;2:上垫块;3:下垫块;4:球形座;5:三轴缸;6:压裂裂缝;7:围压增压泵;8:自平衡活塞上腔;9:自平衡活塞下腔;10:自平衡活塞;11:轴向作动器;12:高精度转台;13:含介入增强剂高压水泵;14:X射线源;15:探测器;16:探测器立柱;17:X射线源立柱;18:X射线束;19:地基基础
具体实施方式 1. 首先配置一定浓度的裂缝介入增强剂,质量分数为5%的分散剂、质量分数为20%的纳米铋粉和质量分数为75%的聚乙二醇经高速转子仪搅拌10min,超声震荡仪震荡30min得到分散的纳米铋溶液,纳米铋的粒径为40-50nm,将介入增强剂加入到含介入增强剂高压水泵13中。
2. 岩石水力压裂试验机置于高精度转台12之上,岩样1置于上垫块2与下垫块3之间,球形座4减小加载时岩样1端面效应,三轴缸5与围压增压泵7对岩样1实施围压加载,自平衡活塞上腔8,自平衡活塞下腔9,自平衡活塞10与轴向作动器11保证对岩样1实施轴向加载,岩石水力压裂试验机对岩样实施围压和轴压,转台12以一定的速率旋转。
3. 运行实验室X射线工业CT,X射线源14激发出的X射线束18透射岩样1,探测器15接受,透射后的X射线,根据线衰减系数分布μ(x,y)计算得出CT图像。
4. 将介入增强剂压入岩样1中,使岩样1致裂产生压裂裂缝6,压裂裂缝6中充满了纳米金水溶液,利用介入增强剂提高不同物质之间的质量衰减系数μ/ρ的差值,即提高不同物质之间的质能吸收系数μen/ρ的差值影响X光投影过程的原理,改变探测器15接收的线衰减系数,进而提高岩石水力压裂裂缝6的成像分辨率。

Claims (1)

1.一种能够提高岩石水力压裂试验裂缝观测精度的裂缝介入增强成像方法,是以实验室X射线工业CT和岩石水力压裂试验机为基础;所述实验室X射线工业CT特征为:由探测器立柱(16)及其上的探测器(15),X射线源立柱(17)及其上的X射线源(14),高精度转台(12)构成,X射线源(14)激发出的X射线束(18)透射岩样(1),被探测器(15)接受透射后的X射线,根据线衰减系数分布计算得出CT图像;所述岩石水力压裂试验机特征为:岩石水力压裂试验机置于高精度转台(12)之上,岩样(1)置于上垫块(2)与下垫块(3)之间,球形座(4)减小加载时岩样(1)端面效应,三轴缸(5)与围压增压泵(7)对岩样(1)实施围压加载,自平衡活塞上腔(8),自平衡活塞下腔(9),自平衡活塞(10)与轴向作动器(11)保证对岩样(1)实施轴向加载,岩石水力压裂试验机进行围压、轴压和水力压裂加载时,转台(12)以一定的速率旋转;基于实验室X射线工业CT和岩石水力压裂试验机,运用介入增强剂加载压裂工艺提高岩石水力压裂试验裂缝观测精度;所述介入增强剂加载压裂工艺为:首先配置一定浓度的裂缝介入增强剂,质量分数为5%的分散剂、质量分数为20%的纳米铋粉和质量分数为75%的聚乙二醇经高速转子仪搅拌10min,超声震荡仪震荡30min得到分散的纳米铋溶液,纳米铋的粒径为40-50nm,其次通过含介入增强剂高压水泵将介入增强剂压入岩样(1)中,使岩样(1)致裂产生压裂裂缝(6),压裂裂缝(6)中充满了纳米铋溶液,利用介入增强剂提高不同物质之间的质量衰减系数的差值,即提高不同物质之间的质能吸收系数的差值影响X光投影过程的原理,改变探测器(15)接收的线衰减系数,进而提高岩石水力压裂裂缝(6)的成像分辨率。
CN201610663060.0A 2016-08-12 2016-08-12 一种岩石水力压裂试验裂缝介入增强成像方法 Expired - Fee Related CN106323999B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610663060.0A CN106323999B (zh) 2016-08-12 2016-08-12 一种岩石水力压裂试验裂缝介入增强成像方法
PCT/CN2017/096812 WO2018028633A1 (zh) 2016-08-12 2017-08-10 一种岩石水力压裂试验裂缝介入增强成像方法
US16/025,088 US10234407B2 (en) 2016-08-12 2018-07-02 Enhanced interventional CT imaging of cracks in rocks during hydraulic testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610663060.0A CN106323999B (zh) 2016-08-12 2016-08-12 一种岩石水力压裂试验裂缝介入增强成像方法

Publications (2)

Publication Number Publication Date
CN106323999A CN106323999A (zh) 2017-01-11
CN106323999B true CN106323999B (zh) 2018-03-09

Family

ID=57740207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610663060.0A Expired - Fee Related CN106323999B (zh) 2016-08-12 2016-08-12 一种岩石水力压裂试验裂缝介入增强成像方法

Country Status (3)

Country Link
US (1) US10234407B2 (zh)
CN (1) CN106323999B (zh)
WO (1) WO2018028633A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323999B (zh) * 2016-08-12 2018-03-09 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法
CN106644739A (zh) * 2017-02-21 2017-05-10 湖北工业大学 一种岩石三轴压缩超声实时扫描装置
CN107462190B (zh) * 2017-07-31 2018-06-22 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
CN108007787A (zh) * 2017-12-29 2018-05-08 中国科学院武汉岩土力学研究所 压力室及动静态三轴试验系统
CN107907425A (zh) * 2017-12-29 2018-04-13 成都东华卓越科技有限公司 一种内体变测量装置及动静态三轴试验系统
CN108051308A (zh) * 2017-12-29 2018-05-18 成都东华卓越科技有限公司 动静态三轴试验系统
CN108007786A (zh) * 2017-12-29 2018-05-08 成都东华卓越科技有限公司 一种双层压力室及外体变测量系统
CN109163971A (zh) * 2018-07-16 2019-01-08 山东科技大学 岩石侵水-失水循环力学实验系统及其实验方法
CN109507077A (zh) * 2018-11-01 2019-03-22 太原理工大学 模拟原位条件下超临界二氧化碳煤岩压裂ct成像和评价装置及其使用方法
CN109668916B (zh) * 2018-12-11 2021-02-19 大连理工大学 一种水合物沉积物ct三轴试验装置
CN109490085B (zh) * 2018-12-24 2020-12-29 山东科技大学 一种岩石冲击加载-卸围压力学试验系统及其使用方法
CN109490086B (zh) * 2018-12-24 2021-03-02 山东科技大学 一种巷道围岩支护强度试验装置及强度确定方法
CN109752249B (zh) * 2019-01-22 2024-02-27 北京交通大学 三轴泥水劈裂试验中试样与注浆底座的密封装置及密封方法
US11448605B2 (en) * 2019-02-14 2022-09-20 Psylotech, Inc. Scanner load frame
CN109900726A (zh) * 2019-04-02 2019-06-18 中国科学院地质与地球物理研究所 一种大尺寸天然气水合物储层压裂物理模拟和缝网观测方法
CN111829887B (zh) * 2019-04-22 2023-07-04 中国石油化工股份有限公司 一种基于高压压汞的岩石压裂模拟实验方法
CN110487645B (zh) * 2019-08-22 2021-01-12 山东大学 适用工业ct扫描的微型温控非饱和土三轴试验仪及方法
CN110567814B (zh) * 2019-08-26 2024-02-20 中国科学院地质与地球物理研究所 一种天然气水合物沉积物三轴力学试验中子成像方法
CN110595905A (zh) * 2019-10-21 2019-12-20 安徽理工大学 一种便携式岩芯多参数综合测试装置及测试方法
CN111220308B (zh) * 2020-03-09 2021-05-25 大连理工大学 一种测量液体晃荡力装置
US11287361B2 (en) * 2020-03-30 2022-03-29 Stratum Reservoir Intermediate, LLC System and device for analyzing fluid flow in unconventional hydraulically-fractured porous media
CN111398320A (zh) * 2020-04-22 2020-07-10 西南交通大学 用高能x射线进行原位成像的电控压缩试验机及试验方法
CN112213336A (zh) * 2020-09-02 2021-01-12 中国科学院地质与地球物理研究所 天然气水合物三维结构ct增强成像方法及系统
CN112255112B (zh) * 2020-10-09 2021-04-13 中国科学院地质与地球物理研究所 可视化试验系统、岩体加热方法
CN112179748B (zh) * 2020-10-12 2023-06-09 河南理工大学 煤岩试样ct三轴实验装样方法
CN112557135A (zh) * 2020-11-11 2021-03-26 核工业北京地质研究院 用于多场耦合三轴试验的含裂缝岩石试样制备与密封方法
CN112177608B (zh) * 2020-11-17 2021-05-28 大庆亿莱检验检测技术服务有限公司 高温高压页岩油藏渗吸评价装置
CN112649282B (zh) * 2020-12-30 2021-12-14 中国科学院武汉岩土力学研究所 一种模拟应力扰动条件下诱发断层或裂缝激活的方法
CN112683677B (zh) * 2021-03-12 2021-05-28 中国科学院地质与地球物理研究所 模拟变重力、真空条件下岩土动力学的试验系统及方法
CN113447420B (zh) 2021-06-30 2022-05-13 西南石油大学 一种页岩应力敏感检测装置及方法
CN114002072B (zh) * 2021-10-21 2023-10-20 南华大学 施加恒定裂隙水压的裂隙岩石水力耦合试验装置及方法
CN113984531B (zh) * 2021-10-22 2022-08-19 中国石油大学(北京) 一种研究水化对压裂蓄能效率影响的实验方法
CN114199688A (zh) * 2021-12-08 2022-03-18 煤炭科学研究总院 一种煤岩压裂三轴加载试验方法
CN114609254B (zh) * 2022-03-16 2023-03-28 成都理工大学 一种基于声发射波形信号的岩石破裂前兆识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944568A (zh) * 2012-12-03 2013-02-27 东南大学 工业x-ct用水泥基试件原位加载仪及其使用方法
WO2013134427A3 (en) * 2012-03-06 2014-01-03 Ion Geophysical Corporation Model predicting fracturing of shale
CN103582500A (zh) * 2011-06-06 2014-02-12 俄勒冈州,由高等教育州委员会代表俄勒冈州立大学 铋粒子x-射线造影剂
CN104359817A (zh) * 2014-10-16 2015-02-18 北京科技大学 一种页岩岩芯的裂缝扩展分析装置及分析方法
CN104931357A (zh) * 2015-07-20 2015-09-23 西安科技大学 一种煤岩试件力学特性测试系统及其测试方法
CN104990800A (zh) * 2015-07-30 2015-10-21 西安科技大学 测试水力压裂液中固体支撑剂支撑效果的装置及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573251B (zh) * 2012-08-06 2016-04-27 中国石油化工股份有限公司 大尺寸火山岩水力裂缝起裂与扩展ct扫描裂缝监测方法
JP6494950B2 (ja) * 2014-08-20 2019-04-03 キヤノンメディカルシステムズ株式会社 X線診断装置及びx線ct装置
CN105756645A (zh) * 2014-12-16 2016-07-13 中国石油化工股份有限公司 页岩中裂缝扩展的物理模拟系统及方法
CN106323999B (zh) * 2016-08-12 2018-03-09 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582500A (zh) * 2011-06-06 2014-02-12 俄勒冈州,由高等教育州委员会代表俄勒冈州立大学 铋粒子x-射线造影剂
WO2013134427A3 (en) * 2012-03-06 2014-01-03 Ion Geophysical Corporation Model predicting fracturing of shale
CN102944568A (zh) * 2012-12-03 2013-02-27 东南大学 工业x-ct用水泥基试件原位加载仪及其使用方法
CN104359817A (zh) * 2014-10-16 2015-02-18 北京科技大学 一种页岩岩芯的裂缝扩展分析装置及分析方法
CN104931357A (zh) * 2015-07-20 2015-09-23 西安科技大学 一种煤岩试件力学特性测试系统及其测试方法
CN104990800A (zh) * 2015-07-30 2015-10-21 西安科技大学 测试水力压裂液中固体支撑剂支撑效果的装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大尺度水力压裂模拟实验裂缝诊断技术研究;梁天成等;《全国射线数字成像与CT新技术研讨会论文集》;20140531;第217-224页 *

Also Published As

Publication number Publication date
US20180306736A1 (en) 2018-10-25
CN106323999A (zh) 2017-01-11
WO2018028633A1 (zh) 2018-02-15
US10234407B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
CN106323999B (zh) 一种岩石水力压裂试验裂缝介入增强成像方法
CN107462190B (zh) 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
Wang et al. Experimental study on cracking damage characteristics of a soil and rock mixture by UPV testing
Kim et al. Strength anisotropy of Berea sandstone: results of X-ray computed tomography, compression tests, and discrete modeling
Bin et al. Multi-scale method of Nano (Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin
Weng et al. Mesodamage characteristics of rock with a pre-cut opening under combined static–dynamic loads: a nuclear magnetic resonance (NMR) investigation
CN106525575A (zh) 适用于ct三维实时扫描的岩石节理直接剪切试验系统
CN105873706A (zh) 用于岩石特性的直接数值模拟的样本制备设备
CN104807721B (zh) 预应力混凝土现浇梁预应力管道压浆密实度综合检测方法
CN104532886B (zh) 一种灌注桩桩底沉渣和桩端地基检测装置和方法
Wang et al. Experimental study of the ultrasonic and mechanical properties of SRM under compressive loading
CN104062408B (zh) 一种分层注浆模型试验系统
Meng et al. Mesoscopic damage evolution of coral reef limestone based on real-time CT scanning
Lv et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach
CN106498986B (zh) 一种应用层析成像技术检测旋喷桩并控制其桩径的方法
Ban et al. Revealing the laminar shale microdamage mechanism considering the relationship between fracture geometrical morphology and acoustic emission power spectrum characteristics
Wu et al. Experimental investigation of damage evolution characteristics of coral reef limestone based on acoustic emission and digital volume correlation techniques
Spagnoli et al. Influence of salt solutions on the undrained shear strength and the clogging of smectite-quartz mixtures
Arefin et al. Stabilization of expansive soils using ionic stabilizer
CN105297788B (zh) 应用电磁波ct技术检测桩基后压浆质量的方法
Raynaud et al. In vivo CT X-ray observations of porosity evolution during triaxial deformation of a calcarenite
JP2010059670A (ja) 一軸圧縮強度推定工法
Cai et al. Influences of pre-existing fracture on ground deformation induced by normal faulting in mixed ground conditions
JP2009024493A (ja) 土砂地盤改良工法と注入薬液及びその施工管理方法
Silva et al. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180309

Termination date: 20200812