CN109668916B - 一种水合物沉积物ct三轴试验装置 - Google Patents

一种水合物沉积物ct三轴试验装置 Download PDF

Info

Publication number
CN109668916B
CN109668916B CN201811509193.8A CN201811509193A CN109668916B CN 109668916 B CN109668916 B CN 109668916B CN 201811509193 A CN201811509193 A CN 201811509193A CN 109668916 B CN109668916 B CN 109668916B
Authority
CN
China
Prior art keywords
hydrate
pressure
channel
pressure chamber
hydraulic oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811509193.8A
Other languages
English (en)
Other versions
CN109668916A (zh
Inventor
宋永臣
李洋辉
吴鹏
刘卫国
赵佳飞
杨明军
刘瑜
王大勇
张毅
赵越超
蒋兰兰
杨磊
凌铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811509193.8A priority Critical patent/CN109668916B/zh
Publication of CN109668916A publication Critical patent/CN109668916A/zh
Priority to US16/968,818 priority patent/US11215569B2/en
Priority to AU2019399653A priority patent/AU2019399653B2/en
Priority to PCT/CN2019/119107 priority patent/WO2020119394A1/zh
Application granted granted Critical
Publication of CN109668916B publication Critical patent/CN109668916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing

Abstract

本发明提供了一种水合物沉积物CT三轴试验装置,属岩土工程基础物性测量技术领域。该装置针对发明“一种天然气水合物沉积物力学特性可视化试验装置”的不足,对水合物沉积物CT三轴试验装置进行了重新设计和优化,在能够获得水合物储层静力、动力学特性、蠕变特性的前提下,提升了三轴仪装置扫描旋转过程稳定性、水合物样品控温精度以及三轴仪压力室的X射线穿透性能,得到了最佳的CT成像效果,为探明水合物分解过程储层变形机理提供了强大的硬件支持。

Description

一种水合物沉积物CT三轴试验装置
技术领域
本发明涉及一种水合物沉积物CT三轴试验装置,属岩土工程基础物性测量领域。
背景技术
水合物沉积物是一个具有复杂力学行为特征的亚稳态结构体,其开采过程常常会涉及水合物相变、颗粒迁移和胶结结构破坏等微观结构变化,需要从微观层次入手进行颗粒尺度的物理机理分析以明确天然气水合物分解诱因的地层沉降、海底滑坡等地质灾害的形成机理。
三轴仪是一种常用的模拟地层应力状态的土工测试仪器。但现有的天然气水合物三轴仪,由于需满足低温、高压等条件,其体积和重量一般较大,同时存在X射线穿透性能差,旋转扫描不方便等问题,无法实现与X射线CT等可视化装置的有机结合例如inspeXioSMX-255CT载物台限重9kg,样品高度≤30cm,也就无法观测水合物沉积物变形过程微观结构变化。因此,大连理工大学在2014年首次创新性的提出了一种天然气水合物沉积物力学特性可视化试验装置,实现了天然气水合物三轴仪与X射线CT的有机结合201410357319.X,但该套装置在实际使用过程中存在一定问题:1、由于加载装置在三轴仪主机上部,导致三轴仪重心偏高,因此在X射线扫描旋转过程中,三轴仪主机不够稳定,极易导致获得的CT图像重影;2、该装置压力室采用的纯铝或铝合金等低密度材料导热性能较好,容易造成热损失,如果通过注入预冷却的液压油对试样进行控温,当试验时间较长时,液压油温度受环境影响较大,可能引起水合物分解,最终影响试验数据的准确性;3、该装置压力室采用一体化设计,没有充分考虑各部分结构设计的特点和功能,如果压力室上部采用高强度、低密度的铝合金材料,压力室壁采用穿透性能更好的工程塑料,可以获得更好的CT成像效果。图1对比了应用本发明得到的沉积物CT扫描图与发明“一种天然气水合物沉积物力学特性可视化试验装置”201410357319.X所得到的沉积物CT扫描图,可以发现CT成像质量得到了较大提升。
针对发明“一种天然气水合物沉积物力学特性可视化试验装置”201410357319.X的不足,大连理工大学重新设计和优化了水合物沉积物CT三轴试验装置,在能够获得水合物储层静力、动力学特性、蠕变特性的前提下,提升了三轴仪试验装置扫描旋转过程稳定性、水合物样品控温精度以及三轴仪压力室的X射线穿透性能,得到了最佳的CT成像效果,为探明水合物分解过程储层变形机理提供了强大的硬件支持。
发明内容
本发明提供一种水合物沉积物CT三轴试验装置,在能够获得水合物储层宏观力学数据的前提下,得到了最佳的CT成像效果,为探明水合物分解过程储层变形机理提供技术保障。
本发明的技术方案:
一种水合物沉积物CT三轴试验装置,包括水浴夹套1、压力室2、冷却液通道A3、顶锥4、上压头5、上透水石6、下透水石7、沉积物试样8、橡皮膜9、下压头10、加载活塞11、法兰盘12、热电偶17、液压油缸18、轴向位移传感器19、挡板21和底部固定支架22;
所述的水浴夹套1罩在压力室2上方,并通过螺栓与压力室2上表面固定,水浴夹套1与压力室2之间使用O型圈密封,水浴夹套1上部设有冷却液通道A3;所述水浴夹套1采用隔热性能好的材料,减少冷却液热损失。同时,水浴夹套1避开了X射线扫描区域,降低了实验过程中X射线的衰减,保证冷却液控温效果的同时,不影响CT成像质量。水浴夹套1采用隔热性能好的材料且内部加工有螺旋式纹路,以减少冷却液热损失并提高换热效率。所述的压力室2由两种材料组成,整体分为三部分,三部分之间采用O型圈密封,螺栓固紧;上部和下部采用导热性能好、强度高、密度低的铝合金材料,中部采用导热性差、强度高、X射线穿透性能好的工程塑料;一方面,中部采用工程塑料,既提高了压力室的X射线穿透性能,又减少了压力室的热损失,提高了控温精度。另一方面,压力室上部采用铝合金材料,满足压力室强度的同时,保证了冷却液与压力室内部之间的热传导效率,维持压力室内温度稳定。
所述的压力室2上部安装有顶锥4,顶锥4杆加工有螺纹,可与压力室2相互配合安装;为了加强顶锥4的稳定性,在顶锥4上部安装有与顶锥4杆相同直径的螺栓;顶锥4与上压头5接触。
所述的上压头5下部依次为上透水石6、沉积物试样8、下透水石7和下压头10;上压头5下半部分、上透水石6、沉积物试样8、下透水石7和下压头10上半部分包裹有橡皮膜9。
所述的下压头10与加载活塞11使用螺纹固定连接。
所述的加载活塞11在液压油缸18中上下移动,并采用密封圈密封。
所述的压力室2下部与法兰盘12接触,并通过O型圈密封,螺栓固紧;所述的法兰盘12内部含有四个通道:通道B13、通道C14、通道D15和通道E16,分别为热电偶17通道、围压控制通道、孔隙压力控制通道以及背压控制通道。其中,在三轴仪主机内部,在通道B13的出口处安装有热电偶17,通道D15和通道E16分别通过柔性耐压尼龙管路与下压头10和上压头5连接。
所述的法兰盘12与液压油缸18之间使用O型圈密封,螺栓固紧。
所述的液压油缸18侧面固定有轴向位移传感器19;液压油缸18侧面下部含有通道F20,用于注入液压油控制轴向加载。
所述的加载活塞11底部安装有挡板21,挡板21与加载活塞11之间采用螺栓连接,挡板21与轴向位移传感器19相互接触,实现轴向位移实时反馈。
所述的液压油缸18下部固定有底部固定支架22,液压油缸18和底部固定支架22之间采用螺栓连接,用于水合物CT三轴仪试验装置在微焦点CT载物台上的旋转。
所述的加载活塞11、法兰盘12与液压油缸18构成的轴向加载机构,整体处于水合物三轴仪装置下方,降低了整个装置的重心,增强了水合物沉积物CT三轴仪装置在CT扫描过程中的稳定性。
本发明的有益效果:
(1)在满足水合物三轴仪与X射线CT系统有机结合的前提下,重新设计和优化了水合物沉积物CT三轴仪试验装置,提升了三轴仪主机扫描旋转过程稳定性、水合物样品控温精度以及三轴仪压力室的X射线穿透性能,得到了最佳的CT成像效果。
(2)压力室2由两种材料组成,上部和下部采用导热性能好、强度高、密度低的铝合金材料,中部采用导热性差、强度高、X射线穿透性能好的工程塑料。一方面,既提高了压力室的X射线穿透性能,又减少了压力室的热损失,提高了控温精度。另一方面,满足压力室强度的同时,保证了冷却液与压力室内部之间的热传导效率,维持压力室内温度稳定。
(3)水浴夹套1使用隔热性能好的材料,减少冷却液热损失。同时,水浴夹套1避开了X射线扫描区域,降低了实验过程中X射线的衰减,保证冷却液控温效果的同时,不影响CT成像质量。
(4)由加载活塞11、法兰盘12与液压油缸18构成的轴向加载机构整体处于三轴仪试验装置下方,降低了整个装置的重心,增强了水合物沉积物CT三轴仪装置在CT扫描过程中的稳定性。
附图说明
图1是沉积物CT扫描图,a应用本发明得到的沉积物CT扫描图;b2014年的发明所得到的沉积物CT扫描图。
图2是一种水合物沉积物CT三轴试验装置结构图。
图3是一种水合物沉积物CT三轴试验装置系统图。
图4是含水合物沉积物试样应力应变曲线。
图5是试样在各应变下的CT扫描图像整体,a轴向应变:0%;b轴向应变:2%;c轴向应变:4%;d轴向应变:7%。
图6是试样在各应变下的CT扫描图像中部,a轴向应变:0%;b轴向应变:2%;c轴向应变:4%;d轴向应变:7%。
图7是应变0%和2%试样胶结结构破坏对比图,a轴向应变:0%;b轴向应变:2%。
图8是应变0%和4%试样胶结结构破坏对比图,a轴向应变:0%;b轴向应变:4%。
图9是应变0%和7%试样胶结结构破坏对比图,a轴向应变:0%;b轴向应变:7%。
图10是试样内部剪切带的识别图。
图中:1水浴夹套;2压力室;3冷却液通道A;4顶锥;5上压头;6上透水石;7下透水石;8沉积物试样;9橡皮膜;10下压头;11加载活塞;12法兰盘;13通道B;14通道C;15通道D;16通道E;17热电偶;18液压油缸;19轴向位移传感器;20通道F;21挡板;22底部固定支架;23高精度压力体积控制器孔压;24高精度压力体积控制器轴压;25高精度压力体积控制器围压;26氮气气源围压;27氙气气源孔压;28氮气气源孔压;29a、29b、29c、29d、29e、29f、29g、29h针阀;30背压阀;31气水分离器;32气体流量计;33水浴;34X射线发射器;35X射线接收器;36数据采集器;37水合物沉积物CT三轴试验装置。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
(1)、连接管路:将水合物沉积物CT三轴试验装置37的底部固定支架22固定于微焦点CT载物台。根据图3,将一种水合物沉积物CT三轴试验装置37的冷却液通道A3与水浴33使用柔性管路相连,以实现压力室2的温度控制;将一种水合物沉积物CT三轴试验装置37的通道C14经针阀29a、29b和29c分别与高精度压力体积控制器围压25和氮气气源围压26使用柔性耐压管路相连,以实现沉积物试样8的围压控制;将一种水合物沉积物CT三轴试验装置37的通道D15经针阀29e和29h分别与高精度压力体积控制器孔压23、氙气气源孔压27和氮气气源孔压28使用柔性耐压管路相连,以实现沉积物试样8的孔隙压力控制。氙气气源孔压27为沉积物试样8提供水合物原位生成所需的气体供给。氮气气源孔压28主要用于管路检漏。将一种水合物沉积物CT三轴试验装置37的通道D16经针阀29d分别与背压阀30、气水分离器31和气体流量计32使用柔性耐压管路相连,以实现沉积物试样8的背压控制。气体流量计32用于计算沉积物试样8在分解实验中的水合物饱和度变化。将一种水合物沉积物CT三轴试验装置37的通道F20经针阀29f与高精度压力体积控制器轴压24使用柔性耐压管路相连,以实现轴向加载。将一种水合物沉积物CT三轴试验装置37的通道B13中的热电偶17、高精度压力体积控制器孔压23、高精度压力体积控制器轴压24、高精度压力体积控制器围压25、轴向位移传感器19、水浴33与数据采集器36相连,以实现一种水合物沉积物CT三轴试验装置37在实验过程中的数据采集。
(2)、试样制备:根据所需试样孔隙度及水合物饱和度,在冷库-15℃内将一定量的冰粉和砂混合均匀,在击样筒内使用击实锤分15层击实,制成冰砂混合物圆柱试样,冷冻6小时后,拆除击样筒将试样取出。
(3)、试样安装:拆除法兰盘12与压力室2之间的螺栓,打开压力室2。依次将下透水石7、沉积物试样8、上透水石6、上压头5放置在下压头10上,并包裹橡皮膜9,然后盖上压力室2,拧紧法兰盘12与压力室2之间的螺栓。
(4)、试样饱和:打开针阀29a、针阀29b、针阀29c。打开氮气气源围压26,氮气经针阀29a、针阀29c以及针阀29b分别向压力室2和高精度压力体积控制器围压25内注入,当高精度压力体积控制器围压25内的压力升至0.2MPa时,关闭针阀29a和氮气气源围压26。打开针阀29h、针阀29e,将背压阀30调至最高。打开氙气气源孔压27,氙气经针阀29h、针阀29e分别向高精度压力体积控制器孔压23和沉积物试样8内注入,当高精度压力体积控制器孔压23的压力升至0.1MPa时,关闭氙气气源孔压27。调节高精度压力体积控制器围压25和高精度压力体积控制器孔压23,控制围压增加速率与孔隙压力增加速率相同,并且始终保持围压比孔隙压力高0.1MPa,直至围压和孔隙压力分别达到0.7MPa和0.6MPa。调整高精度压力体积控制器围压25和高精度压力体积控制器孔压23进入恒压模式。开启水浴33,调节压力室2内氮气温度上升至18℃,使沉积物试样8内的冰融化。压力室2内氮气温度通过热电偶17获得。当高精度压力体积控制器孔压23内的氙气体积不再消耗时,认为沉积物试样8达到完全气饱和。
(5)、水合物原位生成:调整水浴33,调节压力室2内氮气温度至7℃,使沉积物试样8的温度低于水合物相平衡温度。当高精度压力体积控制器孔压23内的气体体积没有明显变化时,表明沉积物试样8孔隙内的水已经与氙气完全反应生成氙气水合物,根据高精度压力体积控制器孔压23内的氙气体积变化,计算水合物饱和度。
(6)、试样固结:根据具体实验工况,调节并维持高精度压力体积控制器围压25和高精度压力体积控制器孔压23的压力以释放沉积物试样8内部的超静孔隙压力以实现沉积物试样8的固结,当高精度压力体积控制器孔压23的体积不再变化时,认为沉积物试样8固结完成。
(7)、试样剪切:根据实验所需的剪切速率,设定并维持高精度压力体积控制器轴压24内的液压油注入流速,以推动加载活塞11对沉积物试样8进行剪切,通过数据采集器36采集剪切过程中高精度压力体积控制器轴压24的压力变化和轴向位移传感器19的位移变化量,以得到沉积物试样8在剪切过程中的应力应变曲线。当要进行CT扫描时,暂停轴向加载,以防止CT图像重影。8、数据分析:按照上述步骤获得的应力应变曲线如图4所示,可以分为三阶段:第一阶段,准弹性阶段轴向应变:0%-2%,在该阶段偏应力几乎随轴向应变的增加而线性增加,试样整体表现出弹性特征;准弹塑性阶段轴向应变:2%-4%,在该阶段偏应力随轴向应变的增长速率逐步降低;临界状态阶段轴向应变:4%-10%,在该阶段偏应力几乎不随轴向应变的增加产生变化。图5和图6分别展示了应变在0%、2%、4%和7%时沉积物试样8整体和中部的CT扫描图像,其中白色部分为水合物,灰色部分为砂颗粒,黑色部分为孔隙。由图7可以发现,在准弹性阶段轴向应变:0%-2%,沉积物试样8内的胶结结构没有发生明显破坏;随着轴向应变的继续增大,沉积物试样8进入准弹塑性阶段轴向应变:2%-4%,由图8可以发现水合物发生了明显的脱落剥离行为。当进入临界状态阶段轴向应变:4%-10%时,由图9可以发现沉积物试样8内部的水合物发生了明显的大规模的碾碎破坏现象。将沉积物试样8在轴向应变为4%与7%时的纵向截面图进行粒子图像测速法ParticleImage Velocimetry分析,可以得到明显的剪切带图像,如图10所示,剪切带的倾角为41°,厚度为6.8mm。

Claims (3)

1.一种水合物沉积物CT三轴试验装置,其特征在于,所述的水合物沉积物CT三轴试验装置包括水浴夹套(1)、压力室(2)、冷却液通道A(3)、顶锥(4)、上压头(5)、上透水石(6)、下透水石(7)、沉积物试样(8)、橡皮膜(9)、下压头(10)、加载活塞(11)、法兰盘(12)、热电偶(17)、液压油缸(18)、轴向位移传感器(19)、挡板(21)和底部固定支架(22);
所述的水浴夹套(1)罩在压力室(2)上方,并通过螺栓与压力室(2)上表面固定,水浴夹套(1)与压力室(2)之间使用O型圈密封,水浴夹套(1)上部设有冷却液通道A(3);
所述的压力室(2)由两种材料组成,整体分为三部分,三部分之间采用O型圈密封,螺栓固紧;上部和下部采用铝合金材料,中部采用工程塑料;
所述的压力室(2)上部安装有顶锥(4),顶锥(4)杆加工有螺纹,与压力室(2)相互配合安装;顶锥(4)与上压头(5)接触;
所述的上压头(5)下部依次为上透水石(6)、沉积物试样(8)、下透水石(7)和下压头(10);上压头(5)下半部分、上透水石(6)、沉积物试样(8)、下透水石(7)和下压头(10)上半部分包裹有橡皮膜(9);
所述的下压头(10)与加载活塞(11)使用螺纹固定连接;
所述的加载活塞(11)在液压油缸(18)中上下移动,并采用密封圈密封;
所述的压力室(2)下部与法兰盘(12)接触,并通过O型圈密封,螺栓固紧;所述的法兰盘(12)内部含有四个通道:通道B(13)、通道C(14)、通道D(15)和通道E(16),分别为热电偶(17)通道、围压控制通道、孔隙压力控制通道以及背压控制通道;其中,在三轴仪主机内部,在通道B(13)的出口处安装有热电偶(17),通道D(15)和通道E(16)分别通过柔性耐压尼龙管路与下压头(10)和上压头(5)连接;
所述的法兰盘(12)与液压油缸(18)之间使用O型圈密封,螺栓固紧;
所述的液压油缸(18)侧面固定有轴向位移传感器(19);液压油缸(18)侧面下部含有通道F(20),用于注入液压油控制轴向加载;
所述的加载活塞(11)底部安装有挡板(21),挡板(21)与加载活塞(11)之间采用螺栓连接,挡板(21)与轴向位移传感器(19)相互接触,实现轴向位移实时反馈;
所述的液压油缸(18)下部固定有底部固定支架(22),液压油缸(18)和底部固定支架(22)之间采用螺栓连接,用于水合物CT三轴仪试验装置在微焦点CT载物台上的旋转;
所述的加载活塞(11)、法兰盘(12)与液压油缸(18)构成的轴向加载机构,整体处于水合物三轴仪装置下方,降低了整个装置的重心,增强了水合物沉积物CT三轴仪装置在CT扫描过程中的稳定性。
2.根据权利要求1所述的水合物沉积物CT三轴试验装置,其特征在于,为了加强顶锥(4)的稳定性,在顶锥(4)上部安装有与顶锥(4)杆相同直径的螺栓。
3.根据权利要求1或2所述的水合物沉积物CT三轴试验装置,其特征在于,所述的水浴夹套(1)采用隔热性能好的材料且内部加工有螺旋式纹路,以减少冷却液热损失并提高换热效率。
CN201811509193.8A 2018-12-11 2018-12-11 一种水合物沉积物ct三轴试验装置 Active CN109668916B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811509193.8A CN109668916B (zh) 2018-12-11 2018-12-11 一种水合物沉积物ct三轴试验装置
US16/968,818 US11215569B2 (en) 2018-12-11 2019-11-18 CT triaxial test apparatus for hydrate-bearing sediment
AU2019399653A AU2019399653B2 (en) 2018-12-11 2019-11-18 CT triaxial test device for hydrate sediments
PCT/CN2019/119107 WO2020119394A1 (zh) 2018-12-11 2019-11-18 一种水合物沉积物ct三轴试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811509193.8A CN109668916B (zh) 2018-12-11 2018-12-11 一种水合物沉积物ct三轴试验装置

Publications (2)

Publication Number Publication Date
CN109668916A CN109668916A (zh) 2019-04-23
CN109668916B true CN109668916B (zh) 2021-02-19

Family

ID=66143724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811509193.8A Active CN109668916B (zh) 2018-12-11 2018-12-11 一种水合物沉积物ct三轴试验装置

Country Status (4)

Country Link
US (1) US11215569B2 (zh)
CN (1) CN109668916B (zh)
AU (1) AU2019399653B2 (zh)
WO (1) WO2020119394A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341760B (zh) * 2018-09-21 2020-08-07 大连理工大学 一种应用于研究水合物堵塞的全可视化循环管路系统
CN109668916B (zh) * 2018-12-11 2021-02-19 大连理工大学 一种水合物沉积物ct三轴试验装置
CN110345904B (zh) * 2019-06-06 2020-12-18 山东科技大学 水合物分解过程中沉积物变形及渗透率测试装置及方法
CN110186832B (zh) * 2019-06-13 2022-02-01 广州海洋地质调查局 一种沉积物结构变化的可视实验装置及模拟方法
WO2021003688A1 (zh) * 2019-07-10 2021-01-14 中国科学院地质与地球物理研究所 一种水合物三轴实验设备
CN110567814B (zh) * 2019-08-26 2024-02-20 中国科学院地质与地球物理研究所 一种天然气水合物沉积物三轴力学试验中子成像方法
CN110567815A (zh) * 2019-09-24 2019-12-13 中国科学院武汉岩土力学研究所 一种浅层松软沉积物泊松比的精密量测试验装置及方法
CN111337523A (zh) * 2020-01-13 2020-06-26 中国海洋大学 水合物生成及分解过程沉积物孔隙结构ct扫描装置与方法
CN111289385B (zh) * 2020-03-05 2021-04-20 青岛海洋地质研究所 一种基于x-ct探测含水合物沉积物力学参数的装置及方法
CN111781011B (zh) * 2020-08-04 2023-03-28 中国船舶科学研究中心 用于可燃冰成藏试验舱保压保真取样设备
CN112034135B (zh) * 2020-08-06 2021-06-22 中国科学院广州能源研究所 一种天然气水合物分解地层形变测量装置
CN111982782B (zh) * 2020-08-24 2022-08-23 中国海洋石油集团有限公司 水合物沉积物原位渗透率压力梯度及力学特性测量系统
CN112082835A (zh) * 2020-09-09 2020-12-15 中国科学院地质与地球物理研究所 可控温度压力环境下天然气水合物试样的制备装置及方法
CN112229739B (zh) * 2020-09-30 2023-03-24 太原理工大学 一种配合ct在线扫描的高温高压岩石三轴实验装置
CN112362485A (zh) * 2020-11-09 2021-02-12 中国石油大学(华东) 一种水合物沉积物的多功能综合试验系统及试验方法
CN112834357B (zh) * 2021-01-08 2022-03-22 青岛海洋地质研究所 海底天然气水合物沉积物储层旁压蠕变试验系统及方法
CN112858018B (zh) * 2021-01-08 2022-06-28 青岛海洋地质研究所 含水合物沉积物旁压蠕变试验装置及方法
CN113008700B (zh) * 2021-02-07 2023-01-24 山东科技大学 一种天然气水合物的力学特性测试方法
CN113049396B (zh) * 2021-03-26 2022-04-12 中国矿业大学 一种适用于ct三维重建的有压冻结三轴试验系统及方法
CN113063665A (zh) * 2021-04-29 2021-07-02 四川大学 岩石三轴蠕变试验装置及其系统
CN113447328B (zh) * 2021-06-17 2022-08-05 河海大学 一种大三轴试验用碎石芯复合试样的制备装置及制备方法
CN113567322B (zh) * 2021-07-27 2024-01-26 安徽理工大学 一种研究孔隙介质水压对其力学特性的试验装置及方法
CN113820210A (zh) * 2021-09-13 2021-12-21 华能澜沧江水电股份有限公司 一种旋转式堆石体三轴干湿循环试验装置及测试方法
CN114002073A (zh) * 2021-10-29 2022-02-01 山东科技大学 一种考虑沉积角度的水合物力学性质试验装置及试验方法
CN114112853B (zh) * 2021-11-30 2022-09-23 重庆大学 用于煤层致裂的试件夹持器
WO2023150755A1 (en) * 2022-02-07 2023-08-10 West Pharmaceutical Services, Inc. Scanning parts at target temperatures
CN114414377B (zh) * 2022-02-18 2023-03-28 西湖大学 用于原位实验仪的紧凑连接结构
CN114486532B (zh) * 2022-03-28 2022-06-21 中国矿业大学(北京) 测试含冰软岩样品蠕变中流体运移规律的装置和方法
CN114965076B (zh) * 2022-05-16 2023-05-23 中国海洋大学 水合物开采渗流过程沉积物骨架微观变形测量装置及方法
CN115452505B (zh) * 2022-08-26 2023-04-11 青岛海洋地质研究所 海底受力条件下水合物反应过程模拟观测装置及方法
US11630049B1 (en) 2022-11-18 2023-04-18 Chongqing University Test piece holder for coalbed fracturing
CN116201523B (zh) * 2022-12-30 2024-02-27 浙江大学 精确控制温压环境的天然气水合物开采超重力模拟装置
CN115902167B (zh) * 2023-01-09 2023-08-08 水利部交通运输部国家能源局南京水利科学研究院 干湿循环和地下水位耦合下土体裂隙与强度演化试验装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226183A (zh) * 2008-01-22 2008-07-23 重庆大学 煤与瓦斯突出模拟试验台
EP2153026A1 (en) * 2007-05-03 2010-02-17 Smith International, Inc. Method of optimizing a well path during drilling
CN102252918A (zh) * 2011-06-30 2011-11-23 中国科学院武汉岩土力学研究所 含天然气水合物沉积物三轴试验装置及其试验方法
CN102495090A (zh) * 2011-11-24 2012-06-13 大连理工大学 天然气水合物低温高压核磁共振成像装置及方法
WO2012126820A1 (de) * 2011-03-22 2012-09-27 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Feuerfester keramischer formkörper, insbesondere brennhilfsmittel, und verfahren zu dessen herstellung
CN103354888A (zh) * 2011-04-28 2013-10-16 波兰科学院化学工程研究所 利用易燃气体和空气的低浓度气体混合物的具有稳定热能回收的方法以及用于实施所述方法的倒流装置
CN104155188A (zh) * 2014-07-24 2014-11-19 大连理工大学 一种天然气水合物沉积物力学特性可视化试验装置
CN104535426A (zh) * 2014-12-04 2015-04-22 中国科学院武汉岩土力学研究所 Ct实时扫描的三轴应力、渗流、化学耦合流变试验系统
CN205015491U (zh) * 2015-09-23 2016-02-03 中国石油大学(华东) 一种多孔介质中气水合物模拟实验测试系统
CN106290421A (zh) * 2016-09-14 2017-01-04 大连理工大学 一种基于微焦点x射线ct的水合物生长速率及有效体积测量装置及方法
CN106370822A (zh) * 2016-11-29 2017-02-01 河南工程学院 带ct实时扫描的注气驱替煤层气实验系统及其实验方法
CN106706691A (zh) * 2017-01-06 2017-05-24 中冶华天工程技术有限公司 便携式x射线荧光光谱法重金属检测种类判断方法
KR101751858B1 (ko) * 2016-01-07 2017-06-28 대우조선해양 주식회사 선박용 증발가스 처리 방법
CN107261839A (zh) * 2016-03-30 2017-10-20 日本碍子株式会社 还原剂喷射装置以及废气处理方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269991B2 (en) * 2003-02-14 2007-09-18 Air Liquide America L.P. Permeation calibrator
EP2011540A1 (en) * 2007-07-02 2009-01-07 Ulrich GmbH & Co. KG Hose System for an Injector, Squeeze Valve and Pressure Measuring Interface
US8602648B1 (en) 2008-09-12 2013-12-10 Carl Zeiss X-ray Microscopy, Inc. X-ray microscope system with cryogenic handling system and method
CN103962316B (zh) * 2010-02-25 2016-08-24 矿物分离技术股份有限公司 材料分选方法
CN102564853A (zh) * 2010-12-08 2012-07-11 中国海洋石油总公司 天然气水合物岩石力学三轴试验装置
CN103424414A (zh) * 2012-05-22 2013-12-04 青岛海洋地质研究所 沉积物中水合物微观赋存状态的ct原位探测装置
CN202676633U (zh) * 2012-05-22 2013-01-16 青岛海洋地质研究所 沉积物中水合物微观赋存状态的ct原位探测装置
KR102044266B1 (ko) * 2012-10-24 2019-11-13 대우조선해양 주식회사 선박용 엔진의 연료공급 시스템 및 방법
CN103323352B (zh) * 2013-06-07 2015-04-08 中国石油天然气股份有限公司 天然气水合物沉积物动三轴力学-声学-电学同步测试的实验装置及方法
CN103616290A (zh) * 2013-11-14 2014-03-05 大连理工大学 一种用于测定天然气水合物沉积物动力特性的动加载系统
CN103868801B (zh) * 2014-02-26 2016-04-06 中国石油天然气股份有限公司 岩石性能的评价装置
JP2016136304A (ja) * 2015-01-23 2016-07-28 愛三工業株式会社 圧力調整弁
CN104833582B (zh) * 2015-05-21 2017-06-13 大连理工大学 一种天然气水合物沉积物三轴试验装置
CN106323999B (zh) * 2016-08-12 2018-03-09 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法
CN106644729A (zh) 2016-10-28 2017-05-10 中南大学 基于mts动力源的低围压静动三轴试验系统
CN106587189B (zh) * 2016-12-07 2019-06-21 大连理工大学 一种内溢式连续水合物法海水淡化装置
CN107462190B (zh) * 2017-07-31 2018-06-22 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
CN107748242A (zh) * 2017-10-23 2018-03-02 大庆东油睿佳石油科技有限公司 一种天然气水合物压裂模拟的实验装置
KR101888872B1 (ko) * 2018-05-28 2018-08-16 한국지질자원연구원 다상유동에서 X-ray CT 영상을 이용한 퇴적층 내 세립자 이동분석 방법
CN109668916B (zh) * 2018-12-11 2021-02-19 大连理工大学 一种水合物沉积物ct三轴试验装置
CN110274833B (zh) * 2019-08-02 2022-04-01 中国石油大学(华东) Ct实时扫描的水合物沉积物柔性加载真三轴试验装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2153026A1 (en) * 2007-05-03 2010-02-17 Smith International, Inc. Method of optimizing a well path during drilling
CN101226183A (zh) * 2008-01-22 2008-07-23 重庆大学 煤与瓦斯突出模拟试验台
WO2012126820A1 (de) * 2011-03-22 2012-09-27 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Feuerfester keramischer formkörper, insbesondere brennhilfsmittel, und verfahren zu dessen herstellung
CN103354888A (zh) * 2011-04-28 2013-10-16 波兰科学院化学工程研究所 利用易燃气体和空气的低浓度气体混合物的具有稳定热能回收的方法以及用于实施所述方法的倒流装置
CN102252918A (zh) * 2011-06-30 2011-11-23 中国科学院武汉岩土力学研究所 含天然气水合物沉积物三轴试验装置及其试验方法
CN102495090A (zh) * 2011-11-24 2012-06-13 大连理工大学 天然气水合物低温高压核磁共振成像装置及方法
CN104155188A (zh) * 2014-07-24 2014-11-19 大连理工大学 一种天然气水合物沉积物力学特性可视化试验装置
CN104535426A (zh) * 2014-12-04 2015-04-22 中国科学院武汉岩土力学研究所 Ct实时扫描的三轴应力、渗流、化学耦合流变试验系统
CN205015491U (zh) * 2015-09-23 2016-02-03 中国石油大学(华东) 一种多孔介质中气水合物模拟实验测试系统
KR101751858B1 (ko) * 2016-01-07 2017-06-28 대우조선해양 주식회사 선박용 증발가스 처리 방법
CN107261839A (zh) * 2016-03-30 2017-10-20 日本碍子株式会社 还原剂喷射装置以及废气处理方法
CN106290421A (zh) * 2016-09-14 2017-01-04 大连理工大学 一种基于微焦点x射线ct的水合物生长速率及有效体积测量装置及方法
CN106370822A (zh) * 2016-11-29 2017-02-01 河南工程学院 带ct实时扫描的注气驱替煤层气实验系统及其实验方法
CN106706691A (zh) * 2017-01-06 2017-05-24 中冶华天工程技术有限公司 便携式x射线荧光光谱法重金属检测种类判断方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Mechanical behavior of gassaturated;Hyodo M;《Journal of GeophysicalResearch》;20131231;第118卷(第10期);第5185-5194页 *
The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning;Emily V.L;《Marine and Petroleum Geology》;20110731;第28卷(第7期);第1283-1293页 *
基于热力学方法的甲烷水合物沉积物本构模型;孙翔;《大连理工大学学报》;20170331;第57卷(第2期);第111-118页 *
天然气水合物三轴压缩试验研究进展;李洋辉;《天然气勘探与开发》;20100430;第33卷(第2期);第51-55页 *
天然气水合物沉积物体变实验本科教学探索;李洋辉;《实验室研究与探索》;20161031;第35卷(第10期);第182-195页 *

Also Published As

Publication number Publication date
WO2020119394A1 (zh) 2020-06-18
CN109668916A (zh) 2019-04-23
AU2019399653A1 (en) 2020-09-03
AU2019399653B2 (en) 2021-02-04
US20210003517A1 (en) 2021-01-07
US11215569B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
CN109668916B (zh) 一种水合物沉积物ct三轴试验装置
Song et al. Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation
CN107807143B (zh) 水合物专用低场核磁共振多探头定量测试系统及方法
CN104155188B (zh) 一种天然气水合物沉积物力学特性可视化试验装置
Song et al. Mechanical property of artificial methane hydrate under triaxial compression
Luo et al. Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery
CN107576562A (zh) 一种多场耦合真三轴测试系统及其试验方法
CN111982782B (zh) 水合物沉积物原位渗透率压力梯度及力学特性测量系统
CN111289385A (zh) 一种基于x-ct探测含水合物沉积物力学参数的装置及方法
CN113072990B (zh) 可模拟真实地层中天然气水合物储层的模型制备装置及方法
JP2020201236A (ja) 堆積物の構造変化の可視化実験装置及びシミュレーション方法
JP6782290B2 (ja) Ct技術による海域の泥質シルト貯留層構造変化の測定装置及び測定方法
Wu et al. Experimental study on a pressure-coring technology based on a freeze-core valve for marine hydrate-bearing sediment sampling
CN108120644A (zh) 一种气压作用下孔道岩石试件的蠕变试验装置与方法
Spangenberg et al. “Ester”—A new ring-shear-apparatus for hydrate-bearing sediments
Jia et al. Micro-nanostructure of coal and adsorption-diffusion characteristics of methane
Saowapakpiboon et al. Comparison on the performance of prefabricated vertical drain (PVD) preloading combined with and without vacuum and heat
Hyodo et al. Triaxial behaviour of methane hydrate bearing sand
Wang et al. Freezing Pressurized Water into a Standard Cylindrical Ice Sample in a Triaxial Cell
Hyodo et al. Effect of fines on mechanical properties of methane hydrate bearing sands
CN111965017A (zh) 一种测量水合物沉积物抗拉强度的方法
CN112378787A (zh) 一种自由下落式触探模拟装置及方法
Yang et al. An experimental investigation of piping effects on the mechanical properties of toyoura sand
CN117782720A (zh) 基于气体水合物技术的含气土样制备装置及方法
Konrad Sampling of saturated and unsaturated sands by freezing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant