CN107462190B - 一种岩石水力压裂试验裂缝三维形貌高精度成像方法 - Google Patents

一种岩石水力压裂试验裂缝三维形貌高精度成像方法 Download PDF

Info

Publication number
CN107462190B
CN107462190B CN201710635873.3A CN201710635873A CN107462190B CN 107462190 B CN107462190 B CN 107462190B CN 201710635873 A CN201710635873 A CN 201710635873A CN 107462190 B CN107462190 B CN 107462190B
Authority
CN
China
Prior art keywords
rock
fluorine
nucleic
precision
rock sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710635873.3A
Other languages
English (en)
Other versions
CN107462190A (zh
Inventor
李守定
刘丽楠
李晓
周忠鸣
张振兴
刘艳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN201710635873.3A priority Critical patent/CN107462190B/zh
Priority to PCT/CN2017/098076 priority patent/WO2019024137A1/zh
Publication of CN107462190A publication Critical patent/CN107462190A/zh
Application granted granted Critical
Publication of CN107462190B publication Critical patent/CN107462190B/zh
Priority to US16/025,065 priority patent/US10139355B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • G01B15/045Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures by measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/08Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0266Cylindrical specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/309Accessories, mechanical or electrical features support of sample holder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/311Accessories, mechanical or electrical features high pressure testing, anvil cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明提供一种能够克服岩石水力压裂裂缝三维形貌观测精度低的缺点和不足,提高岩石水力压裂试验裂缝三维形貌观测精度,有利于科学认识岩石水力压裂裂缝发育规律的三维形貌高精度成像方法。其特征是通过含氟核素的水溶液水压致裂岩石,形成水力压裂裂缝,压裂过程中压裂机边加载边旋转,由X射线源发射X射线束穿透岩石到达CT探测器,岩石内部氟核素发射光信号被核素高分辨面阵列SiPM探测器接收,核素断层扫描数据与CT数据融合成像,实现岩石裂缝三维形貌高精度成像。

Description

一种岩石水力压裂试验裂缝三维形貌高精度成像方法
技术领域 岩石力学试验技术领域
背景技术 岩石水力压裂试验的一个重要测量物理量是裂缝的三维形貌分布,当前岩石水 力压裂试验表面裂缝观测主要依赖于扫描电子显微镜等手段,内部三维形貌观测主要依赖于 X射线CT成像技术。X射线CT成像技术对于岩石水力压裂试验裂缝定位精度较高,但是成 像精度有限。目前,工业CT无法对直径100mm岩石样品中宽度小于0.1mm的裂缝进行成像, 而水力压裂试验中约86%的裂缝宽度小于0.1mm,因此,工业CT对于直径100mm岩石水力 压裂试验中绝大多数的裂缝无法进行有效观测,丢失了实际存在的大量裂缝信息。
因此,当前岩石水力压裂试验裂缝观测方法,不能满足岩石水力压裂试验三维裂缝形貌 观测的需求。
发明内容 本发明提供一种能够克服岩石水力压裂裂缝三维形貌观测精度低的缺点和不 足,提高岩石水力压裂试验裂缝三维形貌观测精度,有利于科学认识岩石水力压裂裂缝发育 规律的三维形貌高精度成像方法。其特征是通过含氟核素的水溶液水压致裂岩石,形成水力 压裂裂缝,压裂过程中压裂机边加载边旋转,由X射线源发射X射线束穿透岩石到达CT探 测器,岩石内部氟核素发射光信号被核素高分辨面阵列SiPM探测器接收,γ光子穿透能力 强,具有自准直特性,且正电子核素示踪剂引入岩石微裂缝成像为冷源背景下的热源成像, 有利于获取高对比度的微裂缝图像,弥补CT成像技术在微小裂缝成像方面的不足。核素断 层扫描数据与CT数据融合成像,实现岩石裂缝三维形貌高精度成像。
岩石水力压裂试验裂缝三维形貌高精度成像方法的主要技术方案由三个部分构成:岩石 高精度旋转水力压裂试验机,实验室X射线工业CT部分,核素高分辨面阵列SiPM探测器 扫描部分。岩石高精度旋转水力压裂试验机特征为:由岩样1,上垫块2,下垫块3,高精度 旋转作动器4,旋转机构5,围压增压泵6,自平衡活塞7,轴向作动器8,三轴缸9,反力框架11,及含氟核素溶液高压水泵12等构成,岩样1置于上垫块2与下垫块3之间,三轴缸9 与围压增压泵6对岩样1实施围压加载,自平衡活塞7与轴向作动器8保证对岩样1实施轴 向加载,氟核素溶液通过含氟核素溶液高压水泵12使岩样1致裂产生压裂裂缝10,岩石水 力压裂试验机进行围压、轴压和水力压裂加载时,高精度旋转作动器4和旋转机构5带动岩 样1以一定的速率旋转;实验室X射线工业CT特征为:由X射线源13,CT探测器15等设 备构成。X射线源13激发出的X射线束14透射岩样1,被CT探测器15接收透射后的X射 线,根据线衰减系数分布μ(x,y)计算得出CT图像;核素高分辨面阵列SiPM探测器扫描部 分特征为:由含氟核素溶液高压水泵12及核素高分辨面阵列SiPM探测器16等设备构成。 通过含氟核素溶液高压水泵12将氟核素溶液压入岩样1中,使岩样1致裂产生压裂裂缝10, 裂缝中的氟核素湮灭发射光信号被核素高分辨面阵列SiPM探测器16接收,转化为电信号后 成像。
基本原理与技术 岩石X射线CT图像反映岩石各部位对X射线吸收程度的大小,岩石中的矿物密度与X射线吸收系数成正比,相邻矿物密度相差越大,X射线CT成像对比度 越大,分辨率越高。正电子氟核素为放射性核素,正电子湮灭产生γ光子对,光子打到核素SiPM探测器上而被定位,经核素高分辨面阵列SiPM探测器将接收到的光信号转化为电信号实现数据重组与图像重建。两个SiPM平板探测器面对面放置,被测样品360度高精度旋转,实现完备的数据采集。X射线CT成像具有岩石结构成像高精度的优势,氟核素断层显微成像具有位置成像灵敏度高的优势,将X射线CT图像与核素断层显微图像融合成像,提供一种岩石水力压裂试验裂缝三维形貌高精度成像方法,其特征是通过高压水泵将氟核素溶液压 入岩样,使岩样致裂产生裂缝,岩石水力压裂过程中岩石水力压裂试验机以一定的速率高精
度旋转。岩石水压致裂过程中,由X射线源发射X射线束穿过岩样被CT探测器接收成 像,对岩石结构进行高精度成像;同时岩石裂缝中的氟核素发射光信号被核素高分辨面阵列 SiPM探测器接收后转化为电信号对裂缝位置进行高精度成像,将CT图像与核素断层显微图 像融合成像,实现岩石水力压裂试验裂缝三维形貌的高精度成像。
岩石水力压裂试验裂缝三维形貌高精度成像方法的主要技术方案由三个部分构成:岩石 高精度旋转水力压裂试验机,实验室X射线工业CT部分,核素高分辨面阵列SiPM探测器 扫描部分。
岩石高精度旋转水力压裂试验机特征为:由岩样1,上垫块2,下垫块3,高精度旋转作 动器4,旋转机构5,围压增压泵6,自平衡活塞7,轴向作动器8,三轴缸9,反力框架11, 及含氟核素溶液高压水泵12等构成,岩样1置于上垫块2与下垫块3之间,三轴缸9与围压 增压泵6对岩样1实施围压加载,自平衡活塞7与轴向作动器8保证对岩样1实施轴向加载, 氟核素溶液通过含氟核素溶液高压水泵12使岩样1致裂产生压裂裂缝10,岩石水力压裂试 验机进行围压、轴压和水力压裂加载时,高精度旋转作动器4和旋转机构5带动岩样1以一 定的速率旋转。
实验室X射线工业CT部分特征为:由X射线源13,CT探测器15及等设备构成。X射 线源13激发出的X射线束14透射岩样1,CT探测器15接收透射后的X射线,根据线衰减 系数分布μ(x,y)计算得出CT图像。
核素高分辨面阵列SiPM探测器扫描部分特征为:由含氟核素溶液高压水泵12及核素高 分辨面阵列SiPM探测器16等设备构成。通过含氟核素溶液高压水泵12将氟核素溶液压入 岩样1中,使岩样1致裂产生压裂裂缝10,裂缝中的氟核素湮灭发射光信号被核素高分辨面 阵列SiPM探测器16接收,转化为电信号后成像。
附图说明 图1是岩石水力压裂试验裂缝三维形貌高精度成像系统模型图;
图2是岩石水力压裂试验裂缝三维形貌高精度成像系统剖面图;
1:岩样;2:上垫块;3:下垫块;4:高精度旋转作动器;5:旋转机构;6:围压增压泵;7: 自平衡活塞;8:轴向作动器;9:三轴缸;10:压裂裂缝;11:反力框架;12:含氟核素溶 液高压水泵;13:X射线源;14:X射线束;15:CT探测器;16:核素高分辨面阵列SiPM 探测器。
具体实施方式 1.首先将高浓缩的氟核素配置成氟核素溶液,将氟核素溶液加入到含氟核 素溶液高压水泵12中。
2.岩样1置于上垫块2与下垫块3之间,三轴缸9与围压增压泵6对岩样1实施围压加载,自平衡活塞7与轴向作动器8保证对岩样1实施轴向加载,氟核素溶液通过含氟核素溶液高压水泵12使岩样1致裂产生压裂裂缝10,岩石水力压裂试验机进行围压、轴压和水力压裂加载时,高精度旋转作动器4和旋转机构5带动岩样1以一定的速率旋转。
3.运行实验室X射线工业CT,X射线源13激发出的X射线束14透射岩样1,被CT 探测器15接收,透射后的X射线,根据线衰减系数分布μ(x,y)计算得出CT图像,准确定 位裂缝分布位置。
4.通过含氟核素溶液高压水泵12将氟核素溶液压入岩样1中,使岩样1致裂产生压裂 裂缝10,压裂裂缝10中充满了氟核素溶液,裂缝中的氟核素湮灭发射光信号被核素高分辨 面阵列SiPM探测器16接收后转化为电信号成像,将CT图像无法观测到的微裂缝成像。
5.CT图像与核素断层显微图像融合成像,实现岩石水力压裂裂缝三维形貌高精度成像。

Claims (1)

1.一种能够将岩石水力压裂试验三维形貌高精度成像的方法,分为三个部分构成:岩石高精度旋转水力压裂试验机,实验室X射线工业CT部分,氟核素高分辨面阵列SiPM探测器扫描部分;所述岩石高精度水力压裂试验机特征为:由岩样(1),上垫块(2),下垫块(3),高精度旋转作动器(4),旋转机构(5),围压增压泵(6),自平衡活塞(7),轴向作动器(8),三轴缸(9),反力框架(11)及含氟核素溶液高压水泵(12)构成;岩样(1)置于上垫块(2)与下垫块(3)之间,三轴缸(9)与围压增压泵(6)对岩样(1)实施围压加载,自平衡活塞(7)与轴向作动器(8)保证对岩样(1)实施轴向加载,氟核素溶液通过含氟核素溶液高压水泵(12)使岩样(1)致裂产生压裂裂缝(10),岩石水力压裂试验机进行围压、轴压和水力压裂加载时,高精度旋转作动器(4)和旋转机构(5)带动岩样(1)以一定的速率旋转;所述实验室X射线工业CT特征为:由X射线源(13)及CT探测器(15)等设备构成,X射线源(13)激发出的X射线束(14)透射岩样(1),被探测器(15)接收透射后的X射线,根据线衰减系数分布计算得出CT图像;所述核素高分辨面阵列SiPM探测器扫描为:由含氟核素溶液高压水泵(12)及核素高分辨面阵列SiPM探测器(16)等设备构成,通过含氟核素溶液高压水泵(12)将氟核素溶液压入岩样(1)中,使岩样(1)致裂产生压裂裂缝缝网(10),裂缝中的氟核素湮灭发射光信号被核素高分辨面阵列SiPM探测器(16)接收,转化为电信号后成像;CT图像与核素断层显微图像融合成像,实现岩石水力压裂裂缝缝网三维形态高精度成像。
CN201710635873.3A 2017-07-31 2017-07-31 一种岩石水力压裂试验裂缝三维形貌高精度成像方法 Expired - Fee Related CN107462190B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710635873.3A CN107462190B (zh) 2017-07-31 2017-07-31 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
PCT/CN2017/098076 WO2019024137A1 (zh) 2017-07-31 2017-08-18 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
US16/025,065 US10139355B1 (en) 2017-07-31 2018-07-02 Method for high precision imaging for three-dimensional topography of cracks in hydraulic fracturing test of rocks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710635873.3A CN107462190B (zh) 2017-07-31 2017-07-31 一种岩石水力压裂试验裂缝三维形貌高精度成像方法

Publications (2)

Publication Number Publication Date
CN107462190A CN107462190A (zh) 2017-12-12
CN107462190B true CN107462190B (zh) 2018-06-22

Family

ID=60548085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710635873.3A Expired - Fee Related CN107462190B (zh) 2017-07-31 2017-07-31 一种岩石水力压裂试验裂缝三维形貌高精度成像方法

Country Status (3)

Country Link
US (1) US10139355B1 (zh)
CN (1) CN107462190B (zh)
WO (1) WO2019024137A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274437B2 (en) * 2015-01-22 2019-04-30 Halliburton Energy Services, Inc. Methods and systems of testing formation samples using a rock hydrostatic compression chamber
CN107462190B (zh) * 2017-07-31 2018-06-22 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
CN109580365B (zh) * 2018-10-19 2020-02-14 中国科学院地质与地球物理研究所 高能加速器ct岩石力学试验系统
CN109507077A (zh) * 2018-11-01 2019-03-22 太原理工大学 模拟原位条件下超临界二氧化碳煤岩压裂ct成像和评价装置及其使用方法
CN109668916B (zh) * 2018-12-11 2021-02-19 大连理工大学 一种水合物沉积物ct三轴试验装置
CN109459319A (zh) * 2018-12-19 2019-03-12 北京科技大学 用于高清图像重构与工业ct机配套的气囊式围压加载系统
CN109724867B (zh) * 2019-03-13 2024-02-13 合肥工业大学 脉冲动水压下岩石裂隙响应可视化模拟实验系统及方法
US11733181B1 (en) * 2019-06-04 2023-08-22 Saec/Kinetic Vision, Inc. Imaging environment testing fixture and methods thereof
CN110132733B (zh) * 2019-06-10 2020-12-01 中国科学院武汉岩土力学研究所 一种实时成像的三维高应力水力压裂物理模拟试验系统
CN110308167B (zh) * 2019-08-09 2020-09-15 山东大学 一种tbm岩渣射线透射成像ct实时扫描成像装置及方法
CN110567814B (zh) * 2019-08-26 2024-02-20 中国科学院地质与地球物理研究所 一种天然气水合物沉积物三轴力学试验中子成像方法
US11435299B2 (en) * 2019-08-30 2022-09-06 Baker Hughes Oilfield Operations Llc Core analysis system and related methods
CN110793861B (zh) * 2019-11-01 2020-10-13 中国石油大学(北京) 确定砾岩试件水力压裂穿砾排量的试验方法及装置
CN113390770B (zh) * 2020-03-13 2023-04-25 中国石油天然气股份有限公司 评价压裂液对致密油气储层裂缝伤害的装置和方法
CN112067636B (zh) * 2020-08-21 2021-10-12 北京科技大学 岩石含冰裂隙的冻胀变形扩展实时监测系统及其监测方法
CN112255112B (zh) * 2020-10-09 2021-04-13 中国科学院地质与地球物理研究所 可视化试验系统、岩体加热方法
CN112179748B (zh) * 2020-10-12 2023-06-09 河南理工大学 煤岩试样ct三轴实验装样方法
CN112343575B (zh) * 2020-11-20 2021-07-13 西南石油大学 一种研究裂缝性地层封堵承压机制的模拟实验方法
CN112945632A (zh) * 2021-02-03 2021-06-11 中国科学院、水利部成都山地灾害与环境研究所 一种自平衡泥沙取样装置
CN113030435B (zh) * 2021-03-04 2024-06-04 西安建筑科技大学 一种土体竖向裂隙模型观测试验装置及试验方法
RU2759529C1 (ru) * 2021-04-26 2021-11-15 Автономная некоммерческая образовательная организация высшего образования «Сколковский институт науки и технологий» Способ испытания образца горной породы для оценки эффективности тепловых методов увеличения нефтеотдачи пластов
WO2022266542A1 (en) * 2021-06-18 2022-12-22 Psylotech, Inc. Tomography error correction system and method
CN113984807B (zh) * 2021-10-28 2023-07-21 中国科学院西北生态环境资源研究院 基于冻融和压裂作用下岩石裂隙实时扩展的试验方法
CN115201235B (zh) * 2022-09-14 2023-01-06 中国科学院地质与地球物理研究所 一种基于pet-ct和das的多物理场成像方法与系统
CN116046519B (zh) * 2022-11-25 2023-08-11 中南大学 岩石三轴气力耦合单/双裂纹起裂扩展试验装置及方法
CN116519488B (zh) * 2023-06-29 2023-09-12 中国科学院地质与地球物理研究所 一种多功能岩石三轴可视化试验系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007170A1 (en) * 2014-07-11 2016-01-14 Halliburton Energy Services, Inc. Imaging a porous rock sample using a nanoparticle suspension
CN105319603A (zh) * 2015-11-06 2016-02-10 中国石油大学(华东) 致密砂岩储层复杂网状裂缝的预测方法
CN106323999A (zh) * 2016-08-12 2017-01-11 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法
CN106640016A (zh) * 2015-11-03 2017-05-10 中国科学院地质与地球物理研究所 多尺度真三轴水平井水力压裂承压缸及使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297420A (en) * 1993-05-19 1994-03-29 Mobil Oil Corporation Apparatus and method for measuring relative permeability and capillary pressure of porous rock
CN101317765B (zh) * 2008-05-23 2010-06-09 新奥博为技术有限公司 一种集成核素成像与荧光成像的双模式成像系统
US8081796B2 (en) * 2008-11-24 2011-12-20 Ingrain, Inc. Method for determining properties of fractured rock formations using computer tomograpic images thereof
WO2013070945A1 (en) * 2011-11-08 2013-05-16 Lockheed Martin Corporation Image analysis systems having image sharpening capabilities and methods using same
CN104100252B (zh) * 2014-07-23 2016-09-21 中国石油大学(北京) 一种水平井多级水力压裂物理模拟方法
US20180106708A1 (en) * 2015-05-20 2018-04-19 Schlumberger Technology Corporation Hydraulic fracturability index using high resolution core measurements
CN105954104B (zh) * 2016-06-26 2023-03-07 中国科学院武汉岩土力学研究所 一种基于pet/ct的岩石裂纹细观结构检测系统及检测方法
CN106353201A (zh) * 2016-08-25 2017-01-25 绍兴文理学院 一种ct实时三维扫描岩石节理剪切试验系统
CN107462190B (zh) * 2017-07-31 2018-06-22 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝三维形貌高精度成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007170A1 (en) * 2014-07-11 2016-01-14 Halliburton Energy Services, Inc. Imaging a porous rock sample using a nanoparticle suspension
CN106640016A (zh) * 2015-11-03 2017-05-10 中国科学院地质与地球物理研究所 多尺度真三轴水平井水力压裂承压缸及使用方法
CN105319603A (zh) * 2015-11-06 2016-02-10 中国石油大学(华东) 致密砂岩储层复杂网状裂缝的预测方法
CN106323999A (zh) * 2016-08-12 2017-01-11 中国科学院地质与地球物理研究所 一种岩石水力压裂试验裂缝介入增强成像方法

Also Published As

Publication number Publication date
WO2019024137A1 (zh) 2019-02-07
CN107462190A (zh) 2017-12-12
US10139355B1 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
CN107462190B (zh) 一种岩石水力压裂试验裂缝三维形貌高精度成像方法
CN106323999B (zh) 一种岩石水力压裂试验裂缝介入增强成像方法
US11150202B2 (en) X-ray imaging system
US4688238A (en) Method for determining lithological characteristics of a porous material
Iskander et al. Past, present, and future of transparent soils
US4799382A (en) Method for determining reservoir characteristics of a porous material
Akin et al. Computed tomography in petroleum engineering research
US20160187528A1 (en) Methods and Means for Creating Three-Dimensional Borehole Image Data
Otani et al. Xray CT for Geomaterials: Soils, Concrete, Rocks International Workshop on Xray CT for Geomaterials, Kumamoto, Japan
CN102628354B (zh) 孔隙微米级油水分布识别量化方法
Jia et al. 3D imaging of fractures in carbonate rocks using X-ray computed tomography technology
BRPI0413387B1 (pt) método para visualização e identificação de materiais em um conduto de transporte de fluidos
CN105954104B (zh) 一种基于pet/ct的岩石裂纹细观结构检测系统及检测方法
CN104502382B (zh) 一种新型岩心三维ct成像装置及用途
CN110520761A (zh) 改进在多套管井筒环境中对材料的方位角分布的检测的分辨率
CN115201235B (zh) 一种基于pet-ct和das的多物理场成像方法与系统
CN109339759B (zh) 高能ct超深层钻井压裂一体化工程试验设备
Li et al. Imaging hydraulic fractures of shale cores using combined positron emission tomography and computed tomography (PET-CT) imaging technique
Li et al. Mapping fracture complexity of fractured shale in laboratory: three-dimensional reconstruction from serial-section images
Shi et al. Analysis of local creep strain field and cracking process in claystone by x-ray micro-tomography and digital volume correlation
JP5172509B2 (ja) グラウト材による岩盤中の亀裂評価方法
CN111157557A (zh) 土石混合体破裂过程表征与ct机配套的试验装置及方法
Montemagno et al. Porosity of natural fracture networks
Ewert et al. Progress in digital industrial radiology. Pt. 2, Computed tomography (CT)
Hu et al. Unsteady-State coreflooding monitored by positron emission tomography and X-ray computed tomography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180622

Termination date: 20210731