WO2021003688A1 - 一种水合物三轴实验设备 - Google Patents

一种水合物三轴实验设备 Download PDF

Info

Publication number
WO2021003688A1
WO2021003688A1 PCT/CN2019/095374 CN2019095374W WO2021003688A1 WO 2021003688 A1 WO2021003688 A1 WO 2021003688A1 CN 2019095374 W CN2019095374 W CN 2019095374W WO 2021003688 A1 WO2021003688 A1 WO 2021003688A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydrate
cylinder
pipeline
frame
Prior art date
Application number
PCT/CN2019/095374
Other languages
English (en)
French (fr)
Inventor
郭捷
马凤山
赵海军
李光
冯雪磊
孙琪皓
段学良
刘帅奇
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to PCT/CN2019/095374 priority Critical patent/WO2021003688A1/zh
Priority to CN201910631721.5A priority patent/CN110441153A/zh
Publication of WO2021003688A1 publication Critical patent/WO2021003688A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0085Compressibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0611Hydraulic or pneumatic indicating, recording or sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0635Electrical or magnetic indicating, recording or sensing means using magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention relates to the technical field of testing sediments containing natural gas hydrates, in particular to a hydrate triaxial test equipment.
  • Hydrate sediment is a metastable structure with complex mechanical behavior characteristics. Its mining process often involves microstructure changes such as hydrate phase change, particle migration, and cement structure destruction. It is necessary to start from the micro level to carry out particle-scale physics. Mechanism analysis to clarify the formation mechanism of geological disasters such as formation subsidence and submarine landslides that are the inducements of natural gas hydrate decomposition.
  • the purpose of the present invention is to provide a hydrate triaxial experimental device to solve the problem of inaccurate measurement results of the existing hydrate experimental device.
  • a hydrate triaxial test equipment including:
  • the upper pressure component and the lower pressure component installed in the working chamber, the object to be tested is installed between the upper pressure component and the lower pressure component, and the upper pressure component and/or the lower pressure component are connected with Axial extensometer;
  • a confining pressure component communicating with the confining pressure inlet and outlet, the confining pressure component being used to apply radial pressure to the object under test, and a radial extensometer is provided on the object under test;
  • a natural gas content detection mechanism communicating with the air inlet and the air outlet respectively;
  • a hydrate saturation measurement mechanism connected with the working chamber.
  • the displacement and deformation of the object to be measured are detected by the axial extensometer and the radial extensometer, and the natural gas content detection mechanism and the hydrate saturation measurement mechanism are used to detect the displacement and deformation of the object to be measured. Natural gas content change and saturation are detected, the detection is comprehensive and more accurate.
  • hydrate triaxial test equipment may also have the following additional technical features:
  • a lifting mechanism is installed on the upper part of the frame; the lifting mechanism is detachably connected with the pressure chamber to drive the pressure chamber to move up and down.
  • the lifting mechanism includes a connecting frame and a first linear reciprocating device; the connecting frame is connected to the frame; the first linear reciprocating device is installed on the connecting frame , The first linear reciprocating device is connected with the pressure chamber, and drives the pressure chamber to move up and down.
  • a fixed rail and a lifting rail are provided on the frame; the pressure chamber is installed on the lifting rail, and when the lifting rail is raised or lowered to a preset position, the fixed rail and The lifting rails are connected so that the pressure chamber can move in a preset direction of the fixed rail and the lifting rail.
  • the lifting track includes a track plate and a second linear reciprocating device; the second linear reciprocating device is installed on the frame; the track plate is installed on the second linear reciprocating device On the moving device, the lifting action is driven by the second linear reciprocating device.
  • the pressure chamber includes a cylinder body and a base, the cylinder body is open at the bottom and installed on the base to form the working chamber, and the cylinder body and the base are detachably connected .
  • the bottom of the cylinder is provided with a first connecting flange protruding outwards; the upper part of the base is provided with a second connecting flange protruding outwards, the second connecting flange Parallel to and abut against the first connecting flange; the first connecting flange and the second connecting flange are connected by a clamp.
  • the confining pressure component includes a first double-cylinder pump, a second double-cylinder pump, a return valve, a process valve and a confining pressure control valve;
  • the first double-cylinder pump is connected to the return valve and the process valve pipeline respectively, and the return valve and the process valve are connected to the working chamber pipeline respectively;
  • the second double-cylinder pump is connected to the confining pressure control valve pipeline, the confining pressure control valve is connected to the confining pressure inlet and outlet pipeline, and the confining pressure control valve is connected to the confining pressure inlet and outlet.
  • the natural gas content detection mechanism includes a methane cylinder, a constant pressure and constant speed pump, a back pressure valve, a flow meter, a separator and a balance;
  • the methane cylinder is connected to the constant pressure and constant speed pump pipeline, the constant pressure and constant speed pump is connected to the air inlet pipeline, and between the constant pressure and constant speed pump and the air inlet There is an alarm on the pipeline in the room;
  • the separator is installed on the balance, the flow meter and the back pressure valve are respectively connected with the separator pipeline, and the back pressure valve is connected with the exhaust port pipeline.
  • the hydrate saturation measurement mechanism includes an acoustic testing device.
  • Fig. 1 is a schematic diagram of the structure of a triaxial hydrate experiment device according to an embodiment of the present invention
  • Figure 2 is a front view of the frame and pressure chamber of the embodiment of the present invention.
  • Figure 3 is a side view of the frame and pressure chamber of the embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a pressure chamber according to an embodiment of the present invention.
  • this embodiment provides a hydrate three-axis experimental equipment, including a frame 1, a pressure chamber 2, an upper pressure component 3, a lower pressure component 4, a confining pressure component 5, and a natural gas content detection mechanism 6 And hydrate saturation measurement mechanism 7 and other specific structures.
  • the frame 1 of this embodiment as a whole can be regarded as a lip-shaped frame structure with a certain preset height, and there is a space for accommodating the above-mentioned pressure chamber 2 inside.
  • the upper part of the frame 1 is installed with a drive upper pressure assembly 3 Motor 11 moving down.
  • the pressure chamber 2 of this embodiment is installed in the upper space of the frame 1.
  • the pressure chamber 2 is provided with a working chamber, and the pressure chamber 2 is provided with a confining pressure inlet and outlet 24, an air inlet 25, and an exhaust port communicating with the working chamber.
  • Air port 26; as shown in FIGS. 2-4, the pressure chamber 2 of this embodiment includes a cylinder 21 and a base 22.
  • the cylinder 21 has a bottom opening structure.
  • the cylinder 21 is mounted on the base 22 and is shared with the base 22
  • the working chamber is enclosed.
  • the cylinder 21 and the base 22 are designed to be detachably connected in this embodiment.
  • the detachable connection between the cylinder body 21 and the base 22 can be realized by the following structure: a first connecting flange 211 protruding outward is provided on the bottom of the cylinder body 21, and an outward protruding flange is provided on the upper part of the base 22
  • the second connecting flange 221, the second connecting flange 221 and the first connecting flange 211 are parallel and abutting; the first connecting flange 211 and the second connecting flange 221 are connected by a clamp 23.
  • the upper pressure component 3 and the lower pressure component 4 of this embodiment are installed in the working chamber, the object to be tested 8 is installed between the upper pressure component 3 and the lower pressure component 4, and the upper pressure component 3 and the lower pressure component 4 are used to be tested
  • the object 8 applies axial pressure, which can be understood as the axial direction of the above-mentioned motor 11, or as the upper and lower directions in the figure.
  • the upper pressure assembly 3 is connected with an axial extensometer 31, which is used for detection.
  • Both the upper pressing component 3 and the lower pressing component 4 of this embodiment can be selected from any one in the prior art, and therefore, the structure thereof is not described in detail in this embodiment.
  • the axial extensometer 31 of this embodiment preferably includes a magnetic displacement sensor, an amplifier, and a recorder.
  • the magnetic displacement sensor has the advantages of high accuracy, high stability, high reliability, strong anti-interference ability, and low power consumption. , Is the best test sensor for displacement at present.
  • the confining pressure assembly 5 of this embodiment is in communication with the aforementioned confining pressure inlet and outlet 24.
  • the confining pressure assembly 5 is used to apply radial pressure to the object 8 to be tested.
  • the object to be tested 8 is provided with a radial extensometer 41.
  • the diameter of this embodiment is
  • the directional extensometer 41 specifically includes a hydraulic sensor, an amplifier, and a recorder.
  • the natural gas content detection mechanism 6 of this embodiment is respectively connected to the intake port 25 and the exhaust port 26 for detecting the change of the natural gas content of the object 8 to be tested; the hydrate saturation measuring mechanism 7 is connected to the working chamber for detection The hydrate saturation of the object to be measured 8; the specific structures of the natural gas content detection mechanism 6 and the hydrate saturation measurement mechanism 7 are given in the following description.
  • the hydrate triaxial experimental equipment detects the displacement and deformation of the object 8 to be tested through the axial extensometer 31 and the radial extensometer 41, and the natural gas content detection mechanism 6 and hydration
  • the physical saturation measurement mechanism 7 detects the change in the content of natural gas and the saturation of the object 8 to be measured respectively, and the detection is comprehensive and more accurate.
  • the pressure chamber 2 is at a preset height, which facilitates the installation of the object 8 and the axial extensometer 31 and the radial extensometer 41, etc.
  • a lifting mechanism 12 is installed on the upper part of the frame 1; the lifting mechanism 12 is detachably connected to the cylinder 21 of the pressure chamber 2 to drive the pressure chamber 2 to move up and down.
  • the lifting mechanism 12 of this embodiment includes a connecting frame 121 and a first linear reciprocating device 122; the connecting frame 121 is connected to the frame 1; the first linear reciprocating device 122 is installed on the connecting frame 121, the first The linear reciprocating device 122 is connected to the pressure chamber 2 and drives the pressure chamber 2 to move up and down.
  • the first linear reciprocating device 122 can be an air cylinder, an electric cylinder or a hydraulic cylinder, and the cylinder of the first linear reciprocating device 122 Installed on the above-mentioned connecting frame 121, the piston rod of the first linear reciprocating device 122 is detachably connected with the cylinder 21 of the pressure chamber 2.
  • the cylinder 21 is provided with a hanging ear 212, and the bottom of the piston rod is provided Hook and other structures to realize the connection between the two.
  • this embodiment also has a fixed rail (not shown in the figure) on the frame 1. Out) and the lifting rail 13; the pressure chamber 2 is installed on the lifting rail 13, when the lifting rail 13 rises or drops to the preset position, the fixed rail is connected with the lifting rail 13, so that the pressure chamber 2 can be on the fixed rail and the lifting rail Move in the preset direction of 13.
  • the lifting rail 13 of this embodiment includes a rail plate 131 and a second linear reciprocating device 132; the second linear reciprocating device 132 is installed on the frame 1; the rail plate 131 is installed on the second linear reciprocating device 132 , And move up and down under the drive of the second linear reciprocating device 132.
  • the second linear reciprocating device 132 of this embodiment may also be an air cylinder, an electric cylinder or a hydraulic cylinder.
  • the cylinder of the second linear reciprocating device 132 is installed on the frame 1, and the piston rod of the second reciprocating device is connected to the above The rail plate 131 is connected.
  • the confining pressure assembly 5 of this embodiment specifically includes a first double-cylinder pump 51, a second double-cylinder pump 52, a return valve 53, a process valve 54 and a confining pressure control valve 55;
  • the first double-cylinder pump 51 of this example is connected to the return valve 53 and the process valve 54 respectively, and the return valve 53 and the process valve 54 are respectively connected to the working chamber pipeline;
  • the second double-cylinder pump 52 of this embodiment is connected to the confining pressure
  • the control valve 55 is connected with pipelines
  • the confining pressure control valve 55 is connected with the confining pressure inlet and outlet 24 pipelines
  • a temperature detector 56 is provided on the pipeline between the confining pressure control valve 55 and the confining pressure inlet and outlet 24.
  • the confining pressure component 5 of this embodiment opens the confining pressure control valve 55 when oil is supplied, the second double-cylinder pump 52 pumps the pressurized oil in the oil tank into the high pressure oil chamber, and then closes the confining pressure control valve 55, and the servo actuates The device injects pressurized oil into the pressure chamber 2.
  • the first double-cylinder pump 51 is first unloaded, and the return valve 53 is opened.
  • the compressed air enters the pressure chamber 2 through the air inlet 25 of the pressure chamber 2 to press the pressurized oil out of the confining pressure inlet and outlet 24, and the pressurized oil returns
  • the oil tank settles and is filtered the oil is injected into the pressure chamber 2 through the second double-cylinder pump 52 when needed in the next experiment.
  • the natural gas content detection mechanism 6 of this embodiment specifically includes a methane cylinder 61, a constant pressure and constant speed pump 62, a back pressure valve 63, a flow meter 64, a separator 65, and a balance 66; among them, the methane cylinder 61 of this embodiment It is connected with the pipeline of the constant pressure and constant speed pump 62, the constant pressure and constant speed pump 62 is connected with the pipeline of the air inlet 25, and an alarm is provided on the pipeline between the constant pressure and speed pump 62 and the air inlet 25;
  • the separator 65 of the embodiment is installed on the balance 66, the flow meter 64 and the back pressure valve 63 are connected to the separator 65 in pipelines, and the back pressure valve 63 is connected to the exhaust port 26 in pipelines.
  • the hydrate saturation measurement in this embodiment adopts acoustic measurement, that is, the hydrate saturation mechanism includes an acoustic testing device.
  • the acoustic testing device of this embodiment is processed by a function generator, a signal amplifier, an acoustic component, an oscilloscope, and a computer. Modules and other components (the above-mentioned specific components are not shown in the figure). Compared with the background formation, they have higher longitudinal and transverse wave speeds. Use this feature to determine whether there is hydrate and saturation. Acquire acoustic parameters during in-situ hydrate formation and decomposition under real temperature and pressure conditions, and establish the relationship between the saturation and elastic parameters of natural gas hydrate and the speed of sound.
  • the hydrate three-axis experimental equipment of this embodiment also includes a control system (not shown in the figure), which is electrically connected to the above-mentioned confining pressure mechanism, natural gas content detection mechanism 6 and hydrate saturation mechanism, etc. Send control instructions to the action parts of the above-mentioned mechanism, and receive data detected by the sensors of the above-mentioned mechanism, and process and analyze the data to obtain experimental results.
  • a control system (not shown in the figure), which is electrically connected to the above-mentioned confining pressure mechanism, natural gas content detection mechanism 6 and hydrate saturation mechanism, etc.
  • the control system adopts advanced adaptive fuzzy PID control algorithm, which can realize on-line precise closed-loop control of the control quantity of system parameters, and realize functions such as constant speed loading and unloading, constant force, and constant displacement. At the same time, it provides a control interface for the user's system parameters, and the user can set the system control parameters to adapt to different control environments, with great flexibility.
  • the control system has two independent electro-hydraulic servo valve control channels. During the test, various control rates and control functions can be switched mutually. Each actuator can simultaneously or separately close-loop control the servo valve to work according to the test requirements. The synchronous or asynchronous control of the entire loading system greatly improves the stability of the test system.
  • the data acquisition system has a total of 9 high-precision 24-bit A/D conversion pressure, displacement, and deformation acquisition channels, which can achieve the accuracy of the indication: within ⁇ 0.1%.
  • the data sampling speed has reached 10KHz, and the current sensor signal can be collected quickly, so that the closed-loop control module can better perform real-time closed-loop control.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种水合物三轴实验设备,包括机架(1)、压力室(2)、上压组件(3)、下压组件(4)、围压组件(5)、天然气含量检测机构(6)和水合物饱和度测量机构(7);压力室(2)安装在机架(1)上,压力室(2)内设有工作腔室,压力室(3)设有围压进出口(24)、进气口(25)和排气口(26);上压组件(3)和下压组件(4)安装在工作腔室内,上压组件(3)和/或下压组件(4)连接有轴向引伸计(31);围压组件(5)与围压进出口(24)连通,待测物件(8)上设有径向引伸计(41);天然气含量检测机构(6)分别与进气口(25)和排气口(26)连通;水合物饱和度测量机构(7)与工作腔室连通。通过轴向引伸计(31)和径向引伸计(41)对待测物件(8)的位移和变形量进行检测,通过天然气含量检测机构(6)和水合物饱和度测量机构(7)分别对待测物件(8)的天然气含量变化和饱和度进行检测,检测全面且更为精确。

Description

一种水合物三轴实验设备 技术领域
本发明涉及含天然气水合物沉积物测试技术领域,具体涉及一种水合物三轴实验设备。
背景技术
水合物沉积物是一个具有复杂力学行为特征的亚稳态结构体,其开采过程常常会涉及水合物相变、颗粒迁移和胶结结构破坏等微观结构变化,需要从微观层次入手进行颗粒尺度的物理机理分析以明确天然气水合物分解诱因的地层沉降、海底滑坡等地质灾害的形成机理。
沉积物以及岩石的单轴、三轴压缩,以及渗气渗水和高低温耦合试验,是对沉积物和岩石进行测试的重要试验方式,能够准确测量天然气水合物的各项指标对非常规能源的开采来说非常重要。现有的天然气水合物试验设备有很多种,但是都存在着设计缺陷,导致最终测量结果不够准确。
发明内容
本发明的目的在于提供一种水合物三轴实验设备,以解决现有的水合物实验设备测量结果不准确的问题。
为实现上述目的,本发明提出的技术方案如下:
一种水合物三轴实验设备,包括:
机架;
安装在所述机架上的压力室,所述压力室内设有工作腔室,所述压力室 设有与所述工作腔室相连通的围压进出口、进气口和排气口;
安装在所述工作腔室内的上压组件和下压组件,待测物件安装在所述上压组件和所述下压组件之间,所述上压组件和/或所述下压组件连接有轴向引伸计;
与所述围压进出口连通的围压组件,所述围压组件用于对所述待测物件施加径向压力,所述待测物件上设有径向引伸计;
分别与所述进气口和所述排气口连通的天然气含量检测机构;
与所述工作腔室连通的水合物饱和度测量机构。
根据本发明提供的水合物三轴实验设备,通过轴向引伸计和径向引伸计对待测物件的位移和变形量进行检测,通过天然气含量检测机构和水合物饱和度测量机构分别对待测物件的天然气含量变化和饱和度进行检测,检测全面且更为精确。
另外,根据本发明上述实施例的水合物三轴实验设备,还可以具有如下附加的技术特征:
根据本发明的一个示例,所述机架上部安装有升降机构;所述升降机构与所述压力室可拆卸连接,以带动所述压力室上下动作。
根据本发明的一个示例,所述升降机构包括连接架和第一直线往复运动装置;所述连接架与所述机架连接;所述第一直线往复运动装置安装在所述连接架上,所述第一直线往复运动装置与所述压力室连接,并带动所述压力室上下动作。
根据本发明的一个示例,所述机架上设有固定轨道和升降轨道;所述压力室安装在所述升降轨道上,所述升降轨道上升或下降至预设位置时,所述固定轨道与所述升降轨道相接,以使所述压力室可以在所述固定轨道和所述升降轨道的预设方向上移动。
根据本发明的一个示例,所述升降轨道包括轨道板和第二直线往复运动 装置;所述第二直线往复运动装置安装在所述机架上;所述轨道板安装在所述第二直线往复运动装置上,并在所述第二直线往复运动装置的带动下升降动作。
根据本发明的一个示例,所述压力室包括筒体和底座,所述筒体底部开口并安装在所述底座上,以形成所述工作腔室,所述筒体和所述底座可拆卸连接。
根据本发明的一个示例,所述筒体的底部设有向外伸出的第一连接凸缘;所述底座上部设有向外伸出的第二连接凸缘,所述第二连接凸缘与所述第一连接凸缘平行且相抵;所述第一连接凸缘和所述第二连接凸缘通过卡箍相连接。
根据本发明的一个示例,所述围压组件包括第一双缸泵、第二双缸泵、回程阀、进程阀和围压控制阀;
所述第一双缸泵分别与所述回程阀和所述进程阀管路连接,所述回程阀和所述进程阀分别与所述工作腔室管路连接;
所述第二双缸泵与所述围压控制阀管路连接,所述围压控制阀与所述围压进出口管路连接,且在所述围压控制阀与所述围压进出口之间的管路上设有温度检测计。
根据本发明的一个示例,所述天然气含量检测机构包括甲烷气瓶、恒压恒速泵、回压阀、流量计、分离器和天平;
所述甲烷气瓶和所述恒压恒速泵管路连接,所述恒压恒速泵与所述进气口管路连接,且在所述恒压恒速泵与所述进气口之间的管路上设有报警器;
所述分离器安装在所述天平上,所述流量计与回压阀分别与所述分离器管路连接,所述回压阀与所述排气口管路连接。
根据本发明的一个示例,所述水合物饱和度测量机构包括声学测试装置。
以上附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明实施例的水合物三轴实验设备的结构示意图;
图2为本发明实施例的机架和压力室的主视图;
图3为本发明实施例的机架和压力室的侧视图;
图4为本发明实施例的压力室的结构示意图。
附图中,各标号所代表的部件列表如下:
1、机架;11、电机;12、升降机构;121、连接架;122、第一直线往复运动装置;13、升降轨道;131、轨道板;132、第二直线往复运动装置;
2、压力室;21、筒体;211、第一连接凸缘;212、挂耳;22、底座;221、第二连接凸缘;23、卡箍;24、围压进出口;25、进气口;26、排气口;
3、上压组件;31、轴向引伸计;
4、下压组件;41、径向引伸计;
5、围压组件;51、第一双缸泵;52、第二双缸泵;53、回程阀;54、进程阀;55、围压控制阀;56、温度检测计;
6、天然气含量检测机构;61、甲烷气瓶;62、恒压恒速泵;63、回压阀;64、流量计;65、分离器;66、天平;
7、水合物饱和度测量机构;
8、待测物件。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本 发明,并非用于限定本发明的范围。
结合附图1所示,本实施例提供了一种水合物三轴实验设备,包括机架1、压力室2、上压组件3、下压组件4、围压组件5、天然气含量检测机构6和水合物饱和度测量机构7等具体结构。
本实施例的机架1整体可以看作为具有一定预设高度的口字型框架结构,其内部具有用于容置上述压力室2的空间,机架1的上部安装有驱动上压组件3向下运动的电机11。
本实施例的压力室2安装在机架1上空间内,压力室2内设有工作腔室,压力室2开设有与工作腔室相连通的围压进出口24、进气口25和排气口26;结合附图2-4所示,本实施例的压力室2包括筒体21和底座22,筒体21为底部开口结构,筒体21安装在底座22上,并与底座22共同围成工作腔室,优选的,为了便于将上压组件3和下压组件4等结构安装在工作腔室内,本实施例将筒体21和底座22设计为可拆卸连接。
具体的,筒体21和底座22的可拆卸连接可以通过以下结构实现:在筒体21的底部设有向外伸出的第一连接凸缘211,在底座22上部设有向外伸出的第二连接凸缘221,第二连接凸缘221与第一连接凸缘211平行且相抵;第一连接凸缘211和第二连接凸缘221通过卡箍23相连接。
本实施例的上压组件3和下压组件4安装在工作腔室内,待测物件8安装在上压组件3和下压组件4之间,上压组件3和下压组件4用于对待测物件8施加轴向的压力,此轴向可以理解为上述电机11的轴向,或者理解为图中的上下方向,上压组件3连接有轴向引伸计31,轴向引伸计31用于检测待测物件8在上压组件3和下压组件4作用下的轴向变形位移数据。本实施例的上压组件3和下压组件4均可以选取现有技术中任意一种,因此本实施例不对其结构进行赘述。
本实施例的轴向引伸计31优选包括磁致式位移传感器、放大器和记录 器,磁致式位移传感器具有高精度、高稳定性、高可靠性,抗干扰能力极强,功耗低等优点,是目前位移最佳测试传感器。
本实施例的围压组件5与上述围压进出口24连通,围压组件5用于对待测物件8施加径向压力,待测物件8上设有径向引伸计41,本实施例的径向引伸计41具体包括液压传感器、放大器和记录器。
本实施例的天然气含量检测机构6分别与进气口25和排气口26连通,用于检测待测物件8的天然气含量变化;水合物饱和度测量机构7与工作腔室连通,用于检测待测物件8的水合物饱和度;天然气含量检测机构6和水合物饱和度测量机构7的具体结构在下述描述中给出。
结合上述结构说明可知,本实施例提供的水合物三轴实验设备,通过轴向引伸计31和径向引伸计41对待测物件8的位移和变形量进行检测,通过天然气含量检测机构6和水合物饱和度测量机构7分别对待测物件8的天然气含量变化和饱和度进行检测,检测全面且更为精确。
基于上述结构,为了便于将压力室2安装在机架1的指定工作位置,使的压力室2处于预设高度,便于安装待测物件8和轴向引伸计31和径向引伸计41等,结合附图2和3所示,本实施例还在机架1的上部安装有升降机构12;升降机构12与压力室2的筒体21可拆卸连接,以带动压力室2上下动作。
具体的,本实施例的升降机构12包括连接架121和第一直线往复运动装置122;连接架121与机架1连接;第一直线往复运动装置122安装在连接架121上,第一直线往复运动装置122与压力室2连接,并带动压力室2上下动作,第一直线往复运动装置122可以是气缸或者电动缸或者油压缸,第一直线往复运动装置122的缸体安装在上述连接架121上,第一直线往复运动装置122的活塞杆与压力室2的筒体21可拆卸连接,具体可以是在筒体21上设有挂耳212,活塞杆底部设有挂钩等结构,以实现两者的连接。
更进一步的,为了便于压力室2水平移动和在竖直方向上调整,以对接上述的第一直线往复运动装置122,本实施例还在机架1上设有固定轨道(图中未示出)和升降轨道13;压力室2安装在升降轨道13上,升降轨道13上升或下降至预设位置时,固定轨道与升降轨道13相接,以使压力室2可以在固定轨道和升降轨道13的预设方向上移动。
具体的,本实施例的升降轨道13包括轨道板131和第二直线往复运动装置132;第二直线往复运动装置132安装在机架1上;轨道板131安装在第二直线往复运动装置132上,并在第二直线往复运动装置132的带动下升降动作。
本实施例的第二直线往复运动装置132也可以是气缸或者电动缸或者油压缸,第二直线往复运动装置132的缸体安装在机架1上,第二往复运动装置的活塞杆与上述轨道板131连接。
再结合附图1所示,本实施例的围压组件5具体包括第一双缸泵51、第二双缸泵52、回程阀53、进程阀54和围压控制阀55;其中,本实施例的第一双缸泵51分别与回程阀53和进程阀54管路连接,回程阀53和进程阀54分别与工作腔室管路连接;本实施例的第二双缸泵52与围压控制阀55管路连接,围压控制阀55与围压进出口24管路连接,且在围压控制阀55与围压进出口24之间的管路上设有温度检测计56。
本实施例的围压组件5在进油时将围压控制阀55打开,第二双缸泵52将油箱内的增压油抽进高压油腔,然后关闭围压控制阀55,伺服作动器将增压油注入到压力室2内。排油时,第一双缸泵51先卸载,将回程阀53打开,压缩空气通过压力室2进气口25进入压力室2将增压油从围压进出口24压出,增压油回流至油箱沉淀、过滤,下次实验需要时通过第二双缸泵52将油液注入到压力室2。
而本实施例的天然气含量检测机构6具体包括甲烷气瓶61、恒压恒速泵 62、回压阀63、流量计64、分离器65和天平66;其中,本实施例的甲烷气瓶61和恒压恒速泵62管路连接,恒压恒速泵62与进气口25管路连接,且在恒压恒速泵62与进气口25之间的管路上设有报警器;本实施例的分离器65安装在天平66上,流量计64与回压阀63分别与分离器65管路连接,回压阀63与排气口26管路连接。
而本实施例的水合物饱和度测量采用声学测量,即水合物饱和度机构包括声学测试装置,具体的,本实施例的声学测试装置由函数发生器,信号放大器,声学元件,示波器和计算机处理模块等组成(图中未示出上述具体部件),同背景地层相比,有较高的纵、横波波速,利用这一特性判断是否有水合物及饱和度。获取真实温、压条件下,水合物原位生成和分解过程中声学参数,建立天然气水合物的饱和度及弹性参数与声速之间的关系。
另外,本实施例的水合物三轴实验设备还包括控制系统(图中未示出),控制系统与上述围压机构、天然气含量检测机构6和水合物饱和度机构等电性连接,用于对上述机构的动作部件发送控制指令,并接受上述机构的传感器检测到的数据,并对数据进行处理和分析,得出实验结果。
控制系统采用先进的自适应的模糊的PID控制算法,可实现系统参数的控制量在线精密的闭环控制,实现等速加卸荷、恒力、恒位移等功能。同时,提供用户系统参数的控制接口,用户可以对系统控制参数进行设置以适应不同的控制环境,有着具有很好的灵活性。
控制系统有2个独立的电液伺服阀控制通道,在试验过程中各种控制速率及控制功能均可互相切换,每个作动器能根据试验要求同时或分别闭环控制伺服阀工作,保证了整个加载系统的同步或异步控制,大大提高试验系统的稳定性。
数据采集系统共有9路高精度24位A/D转换压力、位移、变形采集通道,可以达到示值精确度:±0.1%以内。数据的采样速度达到了10KHz,可 以快速地采集当前的传感器信号,以便闭环控制模块更好的进行实时闭环控制。
在本发明的描述中,需要理解的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体等。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种水合物三轴实验设备,其特征在于,包括:
    机架;
    安装在所述机架上的压力室,所述压力室内设有工作腔室,所述压力室设有与所述工作腔室相连通的围压进出口、进气口和排气口;
    安装在所述工作腔室内的上压组件和下压组件,待测物件安装在所述上压组件和所述下压组件之间,所述上压组件和/或所述下压组件连接有轴向引伸计;
    与所述围压进出口连通的围压组件,所述围压组件用于对所述待测物件施加径向压力,所述待测物件上设有径向引伸计;
    分别与所述进气口和所述排气口连通的天然气含量检测机构;
    与所述工作腔室连通的水合物饱和度测量机构。
  2. 根据权利要求1所述的水合物三轴实验设备,其特征在于,所述机架上部安装有升降机构;所述升降机构与所述压力室可拆卸连接,以带动所述压力室上下动作。
  3. 根据权利要求2所述的水合物三轴实验设备,其特征在于,所述升降机构包括连接架和第一直线往复运动装置;所述连接架与所述机架连接;所述第一直线往复运动装置安装在所述连接架上,所述第一直线往复运动装置与所述压力室连接,并带动所述压力室上下动作。
  4. 根据权利要求1所述的水合物三轴实验设备,其特征在于,所述机架上设有固定轨道和升降轨道;所述压力室安装在所述升降轨道上,所述升降轨道上升或下降至预设位置时,所述固定轨道与所述升降轨道相接,以使所述压力室可以在所述固定轨道和所述升降轨道的预设方向上移动。
  5. 根据权利要求4所述的水合物三轴实验设备,其特征在于,所述升降轨道包括轨道板和第二直线往复运动装置;所述第二直线往复运动装置安 装在所述机架上;所述轨道板安装在所述第二直线往复运动装置上,并在所述第二直线往复运动装置的带动下升降动作。
  6. 根据权利要求1-5任一项所述的水合物三轴实验设备,其特征在于,所述压力室包括筒体和底座,所述筒体底部开口并安装在所述底座上,以形成所述工作腔室,所述筒体和所述底座可拆卸连接。
  7. 根据权利要求6所述的水合物三轴实验设备,其特征在于,所述筒体的底部设有向外伸出的第一连接凸缘;所述底座上部设有向外伸出的第二连接凸缘,所述第二连接凸缘与所述第一连接凸缘平行且相抵;所述第一连接凸缘和所述第二连接凸缘通过卡箍相连接。
  8. 根据权利要求1-5任一项所述的水合物三轴实验设备,其特征在于,所述围压组件包括第一双缸泵、第二双缸泵、回程阀、进程阀和围压控制阀;
    所述第一双缸泵分别与所述回程阀和所述进程阀管路连接,所述回程阀和所述进程阀分别与所述工作腔室管路连接;
    所述第二双缸泵与所述围压控制阀管路连接,所述围压控制阀与所述围压进出口管路连接,且在所述围压控制阀与所述围压进出口之间的管路上设有温度检测计。
  9. 根据权利要求1-5任一项所述的水合物三轴实验设备,其特征在于,所述天然气含量检测机构包括甲烷气瓶、恒压恒速泵、回压阀、流量计、分离器和天平;
    所述甲烷气瓶和所述恒压恒速泵管路连接,所述恒压恒速泵与所述进气口管路连接,且在所述恒压恒速泵与所述进气口之间的管路上设有报警器;
    所述分离器安装在所述天平上,所述流量计与回压阀分别与所述分离器管路连接,所述回压阀与所述排气口管路连接。
  10. 根据权利要求1-5任一项所述的水合物三轴实验设备,其特征在于,所述水合物饱和度测量机构包括声学测试装置。
PCT/CN2019/095374 2019-07-10 2019-07-10 一种水合物三轴实验设备 WO2021003688A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/095374 WO2021003688A1 (zh) 2019-07-10 2019-07-10 一种水合物三轴实验设备
CN201910631721.5A CN110441153A (zh) 2019-07-10 2019-07-12 一种水合物三轴实验设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095374 WO2021003688A1 (zh) 2019-07-10 2019-07-10 一种水合物三轴实验设备

Publications (1)

Publication Number Publication Date
WO2021003688A1 true WO2021003688A1 (zh) 2021-01-14

Family

ID=68430273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095374 WO2021003688A1 (zh) 2019-07-10 2019-07-10 一种水合物三轴实验设备

Country Status (2)

Country Link
CN (1) CN110441153A (zh)
WO (1) WO2021003688A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279856A (zh) * 2021-12-27 2022-04-05 东北大学 用于直接获取岩样环向变形且便于更换岩样的胡克压力室
CN114965076A (zh) * 2022-05-16 2022-08-30 中国海洋大学 水合物开采渗流过程沉积物骨架微观变形测量装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112253574B (zh) * 2020-10-26 2021-09-24 大连理工大学 一种调节加载液压缸最大输出载荷的控制方法
CN117741093B (zh) * 2024-02-20 2024-04-26 普利莱(天津)燃气设备有限公司 一种便携式天然气加臭剂浓度监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423002B1 (ko) * 2013-07-11 2014-07-23 한국가스공사 가스 하이드레이트 회수시 지표면의 변형을 예측하기 위한 실험장치
CN107290222A (zh) * 2017-07-25 2017-10-24 中国科学院地质与地球物理研究所 一种岩石三轴试验设备及方法
CN109164032A (zh) * 2018-11-01 2019-01-08 中国矿业大学 岩石全自动盐水-超临界co2两相渗透率测试系统及方法
CN109211755A (zh) * 2018-10-30 2019-01-15 黑龙江科技大学 含瓦斯水合物煤体渗透率测试装置及方法
CN109668916A (zh) * 2018-12-11 2019-04-23 大连理工大学 一种水合物沉积物ct三轴试验装置
CN109752257A (zh) * 2019-02-20 2019-05-14 中国地质大学(武汉) 带超声扫描的天然气水合物沉积物动三轴实验装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423002B1 (ko) * 2013-07-11 2014-07-23 한국가스공사 가스 하이드레이트 회수시 지표면의 변형을 예측하기 위한 실험장치
CN107290222A (zh) * 2017-07-25 2017-10-24 中国科学院地质与地球物理研究所 一种岩石三轴试验设备及方法
CN109211755A (zh) * 2018-10-30 2019-01-15 黑龙江科技大学 含瓦斯水合物煤体渗透率测试装置及方法
CN109164032A (zh) * 2018-11-01 2019-01-08 中国矿业大学 岩石全自动盐水-超临界co2两相渗透率测试系统及方法
CN109668916A (zh) * 2018-12-11 2019-04-23 大连理工大学 一种水合物沉积物ct三轴试验装置
CN109752257A (zh) * 2019-02-20 2019-05-14 中国地质大学(武汉) 带超声扫描的天然气水合物沉积物动三轴实验装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279856A (zh) * 2021-12-27 2022-04-05 东北大学 用于直接获取岩样环向变形且便于更换岩样的胡克压力室
CN114279856B (zh) * 2021-12-27 2024-06-11 东北大学 用于直接获取岩样环向变形且便于更换岩样的胡克压力室
CN114965076A (zh) * 2022-05-16 2022-08-30 中国海洋大学 水合物开采渗流过程沉积物骨架微观变形测量装置及方法

Also Published As

Publication number Publication date
CN110441153A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021003688A1 (zh) 一种水合物三轴实验设备
US20210285858A1 (en) Reciprocating Rock Fracture Friction-Seepage Characteristic Test Device and Method
CN107290222B (zh) 一种岩石三轴试验设备及方法
CN107061095B (zh) 一种复合式喷油器喷油规律测量装置及测量方法
SA516370672B1 (ar) جهاز ثلاثي المحاور لاختبار الرنين النووي المغناطيسي (nmr)
CN107202811A (zh) 一种同时测定页岩中吸附态、及游离态甲烷的测定方法
WO2011159304A1 (en) Non-invasive compressibility and in situ density testing of a fluid sample in a sealed chamber
CN107941650A (zh) 一种煤层气及页岩气吸附/解吸自动测定方法和装置
CN112485175B (zh) 一种岩石孔隙度测量方法及测量装置
CN104535421B (zh) 一种交联聚合物凝胶性能检测仪及检测方法
CN113138153A (zh) 一种岩样夹持器、岩石孔隙度测量系统及方法
CN116242973A (zh) 二氧化碳地质封存诱发断层失稳评价的实验装置及方法
LU101573B1 (en) Hydrate Triaxial Experimental Equipment
CN110208497A (zh) 一种便携式土壤给水度测试仪及测试方法
CN101339098A (zh) 液压破碎锤的性能测试系统
LU102523B1 (en) Hydrate Triaxial Experimental Equipment
CN205562330U (zh) 一种适用于岩心样品解吸气测量设备
CN202092603U (zh) 液压缸回缩量激光检测装置
CN206321172U (zh) 一种用于测试钻井液泥饼强度与厚度的测试装置
CN114414456B (zh) 一种用于计算瓦斯水合物饱和度的方法和装置
CN205607834U (zh) 机械振动下相似材料能量耦合规律的测试装置
CN206891904U (zh) 一种室内致密油岩心室内流动实验的装置
CN203275230U (zh) 气体快速测量分析仪
Zhang et al. Online Magnetic Flux Leakage Detection System for Sucker Rod Defects Based on LabVIEW Programming.
CN105891103A (zh) 一种机械振动下材料能量耦合规律的测试装置及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936614

Country of ref document: EP

Kind code of ref document: A1