WO2021017241A1 - 渗透压和静压耦合电磁加载三轴shpb装置和测试方法 - Google Patents

渗透压和静压耦合电磁加载三轴shpb装置和测试方法 Download PDF

Info

Publication number
WO2021017241A1
WO2021017241A1 PCT/CN2019/115487 CN2019115487W WO2021017241A1 WO 2021017241 A1 WO2021017241 A1 WO 2021017241A1 CN 2019115487 W CN2019115487 W CN 2019115487W WO 2021017241 A1 WO2021017241 A1 WO 2021017241A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
pressure
stress wave
axial
confining pressure
Prior art date
Application number
PCT/CN2019/115487
Other languages
English (en)
French (fr)
Inventor
谢和平
翟天琦
周韬
赵坚
朱建波
高明忠
李存宝
廖志毅
张凯
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021017241A1 publication Critical patent/WO2021017241A1/zh
Priority to US17/568,929 priority Critical patent/US11921088B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0224Thermal cycling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention belongs to the field of rock dynamics research. More specifically, it relates to a three-axis SHPB device and a test method considering osmotic pressure and static pressure coupled electromagnetic loading in the study of rock dynamic characteristics and failure mechanism under the real multi-field coupled environment of deep underground.
  • SHPB Hopkinson rod.
  • the present invention proposes a three-axis SHPB with osmotic pressure and static coupling electromagnetic loading Device and test method.
  • This device is based on the traditional one-dimensional SHPB, innovatively improves the original equipment, and introduces the real-time osmotic pressure loading and control system, which solves the problem that the existing dynamic test device cannot carry out close to the real environment of the deep rock mass.
  • An osmotic pressure and static pressure coupled electromagnetic loading three-axis SHPB device includes an electromagnetic pulse emission system, an axial pressure servo control loading system, a confining pressure servo control loading system, an osmotic pressure loading system, a rod system and a data monitoring and acquisition system.
  • the osmotic pressure and static pressure coupled electromagnetic loading three-axis SHPB device supports the platform foundation platform, which is arranged in a symmetrical form.
  • the support platform serves as the basis of the rough leveling device and bears the weight of the entire system and the impact load of the test process.
  • the electromagnetic pulse emission system is mainly composed of the left and right electromagnetic pulse excitation cavities with the same processing parameters, technology and functions and their control systems, which mainly play the role of providing dynamic loads (incident stress waves) for the test system; axial compression servo control
  • the loading system is mainly composed of left and right axial pressure loading fixed baffles, connecting rods, left and right axial pressure loading cylinders, axial pressure loading pistons, and axial pressure servo control system, mainly to provide shafts for test samples
  • the function of the axial pressure servo control loading system is to programmatically control the loading, holding and unloading of the oil source system, which can ensure that the static axial pressure remains relatively stable during the test process;
  • the confining pressure servo control loading system is mainly loaded by the confining pressure Cylinder block, confining pressure loading cylinder, screw, confining pressure loading oil inlet, confining pressure loading exhaust port, confining pressure loading exhaust port sealing plug, confining pressure oil gauge and confining pressure
  • the function of the confining pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system, which can ensure that the static hoop confining pressure remains relatively stable during the test process; osmotic pressure
  • the loading system is mainly composed of left osmotic pressure pipeline, right osmotic pressure pipeline, osmotic pressure pressurization and control system, which is mainly used to provide pore water pressure and osmotic pressure for test specimens or to provide pore water for specimens with internal holes
  • the role of pressure; the rod system is mainly composed of left and right stress wave loading rods with equal diameter, length and material to meet different test requirements and their supports, which are mainly used to transmit incident stress waves and apply to test specimens
  • the function of dynamic load; the data monitoring and acquisition system is mainly composed of multi-channel high-speed synchronous recorder, strain gauge, Wheatstone bridge and strain signal amplifier, which play a role in real-time monitoring and complete recording and storage of test signals.
  • the present invention provides a three-axis SHPB device for osmotic pressure and static coupling electromagnetic loading, which includes a supporting platform, a left side axial pressure loading fixed baffle, a left side axial pressure loading cylinder, and a left side Axial compression loading piston, left electromagnetic pulse excitation cavity, left electromagnetic pulse excitation cavity support, connecting rod, left stress wave loading rod, stress wave loading rod support, resistance strain gauge, right axial compression loading fixed baffle , Right axial pressure loading cylinder, right axial pressure loading piston, right electromagnetic pulse excitation cavity, right electromagnetic pulse excitation cavity support, right stress wave loading rod, confining pressure loading cylinder enclosure, confining pressure loading cylinder, Connecting screw, confining pressure loading oil inlet, confining pressure loading exhaust port, confining pressure loading exhaust port sealing plug, confining pressure oil gauge, left osmotic pressure pipe, right osmotic pressure pipe, test sample and rubber sleeve;
  • the device is centered on the test sample and is arranged in a symmetrical form.
  • the left side axial compression load fixed baffle and the right side axial compression load fixed baffle are respectively fixed on the left and right ends of the support platform, and the left axial compression load fixed baffle
  • the center and surrounding mounting holes are respectively provided on the center and the periphery of the right side axial pressure loading fixed baffle.
  • the left side axial pressure loading cylinder and the right side axial pressure loading cylinder pass through the left side axial pressure loading fixed baffle and the right shaft respectively.
  • the central mounting hole of the pressure-loaded fixed baffle is welded to form an integral structure.
  • the left axial pressure-loaded fixed baffle and the right axial pressure-loaded fixed baffle pass through the mounting holes around them to connect the two Connected as a whole and then form an integral frame system with the support platform;
  • the left electromagnetic pulse excitation cavity is supported by the left electromagnetic pulse excitation cavity support and placed on the support platform, where the left end of the left electromagnetic pulse excitation cavity and the left side
  • the axial pressure loading piston is free to fit and contact, and is used to transfer the static axial pressure provided by the left axial pressure loading cylinder to the left electromagnetic pulse excitation cavity through the left axial pressure loading piston;
  • the left stress wave loading rod is composed of the stress wave loading rod
  • the support is supported and placed on the support platform, in which the left end of the stress wave loading rod on the left is freely in contact with the right end surface of the left electromagnetic pulse excitation cavity, and on the one hand, it is used to transmit to the static of the left electromagnetic pulse excitation cavity
  • the axial pressure is further transmitted to the left stress wave loading rod and finally acts on the test specimen. On
  • the right electromagnetic pulse excitation cavity is supported by the right electromagnetic pulse excitation cavity support and placed on the supporting platform, and the right end of the right electromagnetic pulse excitation cavity is freely in contact with the right axial pressure loading piston for
  • the static axial pressure provided by the right axial pressure loading cylinder is transmitted to the right electromagnetic pulse excitation cavity through the right axial pressure loading piston;
  • the right stress wave loading rod is supported by the stress wave loading rod support and placed on the support platform, where The right end of the right stress wave loading rod is freely in contact with the left end surface of the right electromagnetic pulse excitation cavity, and on the one hand, it is used to further transfer the static axial pressure transmitted to the right electromagnetic pulse excitation cavity to the right stress wave loading rod And finally act on the test sample.
  • it is used to input the incident stress wave generated by the electromagnetic pulse excitation cavity on the right to the stress wave loading rod on the right and propagate along its axis until the test sample is applied from right to left. Dynamic load;
  • Resistance strain gauges are set on the left stress wave loading rod and the right stress wave loading rod;
  • the confining pressure loading cylinder enclosure, the confining pressure loading cylinder, the connecting screw, the confining pressure loading oil inlet, the confining pressure loading exhaust port, the confining pressure loading exhaust port sealing plug, and the confining pressure oil gauge constitute the confining pressure loading device.
  • the center and periphery of the pressure loading cylinder enclosure are respectively provided with a central mounting hole and a peripheral mounting hole, which are used to respectively pass the left stress wave loading rod and the right stress wave loading rod through the center mounting hole into the inner and the surrounding pressure loading cylinder.
  • the confining pressure loading cylinder ring on the right The lower and upper part of the central mounting hole of the block are respectively provided with a confining pressure loading oil inlet and a confining pressure loading exhaust port.
  • the confining pressure loading oil inlet and the confining pressure loading exhaust port form a connected loop of the confining pressure servo control loading system. It is used to pump the hydraulic oil into the confining pressure loading cylinder 18 to apply the ring static confining pressure to the test sample wrapped in the rubber sleeve.
  • the confining pressure loading exhaust port is equipped with a confining pressure loading exhaust port sealing plug for loading under confining pressure Seal the cylinder after the air is exhausted;
  • the osmotic pressure loading device includes a left osmotic pressure pipe and a right osmotic pressure pipe.
  • the pore diameter and length of the left osmotic pressure pipe and the right osmotic pressure pipe are the same, and they are respectively built into the right end of the left stress wave loading rod And the left end of the stress wave loading rod on the right side and directly contact the loading end surface of the test sample.
  • the penetrating liquid with the set pressure is injected from the left osmotic pressure pipe, and the penetrating liquid is driven by the osmotic pressure
  • the pore mesh channel connected through the inside of the test sample is discharged from the right osmotic pressure pipe, and the osmotic pressure is kept constant at the set value.
  • the central mounting holes and the surrounding mounting holes of the left axial pressure loading fixed baffle, the right axial pressure loading fixed baffle, and the confining pressure loading cylinder enclosure are all circular holes.
  • the left side axial compression loading fixed baffle plate and the right side axial compression loading fixed baffle plate are connected by four connecting rods through four small circular holes on the periphery of the two to form a whole and then to support
  • the platform constitutes an overall framework system.
  • the diameter of the central mounting hole of the confining pressure loading cylinder enclosure is 1 ⁇ 0.1 mm larger than the diameter of the stress wave loading rod.
  • resistance strain gauges are arranged at the center positions of the left stress wave loading rod and the right stress wave loading rod.
  • the confining pressure oil gauge is provided on the upper part of the right side baffle of the confining pressure loading cylinder baffle.
  • the left stress wave loading rod and the right stress wave loading rod can slide freely on the stress wave loading rod support.
  • a three-axis SHPB test method of osmotic pressure and static coupling electromagnetic loading using any of the above-mentioned devices for testing, the specific method is as follows:
  • the axial pressure servo control loading system is used to synchronously control the left axial pressure loading cylinder and the right axial pressure loading cylinder to boost the pressure and drive the left and right axial pressure loading pistons to the right and left respectively Move, and then push the left stress wave loading rod and the right stress wave loading rod to apply axial pressure to the test specimen at a set loading rate.
  • the electromagnetic pulse excitation control system was operated to drive the left electromagnetic pulse excitation cavity and the right electromagnetic pulse excitation cavity to simultaneously excite and output the incident stress wave.
  • the incident stress wave was then loaded along the left and right stress wave loading rods to the test specimen. Propagation and dynamic impact loading on it, complete static pressure and osmotic pressure coupled impact loading triaxial SHPB test test;
  • the dynamic impact loading process monitors the incident strain signal and the reflected strain signal in the stress wave loading bar through the resistance strain gages pasted on the center of the loading bar on the left and right sides; when the strain signal data monitored by the strain gages are used to display the static pressure and
  • the dynamic compression load applied on the left and right ends of the test sample is basically the same, it can be considered that the dynamic impact loading process of the test sample has reached a stress equilibrium state.
  • the strain data monitored by the strain gauge is calculated according to the following formula to obtain the dynamic compressive strength ⁇ (t) and dynamic compressive strain rate of the test specimen (26) And the strain ⁇ (t) are:
  • E, C and A are respectively the elastic modulus, longitudinal wave velocity and cross-sectional area of the rod loaded by the stress wave;
  • a s is the cross-sectional area of the test specimen, A s is the length of the test specimen;
  • is left incident And ⁇ left reflection are the incident strain signal and reflected strain signal monitored by the strain gauge from the left stress wave loading rod, ⁇ right incidence and ⁇ right reflection are the incident strain signal monitored by the strain gauge from the right stress wave loading rod, respectively And reflect the strain signal.
  • the resistance strain gauge transmits the incident strain signal and the reflected strain signal in the stress wave loading rod to the signal amplifier through the shielded wire via the Wheatstone bridge, and the strain signal is amplified by the signal amplifier and then output to the signal amplifier through the shielded wire
  • the data recorder records and stores, and finally outputs the strain signal data from the data recorder to the computer for analysis and processing through the data line.
  • An electromagnetic pulse launching system with osmotic pressure and static pressure coupled electromagnetic loading three-axis SHPB device and test method can accurately control and highly repetitively generate incident stress waves, which solves the problem of the existing Hopkinson rod equipment pneumatic launching bullet impact It is difficult to precisely control the incident stress wave when the incident rod generates the incident stress wave, and it is a technical problem that the incident stress wave is highly repeated.
  • the axial pressure and confining pressure servo control loading system of a three-axis SHPB device and test method for osmotic pressure and static pressure coupled electromagnetic loading can realize static axial pressure and confining pressure servo control loading and maintain axial pressure during dynamic impact loading. It is relatively stable with the confining pressure, which solves the defect that the current improved SHPB three-axis loading device is difficult to maintain the relative stability of the axial pressure and the confining pressure during the dynamic loading process.
  • An osmotic pressure and static pressure coupled electromagnetic loading triaxial SHPB device and test method of osmotic pressure loading system can be used to test osmotic pressure, pore water pressure under the action of triaxial static pressure, or for samples with internal pores Provide pore water pressure and maintain osmotic pressure, pore water pressure or pore water pressure at the set value, realize the impact loading test under the coupling action of osmotic pressure and static pressure, and solve the existing rock dynamic characteristics based on SHPB system
  • the test cannot simulate the technical problem of osmotic pressure-static pressure multi-field coupling during the dynamic loading process, making the test process closer to the true triaxial force environment of the deep rock mass, making the test results more reliable and accurate.
  • Figure 1 is a three-dimensional diagram of the three-axis SHPB device of the present invention coupled with osmotic pressure and static pressure electromagnetic loading;
  • Figure 2 is a front view of the three-axis SHPB device of the present invention coupled with osmotic pressure and static pressure electromagnetic loading;
  • Fig. 3 is a front view of a cutaway surface of a three-axis SHPB device with osmotic pressure and static pressure coupled electromagnetic loading according to the present invention
  • Figure 4 is a three-dimensional view of the osmotic pressure and confining pressure loading device of the present invention.
  • Figure 5 is a three-dimensional cross-sectional view of the osmotic pressure and confining pressure loading device of the present invention in the front view;
  • Fig. 6 is a front view of a sectional front view of the warm osmotic pressure and confining pressure loading device of the present invention.
  • Figure 7 is a three-dimensional cross-sectional view of the osmotic pressure and confining pressure loading device of the present invention in a top view;
  • Figure 8 is a top view of the osmotic pressure and confining pressure loading device of the present invention in a cutaway plane in the top direction;
  • Figure 9 is a three-dimensional view of the finite element calculation model of the present invention.
  • Fig. 10 is a three-dimensional grid division diagram of a complete stress wave loading bar in the finite element calculation of the present invention.
  • Figure 11 is a three-dimensional grid division diagram of stress wave loading rods for pipelines containing osmotic pressure in the finite element calculation of the present invention
  • Figure 13 is a three-dimensional cross-sectional view of the test sample containing a cylindrical hole according to the present invention in the front view direction when the static pressure and the internal pressure of the hole are coupled with three-axis loading;
  • FIG. 14 is a three-dimensional cross-sectional view of a test sample containing a cylindrical hole according to the present invention in a top view direction of static pressure and hole internal pressure coupled triaxial loading;
  • Figure 15 is a three-dimensional view of a test sample containing a cylindrical hole of the present invention.
  • Figure 16 is a top view of a test sample containing a cylindrical hole of the present invention.
  • Figure 1 is a three-dimensional diagram of a three-axis SHPB device with osmotic pressure and static pressure coupled electromagnetic loading.
  • the test device is placed on the support platform 1. It is mainly composed of an electromagnetic pulse transmission system, an axial pressure servo control loading system, a confining pressure servo control loading system, and an osmotic pressure It consists of loading system, rod system and data monitoring and acquisition system.
  • the test system is centered on the test sample 26 (as shown in FIG. 3) and is arranged in a symmetrical form.
  • the left and right axial pressure loading fixed baffles 2 and 11 are respectively fixed on the left and right ends of the supporting platform 1, and the center and the periphery are respectively provided with a large round hole and a small round hole.
  • the size here is based on the center and the periphery
  • the size of the circular hole is large and small, that is, the diameter of the central circular hole is larger than the diameter of the surrounding circular holes, so it is clear here.
  • the left axial pressure loading cylinder 3 and the right axial pressure loading cylinder 12 respectively pass through the central large circular holes of the left and right axial pressure loading fixed baffles 2 and 11, and are welded to form an integral structure.
  • the left and right axial pressure loading cylinders The loading and fixing baffles 2 and 11 are connected by four connecting rods 7 through the four small circular holes around them to form an integral frame system with the supporting platform; the number of connecting rods 7 is according to actual needs
  • the four wires here are only an example of implementation, and it does not mean that there are only four;
  • the left electromagnetic pulse excitation cavity 5 is supported by the left electromagnetic pulse excitation cavity support 6 and placed on the support platform 1, where The left end of the electromagnetic pulse excitation chamber 5 on the left is freely in contact with the left axial pressure loading piston 4, and is used to transfer the static axial pressure provided by the left axial pressure loading cylinder 3 to the left side through the left axial pressure loading piston 4
  • the left stress wave loading rod 8 is supported by the stress wave loading rod support 9 and placed on the support platform 1, wherein the left end of the left stress wave loading rod 8 and the left electromagnetic pulse excitation cavity 5
  • the right end face is freely in contact with each other.
  • the electromagnetic pulse excitation cavity 5 on the left is transferred to the electromagnetic pulse excitation cavity 5 on the left to the left stress wave loading rod 8 and finally act on the test specimen 26.
  • the incident stress wave generated by the electromagnetic pulse excitation cavity 5 on the left is input to the stress wave loading rod 8 on the left and propagates along its axis until a dynamic load from left to right is applied to the test specimen 26; in the same way, the electromagnetic pulse on the right is excited
  • the cavity 14 is supported by the right electromagnetic pulse excitation cavity support 15 and placed on the support platform 1, wherein the right end of the right electromagnetic pulse excitation cavity 14 is freely in contact with the right axial pressure loading piston 13 for the right side
  • the static axial pressure provided by the axial pressure loading cylinder 12 is transmitted to the right electromagnetic pulse excitation chamber 14 through the right axial pressure loading piston 13; the right stress wave loading rod 16 is supported by the stress wave loading rod support 9 and placed on the support platform 1
  • the right end of the right stress wave loading rod 16 is freely in contact with the left end of the right electromagnetic pulse excitation cavity
  • FIG. 4-8 is a schematic diagram of the structure and connection of a three-axis SHPB device with osmotic pressure and static pressure coupled electromagnetic loading.
  • the confining pressure loading device is mainly composed of a confining pressure loading cylinder enclosure 17, a confining pressure loading cylinder 18, a connecting screw 19, a confining pressure loading oil inlet 20, a confining pressure loading exhaust port 21, a confining pressure loading exhaust port sealing plug 22 and
  • the confining pressure oil gauge 23 is composed of a large round hole and a small round hole are respectively provided at the center and the periphery of the confining pressure loading cylinder enclosure 17, where the size is based on the comparison of the size of the center and the surrounding round holes, namely the center The diameter of the circular hole is larger than the diameter of the surrounding circular holes, so it is clear here.
  • the diameter of the large circular hole is about 1mm larger than the diameter of the stress wave loading rod. It is used to respectively extend the left and right stress wave loading rods 8 and 16 through the central large circular hole into the inside of the confining pressure loading cylinder 18 to contact the test specimen 26, and the screw 19
  • the confining pressure loading cylinder enclosure 17 and the confining pressure loading cylinder 18 are connected as a whole structure through the small round holes around the confining pressure loading cylinder enclosure and placed on the support platform 1.
  • the confining pressure loading cylinder enclosure on the right The lower and upper parts of the central large circular hole of 17 are respectively provided with a confining pressure loading oil inlet 20 and a confining pressure loading exhaust port 21.
  • the confining pressure loading device is connected by the confining pressure loading oil inlet 20 and the confining pressure loading exhaust port 21 A circuit for pumping hydraulic oil into the confining pressure loading cylinder 18 to apply hoop static confining pressure to the test sample 26 wrapped in an impermeable rubber sleeve 27.
  • the confining pressure loading exhaust port 21 is equipped with a confining pressure loading exhaust port seal The plug 22 is used to seal the confining pressure loading cylinder after the internal air is exhausted.
  • the static confining pressure pressure is displayed by the confining pressure oil gauge 23 installed on the upper part of the right side baffle of the confining pressure loading cylinder baffle 17;
  • the pressure loading device is mainly composed of the left osmotic pressure pipe 24 and the right osmotic pressure pipe 25.
  • the left osmotic pressure pipe 24 and the right osmotic pressure pipe 25 have the same pore size and length, and they are respectively built into the left and right
  • the right and left ends of the lateral stress wave loading rods 8 and 16 are in direct contact with the loading end surface of the test sample.
  • the penetrating liquid with the set pressure (0-60MPa) is injected through the left osmotic pressure pipe 24 Driven by the osmotic pressure, the permeate is discharged from the right osmotic pressure pipe 25 through the internally connected mesh channel of the test sample 26, and the osmotic pressure is kept constant at the set value.
  • the electromagnetic pulse excitation control system is operated to drive the left electromagnetic pulse excitation cavity 5 and the right electromagnetic pulse excitation cavity 14 to simultaneously excite and output incident stress waves of the same amplitude and duration along the stress wave loading rods 8 on the left and right sides respectively.
  • the strain signal is amplified by the signal amplifier
  • the shielded wire is output to the data logger for recording and storage, and finally the strain signal data is output from the data logger to the computer for analysis and processing through the data cable.
  • the strain signal data monitored by the strain gauge 10 shows that the dynamic compression load applied on the left and right ends of the test specimen 26 is basically the same during the osmotic pressure-static pressure coupled impact loading triaxial SHPB test process, the test specimen 26 can be considered as dynamic The impact loading process has reached the stress equilibrium state.
  • the strain data monitored by the strain gauge 10 can be calculated according to the following formula to obtain the test sample in the osmotic pressure-hydrostatic coupling impact loading triaxial Dynamic compressive strength ⁇ (t), dynamic compressive strain rate in SHPB test And the dynamic strain ⁇ (t) are:
  • E, C and A are the elastic modulus, longitudinal wave velocity and cross-sectional area of the rod under stress wave loading respectively;
  • a s is the cross-sectional area of the test specimen 26, and
  • a s is the length of the test specimen 26;
  • ⁇ Left incident and ⁇ left reflection are the incident strain signal and reflected strain signal monitored by the strain gauge from the left stress wave loading rod 8, respectively,
  • ⁇ right incidence and ⁇ right reflection are the strain gauge monitoring from the right stress wave loading rod 16 respectively The incident strain signal and the reflected strain signal.
  • Finite element simulation shows that when the diameter of the osmotic pressure pipeline is less than or equal to 2mm, the introduction of the osmotic pressure transmission channel has less than 1% influence on the one-dimensional stress wave propagation on the stress wave loading rod , Can be ignored. Specifically, as shown in Figure 9, when the incident stress wave (half sine wave with amplitude and wavelength duration of 200MPa and 250 ⁇ s, respectively) from the left end of the stress wave loading rod along the stress wave loading rod From left to right, it passes through the left and right osmotic pressure pipes in the rod in turn.
  • the incident stress wave half sine wave with amplitude and wavelength duration of 200MPa and 250 ⁇ s, respectively
  • the monitored stress wave amplitude at the center point of the cross section of the monitoring point A is the same as the stress monitored by the stress wave loading rod in the complete non-osmotic pressure pipeline.
  • the difference in amplitude is less than 1% (as shown in Figure 12).
  • the stress wave loading rod has a length of 3.05m and a diameter of 50mm.
  • the material is a homogeneous elastic titanium alloy. Its density, elastic modulus, The loose ratio and longitudinal wave velocity are 4510kg/m3, 107.8GPa, 0.33 and 5000m/s, respectively.
  • the free tetrahedral meshing method is used to mesh the stress wave propagation member model (the local meshing results are shown in Figure 10). Show), the total number of cells in the model after division is 72832;
  • Best implementation mode 2 Dynamic impact test study of intact water-saturated coal rock under osmotic pressure and static pressure coupled triaxial loading
  • test coal rock (test sample 26) is the center, and the test system is symmetrically arranged on the support platform 1.
  • the left side axial load fixed baffle with the width, height and thickness of 600mm, 400mm and 50mm respectively 2 is placed on the left end of the support platform 1, in which the left axial load cylinder 3 with a diameter and a length of 250mm and 200mm respectively passes through the central large circular hole of the left axial load fixed baffle 2, and is welded to form an integral structure,
  • the left axial pressure loading piston 4 has a diameter of 100mm and a piston stroke length of 200mm.
  • the left axial pressure loading cylinder 3 is pressurized and decompressed to control the movement of the left axial pressure loading piston; then the left side electromagnetic pulse is used to excite the cavity
  • the support 6 holds up the left electromagnetic pulse excitation cavity 5 with diameters and lengths of 200mm and 200mm and places them on the supporting platform 1, wherein the left end of the left electromagnetic pulse excitation cavity 5 and the left axial pressure loading piston 4 are free Fitting contact, used to transfer the static axial pressure provided by the left axial pressure loading cylinder 3 to the left electromagnetic pulse excitation cavity 5 through the left axial pressure loading piston 4, and the left electromagnetic pulse excitation cavity 5 right end stress wave output end surface diameter
  • the diameter of the stress wave loading rod is the same (50mm); then the left stress wave loading rod 8 of TC21 titanium alloy with a length of 2m and a diameter of 50mm is placed flat on the stress wave loading rod support 9, and the left stress wave is loaded
  • the rod 8 can slide freely on the support, and then the right side of the left stress wave loading rod 8 is loaded with a
  • the left stress wave loading end surface of the left stress wave loading rod 8 and the right stress wave output end surface of the left electromagnetic pulse excitation cavity 5 are aligned and fully attached.
  • its function is mainly to transfer the static axial pressure transferred to the electromagnetic pulse excitation cavity 5 on the left to the stress wave loading rod 8 on the left and finally to act on the coal rock (ie the test sample 26).
  • it is used to input the incident stress wave generated by the electromagnetic pulse excitation cavity 5 on the left to the stress wave loading rod 8 on the left and propagate along its axis until the dynamic load from left to right is applied to the coal;
  • the side system is arranged in the same way as the left side.
  • the right side axial load fixed baffle 11 with width, height and thickness of 600mm, 400mm and 50mm respectively is placed on the right end of the support platform 1, where the diameter and length are 250mm and 200mm respectively.
  • the right axial pressure loading cylinder 12 passes through the central large circular hole of the right axial pressure loading fixed baffle 11 and is welded to form an integral structure.
  • the diameter of the right axial pressure loading piston 13 is 100mm, and the piston stroke length is 200mm.
  • the excitation cavity support 15 holds up the right electromagnetic pulse excitation cavity 14 with a diameter and length of 200mm and places it on the support platform 1, wherein the right end of the right electromagnetic pulse excitation cavity 14 and the right axial compression loading piston 13 are free Fitted contact, used to transfer the static axial pressure provided by the right axial pressure loading cylinder 12 to the right electromagnetic pulse excitation cavity 14 through the right axial pressure loading piston 13, and the left end stress wave output diameter of the right electromagnetic pulse excitation cavity 14 Same diameter as the stress wave loading rod (50mm); then put the TC21 titanium alloy right stress wave loading rod 16 with a length of 2m and a diameter of 50mm on the stress wave loading rod support 9, and ensure that the right stress wave is loaded The rod 16 can slide freely on the support, and then load the left side of the right stress wave loading rod 16 with the right side of the coal rock (test sample 26) with a length and diameter of 50
  • the side loading surfaces are aligned and fully bonded together, and at the same time, the right stress wave loading end surface of the right stress wave loading rod 16 and the left stress wave output end surface of the right electromagnetic pulse excitation cavity 14 are aligned and fully bonded together , Its function is mainly to transfer the static axial pressure transmitted to the electromagnetic pulse excitation cavity 14 on the right to the stress wave loading rod 16 on the right and finally to act on the sandstone sample 26, and on the other hand to transfer the
  • the incident stress wave generated by the electromagnetic pulse excitation cavity 14 is input to the stress wave loading rod 16 on the right side and propagates along its axis until the dynamic load from right to left is applied to the coal and rock; then 4 connecting rods 7 are used to pass through the left and
  • the four small circular holes around the fixed baffles 2 and 11 on the right side are axially loaded to connect the loading system into a whole and form an integral frame system with the supporting platform; then the confining pressure loading device is placed on the periphery of the coal and rock.
  • the installation steps are as follows: first remove the saturated coal rock, and then push the left and right axial compression loading pistons to the left and right ends respectively without axial compression loading, so that the left and right stress wave loading rods 8 And 16 are moved to the left and right respectively to make room for the installation of the confining pressure loading device, and then the left and right side baffles of the confining pressure loading cylinder baffle 17 as shown in Figure 4-8 are placed on the left and right sides respectively.
  • the confining pressure loading cylinder 18 On both sides of the loading end of the stress wave loading rods 8 and 16 on the right side, then set the confining pressure loading cylinder 18 on the left or right stress wave loading rod, and then wrap it in an impermeable rubber cover (for example, type 26 fluoroelastomer)
  • the saturated coal rock in 27 is in contact with the left and right stress wave loading rods 8 and 16, and the coal rock is adjusted to the symmetric center position of the system, and then the left and right axial pressures are synchronously controlled by the axial pressure servo control loading system
  • the loading cylinders 3 and 12 slowly pressurize to drive the left and right axial pressure loading pistons 4 and 13 to move to the right and left respectively, and then drive the left and right stress wave loading rods 8 and 16 to the right and left respectively Move and clamp the saturated coal and apply axial pressure to it.
  • the specific loading process is as follows: First, the loading system is controlled by the axial compression servo Synchronously control the left and right axial pressure loading cylinders 3 and 12 to re-boost and drive the left and right axial pressure loading pistons 4 and 13 to move to the right and left, respectively, and then push the left and right sides
  • the stress wave loading rods 8 and 16 apply axial pressure to the saturated coal at a set loading rate.
  • the confining pressure loading exhaust port sealing plug 22 is tightened and sealed, the confining pressure loading exhaust port 21 is to be installed in the confining pressure loading cylinder enclosure 17
  • the pressure reading of the confining pressure oil gauge 23 on the upper part of the right enclosure reaches the set confining pressure value of 5MPa
  • the loading is stopped and the confining pressure servo-controlled loading system is used to keep the confining pressure constant, so that the impermeable rubber sleeve (for example, 26 Type fluororubber) 27
  • the circumferential confining pressure acting on the saturated coal is constant at 5MPa; then the osmotic pressure loading system is used to apply osmotic pressure to the saturated coal from the side of the left stress wave loading rod through the left osmotic pressure pipe 24 5MPa, driven by the osmotic pressure, the permeate is discharged from the right osmotic pressure pipe 25 through the internally connected pore network channel of the saturated coal rock, and the osmotic pressure difference
  • the incident stress wave then propagates to the saturated coal rock along the stress wave loading rods on the left and right sides and performs dynamics on it Impact loading, complete the dynamic impact test under osmotic pressure and static pressure coupled three-axis loading; it should be noted that during the dynamic impact loading process, the axial and circumferential static pressures are loaded in the axial pressure servo control loading system and the confining pressure servo control loading system respectively.
  • the system remains basically unchanged under the control of the system, so as to realize the dynamic triaxial impact loading test under the conditions of constant static axial pressure and confining pressure; the dynamic impact loading process is through the resistance strain gauges 10 pasted on the center positions of the loading rods on the left and right sides.
  • the strain data monitored by the strain gauge 10 can be calculated according to the following formula to obtain the coupling of saturated coal rock material at static pressure of 5MPa and osmotic pressure of 5MPa Dynamic compression strength ⁇ (t) under action, dynamic compression strain rate And the strain ⁇ (t) are:
  • E, C and A are the elastic modulus (107.8GPa), the longitudinal wave velocity (5000m/s) and the cross-sectional area of the rod (1963.5mm 2 ) of the stress wave loaded rod, respectively;
  • a s is the transverse direction of the saturated coal rock The cross-sectional area (1932.2mm 2 , the actual diameter of the saturated coal rock is 49.6mm),
  • a s is the length of the saturated coal rock (50mm);
  • ⁇ left incidence and ⁇ left reflection are the stress wave loading rod from the left of the strain gauge respectively monitoring strain on the 8 incident signal and the reflected signal strain, ⁇ the right entrance and [epsilon] are right reflecting the incident signal and the reflected strain gage monitored strain signal from the right side of the stress wave loading lever 16.
  • Best implementation mode 3 Dynamic impact test of shale with a central cylindrical hole under coupled triaxial loading of static pressure and internal pressure
  • the related equipment of the test system is placed on the supporting platform 1 with length, width and height of 6m, 0.6m and 1m respectively according to the connection method shown in Figure 1-3.
  • the connection relationship and related functions of each device are described as follows:
  • the test shale ie test sample 26
  • the test system is arranged on the support platform 1 in a symmetrical manner.
  • the left side axial compression loading fixed baffle 2 with the height and thickness of 600mm, 400mm and 50mm respectively is placed at the left end of the support platform 1, and the left side axial compression loading cylinder 3 with diameter and length of 250mm and 200mm respectively passes through the left shaft
  • the central large circular hole of the fixed baffle 2 is press-loaded and welded to form an integral structure.
  • the diameter of the left axial load piston 4 is 100mm, and the piston stroke length is 200mm.
  • the left axial load cylinder 3 pressurizes and reduces Press to control the movement of the left axial pressure loading piston; then use the left electromagnetic pulse excitation cavity support 6 to hold up the left electromagnetic pulse excitation cavity 5 with a diameter and a length of 200mm and 200mm respectively and place it on the support platform 1, wherein
  • the left end of the electromagnetic pulse excitation chamber 5 on the left is freely in contact with the left axial pressure loading piston 4, and is used to transfer the static axial pressure provided by the left axial pressure loading cylinder 3 to the left side through the left axial pressure loading piston 4
  • Electromagnetic pulse excitation cavity 5, the left side of the electromagnetic pulse excitation cavity 5, the stress wave output end diameter at the right end is the same as the diameter of the stress wave loading rod (50mm); then the left side stress wave loading rod 8 of TC21 titanium alloy with a length of 2m and a diameter of 50mm Lay it flat on the stress wave loading rod support 9 and ensure that the left stress wave loading rod 8 can slide freely on the stress wave loading rod support 9, and then load the right side
  • the left side of the left stress wave loading rod 8 The side stress wave loading end face is aligned with the right stress wave output end face of the left electromagnetic pulse excitation cavity 5 and fully fits together, and its function is mainly to transmit the static axial pressure to the left electromagnetic pulse excitation cavity 5 on the one hand It is further transmitted to the left stress wave loading rod 8 and finally acts on the shale containing a cylindrical hole 28 with a central diameter of 8mm.
  • the system on the right is arranged in the same way as on the left.
  • the right axial loading fixed baffle 11 with height and thickness of 600mm, 400mm and 50mm respectively is placed on the right end of the support platform 1, wherein the right axial loading cylinder 12 with diameter and length of 250mm and 200mm respectively passes through the right shaft
  • the central large circular hole of the fixed baffle 11 is press-loaded and welded to form an integral structure.
  • the diameter of the axial press-loading piston 13 on the right is 1 00mm, the piston stroke length is 200mm, the right side axial pressure loading cylinder 12 is pressurized and decompressed to control the right side axial pressure loading piston movement; then the right electromagnetic pulse excitation cavity support 15 is used to set the diameter and length to 200mm
  • the electromagnetic pulse excitation cavity 14 on the right side is held up and placed on the support platform 1, wherein the right end of the electromagnetic pulse excitation cavity 14 on the right is freely in contact with the right axial compression loading piston 13 for loading the right axial compression
  • the static axial pressure provided by the oil cylinder 12 is transmitted to the right electromagnetic pulse excitation cavity 14 through the right axial pressure loading piston 13, and the left end of the right electromagnetic pulse excitation cavity 14 has the same diameter of the stress wave output end surface as the stress wave loading rod (50mm); then Place the TC21 titanium alloy right stress wave loading rod 16 with a length of 2m and a diameter of 50mm on the stress wave loading rod support 9, and ensure that the right stress wave loading rod 16 can
  • the incident stress wave generated by the cavity 14 is input to the stress wave loading rod 16 on the right and propagates along its axis until the shale with a cylindrical hole 28 with a central diameter of 8 mm is applied with a dynamic load from right to left;
  • the rod 7 passes through the four small circular holes around the left and right axial pressure loading fixed baffles 2 and 11 to connect the loading system into a whole and then form an integral frame system with the supporting platform; then the confining pressure loading device is placed
  • the specific installation steps are as follows: first remove the shale with a cylindrical hole 28 with a central diameter of 8mm, and then separately load the left and right shafts under no axial compression loading.
  • the pressure loading piston is pushed open to the left and right ends, so that the left and right stress wave loading rods 8 and 16 can be moved to the left and right, respectively, to make room for the installation of the confining pressure loading device, as shown in Figure 4 -8 shows that the left and right sides of the confining pressure loading cylinder enclosure 17 are sleeved on both sides of the loading ends of the left and right stress wave loading rods 8 and 16, and then the confining pressure loading cylinder 18 is sleeved on the left or On the right stress wave loading rod, then the shale with a cylindrical hole 28 with a center diameter of 8mm wrapped in an impermeable rubber sleeve (such as type 26 fluoroelastomer) 27 and the left and right stress wave loading rods 8 and 16 contact and adjust the shale sample to the symmetric center position of the system, and then synchronously control the left and right axial pressure loading cylinders 3 and 12 through the axial pressure servo control loading system to drive the left and right
  • the left and right sides of the confining pressure loading cylinder enclosure 17 are butted with the confining pressure loading cylinder 18 and the confining pressure loading cylinder 18 is positioned at the center of symmetry of the system, so that the shale with a cylindrical hole 28 with a central diameter of 8mm is in the confining pressure loading.
  • the test design carries out the corresponding loading operation.
  • the specific loading process is as follows: First, the left and right axial pressure loading cylinders 3 and 12 are synchronously controlled through the axial pressure servo control loading system, so that the two re-boost and drive the left and right sides.
  • the axial pressure loading pistons 4 and 13 move to the right and left, respectively, and then push the left and right stress wave loading rods 8 and 16 respectively at the set loading rate as the shale application axis with a cylindrical hole 28 with a central diameter of 8mm
  • the confining pressure loading cylinder 18 is pumped into anti-wear hydraulic oil (for example, HEX T6002).
  • the confining pressure loading cylinder When the hydraulic oil flows out from the confining pressure loading exhaust port 21, it indicates that the confining pressure loading cylinder is filled with anti-wear hydraulic oil. Tighten and seal the loading exhaust port sealing plug 22 and seal the confining pressure loading exhaust port 21.
  • the pressure reading of the confining pressure oil gauge 23 to be installed on the upper right side of the confining pressure loading cylinder enclosure 17 reaches the set confining pressure value At 30MPa, stop the loading and use the confining pressure servo control loading system to keep the confining pressure constant, so that the impermeable rubber sleeve (for example, type 26 fluoroelastomer) 27 acts on the shale containing a cylindrical hole 28 with a central diameter of 8 mm.
  • the impermeable rubber sleeve for example, type 26 fluoroelastomer
  • the circumferential confining pressure is constant at 30 MPa; then the osmotic pressure loading system is used to apply an internal pressure of 10 MPa to the shale containing a cylindrical hole 28 with a central diameter of 8 mm through the left osmotic pressure pipe 24 and the right osmotic pressure pipe 25.
  • the electromagnetic pulse excitation control system is operated according to the experimental design Drive the left electromagnetic pulse excitation cavity 5 and the right electromagnetic pulse excitation cavity 14 to simultaneously excite and output an incident stress wave with an amplitude of 500 MPa and a duration of 400 ⁇ s.
  • the incident stress wave is then moved along the left and right stress wave loading rods with the center
  • the shale in the cylindrical hole 28 with a diameter of 8mm propagates and carries out dynamic impact loading on the Three-axis SHPB test test for coupling impact loading of pressure and bore pressure;
  • the dynamic impact loading process the axial and hoop static pressure are maintained under the control of the axial pressure servo control loading system and the confining pressure servo control loading system, respectively Basically unchanged, so as to realize the dynamic triaxial impact loading test under the conditions of constant static axial pressure and confining pressure; during the dynamic impact loading process, the stress wave can be monitored in real time through the resistance strain gauges 10 attached to the center of the loading rods on the left and right sides
  • the incident strain signal and the reflected strain signal in the loading rod are transmitted to the signal amplifier through the shielded wire through the Wheatstone bridge.
  • the strain signal is amplified by the signal amplifier and output to the data recorder through the shielded wire for recording and storage, and finally through The data cable outputs the strain signal data from the data recorder to the computer for analysis and processing.
  • the strain signal data monitored by the strain gauge 10 shows that the dynamic compression load applied on the left and right ends of the shale with a cylindrical hole 28 with a center diameter of 8 mm is basically the same during the three-axis SHPB test process of static pressure and hole pressure coupled impact loading It can be considered that the dynamic impact loading process of the shale with a cylindrical hole 28 with a central diameter of 8mm has reached a stress equilibrium state.
  • E, C and A are respectively the elastic modulus of the stress wave loaded rod (107.8GPa), the longitudinal wave velocity (5000m/s) and the cross-sectional area of the rod (1963.5mm 2 );
  • a s is a cylinder with a center diameter of 8mm
  • a s is the length of the shale containing a cylindrical hole 28 with a central diameter of 8mm (50mm);
  • ⁇ left incidence and ⁇ left reflection are strains, respectively
  • the incident strain signal and the reflected strain signal monitored by the sheet from the stress wave loading rod 8 on the left, ⁇ right incident and ⁇ right reflection are the incident strain signal and the reflected strain signal monitored by the strain gauge from the right stress wave loading rod 16 respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种渗透压和静压耦合电磁加载三轴SHPB装置和测试方法,装置包括电磁脉冲发射系统、轴压伺服控制加载系统、围压伺服控制加载系统、渗透压加载系统、杆件系统和数据监测与采集系统。引入渗透压实时加载和控制系统,解决了现有动力学试验装置无法开展接近深部岩体真实环境的高渗透水压、静压以及动态扰动耦合作用下的岩体动力学响应研究的技术难题。

Description

渗透压和静压耦合电磁加载三轴SHPB装置和测试方法 技术领域
本发明属于岩石动力学研究领域。更具体地说,涉及一种考虑深部地下真实多场耦合环境下岩石动力学特征和破断机理研究的渗透压和静压耦合电磁加载三轴SHPB装置和测试方法。SHPB:霍普金森杆。
背景技术
随着浅部矿产资源不断枯竭,资源和能源开采逐渐转向深部发展,未来深部开采将成为常态化。然而,进入深部开采后,岩体所处环境变得十分复杂,深部原位岩体不仅承受着高幅值三向应力还往往同时承受着高渗透水压以及强烈的工程扰动(例如爆炸波、地震和岩爆等),由此导致工程灾害(如岩爆、冲击地压、大变形等)频发,严重危及深部岩体工程的安全。因此,研究并揭示深部地应力-渗透压耦合环境下岩体在冲击荷载作用下的动态力学响应和破坏机制对深部地下岩体工程的开发和利用具有十分重要的意义。目前,针对深部复杂条件下岩体动力学特征研究主要表现为基于传统一维霍普金森压杆(SHPB)开展的动态冲击加载试验研究以及利用改进的SHPB系统开展动静组合冲击加载三维SHPB试验研究,虽然上述研究极大的促进人们对深部高地应力和动态冲击荷载作用条件下的岩体动力学响应规律的了解,但是不可否认的是现有研究未有考虑到深部岩体实际上是处于静态压力和高渗透水压以及动态扰动复杂环境条件,因此现有研究结果无法真实有效且全面的反应深部原位岩体在深部复杂条件下的动态力学特征以及破坏规律。究其原因,主要是考虑深部复杂条件下岩石动力学试验研究手段欠缺,特别是用于开展模拟深部渗透压和静态压力耦合作用条件下岩体动力学特征和破断机理研究的设备缺失。因此,现有技术还有待改进。
发明内容
为解决现有动力学试验装置无法开展深部高地应力和高渗透水压以及强烈的工程扰动条件下岩石动力学响应与破断机制研究,本发明提出一种渗透压和静力耦合电磁加载三轴SHPB装置和测试方法,该装置基于传统的一维SHPB,创新性的对原有设备进行改进,引入渗透压实时加载和控制系统,解决了现有动力学试验装置无法开展接 近深部岩体真实环境的高渗透水压、静压以及动态扰动耦合作用下的岩体动力学响应研究的技术难题。
一种渗透压和静压耦合电磁加载三轴SHPB装置包括电磁脉冲发射系统、轴压伺服控制加载系统、围压伺服控制加载系统、渗透压加载系统、杆件系统和数据监测与采集系统。
渗透压和静压耦合电磁加载三轴SHPB装置以支撑平台基础平台,呈左右对称形式布置,支撑平台起到粗调平装置基础并且承受整个系统自重以及测试过程的冲击载荷作用。电磁脉冲发射系统主要由相同加工参数、工艺和功能的左侧和右侧电磁脉冲激发腔及其控制系统构成,主要起到为测试系统提供动态荷载(入射应力波)的作用;轴压伺服控制加载系统主要由左侧和右侧轴压加载固定挡板、连杆、左侧和右侧轴压加载油缸、轴压加载活塞以及轴压伺服控制系统构成,主要起到为测试试样提供轴向静态预应力,轴压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态轴压在测试过程保持相对稳定;围压伺服控制加载系统主要由围压加载缸围挡、围压加载缸、螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞、围压油表以及围压伺服控制系统构成,主要起到为测试试样提供环向静态预应力的作用,围压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态环向围压在测试过程保持相对稳定;渗透压加载系统主要由左侧渗透压管道、右侧渗透压管道、渗透压加压和控制系统构成,主要起到为测试试样提供孔隙水压力、渗透压或者为含内部孔洞试样提供孔内水压的作用;杆件系统主要由满足不同试验需求的直径、长度和材质均相等的左侧和右侧应力波加载杆及其支座构成,主要起到传递入射应力波并为测试试样施加动载荷的作用;数据监测与采集系统主要由多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器构成,起到实时监测并完整记录和存储试验测试信号的作用。
为了解决现有技术中问题,本发明提供了一种渗透压和静力耦合电磁加载三轴SHPB装置,其包括支撑平台、左侧轴压加载固定挡板、左侧轴压加载油缸、左侧轴压加载活塞、左侧电磁脉冲激发腔、左侧电磁脉冲激发腔支座、连杆、左侧应力波加载杆、应力波加载杆支座、电阻应变片、右侧轴压加载固定挡板、右侧轴压加载油缸、右侧轴压加载活塞、右侧电磁脉冲激发腔、右侧电磁脉冲激发腔支座、右侧应力波加载杆、围压加载缸围挡、围压加载缸、连接螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞、围压油表、左侧渗透压管道、右侧渗透压管道、测试试样及橡胶套;
装置以测试试样为中心,呈左右对称形式布置,其中左侧轴压加载固定挡板和右 侧轴压加载固定挡板分别固定于支撑平台的左右两端,左侧轴压加载固定挡板和右侧轴压加载固定挡板中心和四周分别设置中心安装孔和四周安装孔,左侧轴压加载油缸和右侧轴压加载油缸分别穿过左侧轴压加载固定挡板和右侧轴压加载固定挡板的中心安装孔,并与之焊接形成整体结构,此外,左侧轴压加载固定挡板和右侧轴压加载固定挡板通过连杆穿过其四周安装孔而将二者连接成整体并进而与支持平台构成一整体框架系统;左侧电磁脉冲激发腔由左侧电磁脉冲激发腔支座支撑并安置在支撑平台上,其中左侧电磁脉冲激发腔的左端部与左侧轴压加载活塞自由贴合接触,用于将左侧轴压加载油缸提供的静态轴压通过左侧轴压加载活塞传递至左侧电磁脉冲激发腔;左侧应力波加载杆由应力波加载杆支座支撑并安置在支撑平台上,其中左侧应力波加载杆的左端部与左侧电磁脉冲激发腔的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔的静态轴压进一步传递至左侧应力波加载杆并最终作用于测试试样,另一方面用于将左侧电磁脉冲激发腔产生的入射应力波输入至左侧应力波加载杆并沿其轴线方向传播直至给测试试样施加从左至右的动态荷载;
同理,右侧电磁脉冲激发腔由右侧电磁脉冲激发腔支座支撑并安置在支撑平台上,其中右侧电磁脉冲激发腔的右端部与右侧轴压加载活塞自由贴合接触,用于将右侧轴压加载油缸提供的静态轴压通过右侧轴压加载活塞传递至右侧电磁脉冲激发腔;右侧应力波加载杆由应力波加载杆支座支撑并安置在支撑平台上,其中右侧应力波加载杆的右端部与右侧电磁脉冲激发腔的左端面自由贴合接触,一方面用于将传递至右侧电磁脉冲激发腔的静态轴压进一步传递至右侧应力波加载杆并最终作用于测试试样,另一方面用于将右侧电磁脉冲激发腔产生的入射应力波输入至右侧应力波加载杆并沿其轴线方向传播直至给测试试样施加从右至左的动态荷载;
左侧应力波加载杆和右侧应力波加载杆上设置电阻应变片;
围压加载缸围挡、围压加载缸、连接螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞以及围压油表构成围压加载装置,其中围压加载缸围挡的中心 和四周分别设置有中心安装孔和四周安装孔,用于分别将左侧应力波加载杆和右侧应力波加载杆穿过中心安装孔伸入围压加载缸的内部与测试试样接触,螺杆通过围压加载缸围挡四周安装孔将围压加载缸围挡和围压加载缸连接为一整体结构并安置在支撑平台上,此外,右侧的围压加载缸围挡的中心安装孔下部和上部分别设有围压加载进油口和围压加载排气口,通过围压加载进油口和围压加载排气口将围压伺服控制加载系统构成连通回路,用于将液压油泵入围压加载缸18对包裹在橡胶套中的测试试样施加环向静态围压,围压加载排气口外侧配有围压加载排气口密封塞用于在围压加载缸内部空气排尽后对其进行密封;
渗透压加载装置包括左侧渗透压管道和右侧渗透压管道,其中左侧渗透压管道和右侧渗透压管道的孔径和长度均相同,二者分别内置于左侧应力波加载杆的右端部和右侧应力波加载杆的左端部,并与测试试样加载端面直接接触,渗透压施加时,通过从左侧渗透压管道注入具有设定压力的渗透液,渗透液在渗透压的驱动下通过测试试样的内部连通的孔网通道从右侧渗透压管道排出,并维持渗透压恒定在设定值。
作为本发明的进一步改进,所述左侧轴压加载固定挡板、右侧轴压加载固定挡板、围压加载缸围挡三者的中心安装孔和四周安装孔均为圆形孔。
作为本发明的进一步改进,左侧轴压加载固定挡板和右侧轴压加载固定挡板通过四根连杆穿过其周边的四个小圆孔而将二者连接成整体并进而与支持平台构成一整体框架系统。
作为本发明的进一步改进,围压加载缸围挡的中心安装孔的直径比应力波加载杆直径大1±0.1mm。
作为本发明的进一步改进,左侧应力波加载杆和右侧应力波加载杆中心位置处设置电阻应变片。
作为本发明的进一步改进,围压加载缸围挡的右侧围挡上部设置所述围压油表。
作为本发明的进一步改进,左侧应力波加载杆和右侧应力波加载杆能够在应力波 加载杆支座上自由滑动。
一种渗透压和静力耦合电磁加载三轴SHPB测试方法,利用上述任意一项所述的装置进行测试,具体方法如下:
首先通过轴压伺服控制加载系统同步控制左侧轴压加载油缸和右侧轴压加载油缸,使二者升压并驱动左侧轴压加载活塞和右侧轴压加载活塞分别向右和向左移动,进而推动左侧应力波加载杆和右侧应力波加载杆分别以设定加载速率为测试试样施加轴向压力,待轴向压力值达到设定值时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;
随后利用围压伺服控制加载系统以设定速率通过围压加载进油口向围压加载缸内部泵入抗磨液压油,待从围压加载排气口流出液压油时表明围压加载缸内已注满抗磨液压油,此时用围压加载排气口密封塞拧紧并密封好围压加载排气口,并继续施加围压,待围压油表的压力读数达到设定围压值时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过防渗透橡胶套作用在测试试样的环向围压恒定在设定值;接着利用渗透压加载系统通过左侧渗透压管道和右侧渗透压管道给测试试样施加渗透压,待左侧渗透压管道()和右侧渗透压管道之间的渗透压压差恒定为设定值时,完成向测试试样施加静态轴压、围压和渗透压的耦合作用条件;
随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔和右侧电磁脉冲激发腔同步激发并输出入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向测试试样传播并对其进行动态冲击加载,完成静压和渗透压耦合冲击加载三轴SHPB测试试验;
动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片,实时监测应力波加载杆中入射应变信号和反射应变信号;当利用应变片所监测到的应变信号数据显示静压和渗透压耦合冲击加载三轴SHPB测试过程测试试样左右两端面所施加的动态压缩荷载基本一致时,可认为测试试样动态冲击加载过程达到了应力平衡状态, 根据一维应力波传播理论,利用应变片所监测的应变数据,按照下述公式进行计算,获取测试试样(26)的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115487-appb-000001
以及应变ε(t)分别为:
Figure PCTCN2019115487-appb-000002
Figure PCTCN2019115487-appb-000003
Figure PCTCN2019115487-appb-000004
其中,E、C和A分别为应力波加载杆的弹性模量、纵波速度与杆的横截面面积;A s为测试试样的横截面面积,A s为测试试样的长度;ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆上监测的入射应变信号和反射应变信号。
作为本发明的进一步改进,所述电阻应变片将应力波加载杆中入射应变信号和反射应变信号通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
本发明的有益效果是:
(1)一种渗透压和静压耦合电磁加载三轴SHPB装置和测试方法的电磁脉冲发射系统可精确控制并且高度重复的产生入射应力波,解决了现有霍普金森杆设备气动发射子弹撞击入射杆产生入射应力波时难以精确控制并高度重复产生入射应力波的技术难题。
(2)一种渗透压和静压耦合电磁加载三轴SHPB装置和测试方法的动态荷载由双向电磁脉冲发射系统同步控制加载,不仅弥补了传统霍普金森压杆只能从一个方向为测试试样施加动态荷载的缺陷,同时双向同步控制加载入射应力波,将测试试样加载过程达到动态应力平衡的时间缩短为传统从一个方向加载时的三分之一左右,从而有助于提高动态测试结果的有效性和可靠性,同时还能避免脆性试样因达到平衡所用时间太长而发生影响测试结果有效性的预破裂现象。
(3)一种渗透压和静压耦合电磁加载三轴SHPB装置和测试方法的轴压和围压伺服控制加载系统可实现静态轴压和围压伺服控制加载并且在动态冲击加载过程维持轴 压和围压保持相对稳定,解决了目前改进的SHPB三轴加载装置难以在动态加载过程维持轴压和围压相对稳定的缺陷。
(4)一种渗透压和静压耦合电磁加载三轴SHPB装置和测试方法的渗透压加载系统可为测试在施加三轴静态压力作用下施加渗透压、孔隙水压力或者为含内部孔洞试样提供孔内水压并维持渗透压、孔隙水压力或孔内水压在设定值,实现渗透压和静压耦合作用下的冲击加载试验,解决了现有基于SHPB系统开展的岩石动力学特性测试无法在动态加载过程模拟渗透压-静压多场耦合的技术难题,使测试过程更加接近深部岩体真实三轴受力环境,从而使得测试结果更加可靠和准确。
附图说明
图1是本发明渗透压和静压耦合电磁加载三轴SHPB装置三维图;
图2是本发明渗透压和静压耦合电磁加载三轴SHPB装置正视图;
图3是本发明渗透压和静压耦合电磁加载三轴SHPB装置剖切面正视图;
图4是本发明渗透压和围压加载装置三维图;
图5是本发明渗透压和围压加载装置正视方向三维剖切图;
图6是本发明温渗透压和围压加载装置正视方向剖切面正视图;
图7是本发明渗透压和围压加载装置俯视方向三维剖切图;
图8是本发明渗透压和围压加载装置俯视方向剖切面俯视图;
图9是本发明有限元计算模型三维图;
图10是本发明有限元计算中完整应力波加载杆的网格划分三维图;
图11是本发明有限元计算中含渗透压管道应力波加载杆的网格划分三维图;
图12是本发明不同渗透压管道直径对应力波加载杆中应力波传播影响有限元计算结果图;
图13是本发明含圆柱孔测试试样静压和孔内压耦合三轴加载正视方向三维剖切图;
图14是本发明含圆柱孔测试试样静压和孔内压耦合三轴加载俯视方向三维剖切图;
图15是本发明含圆柱孔测试试样三维图;
图16是本发明含圆柱孔测试试样俯视图。
图中标号对应部件名称如下:
1-支撑平台,2-左侧轴压加载固定挡板,3-左侧轴压加载油缸,4-左侧轴压加载活塞,5-左侧电磁脉冲激发腔,6-左侧电磁脉冲激发腔支座,7-连杆,8-左侧应力波加载杆,9-应力波加载杆支座,10-应变片,11-右侧轴压加载固定挡板,12-右侧轴压加载油缸,13-右侧轴压加载活塞,14-右侧电磁脉冲激发腔,15-右侧电磁脉冲激发腔支座, 16-右侧应力波加载杆,17-围压加载缸围挡,18-围压加载缸,19-螺杆,20-围压加载进油口,21-围压加载排气口,22-围压加载排气口密封塞,23-围压油表,24-左侧渗透压管道,25-右侧渗透压管道,26-测试试样,27-橡胶套,28-圆柱孔。
具体实施方式
下面结合附图对本发明做进一步说明。
最佳实施方式1:
图1为渗透压和静压耦合电磁加载三轴SHPB装置三维图,试验装置置于支撑平台1上,主要由电磁脉冲发射系统、轴压伺服控制加载系统、围压伺服控制加载系统、渗透压加载系统、杆件系统和数据监测与采集系统组成。测试系统以测试试样26为中心(如图3所示),呈左右对称形式布置。其中左侧和右侧轴压加载固定挡板2和11分别固定于支撑平台1的左右两端,其中心和四周分别设置有大圆孔和小圆孔,此处的大小是基于中心和四周的圆孔尺寸对比得到的大和小,即中心圆孔的直径是大于四周圆孔的直径的,所以此处是清楚的。左侧轴压加载油缸3和右侧轴压加载油缸12分别穿过左右两端轴压加载固定挡板2和11的中心大圆孔,并与之焊接形成整体结构,此外,左右两端轴压加载固定挡板2和11通过四根连杆7穿过其周边的四个小圆孔而将二者连接成整体并进而与支持平台构成一整体框架系统;连杆7的个数根据实际需要进行设定,此处四根仅仅是一种实施例子,不代表只能是四根;左侧电磁脉冲激发腔5由左侧电磁脉冲激发腔支座6支撑并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5;左侧应力波加载杆8由应力波加载杆支座9支撑并安置在支撑平台1上,其中左侧应力波加载杆8的左端部与左侧电磁脉冲激发腔5的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传递至左侧应力波加载杆8并最终作用于测试试样26,另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其轴线方向传播直至给测试试样26施加从左至右的动态荷载;同理,右侧电磁脉冲激发腔14由右侧电磁脉冲激发腔支座15支撑并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14;右侧应力波加载杆16由应力波加载杆支座9支撑并安置在支撑平台1上,其中右侧应力波加载杆16的右端部与右侧电磁脉冲激发腔14的左端面自由贴合接触,一方 面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于测试试样26,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给测试试样26施加从右至左的动态荷载。
图4-8为渗透压和静压耦合电磁加载三轴SHPB装置结构和连接示意图。围压加载装置主要由围压加载缸围挡17、围压加载缸18、连接螺杆19、围压加载进油口20、围压加载排气口21、围压加载排气口密封塞22以及围压油表23构成,其中围压加载缸围挡17的中心和四周分别设置有大圆孔和小圆孔,此处的大小是基于中心和四周的圆孔尺寸对比得到的大和小,即中心圆孔的直径是大于四周圆孔的直径的,所以此处是清楚的。大圆孔直径比应力波加载杆直径大约1mm,用于分别将左侧和右侧应力波加载杆8和16穿过中心大圆孔伸入围压加载缸18的内部与测试试样26接触,螺杆19通过围压加载缸围挡四周的小圆孔将围压加载缸围挡17和围压加载缸18连接为一整体结构并安置在支撑平台1上,此外,右侧的围压加载缸围挡17的中心大圆孔下部和上部分别设有围压加载进油口20和围压加载排气口21,通过围压加载进油口20和围压加载排气口21将围压加载装置构成连通回路,用于将液压油泵入围压加载缸18对包裹在防渗透橡胶套27中的测试试样26施加环向静态围压,围压加载排气口21外侧配有围压加载排气口密封塞22用于在围压加载缸内部空气排尽后对其进行密封,静态围压压力大小通过安装在围压加载缸围挡17的右侧围挡上部的围压油表23进行显示;渗透压加载装置主要由左侧渗透压管道24和右侧渗透压管道25构成,其中左侧渗透压管道24和右侧渗透压管道25的孔径和长度均相同,二者分别内置于左侧和右侧应力波加载杆8和16的右端部和左端部并与测试试样加载端面直接接触,渗透压施加时,通过从左侧渗透压管道24注入具有设定压力(0-60MPa)的渗透液,渗透液在渗透压的驱动下通过测试试样26的内部连通的孔网通道从右侧渗透压管道25排出,并维持渗透压恒定在设定值。
动态加载过程,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔5和右侧电磁脉冲激发腔14同步激发并输出相同幅值和持续时长的入射应力波分别沿左右两侧应力波加载杆8和16向测试试样26传播并对其进行动态冲击加载,完成渗透压和静压耦合冲击加载三轴SHPB试验测试;需要说明的是,动态冲击加载过程,轴向和环向静态压力分别在轴压伺服控制加载系统和围压伺服控制加载系统的调控下保持基本不变,从而实现恒定静态轴压和围压条件下的动态三轴冲击加载试验;动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片10,可实时监测应力波加载杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存 储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。当利用应变片10所监测到的应变信号数据显示渗透压-静压耦合冲击加载三轴SHPB测试过程测试试样26左右两端面所施加的动态压缩荷载基本一致时,可认为测试试样26动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片10所监测的应变数据,可按照下述公式进行计算,获取测试试样在渗透压-静压耦合冲击加载三轴SHPB试验中的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115487-appb-000005
以及动态应变ε(t)分别为:
Figure PCTCN2019115487-appb-000006
Figure PCTCN2019115487-appb-000007
Figure PCTCN2019115487-appb-000008
其中,E、C和A分别为应力波加载杆的弹性模量、纵波速度与杆的横截面面积;A s为测试试样26的横截面面积,A s为测试试样26的长度;ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆8上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆16上监测的入射应变信号和反射应变信号。
此外,需要说明的是,由于渗透压系统的引入,需要在左侧和右侧应力波加载杆8和16靠近测试试样加载端分别设置左侧渗透压管道24和右侧渗透压管道25,由于渗透压传输通道的引入一定程度上改变了圆柱形应力波加载杆的各向同性特征,产生了局部各向异性特征,由此需要校核渗透压传输通道的引入对应力波加载杆上一维应力波传播的影响。通过有限元模拟(以ABAQUS 6.14-5软件为例)计算表明:当渗透压管道的直径小于等于2mm时,渗透压传输通道的引入对应力波加载杆上一维应力波传播的影响小于1%,可以忽略不计,具体来说主要体现在如图9所示,当入射应力波(半正弦波且幅值和波长持续时间分别为200MPa和250μs)从应力波加载杆的左端沿应力波加载杆从左至右传输依次通过杆中左侧和右侧渗透压管道后在监测A点横截面中心点处监测的应力波幅值与完整无渗透压管道应力波加载杆在相同位置处监测的应力波幅值之差小于1%(如图12所示)。
需要说明的是,如图9所述数值模型计算的相关建模及边界条件信息如下:
作为对比,先建立完整的不含渗透压管道应力波传播杆件模型,其中应力波加载 杆的长度为3.05m,直径为50mm,材料为均质弹性钛合金,其密度、弹性模量、泊松比和纵波速度分别为4510kg/m3、107.8GPa、0.33和5000m/s,采用四面体网格自由划分的方法对应力波传播杆件模型进行网格划分(局部网格划分结果如图10所示),划分后模型所得总单元格数目为72832;
随后,在完整应力波传播杆件模型基础上分别建立含有不同直径(分别为2mm、1mm和0.5mm)的渗透压管道数值计算模型,其中各个渗透压传输管道沿应力波加载杆轴线方向的长度均为0.15m,应力波加载杆的长度和直径分别为3.05m和50mm,且应力波加载杆的材质及其参数均与完整应力波传输杆模型相同,依照与所述完整应力波加载杆相同的网格划分方式(含渗透压管道部分网格划分结果如图11所示),所得含2mm、1mm和0.5mm不同直径渗透压管道的应力波传播杆件模型的网格单元数分别为290850、260999和299936。
最佳实施方式2:完整饱水煤岩在渗透压和静压耦合三轴加载下的动态冲击试验研究
将测试系统相关设备按照如图1-3所示连接方式安置在长、宽、高分别为6m,0.6m和1m的支撑平台1上,各设备之间连接关系及相关功能具体说明如下:以测试煤岩(即测试试样26)为中心,将测试系统按左右对称方式布置在支撑平台1上,先将宽度、高度和厚度分别为600mm,400mm和50mm的左侧轴压加载固定挡板2安置在支撑平台1的左端,其中直径和长度分别为250mm和200mm的左侧轴压加载油缸3穿过左侧轴压加载固定挡板2的中心大圆孔,并与之焊接形成整体结构,左侧轴压加载活塞4的直径为100mm,活塞行程长度为200mm,通过左侧轴压加载油缸3的增压和减压控制左侧轴压加载活塞的移动;随后利用左侧电磁脉冲激发腔支座6将直径和长度分别为200mm和200mm的左侧电磁脉冲激发腔5托起并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5,左侧电磁脉冲激发腔5右端应力波输出端面直径与应力波加载杆直径相同(50mm);接着将长度为2m,直径为50mm的TC21钛合金左侧应力波加载杆8平放在应力波加载杆支座9上,并确保左侧应力波加载杆8可在支座上自由滑动,随后将左侧应力波加载杆8的右侧加载端面与长度和直径均为50mm、孔隙率约为20%的完全饱水煤岩(即测试试样26)的左侧加载面对齐并充分贴合在一起,同时将左侧应力波加载杆8的左侧应力波加载端面与左侧电磁脉冲激发腔5的右侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传递至左侧应力波加载杆8并最终作用于煤岩(即测试试样26),另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其 轴线方向传播直至给煤岩施加从左至右的动态荷载;同理,右侧系统安置方式与左侧相同,先将宽度、高度和厚度分别为600mm,400mm和50mm的右侧轴压加载固定挡板11安置在支撑平台1的右端,其中直径和长度分别为250mm和200mm的右侧轴压加载油缸12穿过右侧轴压加载固定挡板11的中心大圆孔,并与之焊接形成整体结构,右侧轴压加载活塞13的直径为100mm,活塞行程长度为200mm,通过右侧轴压加载油缸12的增压和减压控制右侧轴压加载活塞的移动;随后利用右侧电磁脉冲激发腔支座15将直径和长度均为200mm的右侧电磁脉冲激发腔14托起并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14,右侧电磁脉冲激发腔14左端应力波输出端面直径与应力波加载杆直径相同(50mm);接着将长度为2m,直径为50mm的TC21钛合金右侧应力波加载杆16平放在应力波加载杆支座9上,并确保右侧应力波加载杆16可在支座上自由滑动,随后将右侧应力波加载杆16的左侧加载端面与长度和直径均为50mm、孔隙率约为20%的煤岩(即测试试样26)的右侧加载面对齐并充分贴合在一起,同时将右侧应力波加载杆16的右侧应力波加载端面与右侧电磁脉冲激发腔14的左侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于砂岩试样26,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给煤岩施加从右至左的动态荷载;接着利用4根连杆7穿过左侧和右侧轴压加载固定挡板2和11周边的四个小圆孔而将加载系统连接成整体并进而与支持平台构成一整体框架系统;随后将围压加载装置安置在煤岩外围,其具体安装步骤如下:先取下饱水煤岩,然后在无轴压加载状态下分别将左侧和右侧轴压加载活塞向左右两端推开,从而可将左侧和右侧应力波加载杆8和16分别向左侧和右侧移动,进而为围压加载装置安装腾出空间,随后将如图4-8所示围压加载缸围挡17的左右两侧围挡分别套在左侧和右侧应力波加载杆8和16的加载端两侧,然后将围压加载缸18套在左侧或右侧应力波加载杆上,接着将包裹在防渗透橡胶套(例如26型氟橡胶)27中的饱水煤岩与左侧和右侧应力波加载杆8和16接触,并将煤岩调整至系统对称中心位置,随后通过轴压伺服控制加载系统同步控制左侧和右侧轴压加载油缸3和12缓慢增压驱动左侧和右侧轴压加载活塞4和13分别向右和向左移动,进而驱动左侧和右侧应力波加载杆8和16分别缓慢向右和向左移动夹紧饱水煤岩并为其施加轴向压力,待轴向压力值达到约100KPa时,停止加载并将轴向压力保持恒定,从而确保饱水煤岩以及整个轴向加载系统处于轴向固定状态,接下来将围压加载缸围挡17的左右两侧围挡与围压加载缸18对接并使围压加载缸18处于系统对称中心位置,以便饱水煤岩位 于围压加载缸18的中心位置,随后利用连接螺杆19将围压加载缸围挡17和围压加载缸18连接起来并拧紧为一整体结构;至此,完成整个系统连接以及试样安装步骤,随后即可根据试验设计开展相应的加载操作,其具体加载过程如下:首先通过轴压伺服控制加载系统同步控制左侧和右侧轴压加载油缸3和12,使二者重新升压并驱动左侧和右侧轴压加载活塞4和13分别向右和向左移动,进而推动左侧和右侧应力波加载杆8和16分别以设定加载速率为饱水煤岩施加轴向压力,待轴向压力值达到5MPa时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;随后利用围压伺服控制加载系统以设定速率通过围压加载进油口20向围压加载缸18内部泵入抗磨液压油(例如HEX T6002),待从围压加载排气口21流出液压油时表明围压加载缸内已注满抗磨液压油,此时用围压加载排气口密封塞22拧紧并密封好围压加载排气口21,待安装在围压加载缸围挡17的右侧围挡上部的围压油表23的压力读数达到设定围压值5MPa时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过防渗透橡胶套(例如26型氟橡胶)27作用在饱水煤岩的环向围压恒定在5MPa;接着利用渗透压加载系统通过左侧渗透压管道24从左侧应力波加载杆一侧给饱水煤岩施加渗透压5MPa,渗透液在渗透压的驱动下通过饱水煤岩的内部连通的孔网通道从右侧渗透压管道25排出,待左侧渗透压管道24和右侧渗透压管道25两端渗透压差维持恒定5MPa不变时,即可认为完成向饱水煤岩施加静态轴压、围压、渗透压的耦合作用条件;随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔5和右侧电磁脉冲激发腔14同步激发并输出幅值为300MPa、持续时长为300μs的入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向饱水煤岩传播并对其进行动态冲击加载,完成渗透压和静压耦合三轴加载下的动态冲击试验;需要说明的是,动态冲击加载过程,轴向和环向静态压力分别在轴压伺服控制加载系统和围压伺服控制加载系统的调控下保持基本不变,从而实现恒定静态轴压和围压条件下的的动态三轴冲击加载试验;动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片10,实时监测应力波加载杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。当利用应变片10所监测到的应变信号数据显示渗透压和静压耦合冲击加载三轴SHPB测试过程饱水煤岩左右两端面所施加的动态压缩荷载基本一致时,可认为饱水煤岩动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片10所监测的应变数据,可按照下述公式进行计算,获取饱水煤岩材料在静压5MPa和渗透压5MPa耦合作用下的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115487-appb-000009
以及应变ε(t)分别为:
Figure PCTCN2019115487-appb-000010
Figure PCTCN2019115487-appb-000011
Figure PCTCN2019115487-appb-000012
其中,E、C和A分别为应力波加载杆的弹性模量(107.8GPa)、纵波速度(5000m/s)与杆的横截面面积(1963.5mm 2);A s为饱水煤岩的横截面面积(1932.2mm 2,饱水煤岩的实际直径为49.6mm),A s为饱水煤岩的长度(50mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆8上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆16上监测的入射应变信号和反射应变信号。
最佳实施方式3:含中心圆柱孔页岩在静压和孔内压耦合三轴加载下的动态冲击试验研究
将测试系统相关设备按照如图1-3所示连接方式安置在长、宽、高分别为6m,0.6m和1m的支撑平台1上,各设备之间连接关系及相关功能具体说明如下:以测试页岩(即测试试样26)(含中心直径为8mm的圆柱孔28,如图12-15所示)为中心,将测试系统按左右对称方式布置在支撑平台1上,先将宽度、高度和厚度分别为600mm,400mm和50mm的左侧轴压加载固定挡板2安置在支撑平台1的左端,其中直径和长度分别为250mm和200mm的左侧轴压加载油缸3穿过左侧轴压加载固定挡板2的中心大圆孔,并与之焊接形成整体结构,左侧轴压加载活塞4的直径为100mm,活塞行程长度为200mm,通过左侧轴压加载油缸3的增压和减压控制左侧轴压加载活塞的移动;随后利用左侧电磁脉冲激发腔支座6将直径和长度分别为200mm和200mm的左侧电磁脉冲激发腔5托起并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5,左侧电磁脉冲激发腔5右端应力波输出端面直径与应力波加载杆直径相同(50mm);接着将长度为2m,直径为50mm的TC21钛合金左侧应力波加载杆8平放在应力波加载杆支座9上,并确保左侧应力波加载杆8可在应力波加载杆支座9上自由滑动,随后将左侧应力波加载杆8的 右侧加载端面与长度和直径均为50mm的含中心直径为8mm的圆柱孔28的页岩(即测试试样26)的左侧加载面对齐并充分贴合在一起,同时将左侧应力波加载杆8的左侧应力波加载端面与左侧电磁脉冲激发腔5的右侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传递至左侧应力波加载杆8并最终作用于含中心直径为8mm的圆柱孔28的页岩,另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其轴线方向传播直至给含中心直径为8mm的圆柱孔28的页岩施加从左至右的动态荷载;同理,右侧系统安置方式与左侧相同,先将宽度、高度和厚度分别为600mm,400mm和50mm的右侧轴压加载固定挡板11安置在支撑平台1的右端,其中直径和长度分别为250mm和200mm的右侧轴压加载油缸12穿过右侧轴压加载固定挡板11的中心大圆孔,并与之焊接形成整体结构,右侧轴压加载活塞13的直径为100mm,活塞行程长度为200mm,通过右侧轴压加载油缸12的增压和减压控制右侧轴压加载活塞的移动;随后利用右侧电磁脉冲激发腔支座15将直径和长度均为200mm的右侧电磁脉冲激发腔14托起并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14,右侧电磁脉冲激发腔14左端应力波输出端面直径与应力波加载杆直径相同(50mm);接着将长度为2m,直径为50mm的TC21钛合金右侧应力波加载杆16平放在应力波加载杆支座9上,并确保右侧应力波加载杆16可在应力波加载杆支座9上自由滑动,随后将右侧应力波加载杆16的左侧加载端面与长度和直径均为50mm的含中心直径为8mm的圆柱孔28的页岩的右侧加载面对齐并充分贴合在一起,同时将右侧应力波加载杆16的右侧应力波加载端面与右侧电磁脉冲激发腔14的左侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于含中心直径为8mm的圆柱孔28的页岩,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给含中心直径为8mm的圆柱孔28的页岩施加从右至左的动态荷载;接着利用4根连杆7穿过左侧和右侧轴压加载固定挡板2和11周边的四个小圆孔而将加载系统连接成整体并进而与支持平台构成一整体框架系统;随后将围压加载装置安置在含中心圆柱孔28的页岩试样外围,其具体安装步骤如下:先取下含中心直径为8mm的圆柱孔28的页岩,然后在无轴压加载状态下分别将左侧和右侧轴压加载活塞向左右两端推开,从而可将左侧和右侧应力波加载杆8和16分别向左侧和右侧移动,进而为围压加载装置安装腾出空间,随后将如图4-8所示围压加载缸围挡17的左右两侧围挡分别套在左侧和右侧应力波加载杆8和16的加载端两侧,然后将围压加载缸18套在左侧或 右侧应力波加载杆上,接着将包裹在防渗透橡胶套(例如26型氟橡胶)27中的含中心直径为8mm的圆柱孔28的页岩与左侧和右侧应力波加载杆8和16接触,并将页岩试样调整至系统对称中心位置,随后通过轴压伺服控制加载系统同步控制左侧和右侧轴压加载油缸3和12缓慢增压驱动左侧和右侧轴压加载活塞4和13分别向右和向左移动,进而驱动左侧和右侧应力波加载杆8和16分别缓慢向右和向左移动夹紧含中心直径为8mm的圆柱孔28的页岩并为其施加轴向压力,待轴向压力值达到约100KPa时,停止加载并将轴向压力保持恒定,从而确保含中心直径为8mm的圆柱孔28的页岩以及整个轴向加载系统处于轴向固定状态,接下来将围压加载缸围挡17的左右两侧围挡与围压加载缸18对接并使围压加载缸18处于系统对称中心位置,以便含中心直径为8mm的圆柱孔28的页岩位于围压加载缸18的中心位置,随后利用连接螺杆19将围压加载缸围挡17和围压加载缸18连接起来并拧紧为一整体结构;至此,完成整个系统连接以及试样安装步骤,随后即可根据试验设计开展相应的加载操作,其具体加载过程如下:首先通过轴压伺服控制加载系统同步控制左侧和右侧轴压加载油缸3和12,使二者重新升压并驱动左侧和右侧轴压加载活塞4和13分别向右和向左移动,进而推动左侧和右侧应力波加载杆8和16分别以设定加载速率为含中心直径为8mm的圆柱孔28的页岩施加轴向压力,待轴向压力值达到30MPa时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;随后利用围压伺服控制加载系统以设定速率通过围压加载进油口20向围压加载缸18内部泵入抗磨液压油(例如HEX T6002),待从围压加载排气口21流出液压油时表明围压加载缸内已注满抗磨液压油,此时用围压加载排气口密封塞22拧紧并密封好围压加载排气口21,待安装在围压加载缸围挡17的右侧围挡上部的围压油表23的压力读数达到设定围压值30MPa时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过防渗透橡胶套(例如26型氟橡胶)27作用在含中心直径为8mm的圆柱孔28的页岩的环向围压恒定在30MPa;接着利用渗透压加载系统通过左侧渗透压管道24和右侧渗透压管道25给含中心直径为8mm的圆柱孔28的页岩施加内压10MPa,待中心圆柱孔28的内压恒定为10MPa时,完成向含中心直径为8mm的圆柱孔28的页岩施加静态轴压、围压和孔内压的耦合作用条件;随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔5和右侧电磁脉冲激发腔14同步激发并输出幅值为500MPa、持续时长为400μs的入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向含中心直径为8mm的圆柱孔28的页岩传播并对其进行动态冲击加载,完成静压和孔内压耦合冲击加载三轴SHPB测试试验;需要说明的是,动态冲击加载过程,轴向和环向静态压力分别在轴压伺服控制加载系统和围压伺服控制加载系统的调控下保持基本不变,从而实现恒定静态轴压和围压条件下的的动态三轴冲击加载试验;动态冲击加载过程通过粘贴在左右 两侧加载杆中心位置处的电阻应变片10,可实时监测应力波加载杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。当利用应变片10所监测到的应变信号数据显示静压和孔内压耦合冲击加载三轴SHPB测试过程含中心直径为8mm的圆柱孔28的页岩左右两端面所施加的动态压缩荷载基本一致时,可认为含中心直径为8mm的圆柱孔28的页岩动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片10所监测的应变数据,可按照下述公式进行计算,获取含中心直径为8mm的圆柱孔28的页岩在静压30MPa和中心圆柱孔内压10MPa耦合作用下的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115487-appb-000013
以及应变ε(t)分别为:
Figure PCTCN2019115487-appb-000014
Figure PCTCN2019115487-appb-000015
Figure PCTCN2019115487-appb-000016
其中,E、C和A分别为应力波加载杆的弹性模量107.8GPa)、纵波速度(5000m/s)与杆的横截面面积(1963.5mm 2);A s为含中心直径为8mm的圆柱孔28的页岩的横截面面积(1881.94mm 2,直径为50mm),A s为含中心直径为8mm的圆柱孔28的页岩的长度(50mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆8上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆16上监测的入射应变信号和反射应变信号。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:
    其包括支撑平台(1)、左侧轴压加载固定挡板(2)、左侧轴压加载油缸(3)、左侧轴压加载活塞(4)、左侧电磁脉冲激发腔(5)、左侧电磁脉冲激发腔支座(6)、连杆(7)、左侧应力波加载杆(8)、应力波加载杆支座(9)、电阻应变片(10)、右侧轴压加载固定挡板(11)、右侧轴压加载油缸(12)、右侧轴压加载活塞(13)、右侧电磁脉冲激发腔(14)、右侧电磁脉冲激发腔支座(15)、右侧应力波加载杆(16)、围压加载缸围挡(17)、围压加载缸(18)、连接螺杆(19)、围压加载进油口(20)、围压加载排气口(21)、围压加载排气口密封塞(22)、围压油表(23)、左侧渗透压管道(24)、右侧渗透压管道(25)、测试试样(26)及橡胶套(27);
    装置以测试试样(26)为中心,呈左右对称形式布置,其中左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)分别固定于支撑平台(1)的左右两端,左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)中心和四周分别设置中心安装孔和四周安装孔,左侧轴压加载油缸(3)和右侧轴压加载油缸(12)分别穿过左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)的中心安装孔,并与之焊接形成整体结构,此外,左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)通过连杆(7)穿过其四周安装孔而将二者连接成整体并进而与支持平台(1)构成一整体框架系统;左侧电磁脉冲激发腔(5)由左侧电磁脉冲激发腔支座(6)支撑并安置在支撑平台(1)上,其中左侧电磁脉冲激发腔(5)的左端部与左侧轴压加载活塞(4)自由贴合接触,用于将左侧轴压加载油缸(3)提供的静态轴压通过左侧轴压加载活塞(4)传递至左侧电磁脉冲激发腔(5);左侧应力波加载杆(8)由应力波加载杆支座(9)支撑并安置在支撑平台(1)上,其中左侧应力波加载杆(8)的左端部与左侧电磁脉冲激发腔(5)的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔(5)的静态轴压进一步传递至左侧应力波加载杆(8)并最终作用于测试试样(26),另一方面用于将左侧电磁脉冲激发腔(5)产生的入射应力波输入至左侧应力波加载杆(8)并沿其轴线方向传播直至给测试试样(26)施加从左至右的动态荷载;
    同理,右侧电磁脉冲激发腔(14)由右侧电磁脉冲激发腔支座(15)支撑并安置在支撑平台(1)上,其中右侧电磁脉冲激发腔(14)的右端部与右侧轴压加载活塞(13)自由贴合接触,用于将右侧轴压加载油缸(12)提供的静态轴压通过右侧轴压加载活塞(13)传递至右侧电磁脉冲激发腔(14);右侧应力波加载杆(16)由应力波加载杆支座(9)支撑并安置在支撑平台(1)上,其中右侧应力波加载杆(16)的右端部与右侧电磁脉冲激发腔(14)的左端面自由贴合接触,一方面用于将传递至右侧电磁脉冲激发腔(14)的静态轴压进一步传递至右侧应力波加载杆(16)并最终作用于测试试样(26),另一方面用于将右侧电磁脉冲激发腔(14)产生的入射应力波输入至右侧应力波加载杆(16)并沿其轴线方向传播直至给测试试样(26)施加从右至左的动态荷载;
    左侧应力波加载杆(8)和右侧应力波加载杆(16)上设置电阻应变片(10);
    围压加载缸围挡(17)、围压加载缸(18)、连接螺杆(19)、围压加载进油口(20)、围压加载排气口(21)、围压加载排气口密封塞(22)以及围压油表(23)构成围压加载装置,其中围压加载缸围挡(17)的中心和四周分别设置有中心安装孔和四周安装孔,用于分别将左侧应力波加载杆(8)和右侧应力波加载杆(16)穿过中心安装孔伸入围压加载缸(18)的内部与测试试样(26)接触,螺杆(19)通过围压加载缸围挡四周安装孔将围压加载缸围挡(17)和围压加载缸(18)连接为一整体结构并安置在支撑平台(1)上,此外,右侧的围压加载缸围挡(17)的中心安装孔下部和上部分别设有围压加载进油口(20)和围压加载排气口(21),通过围压加载进油口(20)和围压加载排气口(21)将围压伺服控制加载系统构成连通回路,用于将液压油泵入围压加载缸(18)对包裹在橡胶套(27)中的测试试样(26)施加环向静态围压,围压加载排气口(21)外侧配有围压加载排气口密封塞(22)用于在围压加载缸内部空气排尽后对其进行密封;
    渗透压加载装置包括左侧渗透压管道(24)和右侧渗透压管道(25),其中左侧渗透压管道(24)和右侧渗透压管道(25)的孔径和长度均相同,二者分别内置于左侧应力波加载杆(8)的右端部和右侧应力波加载杆(16)的左端部,并与测试试样加载端面直接接触,渗 透压施加时,通过从左侧渗透压管道(24)注入具有设定压力的渗透液,渗透液在渗透压的驱动下通过测试试样(26)的内部连通的孔网通道从右侧渗透压管道(25)排出,并维持渗透压恒定在设定值。
  2. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:所述左侧轴压加载固定挡板(2)、右侧轴压加载固定挡板(11)、围压加载缸围挡(17)三者的中心安装孔和四周安装孔均为圆形孔。
  3. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)通过四根连杆(7)穿过其周边的四个小圆孔而将二者连接成整体并进而与支持平台构成一整体框架系统。
  4. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:围压加载缸围挡(17)的中心安装孔的直径比应力波加载杆直径大1±0.1mm。
  5. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:左侧应力波加载杆(8)和右侧应力波加载杆(16)中心位置处设置电阻应变片(10)。
  6. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:围压加载缸围挡(17)的右侧围挡上部设置所述围压油表(23)。
  7. 根据权利要求1所述的渗透压和静力耦合电磁加载三轴SHPB装置,其特征在于:左侧应力波加载杆(8)和右侧应力波加载杆(16)能够在应力波加载杆支座(9)上自由滑动。
  8. 一种渗透压和静力耦合电磁加载三轴SHPB测试方法,其特征在于:利用权利要求1至7任意一项所述的装置进行测试,具体方法如下:
    首先通过轴压伺服控制加载系统同步控制左侧轴压加载油缸(3)和右侧轴压加载油 缸(12),使二者升压并驱动左侧轴压加载活塞(4)和右侧轴压加载活塞(13)分别向右和向左移动,进而推动左侧应力波加载杆(8)和右侧应力波加载杆(16)分别以设定加载速率为测试试样(26)施加轴向压力,待轴向压力值达到设定值时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;
    随后利用围压伺服控制加载系统以设定速率通过围压加载进油口(20)向围压加载缸(18)内部泵入抗磨液压油,待从围压加载排气口(21)流出液压油时表明围压加载缸内已注满抗磨液压油,此时用围压加载排气口密封塞(22)拧紧并密封好围压加载排气口(21),并继续施加围压,待围压油表(23)的压力读数达到设定围压值时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过防渗透橡胶套27作用在测试试样(26)的环向围压恒定在设定值;接着利用渗透压加载系统通过左侧渗透压管道(24)和右侧渗透压管道(25)给测试试样(26)施加渗透压,待左侧渗透压管道(24)和右侧渗透压管道(25)之间的渗透压压差恒定为设定值时,完成向测试试样(26)施加静态轴压、围压和渗透压的耦合作用条件;
    随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔(5)和右侧电磁脉冲激发腔(14)同步激发并输出入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向测试试样(26)传播并对其进行动态冲击加载,完成静压和渗透压耦合冲击加载三轴SHPB测试试验;
    动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片(10),实时监测应力波加载杆中入射应变信号和反射应变信号;当利用应变片(10)所监测到的应变信号数据显示静压和渗透压耦合冲击加载三轴SHPB测试过程测试试样(26)左右两端面所施加的动态压缩荷载基本一致时,可认为测试试样(26)动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片(10)所监测的应变数据,按照下述公式进行计算,获取测试试样(26)的动态压缩强度σ(t),动态压缩 应变率
    Figure PCTCN2019115487-appb-100001
    以及应变ε(t)分别为:
    Figure PCTCN2019115487-appb-100002
    Figure PCTCN2019115487-appb-100003
    Figure PCTCN2019115487-appb-100004
    其中,E、C和A分别为应力波加载杆的弹性模量、纵波速度与杆的横截面面积;A s为测试试样(26)的横截面面积,A s为测试试样(26)的长度;ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆(8)上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆(16)上监测的入射应变信号和反射应变信号。
  9. 根据权利要求8所述的渗透压和静力耦合电磁加载三轴SHPB测试方法,其特征在于:所述电阻应变片(10)将应力波加载杆中入射应变信号和反射应变信号通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。
PCT/CN2019/115487 2019-08-01 2019-11-05 渗透压和静压耦合电磁加载三轴shpb装置和测试方法 WO2021017241A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/568,929 US11921088B2 (en) 2019-08-01 2022-01-05 Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910707506.9A CN110441172B (zh) 2019-08-01 2019-08-01 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
CN201910707506.9 2019-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115488 Continuation WO2021017242A1 (zh) 2019-08-01 2019-11-05 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/115488 Continuation WO2021017242A1 (zh) 2019-08-01 2019-11-05 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
US17/568,929 Continuation US11921088B2 (en) 2019-08-01 2022-01-05 Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Publications (1)

Publication Number Publication Date
WO2021017241A1 true WO2021017241A1 (zh) 2021-02-04

Family

ID=68432839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115487 WO2021017241A1 (zh) 2019-08-01 2019-11-05 渗透压和静压耦合电磁加载三轴shpb装置和测试方法

Country Status (2)

Country Link
CN (1) CN110441172B (zh)
WO (1) WO2021017241A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778401A (zh) * 2022-02-25 2022-07-22 西安科技大学 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法
CN114923768A (zh) * 2022-05-19 2022-08-19 西南石油大学 无损拆卸式高温高压岩心夹持器装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858024B (zh) * 2021-01-27 2023-09-22 天津大学 用于测量水力耦合作用下深部岩石动态性能的装置及方法
CN113899634B (zh) * 2021-08-27 2024-05-24 北京工业大学 一种评价冲击荷载作用下钻头牙齿破岩效率的装置及方法
CN114544357B (zh) * 2022-01-26 2024-01-02 深圳大学 一种固体材料动静组合拉剪强度测试试验装置及测试方法
CN114720266A (zh) * 2022-05-11 2022-07-08 天津大学 多场耦合动态加载装置及实验方法
CN116642775B (zh) * 2023-07-26 2023-10-13 深圳市深勘工程咨询有限公司 地下空间层裂强度的测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318897A (ja) * 1997-05-16 1998-12-04 Sumitomo Metal Ind Ltd 衝撃破壊試験方法
CN103852373A (zh) * 2014-03-20 2014-06-11 中国人民解放军理工大学 霍普金森压杆冲击实验三向围压温度联合加载装置
CN104819926A (zh) * 2015-05-20 2015-08-05 河海大学 裂隙岩石的多场耦合渗透试验装置及试验方法
CN204789116U (zh) * 2015-07-02 2015-11-18 山东科技大学 一种新型霍普金森杆
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727405B1 (ko) * 2015-10-28 2017-05-02 전북대학교산학협력단 Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법
CN110057696B (zh) * 2018-12-18 2022-01-28 天津大学 一种带吸能装置可模拟原位应力环境的分离式霍普金森压杆
CN109406310A (zh) * 2018-12-26 2019-03-01 深圳大学 三轴六向霍普金森压杆的动静载荷同步伺服控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318897A (ja) * 1997-05-16 1998-12-04 Sumitomo Metal Ind Ltd 衝撃破壊試験方法
CN103852373A (zh) * 2014-03-20 2014-06-11 中国人民解放军理工大学 霍普金森压杆冲击实验三向围压温度联合加载装置
CN104819926A (zh) * 2015-05-20 2015-08-05 河海大学 裂隙岩石的多场耦合渗透试验装置及试验方法
CN204789116U (zh) * 2015-07-02 2015-11-18 山东科技大学 一种新型霍普金森杆
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778401A (zh) * 2022-02-25 2022-07-22 西安科技大学 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法
CN114778401B (zh) * 2022-02-25 2024-05-10 西安科技大学 一种模拟冲击地压条件下的煤岩渗透率测定装置及方法
CN114923768A (zh) * 2022-05-19 2022-08-19 西南石油大学 无损拆卸式高温高压岩心夹持器装置

Also Published As

Publication number Publication date
CN110441172B (zh) 2023-11-10
CN110441172A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021017241A1 (zh) 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
WO2021017242A1 (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
WO2021008009A1 (zh) 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
US11921088B2 (en) Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
CN108982228B (zh) 一种可燃冰沉积物真三轴试验装置
CN103389247B (zh) 一种用于模拟高水压下混凝土构件水力劈裂的试验系统
CN102607946B (zh) 一种原始级配堆石体大型真三轴试验装置及其使用方法
WO2020134581A1 (zh) 中低应变率动静一体化试验测试系统
WO2021008010A1 (zh) 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
CN109307624A (zh) 一种大尺寸真三轴水力压裂实验装置及实验方法
CN110865012B (zh) 一种基于霍普金森杆的岩石材料原位渗流测量系统及方法
CN111220452B (zh) 一种煤岩模拟试验用真三轴压力室及其试验方法
AU2020101815A4 (en) An experimental instrument for rock mass tension and compression synergy
JPH10206303A (ja) 三軸試験装置および方法
WO2020134580A1 (zh) 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
CN210893972U (zh) 单轴双向同步控制电磁加载动态剪切试验装置
WO2022228537A1 (zh) 具有轴压与围压控制加载的中等应变率试验设备及方法
WO2020134579A1 (zh) 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
CN104897467A (zh) 真三轴加卸载岩石应力松弛试验装置及试验方法
CN113984504B (zh) 一种多功能岩石力学试验系统及其试验方法
CN112763581B (zh) 巷道保压掘进过程多应变率扰动致突模拟试验系统与方法
CN109374498A (zh) 一种单裂隙岩体渗流应力耦合系统及方法
CN114544391B (zh) 高温环境固体材料动态拉剪力学特性测试装置及测试方法
Liu et al. Experimental study on stress monitoring in fractured-vuggy carbonate reservoirs before and after fracturing
CN117233837A (zh) 基于土工离心机平台的地震断层模拟的实验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939130

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19939130

Country of ref document: EP

Kind code of ref document: A1