WO2021017242A1 - 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统 - Google Patents

温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统 Download PDF

Info

Publication number
WO2021017242A1
WO2021017242A1 PCT/CN2019/115488 CN2019115488W WO2021017242A1 WO 2021017242 A1 WO2021017242 A1 WO 2021017242A1 CN 2019115488 W CN2019115488 W CN 2019115488W WO 2021017242 A1 WO2021017242 A1 WO 2021017242A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
pressure
temperature
stress wave
confining pressure
Prior art date
Application number
PCT/CN2019/115488
Other languages
English (en)
French (fr)
Inventor
朱建波
谢和平
赵坚
周韬
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021017242A1 publication Critical patent/WO2021017242A1/zh
Priority to US17/568,929 priority Critical patent/US11921088B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0224Thermal cycling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention belongs to the field of rock dynamics research. More specifically, it relates to a temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading triaxial SHPB test system used for the study of rock dynamic mechanical properties and fracture laws under deep underground multi-field coupling conditions.
  • SHPB Hopkinson rod.
  • the present invention proposes a temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading
  • the three-axis SHPB test system based on the traditional SHPB, innovatively introduces a temperature and osmotic pressure real-time loading and control system, which aims to solve the problem that the existing test device cannot simulate the temperature-pressure-osmotic pressure and dynamics of deep rock masses.
  • Temperature-pressure-osmotic pressure coupling two-way electromagnetic loading three-axis SHPB test system is mainly composed of electromagnetic pulse emission system, axial pressure servo control loading system, confining pressure loading device and its servo control loading system, temperature control system, osmotic pressure loading system, rod Components system and data monitoring and acquisition system.
  • the temperature-pressure-osmotic pressure coupling two-way electromagnetic loading three-axis SHPB test system is based on the support platform, which is arranged in a symmetrical form.
  • the support platform not only plays the role of bearing the weight of the entire system and the impact load of the test process, but also The role of rough leveling for the test system.
  • the electromagnetic pulse emission system is mainly composed of the left and right electromagnetic pulse excitation cavities with the same processing parameters, technology and functions and their control systems, which mainly play the role of providing dynamic loads (incident stress waves) for the test system; axial compression servo control
  • the loading system is mainly composed of left and right axial pressure loading fixed baffles, connecting rods, left and right axial pressure loading cylinders, axial pressure loading pistons, and axial pressure servo control system, mainly to provide shafts for test samples
  • static prestress static axial pressure
  • the function of the axial pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system, which can ensure that the static axial pressure remains relatively stable during the test;
  • the servo control loading system is mainly composed of the confining pressure loading cylinder enclosure, the confining pressure loading cylinder, the screw, the confining pressure loading oil inlet, the confining pressure loading exhaust port, the confining
  • the function of the confining pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system. It can ensure that the static circumferential confining pressure remains relatively stable during the test;
  • the temperature control system is mainly composed of an intelligent temperature control thermocouple, a temperature sensor, and a temperature control software system, which is mainly used to raise the temperature of the test sample and maintain the temperature at the set value;
  • the osmotic pressure loading system is mainly composed of the left osmotic pressure pipeline, the right osmotic pressure pipeline, and the osmotic pressure pressurization and control system.
  • the rod system is mainly composed of the left and right stress wave loading rods and their supports with the same diameter, length and material to meet different test requirements. It mainly transmits the incident stress wave and serves as a test test.
  • the data monitoring and acquisition system consists of a multi-channel high-speed synchronous recorder, strain gauges, Wheatstone bridge and strain signal amplifier, which play a role in real-time monitoring and complete recording and storage of test signals.
  • a temperature-pressure-osmotic pressure coupled electromagnetic loading three-axis SHPB test system which includes a supporting platform, a fixed baffle plate for axial loading on the left, an axial loading cylinder on the left, a piston for axial loading on the left, and electromagnetic pulse excitation on the left Cavity, left electromagnetic pulse excitation cavity support, connecting rod, left stress wave loading rod, stress wave loading rod support, resistance strain gauge, right axial pressure loading fixed baffle, right axial pressure loading cylinder, right Axial pressure loading piston, right electromagnetic pulse excitation cavity, right electromagnetic pulse excitation cavity support, right stress wave loading rod, confining pressure loading cylinder enclosure, confining pressure loading cylinder, screw, confining pressure loading oil inlet, enclosure Pressure loading exhaust port, confining pressure loading exhaust port sealing plug, confining pressure oil gauge, temperature system external power outlet, intelligent temperature control thermocouple and temperature sensor, high temperature resistant and wear resistant rubber sleeve and test specimen;
  • the test system is centered on the test sample and arranged in a symmetrical form.
  • the left side axial compression loading fixed baffle and the right axial compression loading fixed baffle are respectively fixed on the left and right ends of the supporting platform, and the left axial compression loading fixed block
  • the center and the periphery of the plate and the right axial pressure loading fixed baffle are provided with a central installation hole and a peripheral installation hole respectively.
  • the left axial pressure loading cylinder and the right axial pressure loading cylinder pass through the left end axial pressure loading fixed baffle and the right end axial pressure respectively. Load the central mounting hole of the fixed baffle and weld it to form an integral structure.
  • the left end of the axially loaded fixed baffle and the right end of the axially loaded fixed baffle are connected by connecting rods through the peripheral mounting holes
  • the left side electromagnetic pulse excitation cavity is supported by the left side electromagnetic pulse excitation cavity support and placed on the supporting platform, and the left end of the left side electromagnetic pulse excitation cavity and the left side
  • the right end of the axial compression loading piston is free to fit and contact, and the static axial pressure provided by the left axial compression loading cylinder is transmitted to the left electromagnetic pulse excitation cavity through the left axial compression loading piston; the left stress wave loading rod is loaded by the stress wave
  • the rod support is supported and placed on the support platform.
  • the left end of the left stress wave loading rod is freely in contact with the right end surface of the left electromagnetic pulse excitation cavity.
  • the left electromagnetic pulse excitation cavity On the one hand, it is used to transmit to the left electromagnetic pulse excitation cavity. The static axial pressure is further transmitted to the left stress wave loading rod and finally acts on the test specimen. On the other hand, it is used to input the incident stress wave generated by the electromagnetic pulse excitation cavity on the left to the left stress wave loading rod along its axis. Propagate until the dynamic load from left to right is applied to the test specimen;
  • the right electromagnetic pulse excitation cavity is supported by the right electromagnetic pulse excitation cavity support and placed on the supporting platform, where the right end of the right electromagnetic pulse excitation cavity is freely in contact with the left end of the right axial compression loading piston , Used to transfer the static axial pressure provided by the right axial pressure loading cylinder to the right electromagnetic pulse excitation cavity through the right axial pressure loading piston; the right stress wave loading rod is supported by the stress wave loading rod support and placed on the support platform Above, the right end of the stress wave loading rod on the right is freely in contact with the left end surface of the electromagnetic pulse excitation cavity on the right.
  • the wave loading rod is used to further transfer the static axial pressure transmitted to the electromagnetic pulse excitation cavity on the right to the right stress The wave loading rod and finally act on the test specimen.
  • it is used to input the incident stress wave generated by the electromagnetic pulse excitation cavity on the right to the right stress wave loading rod and propagate along its axis until the test specimen is applied from the right Dynamic load to the left; resistance strain gauges are set on the left stress wave loading rod and the right stress wave loading rod;
  • the confining pressure loading cylinder enclosure, the confining pressure loading cylinder, the screw, the confining pressure loading oil inlet, the confining pressure loading exhaust port, the confining pressure loading exhaust port sealing plug, and the confining pressure oil gauge constitute the confining pressure loading device.
  • the center and periphery of the loading cylinder enclosure are respectively provided with a central mounting hole and a peripheral mounting hole, which are used to respectively pass the left stress wave loading rod and the right stress wave loading rod through the center mounting hole into the interior of the confining pressure loading cylinder and test
  • the screw connects the confining pressure loading cylinder enclosure and the confining pressure loading cylinder into a whole structure through the surrounding mounting holes of the confining pressure loading cylinder enclosure and is placed on the supporting platform.
  • the right side of the confining pressure loading cylinder enclosure The lower and upper part of the central mounting hole of the side wall are respectively provided with a confining pressure loading oil inlet and a confining pressure loading exhaust port.
  • the confining pressure loading device forms a connected circuit through the confining pressure loading oil inlet and the confining pressure loading exhaust port.
  • the confining pressure loading exhaust port is equipped with a confining pressure loading exhaust port sealing plug.
  • the pressure pressure is displayed by the confining pressure oil gauge; the temperature control device includes the external power outlet of the temperature system and the intelligent temperature control thermocouple and temperature sensor, which are used to provide temperature rise for the test sample and maintain the temperature at the set value.
  • the control system controls the intelligent temperature control thermocouple and temperature sensor to heat up the hydraulic oil delivered to the confining pressure loading cylinder at the temperature rising rate set in the experiment and transfer the heat to the test sample wrapped in the high temperature resistant and wear resistant rubber sleeve, and pass The control system controls the thermocouple, sets the heating rate and temperature range, and then feeds the real-time temperature to the display system through the intelligent temperature control sensor to ensure that it is heated to the predetermined temperature. After heating to the predetermined temperature, the rock dynamics test is carried out to realize the in-situ control cube test Sample to the specified temperature.
  • the left end axial pressure loading fixed baffle plate and the right end axial pressure loading fixed baffle plate are connected into a whole by four connecting rods passing through four peripheral mounting holes of the periphery.
  • the central mounting holes and the surrounding mounting holes of the left axial pressure loading fixed baffle, the right axial pressure loading fixed baffle, and the confining pressure loading cylinder enclosure are all circular holes.
  • the osmotic pressure loading device includes a left osmotic pressure pipe and a right osmotic pressure pipe, wherein the pore diameter and length of the left osmotic pressure pipe and the right osmotic pressure pipe are both The same, the two are respectively built into the right end of the left stress wave loading rod and the left end of the right stress wave loading rod, and are in direct contact with the loading end of the test sample.
  • the osmotic pressure When the osmotic pressure is applied, it is injected through the left osmotic pressure pipe The permeate with a set pressure is driven by the osmotic pressure and is discharged from the osmotic pressure pipe on the right through the internally connected mesh channel of the test sample, and the osmotic pressure is kept constant at the set value.
  • the diameter of the central mounting hole of the confining pressure loading cylinder enclosure is 1 ⁇ 0.1mm larger than the diameters of the left stress wave loading rod 8 and the right stress wave loading rod.
  • the intelligent temperature control thermocouple and temperature sensor are of ring structure and are built in the circumferential cylinder wall of the confining pressure loading cylinder.
  • the temperature rise rate of the intelligent temperature control thermocouple and temperature sensor is controlled by the control system, and Feedback the real-time temperature to the display system to ensure that it is heated to a predetermined temperature.
  • the temperature-pressure-osmotic pressure coupling two-way electromagnetic loading three-axis SHPB test system's electromagnetic pulse launch system can accurately control and highly repetitively generate incident stress waves, which solves the problem of the existing Hopkinson bar equipment pneumatically launching bullets impacting the incident bar It is difficult to precisely control the incident stress wave and highly repeat the technical problem of the incident stress wave.
  • Temperature-pressure-osmotic pressure coupling bidirectional electromagnetic loading three-axis SHPB test system with axial pressure and confining pressure servo control loading system can realize static axial pressure and static circumferential confining pressure servo control loading and maintain the shaft during dynamic impact loading The pressure and confining pressure remain relatively stable, which solves the defect that the current improved SHPB three-axis system is difficult to maintain the relatively stable axial pressure and confining pressure during the dynamic loading process.
  • the temperature loading and control system of the three-axis SHPB test system can be used for testing under the effect of three-axis static pressure or three-axis static pressure and osmotic pressure to increase the temperature and maintain the temperature at the setting Value, realizes the impact loading test under the coupling effect of temperature-pressure or temperature-pressure-osmotic pressure, which solves the problem that the existing rock dynamic characteristic test based on SHPB system cannot simulate temperature-pressure or temperature-pressure-permeability in the dynamic loading process
  • the technical difficulty of pressure multi-field coupling makes the test process closer to the real stress environment of deep rock masses, thereby making the test results more reliable and accurate.
  • Temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading triaxial SHPB test system's osmotic pressure loading system can be used to test and maintain osmotic pressure or pore water pressure under the action of triaxial static pressure or triaxial static pressure and temperature.
  • the osmotic pressure or pore water pressure is at the set value, and the impact loading test under the coupling action of pressure-osmotic pressure or pressure-temperature-osmotic pressure is realized, which solves the problem that the existing rock dynamic characteristics test carried out based on the SHPB system cannot be used in the dynamic loading process
  • the technical blank of simulating pressure-osmotic pressure or pressure-temperature-osmotic pressure multi-field coupling makes the test process closer to the true triaxial stress environment of deep rock masses, thereby making the test results more reliable and accurate.
  • Figure 1 Three-dimensional diagram of temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading triaxial SHPB test system
  • Figure 2 The front view of the temperature-pressure-osmotic pressure coupling two-way electromagnetic loading three-axis SHPB test system
  • Figure 3 A front view of the cutaway surface of the temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading triaxial SHPB test system
  • Figure 4 Three-dimensional diagram of temperature-pressure-osmotic pressure coupling confining pressure loading device
  • Figure 5 A three-dimensional cross-sectional view of the temperature-pressure-osmotic pressure coupling confining pressure loading device in the front view direction;
  • Fig. 6 is a front view of the cross-sectional front view of the temperature-pressure-osmotic pressure coupling confining pressure loading device
  • Figure 7 A three-dimensional cross-sectional view of the temperature-pressure-osmotic pressure coupling confining pressure loading device from the top view;
  • Fig. 8 A top view of a sectioned plane of the temperature-pressure-osmotic pressure coupling confining pressure loading device in the top direction;
  • Figure 9 Three-dimensional diagram of temperature-pressure coupling confining pressure loading device
  • Figure 10 A three-dimensional cutaway view of the temperature-pressure coupling confining pressure loading device in the front view direction;
  • Figure 11 The three-dimensional cross-sectional view of the temperature-pressure-osmotic pressure coupling three-axis loading of the test sample with a central cylindrical hole;
  • Figure 12 A three-dimensional cross-sectional view of the temperature-pressure-osmotic pressure coupling of the test sample with a central cylindrical hole in the top view direction;
  • Figure 13 A three-dimensional diagram of a test specimen with a central cylindrical hole
  • Figure 14 A top view of a test specimen with a central cylindrical hole.
  • 1-Supporting platform 2-left side axial pressure loading fixed baffle, 3-left side axial pressure loading cylinder, 4-left side axial pressure loading piston, 5-left electromagnetic pulse excitation cavity, 6-left electromagnetic pulse excitation Cavity support, 7-connecting rod, 8-left stress wave loading rod, 9-stress wave loading rod support, 10-strain gauge, 11-right axial load fixed baffle, 12-right axial load Cylinder, 13-right axial pressure loading piston, 14-right electromagnetic pulse excitation cavity, 15-right electromagnetic pulse excitation cavity support, 16-right stress wave loading rod, 17-confining pressure loading cylinder enclosure, 18 -Confining pressure loading cylinder, 19-screw, 20-confining pressure loading inlet, 21-confining pressure loading exhaust port, 22-confining pressure loading exhaust port sealing plug, 23-confining pressure oil gauge, 24-osmotic pressure Water inlet pipe, 25-osmotic pressure water outlet pipe, 26-temperature system external power outlet, 27-intelligent temperature control thermocouple and temperature sensor, 28
  • Figure 1 is a three-dimensional diagram of a temperature-pressure-osmotic pressure coupled bidirectional electromagnetic loading three-axis SHPB test system.
  • the test device is placed on the support platform 1. It is mainly composed of an electromagnetic pulse emission system, an axial pressure servo control loading system, a confining pressure loading device and its Servo control loading system, temperature control system, osmotic pressure loading system, rod system and data monitoring and acquisition system.
  • the test system is centered on the test sample 29 (as shown in Fig. 3) and arranged in a symmetrical form.
  • the left side axial compression loading fixed baffle 2 and the right side axial compression loading fixed baffle 11 are respectively fixed to the left and right ends of the support platform 1, with a central mounting hole and a peripheral mounting hole set in the center and surroundings, and the left side is axially loaded
  • the cylinder 3 and the right axial pressure loading cylinder 12 respectively pass through the central mounting holes of the left end axial pressure loading fixed baffle 2 and the right end axial pressure loading fixed baffle 11, and are welded to form an integral structure.
  • the left end is fixed by axial pressure loading
  • the baffle 2 and the right end axial pressure-loaded fixed baffle 11 are connected by four connecting rods 7 through the four surrounding mounting holes on their periphery to form a whole, and then form an integral frame system with the supporting platform;
  • the pulse excitation cavity 5 is supported by the left electromagnetic pulse excitation cavity support 6 and placed on the supporting platform 1, wherein the left end of the left electromagnetic pulse excitation cavity 5 is in free contact with the end of the left axial compression loading piston 4 , Used to transmit the static axial pressure provided by the left axial pressure loading cylinder 3 to the left electromagnetic pulse excitation cavity 5 through the left axial pressure loading piston 4;
  • the left stress wave loading rod 8 is supported by the stress wave loading rod support 9 And placed on the support platform 1, where the left end of the left stress wave loading rod 8 is freely in contact with the right end surface of the left electromagnetic pulse excitation cavity 5, on the one hand, it is used to transmit to the left electromagnetic pulse excitation cavity 5
  • the static axial pressure is further transmitted to the left stress wave
  • the electromagnetic pulse excitation cavity 14 on the right is supported by the electromagnetic pulse excitation cavity support 15 on the right and is placed on the support platform 1, wherein The right end of the electromagnetic pulse excitation chamber 14 on the right is freely in contact with the left end of the right axial pressure loading piston 13 for transmitting the static axial pressure provided by the right axial pressure loading cylinder 12 through the right axial pressure loading piston 13
  • the right stress wave loading rod 16 is supported by the stress wave loading rod support 9 and placed on the support platform 1, wherein the right end of the right stress wave loading rod 16 is excited by the right electromagnetic pulse
  • the left end surface of the cavity 14 is freely in contact with each other.
  • FIG 4-8 is a schematic diagram of the structure and connection of the temperature-pressure-osmotic pressure coupling confining pressure loading device.
  • the confining pressure loading device includes a confining pressure loading cylinder enclosure 17, a confining pressure loading cylinder 18, a screw 19, a confining pressure loading oil inlet 20, a confining pressure loading exhaust port 21, a confining pressure loading exhaust port sealing plug 22 and a confining pressure Oil gauge 23, in which the center and the periphery of the confining pressure loading cylinder enclosure 17 are respectively provided with a central mounting hole and a peripheral mounting hole. The diameter of the center mounting hole is larger than the stress wave loading rod (left stress wave loading rod 8 and right stress wave loading rod 8).
  • the rod 16 has a diameter of approximately 1 mm, and is used to respectively extend the left stress wave loading rod 8 and the right stress wave loading rod 16 through the central mounting hole into the interior of the confining pressure loading cylinder 18 to contact the test specimen 29, and the screw 19 passes through the surrounding
  • the surrounding mounting holes of the confining pressure loading cylinder enclosure connect the confining pressure loading cylinder enclosure 17 and the confining pressure loading cylinder 18 into an integral structure and are placed on the support platform 1.
  • the right side enclosure of the confining pressure loading cylinder enclosure 17 The lower and upper parts of the central mounting hole are respectively provided with a confining pressure loading oil inlet 20 and a confining pressure loading exhaust port 21.
  • the confining pressure loading device forms a connected circuit through the confining pressure loading oil inlet 20 and the confining pressure loading exhaust port 21 ( Input hydraulic oil into the confining pressure cylinder through the oil inlet. Injecting the hydraulic oil needs to remove the air in the confining cylinder, so the confining cylinder is connected to the outside through the exhaust port to form a connected circuit; the sign of full oil is hydraulic oil Flow out from the exhaust port), used to pump the hydraulic oil into the confining pressure loading cylinder 18, apply the ring static confining pressure to the test sample 29 wrapped in the high temperature and wear resistant rubber sleeve 28, and load the confining pressure to the outside of the exhaust port 21
  • the static confining pressure pressure is installed on the upper part of the right side of the confining pressure loading cylinder enclosure 17
  • the confining pressure oil gauge 23 displays; the temperature control device includes the temperature system external power outlet 26 and the intelligent temperature control thermocouple and temperature sensor 27, which are used to provide the temperature rise (20 ⁇ 200°C) for the test sample 29 and maintain the temperature at the set point
  • the intelligent temperature control thermocouple and temperature sensor 27 have a ring structure and are built into the circumferential cylinder wall of the confining pressure loading cylinder 18.
  • the intelligent temperature control thermocouple and temperature sensor 27 are controlled by the temperature control system to experiment
  • the set heating rate will heat up the hydraulic oil delivered to the confining pressure loading cylinder 18 and transfer the heat to the test specimen 29 wrapped in the high-temperature and wear-resistant rubber sleeve 28, thereby achieving the purpose of temperature control of the test specimen ;
  • the osmotic pressure loading device includes a left osmotic pressure pipe 24 and a right osmotic pressure pipe 25.
  • the pore diameter and length of the left osmotic pressure pipe 24 and the right osmotic pressure pipe 25 are the same, and both are built into the left stress wave loading device.
  • the right end of the rod 8 and the right end of the stress wave load the left end of the rod 16, and are in direct contact with the loading end of the test sample.
  • a set pressure (0-60MPa) is injected from the left osmotic pressure pipe 24 Driven by the osmotic pressure, the permeate is discharged from the right osmotic pressure pipe 25 through the internally connected mesh channel of the test sample 29, and the osmotic pressure is kept constant at the set value.
  • the confining pressure loading device includes a confining pressure loading cylinder enclosure 17, a confining pressure loading cylinder 18, a screw 19, a confining pressure loading oil inlet 20, a confining pressure loading exhaust port 21, a confining pressure loading exhaust port sealing plug 22 and a confining pressure
  • the diameter of the center mounting hole is larger than the stress wave loading rod (including the left stress wave loading rod 8 and the right stress wave
  • the loading rod 16 has a diameter of about 1mm, which is used to respectively extend the left stress wave loading rod 8 and the right stress wave loading rod 16 through the central mounting hole into the confining pressure loading cylinder 18 to contact the test specimen 29, and the screw 19 passes
  • the surrounding mounting holes of the confining pressure loading cylinder enclosure 17 connect the confining pressure loading cylinder enclosure 17 and the confining pressure loading cylinder 18 into an integral structure and are placed on the support platform 1.
  • the confining pressure loading cylinder enclosure 17 is on the right side
  • the lower and upper part of the central mounting hole of the enclosure are respectively provided with a confining pressure loading inlet 20 and a confining pressure loading exhaust port 21.
  • the confining pressure loading device is connected by the confining pressure loading inlet 20 and the confining pressure loading exhaust port 21
  • the circuit is used to pump the hydraulic oil into the confining pressure loading cylinder 18, and apply hoop static confining pressure to the test sample 29 wrapped in the high temperature and wear resistant rubber sleeve 28.
  • the confining pressure loading exhaust port 21 is equipped with a confining pressure loading row
  • the air port sealing plug 22 is used to seal the confining pressure loading cylinder 18 after the internal air is exhausted.
  • the static confining pressure pressure is through the confining pressure oil gauge installed on the upper right side of the confining pressure loading cylinder enclosure 17 23 for display; temperature control device includes temperature system external power outlet 26 and intelligent temperature control thermocouple and temperature sensor 27, used to provide temperature rise (20 ⁇ 200 °C) for the test sample 29 and maintain the temperature at the set value, of which the intelligent The temperature control thermocouple and temperature sensor 27 are of ring structure and are built into the circumferential cylinder wall of the confining pressure loading cylinder 18.
  • the temperature control system controls the intelligent temperature control thermocouple and temperature sensor 27 to increase the temperature set by the experiment
  • the rate increases the temperature of the hydraulic oil delivered to the confining pressure loading cylinder 18 and transfers the heat to the test specimen 29 wrapped in the high-temperature and wear-resistant rubber sleeve 28, thereby achieving the purpose of temperature control of the test specimen.
  • Best implementation mode 2 Dynamic impact test of a complete saturated sandstone sample under coupled triaxial loading of temperature, pressure and osmotic pressure
  • the related equipment of the test system is placed on the supporting platform 1 with length, width and height of 6m, 0.6m and 1m respectively according to the connection method shown in Figure 1-3.
  • the connection relationship and related functions of each device are described as follows:
  • the test sample 29 is the center, and the test system is symmetrically arranged on the support platform 1.
  • the left side axial compression loading fixed baffle 2 with width, height and thickness of 600mm, 400mm and 50mm respectively is placed on the support platform 1.
  • the diameter of 4 is 100mm, and the piston stroke length is 200mm.
  • the left side axial pressure loading cylinder 3 is pressurized and decompressed to control the movement of the left side axial pressure loading piston; then the left side electromagnetic pulse excitation cavity support 6 is used to adjust the diameter and The left electromagnetic pulse excitation cavity 5 with lengths of 200mm and 200mm respectively is held up and placed on the supporting platform 1, wherein the left end of the left electromagnetic pulse excitation cavity 5 is freely in contact with the right end of the left axial compression loading piston 4 , Used to transfer the static axial pressure provided by the left axial pressure loading cylinder 3 to the left electromagnetic pulse excitation cavity 5 through the left axial pressure loading piston 4, and the left electromagnetic pulse excitation cavity 5 right end stress wave output end surface diameter and stress wave
  • the diameter of the loading rod is the same (50mm in this best example); then the left side stress wave loading rod 8 of TC21 titanium alloy with a length of 2m and a diameter of 50mm is placed on the stress wave loading rod support 9 and the left side The stress wave loading rod 8 can slide freely on the support, and then the right loading end surface of the stress wave
  • the right side axial load fixed baffle 11 with width, height and thickness of 600mm, 400mm and 50mm is placed on the right end of the support platform 1, where the diameter and length are 250mm and 200mm respectively.
  • the right axial load cylinder 12 passes through the central installation hole of the right axial load fixed baffle 11 and is welded to form an integral structure.
  • the diameter of the right axial load piston 13 is 100mm and the piston stroke length is 200mm.
  • the pressurization and decompression of the right axial pressure loading cylinder 12 controls the movement of the right axial pressure loading piston; then the right electromagnetic pulse is used
  • the impulse excitation cavity support 15 holds up the right electromagnetic pulse excitation cavity 14 with a diameter and a length of 200 mm and places it on the support platform 1, wherein the right end of the right electromagnetic pulse excitation cavity 14 and the right axial pressure loading piston 13
  • the left end is free to fit and contact, and is used to transfer the static axial pressure provided by the right axial pressure loading cylinder 12 to the right electromagnetic pulse excitation cavity 14 through the right axial pressure loading piston 13, and the left end stress of the right electromagnetic pulse excitation cavity 14
  • the diameter of the wave output end face is the same as the diameter of the stress wave loading rod (50mm in the best example); then the TC21 titanium alloy right stress wave loading rod 16 with a length of 2m and a diameter of 50mm is placed flat on the stress wave loading rod
  • the left and right side barriers are respectively sleeved on both sides of the loading end of the left stress wave loading rod 8 and the right stress wave loading rod 16, and then the confining pressure loading cylinder 18 is set on the left stress wave loading rod 8 and the right stress wave loading rod 8
  • the saturated sandstone sample wrapped in a high temperature and wear resistant rubber sleeve (such as type 26 fluoroelastomer) 28 is in contact with the left stress wave loading rod 8 and the right stress wave loading rod 16, and Adjust the sandstone sample to the symmetric center position of the system, and then synchronously control the left axial pressure loading cylinder 3 and the right axial pressure loading cylinder 12 through the axial pressure servo control loading system to slowly pressurize the left axial pressure loading piston 4 and the right side
  • the axial pressure loading piston 13 moves to the right and left, and then drives the left stress wave loading rod 8 and the right stress wave loading rod 16 to slowly move to the right and left, respectively, to clamp the saturated sandstone sample and apply the shaft
  • the specific loading process is as follows: firstly, the left side is synchronously controlled by the axial pressure servo control loading system
  • the axial pressure loading cylinder 3 and the right axial pressure loading cylinder 12 re-boost and drive the left axial pressure loading piston 4 and the right axial pressure loading piston 13 to move to the right and left respectively, thereby pushing the left side stress
  • the wave loading rod 8 and the right stress wave loading rod 16 respectively apply axial pressure to the saturated sandstone sample at a set loading rate.
  • the confining pressure loading device and its servo control system are used to pump high temperature and wear resistant hydraulic oil (such as HEX T6002) into the confining pressure loading cylinder 18 at a set rate through the confining pressure loading oil inlet 20.
  • high temperature and wear resistant hydraulic oil such as HEX T6002
  • hydraulic oil flows out from the confining pressure loading exhaust port 21 it indicates that the confining pressure loading cylinder has been filled with high temperature and wear resistant hydraulic oil.
  • the confining pressure loading exhaust port sealing plug 22 is tightened and sealed to seal the confining pressure loading exhaust port 21.
  • the permeate is driven by the osmotic pressure and is discharged from the osmotic pressure outlet pipe 25 through the internally connected pore network channel of the saturated sandstone sample.
  • the temperature control system is activated to drive the intelligent temperature control thermocouple and temperature sensor 27 to heat up at a rate of 5°C per minute, and the confining pressure load cylinder 18
  • the brake temperature control system keeps the oil temperature in the hydraulic cylinder at 90°C for two hours so as to be saturated with water in a high-temperature and wear-resistant rubber sleeve (for example, type 26 fluororubber) 28
  • the internal temperature of the sandstone sample is uniform and constant at 90°C.
  • the electromagnetic pulse excitation control system is operated to drive the left
  • the side electromagnetic pulse excitation cavity 5 and the right electromagnetic pulse excitation cavity 14 are simultaneously excited and the output amplitude is 500MPa and the duration is 4 00 ⁇ s incident stress wave, the incident stress wave then propagates along the stress wave loading rods on the left and right sides to the saturated sandstone sample and dynamically impact loading it, completing the temperature-pressure-osmotic pressure coupled impact loading triaxial SHPB test test;
  • the axial and circumferential static pressures remain basically unchanged under the control of the axial pressure servo control loading system and the confining pressure servo control loading system, respectively, so as to achieve constant static axial pressure and confining pressure conditions.
  • the strain signal data monitored by the strain gauge 10 shows that the temperature-pressure-osmotic pressure coupled shock loading triaxial SHPB test process
  • the dynamic compressive load applied on the left and right ends of the saturated sandstone sample is basically the same, it can be considered that the saturated sandstone
  • the dynamic impact loading process has reached the stress equilibrium state.
  • the strain data monitored by the strain gauge 10 can be calculated according to the following formula to obtain the temperature (90°C)-pressure ( 10MPa)-osmotic pressure (10MPa) dynamic compressive strength ⁇ (t), dynamic compressive strain rate And the strain ⁇ (t) are:
  • E, C and A are the elastic modulus (158GPa), the longitudinal wave velocity (5000m/s) and the cross-sectional area of the rod (1963.5mm 2 ) of the stress wave loaded rod, respectively;
  • a s is the cross-section of saturated sandstone 29 Area (1924.4mm 2 , the actual diameter of saturated sandstone 29 is 49.5mm),
  • a s is the length of saturated sandstone 29 (50mm);
  • ⁇ left incident and ⁇ left reflection are strain gages from the left side of the stress wave loading rod 8
  • the incident strain signal and the reflected strain signal monitored on the upper side, ⁇ right incident and ⁇ right reflection are the incident strain signal and the reflected strain signal monitored by the strain gauge from the right stress wave loading rod 16 respectively.
  • the related equipment of the test system is placed on the supporting platform 1 with length, width and height of 6m, 0.6m and 1m respectively according to the connection method shown in Figure 1-3.
  • the connection relationship and related functions of each device are described as follows:
  • the test specimen 29 (including the cylindrical hole 30 with a central diameter of 5mm, as shown in Figure 9-12) is the center, and the test system is symmetrically arranged on the support platform 1.
  • the width, height and thickness are respectively 600mm
  • the left side axial pressure loading fixed baffle 2 of 400mm and 50mm is placed on the left end of the support platform 1, wherein the left side axial pressure loading cylinder 3 with a diameter and a length of 250mm and 200mm respectively passes through the left side axial pressure loading fixed baffle 2
  • the central mounting hole is welded to form an integral structure.
  • the diameter of the left side axial pressure loading piston 4 is 100mm, and the piston stroke length is 200mm.
  • the left side axial pressure loading is controlled by the pressure increase and decompression of the left side axial pressure loading cylinder 3
  • the movement of the piston; then the left electromagnetic pulse excitation cavity support 6 is used to hold up the left electromagnetic pulse excitation cavity 5 with a diameter and a length of 200mm and 200mm respectively and place it on the support platform 1, wherein the left electromagnetic pulse excitation cavity 5
  • the left end part of the left end is freely in contact with the right end part of the left axial pressure loading piston 4, which is used to transfer the static axial pressure provided by the left axial pressure loading cylinder 3 to the left electromagnetic pulse excitation chamber through the left axial pressure loading piston 4 5.
  • the left side of the electromagnetic pulse excitation cavity is controlled by the pressure increase and decompression of the left side axial pressure loading cylinder 3
  • the movement of the piston then the left electromagnetic pulse excitation cavity support 6 is used to hold up the left electromagnetic pulse excitation cavity 5 with a diameter and a length of 200mm and 200mm respectively and place it on the support platform 1, wherein the left electromagnetic pulse excitation cavity
  • the right end of the stress wave output end surface diameter is the same as the diameter of the stress wave loading rod (50mm in this best example); then the left side stress wave of TC21 titanium alloy with a length of 2m and a diameter of 50mm is loaded
  • the rod 8 is placed flat on the stress wave loading rod support 9, and the left stress wave loading rod 8 can slide freely on the support, and then the right loading end surface of the left stress wave loading rod 8 is equal to the length and diameter.
  • the left loading surface of the 50mm granite sample containing a cylindrical hole 30 with a central diameter of 5mm is aligned and fully fitted together, and at the same time, the left stress wave loading end surface of the left stress wave loading rod 8 and the left electromagnetic pulse
  • the stress wave output end faces of the right side of the excitation cavity 5 are aligned and fully fit together, and its function is mainly to transmit the static axial pressure transmitted to the left electromagnetic pulse excitation cavity 5 to the left side stress wave loading rod 8
  • it is used to input the incident stress wave generated by the electromagnetic pulse excitation cavity 5 on the left to the stress wave loading rod 8 on the left and propagate along its axis.
  • the width, height and thickness are 600mm, 400mm and 50mm respectively.
  • the right side axial pressure loading fixed baffle 11 is arranged at the right end of the support platform 1, wherein the right side axial pressure loading cylinder 12 with a diameter and a length of 250mm and 200mm respectively passes through the central mounting hole of the right side axial pressure loading fixed baffle 11 , And welded with it to form a whole structure, the diameter of the right axial pressure loading piston 13 is 100mm, The stroke length is 200mm, and the right side axial pressure loading piston is controlled by the pressurization and decompression of the right side axial pressure loading cylinder 12; then the right side electromagnetic pulse excitation cavity support 15 is used to set the diameter and length to the right side of 200mm.
  • the electromagnetic pulse excitation cavity 14 is held up and placed on the support platform 1, wherein the right end of the electromagnetic pulse excitation cavity 14 on the right is freely in contact with the left end of the right axial compression loading piston 13 for loading the right axial compression
  • the static axial pressure provided by the cylinder 12 is transmitted to the right electromagnetic pulse excitation cavity 14 through the right axial pressure loading piston 13, and the left end of the right electromagnetic pulse excitation cavity 14 has the same diameter of the stress wave output end surface as the stress wave loading rod (this best example)
  • the middle is 50mm); then the right stress wave loading rod 16 of TC21 titanium alloy with a length of 2m and a diameter of 50mm is placed flat on the stress wave loading rod support 9, and ensure that the right stress wave loading rod 16 can be placed on the support Slide freely on the upper side, and then load the left side of the right stress wave loading rod 16 with the right side of the granite sample (test sample 29) with a length and diameter of 50mm and a cylindrical hole 30 with a central diameter of 5mm.
  • the specific installation steps are as follows: first remove the granite sample with a cylindrical hole 30 with a central diameter of 5mm, and then separately load under no axial compression Push the left axial pressure loading piston 4 and the right axial compression loading piston 13 to the left and right ends, so that the left stress wave loading rod 8 and the right stress wave loading rod 16 can be moved to the left and right respectively,
  • the left and right side baffles of the confining pressure loading cylinder baffle 17 as shown in Figure 4-8 are respectively sleeved on the left stress wave loading rod 8 and the right stress wave loading rod
  • the confining pressure loading cylinder 18 on the left or right stress wave loading rod, and then wrap it in a high temperature resistant and wear resistant rubber sleeve (such as type 26 fluororubber) 28 containing the center diameter
  • the granite sample with a cylindrical hole 30 of 5mm is in contact with the stress wave loading rod 8 on the left and the stress wave loading rod 16 on the
  • the loading system synchronously controls the left and right axial pressure loading cylinders 3 and 12 to slowly pressurize to drive the left axial pressure loading piston 4 and the right axial pressure loading piston 13 to move to the right and left respectively, thereby driving the left stress wave loading
  • the rod 8 and the right stress wave loading rod 16 slowly move to the right and left respectively to clamp the granite sample with a cylindrical hole 30 with a central diameter of 5mm and apply axial pressure to it.
  • the pressure reading of the confining pressure oil gauge 23 to be installed on the upper right side of the confining pressure loading cylinder enclosure 17 reaches the set confining pressure value At 20MPa, stop the loading and use the confining pressure servo control loading system to keep the confining pressure constant, so that the high temperature and wear resistant rubber sleeve (for example, type 26 fluoroelastomer) 28 acts on the granite test with a cylindrical hole 30 with a central diameter of 5 mm.
  • the high temperature and wear resistant rubber sleeve for example, type 26 fluoroelastomer
  • the circumferential confining pressure of the sample is constant at 20 MPa; then the osmotic pressure loading system is used to apply an internal pressure of 5 MPa to the granite sample containing a cylindrical hole 30 with a central diameter of 5 mm through the osmotic pressure inlet pipe 24 and the osmotic pressure outlet pipe 25.
  • the temperature control system is started to drive the intelligent temperature-controlled thermocouple and temperature sensor 27 to heat up at a rate of 6°C per minute.
  • the system keeps the oil temperature in the hydraulic cylinder at 80°C for two hours so that it can be
  • the internal temperature of the granite sample with a cylindrical hole 30 with a central diameter of 5mm in a warm anti-wear rubber sleeve (such as type 26 fluororubber) 28 is uniform and constant at 80 °C. So far, the test to the granite with a cylindrical hole 30 with a central diameter of 5 mm is completed.
  • the strain signal is amplified by the signal amplifier and output to the data recorder through the shielded wire for recording and storage, and finally through The data cable outputs the strain signal data from the data recorder to the computer for analysis and processing.
  • the strain signal data monitored by the strain gauge 10 shows that the temperature-pressure-internal pressure coupled shock loading triaxial SHPB test process
  • the dynamic compressive load applied on the left and right ends of the granite sample with a cylindrical hole 30 with a central diameter of 5mm is basically the same It can be considered that the dynamic impact loading process of the granite sample with a cylindrical hole 30 with a central diameter of 5mm has reached a stress equilibrium state.
  • the strain data monitored by the strain gauge 10 can be carried out according to the following formula Calculate and obtain the dynamic compressive strength ⁇ (t) and dynamic compressive strain rate of a granite sample containing a cylindrical hole 30 with a central diameter of 5mm under the coupling effect of temperature (80°C)-pressure (20MPa) and internal pressure (5MPa) of the central cylindrical hole And the strain ⁇ (t) are:
  • E, C and A are respectively the elastic modulus (158GPa), longitudinal wave velocity (5000m/s) and the cross-sectional area of the rod (1963.5mm 2 ) of the stress wave loaded rod;
  • a s is a cylindrical hole with a central diameter of 5mm
  • a s is the length of the granite sample of 30 with a cylindrical hole with a central diameter of 5mm (50mm);
  • ⁇ left incidence and ⁇ left reflection are strains, respectively
  • the incident strain signal and the reflected strain signal monitored by the sheet from the stress wave loading rod 8 on the left, ⁇ right incident and ⁇ right reflection are the incident strain signal and the reflected strain signal monitored by the strain gauge from the right stress wave loading rod 16 respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,测试系统主要由电磁脉冲发射系统、轴压伺服控制加载系统、围压伺服控制加载系统、温度控制系统、渗透压加载系统、杆件系统和数据监测与采集系统组成。该系统在传统的SHPB基础上,引入围压、温度和渗透压实时加载和控制系统,旨在解决现有试验装置无法模拟深部岩体在温度-压力-渗透压以及动态扰动荷载耦合作用下的岩体动力学响应研究的技术难题。

Description

温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统 技术领域
本发明属于岩石动力学研究领域。更具体地说,涉及一种用于深部地下多场耦合条件下岩石动态力学特性和破断规律研究的温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统。SHPB:霍普金森杆。
背景技术
随着浅部矿产资源不断枯竭,资源和能源开采逐渐转向深部发展。目前世界煤炭开采深度已经达到地下1500m,金属矿产开采已经超过4000m,石油钻井更是达到地下7500m。进入深部开采后,由于深部岩体所处环境十分复杂,面临高地应力、高地温、高岩溶水压以及强烈的工程扰动(例如爆炸波、地震和岩爆等)等条件,使工程灾害(如岩爆、冲击地压、围岩损伤与大变形等)频繁发生且难以预测和有效防治,严重危及深部岩体工程施工及运营安全。因此,研究并掌握高地应力、高地温、高岩溶水压以及强烈的工程扰动条件下,深部岩体动态力学特性和破断规律对深部岩体工程的施工和运营有着十分重要的科学和工程实践意义。目前,针对上述问题的研究更多是基于MTS815(电液伺服岩石试验系统)设备开展静态加载条件下的温度-压力-渗透压耦合作用下的岩石静力学特性和破坏机制研究,而针对深部温度-压力-渗透压耦合作用条件下岩体动态力学特性和破裂规律的研究则未有报道。究其原因,主要是考虑深部复杂条件下岩石动力学实验手段非常欠缺,特别是用于开展模拟深部温度-压力-渗透压耦合作用条件下岩体动力学响应和破断机制的研究试验手段和设备缺失。目前,无论是基于一维霍普金森杆开展的岩石动态冲击试验研究,还是采用改进的霍普金森杆开展的动静组合冲击加载条件下的岩石动态力学特性研究均只能部分模拟深部岩体所处静态压力和扰动荷载环境,都无法模拟并开展接近深部岩体真实环境下的岩石动力学特性研究。此外,近来关于温度环境下,尤其是温压耦合条件下,岩石动态力学特性的研究屡有报道。然而,现有温压耦合动态冲击加载试验研究,大多是先将岩石试样加热至某一设定温度,然后冷却后再基于霍普金森杆系统开展相应的动态冲击或者动静组合冲击加载下的岩石动力学特性研究。上述研究虽然有助于促进我们了解温度作用对岩石动态力学特性和破断特征的影响,但实际上上述研究与真实深部温度-压力-渗透压耦合环境下岩体动力学特征以及动态破断规律相距甚远。因此,现有技术还有待改进。
发明内容
为解决现有试验装置无法开展深部高地应力、高地温、高岩溶水压以及强烈的工程扰动条件下岩石动态力学特性与破断规律研究,本发明提出一种温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统,该系统在传统的SHPB基础上,创新性的引入温度和渗透压实时加载和控制系统,旨在解决现有试验装置无法模拟深部岩体在温度-压力-渗透压以及动态扰动荷载耦合作用下的岩体动力学响应研究的技术难题。
温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统主要由电磁脉冲发射系统、轴压伺服控制加载系统、围压加载装置及其伺服控制加载系统、温度控制系统、渗透压加载系统、杆件系统和数据监测与采集系统组成。
温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统以支撑平台为基础平台,呈左右对称形式布置,其中支撑平台不仅起到承受整个系统自重以及测试过程的冲击载荷作用,同时也起到为测试系统粗调平的作用。电磁脉冲发射系统主要由相同加工参数、工艺和功能的左侧和右侧电磁脉冲激发腔及其控制系统构成,主要起到为测试系统提供动态荷载(入射应力波)的作用;轴压伺服控制加载系统主要由左侧和右侧轴压加载固定挡板、连杆、左侧和右侧轴压加载油缸、轴压加载活塞以及轴压伺服控制系统构成,主要起到为测试试样提供轴向静态预应力(静态轴压),轴压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态轴压在测试过程保持相对稳定;围压加载装置及其伺服控制加载系统主要由围压加载缸围挡、围压加载缸、螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞、围压油表以及围压伺服控制系统构成,主要起到为测试试样提供环向静态预应力(静态环向围压)的作用,围压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态环向围压在测试过程保持相对稳定;温度控制系统主要由智能温控热电偶与温度传感器以及温度控制软件系统构成,主要起到为测试试样升温并维持温度在设定值;渗透压加载系统主要由左侧渗透压管道、右侧渗透压管道、渗透压加压和控制系统构成,主要起到为测试试样提供孔隙水压力、渗透压或者为含内部孔洞试样提供孔内水压的作用;杆件系统主要由满足不同试验需求的直径、长度和材质均相等的左侧和右侧应力波加载杆及其支座构成,主要起到传递入射应力波并为测试试样施加动态载荷的作用;数据监测与采集系统由多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器构成,起到实时监测并完整记录和存储试验测试信号的作用。
一种温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其包括支撑平台、左侧 轴压加载固定挡板、左侧轴压加载油缸、左侧轴压加载活塞、左侧电磁脉冲激发腔、左侧电磁脉冲激发腔支座、连杆、左侧应力波加载杆、应力波加载杆支座、电阻应变片、右侧轴压加载固定挡板、右侧轴压加载油缸、右侧轴压加载活塞、右侧电磁脉冲激发腔、右侧电磁脉冲激发腔支座、右侧应力波加载杆、围压加载缸围挡、围压加载缸、螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞、围压油表、温度系统外接电源出口、智能温控热电偶与温度传感器、耐高温抗磨橡胶套以及测试试样;
测试系统以测试试样为中心,呈左右对称形式布置,其中左侧轴压加载固定挡板和右侧轴压加载固定挡板分别固定于支撑平台的左右两端,左侧轴压加载固定挡板和右侧轴压加载固定挡板中心和四周分别设置中心安装孔和四周安装孔,左侧轴压加载油缸和右侧轴压加载油缸分别穿过左端轴压加载固定挡板和右端轴压加载固定挡板的中心安装孔,并与之焊接形成整体结构,此外,左端轴压加载固定挡板和右端轴压加载固定挡板通过连杆穿过其周边的四周安装孔而将二者连接成整体,并进而与支持平台构成一整体框架系统;左侧电磁脉冲激发腔由左侧电磁脉冲激发腔支座支撑并安置在支撑平台上,其中左侧电磁脉冲激发腔的左端部与左侧轴压加载活塞的右端部自由贴合接触,将左侧轴压加载油缸提供的静态轴压通过左侧轴压加载活塞传递至左侧电磁脉冲激发腔;左侧应力波加载杆由应力波加载杆支座支撑并安置在支撑平台上,其中左侧应力波加载杆的左端部与左侧电磁脉冲激发腔的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔的静态轴压进一步传递至左侧应力波加载杆并最终作用于测试试样,另一方面用于将左侧电磁脉冲激发腔产生的入射应力波输入至左侧应力波加载杆并沿其轴线方向传播直至给测试试样施加从左至右的动态荷载;
同理,右侧电磁脉冲激发腔由右侧电磁脉冲激发腔支座支撑并安置在支撑平台上,其中右侧电磁脉冲激发腔的右端部与右侧轴压加载活塞的左端部自由贴合接触,用于将右侧轴压加载油缸提供的静态轴压通过右侧轴压加载活塞传递至右侧电磁脉冲激发腔;右侧应力波加载杆由应力波加载杆支座支撑并安置在支撑平台上,其中右侧应力波加载杆的右端部与右侧电磁脉冲激发腔的左端面自由贴合接触,一方面用于将传递至右侧电磁脉冲激发腔的静态轴压进一步传递至右侧应力波加载杆并最终作用于测试试样,另一方面用于将右侧电磁脉冲激发腔产生的入射应力波输入至右侧应力波加载杆并沿其轴线方向传播直至给测试试样施加从右至左的动态荷载;左侧应力波加载杆和右侧应力波加载杆上设置电阻应变片;
围压加载缸围挡、围压加载缸、螺杆、围压加载进油口、围压加载排气口、围压加载排气口密封塞以及围压油表构成围压加载装置,其中围压加载缸围挡的中心和四周分别设置有中心安装孔和四周安装孔,用于分别将左侧应力波加载杆和右侧应力波加载杆穿过中心安装孔伸入围压加载缸的内部与测试试样接触,螺杆通过围压加载缸围挡的四周安装孔将围压加载缸围挡和围压加载缸连接为一整体结构并安置在支撑平台上,此外,围压加载缸围挡的右侧围挡中心安装孔下部和上部分别设有围压加载进油口和围压加载排气口,通过围压加载进油口和围压加载排气口将围压加载装置构成连通回路,用于将液压油泵入围压加载缸,对包裹在耐高温抗磨橡胶套中的测试试样施加环向静态围压,围压加载排气口外侧配有围压加载排气口密封塞,静态围压压力大小通过围压油表进行显示;温度控制装置包括温度系统外接电源出口和智能温控热电偶与温度传感器,用于为测试试样提供升温并维持温度在设定值,加热时,通过控制系统控制智能温控热电偶与温度传感器以实验设定的升温速率将输送至围压加载缸内的液压油升温并将热量传递给包裹在耐高温抗磨橡胶套中的测试试样,通过控制系统控制热电偶,设置升温速率和温度范围,然后通过智能温度控制传感器反馈实时温度到显示系统,确保加热至预定温度,加热至预定温度后,开展岩石动力学试验,实现原位控制立方体试样至指定温度。
作为本发明的进一步改进,左端轴压加载固定挡板和右端轴压加载固定挡板通过四根连杆穿过其周边的四个四周安装孔而将二者连接成整体。
作为本发明的进一步改进,所述左侧轴压加载固定挡板、右侧轴压加载固定挡板、围压加载缸围挡三者的中心安装孔和四周安装孔均为圆形孔。
作为本发明的进一步改进,还包括渗透压加载装置,所述渗透压加载装置包括左侧渗透压管道和右侧渗透压管道,其中左侧渗透压管道和右侧渗透压管道的孔径和长度均相同,二者分别内置于左侧应力波加载杆的右端部和右侧应力波加载杆的左端部,并与测试试样加载端面直接接触,渗透压施加时,通过从左侧渗透压管道注入具有设定压力的渗透液,渗透液在渗透压的驱动下通过测试试样的内部连通的孔网通道从右侧渗透压管道排出,并维持渗透压恒定在设定值。
作为本发明的进一步改进,围压加载缸围挡的中心安装孔直径比左侧应力波加载杆8和右侧应力波加载杆的直径大1±0.1mm。
作为本发明的进一步改进,智能温控热电偶与温度传感器为环状结构并内置于围压加载缸的环向缸壁内,智能温控热电偶与温度传感器由控制系统控制其升温速率,并反馈实时温度到显示系统,确保加热至预定温度。
本发明的有益效果是:
(1)温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统的电磁脉冲发射系统可精确控制并且高度重复的产生入射应力波,解决了现有霍普金森杆设备气动发射子弹 撞击入射杆产生入射应力波时难以精确控制并高度重复产生入射应力波的技术难题。
(2)温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统的动态荷载由双向电磁脉冲发射系统同步控制加载,不仅弥补了传统霍普金森压杆只能从一个方向为测试试样施加动态荷载的缺陷,同时双向同步控制加载入射应力波,将测试试样加载过程达到动态应力平衡的时间缩短为传统从一个方向加载时的三分之一左右,从而有助于提高动态测试结果的有效性和可靠性,同时还能避免脆性试样因达到平衡所用时间太长而发生影响测试结果有效性的预破裂现象。
(3)温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统的轴压和围压伺服控制加载系统可实现静态轴压和静态环向围压伺服控制加载并且在动态冲击加载过程维持轴压和围压保持相对稳定,解决了目前改进的SHPB三轴系统难以在动态加载过程维持轴压和围压相对稳定的缺陷。
(4)温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统的温度加载与控制系统可为测试在施加三轴静态压力或三轴静态压力与渗透压作用下升温并维持温度在设定值,实现温度-压力或温度-压力-渗透压耦合作用下的冲击加载试验,解决了现有基于SHPB系统开展的岩石动力学特性测试无法在动态加载过程模拟温度-压力或温度-压力-渗透压多场耦合的技术难题,使测试过程更加接近深部岩体真实受力环境,从而使得测试结果更加可靠和准确。
(5)温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统的渗透压加载系统可为测试在施加三轴静态压力或三轴静态压力与温度作用下施加渗透压或孔隙水压力并维持渗透压或孔隙水压力在设定值,实现压力-渗透压或压力-温度-渗透压耦合作用下的冲击加载试验,解决了现有基于SHPB系统开展的岩石动力学特性测试无法在动态加载过程模拟压力-渗透压或压力-温度-渗透压多场耦合的技术空白,使测试过程更加接近深部岩体真实三轴受力环境,从而使得测试结果更加可靠和准确。
附图说明
图1温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统三维图;
图2温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统正视图;
图3温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统剖切面正视图;
图4温度-压力-渗透压耦合围压加载装置三维图;
图5温度-压力-渗透压耦合围压加载装置正视方向三维剖切图;
图6温度-压力-渗透压耦合围压加载装置正视方向剖切面正视图;
图7温度-压力-渗透压耦合围压加载装置俯视方向三维剖切图;
图8温度-压力-渗透压耦合围压加载装置俯视方向剖切面俯视图;
图9温度-压力耦合围压加载装置三维图;
图10温度-压力耦合围压加载装置正视方向三维剖切图;
图11含中心圆柱孔测试试样温度-压力-渗透压耦合三轴加载正视方向三维剖切图;
图12含中心圆柱孔测试试样温度-压力-渗透压耦合三轴加载俯视方向三维剖切图;
图13含中心圆柱孔测试试样三维图;
图14含中心圆柱孔测试试样俯视图。
图中标号对应部件名称如下:
1-支撑平台,2-左侧轴压加载固定挡板,3-左侧轴压加载油缸,4-左侧轴压加载活塞,5-左侧电磁脉冲激发腔,6-左侧电磁脉冲激发腔支座,7-连杆,8-左侧应力波加载杆,9-应力波加载杆支座,10-应变片,11-右侧轴压加载固定挡板,12-右侧轴压加载油缸,13-右侧轴压加载活塞,14-右侧电磁脉冲激发腔,15-右侧电磁脉冲激发腔支座,16-右侧应力波加载杆,17-围压加载缸围挡,18-围压加载缸,19-螺杆,20-围压加载进油口,21-围压加载排气口,22-围压加载排气口密封塞,23-围压油表,24-渗透压入水管道,25-渗透压出水管道,26-温度系统外接电源出口,27-智能温控热电偶与温度传感器,28-耐高温抗磨橡胶套,29-测试试样,30-圆柱孔。
具体实施方式
下面结合附图对本发明做进一步说明。
最佳实施方式1:
图1为温度-压力-渗透压耦合双向电磁加载三轴SHPB测试系统三维图,试验装置置于支撑平台1上,主要由电磁脉冲发射系统、轴压伺服控制加载系统、围压加载装置及其伺服控制加载系统、温度控制系统、渗透压加载系统、杆件系统和数据监测与采集系统组成。测试系统以测试试样29为中心(如图3所示),呈左右对称形式布置。其中左侧轴压加载固定挡板2和右侧轴压加载固定挡板11分别固定于支撑平台1的左右两端,其中心和四周分别设置中心安装孔和四周安装孔,左侧轴压加载油缸3和右侧轴压加载油 缸12分别穿过左端轴压加载固定挡板2和右端轴压加载固定挡板11的中心安装孔,并与之焊接形成整体结构,此外,左端轴压加载固定挡板2和右端轴压加载固定挡板11通过四根连杆7穿过其周边的四个四周安装孔而将二者连接成整体,并进而与支持平台构成一整体框架系统;左侧电磁脉冲激发腔5由左侧电磁脉冲激发腔支座6支撑并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4的由端部自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5;左侧应力波加载杆8由应力波加载杆支座9支撑并安置在支撑平台1上,其中左侧应力波加载杆8的左端部与左侧电磁脉冲激发腔5的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传递至左侧应力波加载杆8并最终作用于测试试样29,另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其轴线方向传播直至给测试试样29施加从左至右的动态荷载;同理,右侧电磁脉冲激发腔14由右侧电磁脉冲激发腔支座15支撑并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13的左端部自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14;右侧应力波加载杆16由应力波加载杆支座9支撑并安置在支撑平台1上,其中右侧应力波加载杆16的右端部与右侧电磁脉冲激发腔14的左端面自由贴合接触,一方面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于测试试样29,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给测试试样29施加从右至左的动态荷载。
图4-8为温度-压力-渗透压耦合围压加载装置结构和连接示意图。围压加载装置包括围压加载缸围挡17、围压加载缸18、螺杆19、围压加载进油口20、围压加载排气口21、围压加载排气口密封塞22以及围压油表23,其中围压加载缸围挡17的中心和四周分别设置有中心安装孔和四周安装孔,中心安装孔直径比应力波加载杆(左侧应力波加载杆8和右侧应力波加载杆16)直径大约1mm,用于分别将左侧应力波加载杆8和右侧应力波加载杆16穿过中心安装孔伸入围压加载缸18的内部与测试试样29接触,螺杆19通过围压加载缸围挡的四周安装孔将围压加载缸围挡17和围压加载缸18连接为一整体结构并安置在支撑平台1上,此外,围压加载缸围挡17的右侧围挡中心安装孔下部和上部分别设有围压加载进油口20和围压加载排气口21,通过围压加载进油口20和围压加载排气口21将围压加载装置构成连通回路(通过进油口输入液压油到围压缸里面,注入液压油需要排除围压缸里面的空气,所以通过排气口将围压缸与外界连通,从而构成连通回路;满油的标志是液压油从排气口流出),用于将液压油泵入围压加载缸18,对包裹在耐高温抗磨橡胶套28中的测试试样29施加环向静态围压,围压加载排气口21外侧配有围压加载 排气口密封塞22,用于在围压加载缸内部空气排尽后对其进行密封,静态围压压力大小通过安装在围压加载缸围挡17的右侧围挡上部的围压油表23进行显示;温度控制装置包括温度系统外接电源出口26和智能温控热电偶与温度传感器27,用于为测试试样29提供升温(20~200℃)并维持温度在设定值,其中智能温控热电偶与温度传感器27为环状结构并内置于围压加载缸18的环向缸壁内,加热时,通过温度控制系统控制智能温控热电偶与温度传感器27以实验设定的升温速率将输送至围压加载缸18内的液压油升温并将热量传递给包裹在耐高温抗磨橡胶套28中的测试试样29,从而实现对测试试样进行温度控制的目的;
渗透压加载装置包括左侧渗透压管道24和右侧渗透压管道25,其中左侧渗透压管道24和右侧渗透压管道25的孔径和长度均相同,二者分别内置于左侧应力波加载杆8的右端部和右侧应力波加载杆16的左端部,并与测试试样加载端面直接接触,渗透压施加时,通过从左侧渗透压管道24注入具有设定压力(0-60MPa)的渗透液,渗透液在渗透压的驱动下通过测试试样29的内部连通的孔网通道从右侧渗透压管道25排出,并维持渗透压恒定在设定值。
图9和图10为温度-压力耦合围压加载装置结构和连接示意图。围压加载装置包括围压加载缸围挡17、围压加载缸18、螺杆19、围压加载进油口20、围压加载排气口21、围压加载排气口密封塞22以及围压油表23,其中围压加载缸围挡17的中心和四周分别设置中心安装孔和四周安装孔,中心安装孔的直径比应力波加载杆(包括左侧应力波加载杆8和右侧应力波加载杆16)直径大约1mm,用于分别将左侧应力波加载杆8和右侧应力波加载杆16穿过中心安装孔伸入围压加载缸18的内部与测试试样29接触,螺杆19通过围压加载缸围挡17的四周安装孔将围压加载缸围挡17和围压加载缸18连接为一整体结构并安置在支撑平台1上,此外,围压加载缸围挡17的右侧围挡中心安装孔下部和上部分别设有围压加载进油口20和围压加载排气口21,通过围压加载进油口20和围压加载排气口21将围压加载装置构成连通回路,用于将液压油泵入围压加载缸18,对包裹在耐高温抗磨橡胶套28中的测试试样29施加环向静态围压,围压加载排气口21外侧配有围压加载排气口密封塞22,用于在围压加载缸18内部空气排尽后对其进行密封,静态围压压力大小通过安装在围压加载缸围挡17的右侧围挡上部的围压油表23进行显示;温度控制装置包括温度系统外接电源出口26和智能温控热电偶与温度传感器27,用于为测试试样29提供升温(20~200℃)并维持温度在设定值,其中智能温控热电偶与温度传感器27为环状结构并内置于围压加载缸18的环向缸壁内,加热时,通过温度控制系统控制智能温控热电偶与温度传感器27以实验设定的升温速率将输送至围压加载缸18内的液压油升温并将热量传递给包裹在耐高温抗磨橡胶套28中的测试试样29,从而实现对测试试样进行温度控制的目的。
最佳实施方式2:完整饱水砂岩试样在温度-压力-渗透压耦合三轴加载下的动态冲击试验研究
将测试系统相关设备按照如图1-3所示连接方式安置在长、宽、高分别为6m,0.6m和1m的支撑平台1上,各设备之间连接关系及相关功能具体说明如下:以测试试样29为中心,将测试系统按左右对称方式布置在支撑平台1上,先将宽度、高度和厚度分别为600mm,400mm和50mm的左侧轴压加载固定挡板2安置在支撑平台1的左端,其中直径和长度分别为250mm和200mm的左侧轴压加载油缸3穿过左侧轴压加载固定挡板2的中心安装孔,并与之焊接形成整体结构,左侧轴压加载活塞4的直径为100mm,活塞行程长度为200mm,通过左侧轴压加载油缸3的增压和减压控制左侧轴压加载活塞的移动;随后利用左侧电磁脉冲激发腔支座6将直径和长度分别为200mm和200mm的左侧电磁脉冲激发腔5托起并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4的右端部自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5,左侧电磁脉冲激发腔5右端应力波输出端面直径与应力波加载杆直径相同(本最佳实例中为50mm);接着将长度为2m,直径为50mm的TC21钛合金左侧应力波加载杆8平放在应力波加载杆支座9上,并确保左侧应力波加载杆8可在支座上自由滑动,随后将左侧应力波加载杆8的右侧加载端面与长度和直径均为50mm、孔隙率约为10%的完全饱水砂岩试样(即测试试样29)的左侧加载面对齐并充分贴合在一起,同时将左侧应力波加载杆8的左侧应力波加载端面与左侧电磁脉冲激发腔5的右侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传递至左侧应力波加载杆8并最终作用于砂岩试样,另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其轴线方向传播直至给砂岩试样施加从左至右的动态荷载;同理,右侧系统安置方式与左侧相同,先将宽度、高度和厚度分别为600mm,400mm和50mm的右侧轴压加载固定挡板11安置在支撑平台1的右端,其中直径和长度分别为250mm和200mm的右侧轴压加载油缸12穿过右侧轴压加载固定挡板11的中心安装孔,并与之焊接形成整体结构,右侧轴压加载活塞13的直径为100mm,活塞行程长度为200mm,通过右侧轴压加载油缸12的增压和减压控制右侧轴压加载活塞的移动;随后利用右侧电磁脉冲激发腔支座15将直径和长度均为200mm的右侧电磁脉冲激发腔14托起并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13的左端部自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14,右侧电磁脉冲激发腔14左端应力波输出端面直径与应力波加载 杆直径相同(本最佳实例中为50mm);接着将长度为2m,直径为50mm的TC21钛合金右侧应力波加载杆16平放在应力波加载杆支座9上,并确保右侧应力波加载杆16可在支座上自由滑动,随后将右侧应力波加载杆16的左侧加载端面与长度和直径均为50mm、孔隙率约为10%的砂岩的右侧加载面对齐并充分贴合在一起,同时将右侧应力波加载杆16的右侧应力波加载端面与右侧电磁脉冲激发腔14的左侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于砂岩试样,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给砂岩试样施加从右至左的动态荷载;接着利用四根连杆7穿过左侧轴压加载固定挡板2和右侧轴压加载固定挡板11周边的四个四周安装孔而将加载系统连接成整体并进而与支持平台构成一整体框架系统;随后将围压加载装置安置在砂岩试样外围,其具体安装步骤如下:先取下饱水砂岩试样,然后在无轴压加载状态下分别将左侧和右侧轴压加载活塞向左右两端推开,从而可将左侧应力波加载杆8和右侧应力波加载杆16分别向左侧和右侧移动,进而为围压加载装置安装腾出空间,随后将如图4-8所示围压加载缸围挡17的左右两侧围挡分别套在左侧应力波加载杆8和右侧应力波加载杆16的加载端两侧,然后将围压加载缸18套在左侧应力波加载杆8和右侧应力波加载杆16上,接着将包裹在耐高温抗磨橡胶套(例如26型氟橡胶)28中的饱水砂岩试样与左侧应力波加载杆8和右侧应力波加载杆16接触,并将砂岩试样调整至系统对称中心位置,随后通过轴压伺服控制加载系统同步控制左侧轴压加载油缸3和右侧轴压加载油缸12缓慢增压驱动左侧轴压加载活塞4和右侧轴压加载活塞13分别向右和向左移动,进而驱动左侧应力波加载杆8和右侧应力波加载杆16分别缓慢向右和向左移动夹紧饱水砂岩试样并为其施加轴向压力,待轴向压力值达到约100KPa时,停止加载并将轴向压力保持恒定,从而确保饱水砂岩试样以及整个轴向加载系统处于轴向固定状态,接下来将围压加载缸围挡17的左右两侧围挡与围压加载缸18对接并使围压加载缸18处于系统对称中心位置,以便饱水砂岩试样位于围压加载缸18的中心位置,随后利用螺杆19将围压加载缸围挡17和围压加载缸18连接起来并拧紧为一整体结构;至此,完成整个系统连接以及试样安装步骤,随后即可根据试验设计开展相应的加载操作,其具体加载过程如下:首先通过轴压伺服控制加载系统同步控制左侧轴压加载油缸3和右侧轴压加载油缸12,使二者重新升压并驱动左侧轴压加载活塞4和右侧轴压加载活塞13分别向右和向左移动,进而推动左侧应力波加载杆8和右侧应力波加载杆16分别以设定加载速率为饱水砂岩试样施加轴向压力,待轴向压力值达到10MPa时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;随后利用围压加载装置及其伺服控制系统以设定速率通过围压加载进油口20向围压加载缸18内部泵 入耐高温抗磨液压油(例如HEX T6002),待从围压加载排气口21流出液压油时表明围压加载缸内已注满耐高温抗磨液压油,此时用围压加载排气口密封塞22拧紧并密封好围压加载排气口21,待安装在围压加载缸围挡17的右侧围挡上部的围压油表23的压力读数达到设定围压值10MPa时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过耐高温抗磨橡胶套(例如26型氟橡胶)28作用在饱水砂岩试样的环向围压恒定在10MPa;接着利用渗透压加载系统通过渗透压入水管道24从左侧应力波加载杆一侧给饱水砂岩试样施加渗透压10MPa,渗透液在渗透压的驱动下通过饱水砂岩试样的内部连通的孔网通道从渗透压出水管道25排出,待渗透压入水管道24和渗透压出水管道25两端渗透压差维持恒定10MPa不变时,启动温度控制系统驱动智能温控热电偶与温度传感器27以每分钟5℃的速率升温,待围压加载缸18内的液压油温度增加至90℃时,制动温度控制系统,使液压缸内油温维持90℃两小时,以便包裹在耐高温抗磨橡胶套(例如26型氟橡胶)28中的饱水砂岩试样内部温度均匀并恒定在90℃,至此完成向饱水砂岩试样施加静态轴压、围压、渗透压和高温的耦合作用条件;随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔5和右侧电磁脉冲激发腔14同步激发并输出幅值为500MPa、持续时长为400μs的入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向饱水砂岩试样传播并对其进行动态冲击加载,完成温度-压力-渗透压耦合冲击加载三轴SHPB测试试验;需要说明的是,动态冲击加载过程,轴向和环向静态压力分别在轴压伺服控制加载系统和围压伺服控制加载系统的调控下保持基本不变,从而实现恒定静态轴压和围压条件下的动态三轴冲击加载试验;动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片10,可实时监测应力波加载杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。当利用应变片10所监测到的应变信号数据显示温度-压力-渗透压耦合冲击加载三轴SHPB测试过程饱水砂岩试样左右两端面所施加的动态压缩荷载基本一致时,可认为饱水砂岩动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片10所监测的应变数据,可按照下述公式进行计算,获取饱水砂岩材料在温度(90℃)-压力(10MPa)-渗透压(10MPa)耦合作用下的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115488-appb-000001
以及应变ε(t)分别为:
Figure PCTCN2019115488-appb-000002
Figure PCTCN2019115488-appb-000003
Figure PCTCN2019115488-appb-000004
其中,E、C和A分别为应力波加载杆的弹性模量(158GPa)、纵波速度(5000m/s)与杆的横截面面积(1963.5mm 2);A s为饱水砂岩29的横截面面积(1924.4mm 2,饱水砂岩29的实际直径为49.5mm),A s为饱水砂岩29的长度(50mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆8上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆16上监测的入射应变信号和反射应变信号。
最佳实施方式3:含中心圆柱孔花岗岩试样在温度-压力-内压耦合三轴加载下的动态冲击试验研究
将测试系统相关设备按照如图1-3所示连接方式安置在长、宽、高分别为6m,0.6m和1m的支撑平台1上,各设备之间连接关系及相关功能具体说明如下:以测试试样29(含中心直径5mm的圆柱孔30,如图9-12所示)为中心,将测试系统按左右对称方式布置在支撑平台1上,先将宽度、高度和厚度分别为600mm,400mm和50mm的左侧轴压加载固定挡板2安置在支撑平台1的左端,其中直径和长度分别为250mm和200mm的左侧轴压加载油缸3穿过左侧轴压加载固定挡板2的中心安装孔,并与之焊接形成整体结构,左侧轴压加载活塞4的直径为100mm,活塞行程长度为200mm,通过左侧轴压加载油缸3的增压和减压控制左侧轴压加载活塞的移动;随后利用左侧电磁脉冲激发腔支座6将直径和长度分别为200mm和200mm的左侧电磁脉冲激发腔5托起并安置在支撑平台1上,其中左侧电磁脉冲激发腔5的左端部与左侧轴压加载活塞4的右端部自由贴合接触,用于将左侧轴压加载油缸3提供的静态轴压通过左侧轴压加载活塞4传递至左侧电磁脉冲激发腔5,左侧电磁脉冲激发腔5右端应力波输出端面直径与应力波加载杆直径相同(本最佳实例中为50mm);接着将长度为2m,直径为50mm的TC21钛合金左侧应力波加载杆8平放在应力波加载杆支座9上,并确保左侧应力波加载杆8可在支座上自由滑动,随后将左侧应力波加载杆8的右侧加载端面与长度和直径均为50mm的含中心直径5mm的圆柱孔30的花岗岩试样的左侧加载面对齐并充分贴合在一起,同时将左侧应力波加载杆8的左侧应力波加载端面与左侧电磁脉冲激发腔5的右侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至左侧电磁脉冲激发腔5的静态轴压进一步传 递至左侧应力波加载杆8并最终作用于含中心直径5mm的圆柱孔30的花岗岩试样,另一方面用于将左侧电磁脉冲激发腔5产生的入射应力波输入至左侧应力波加载杆8并沿其轴线方向传播直至给含中心直径5mm的圆柱孔30的花岗岩试样施加从左至右的动态荷载;同理,右侧系统安置方式与左侧相同,先将宽度、高度和厚度分别为600mm,400mm和50mm的右侧轴压加载固定挡板11安置在支撑平台1的右端,其中直径和长度分别为250mm和200mm的右侧轴压加载油缸12穿过右侧轴压加载固定挡板11的中心安装孔,并与之焊接形成整体结构,右侧轴压加载活塞13的直径为100mm,活塞行程长度为200mm,通过右侧轴压加载油缸12的增压和减压控制右侧轴压加载活塞的移动;随后利用右侧电磁脉冲激发腔支座15将直径和长度均为200mm的右侧电磁脉冲激发腔14托起并安置在支撑平台1上,其中右侧电磁脉冲激发腔14的右端部与右侧轴压加载活塞13的左端部自由贴合接触,用于将右侧轴压加载油缸12提供的静态轴压通过右侧轴压加载活塞13传递至右侧电磁脉冲激发腔14,右侧电磁脉冲激发腔14左端应力波输出端面直径与应力波加载杆直径相同(本最佳实例中为50mm);接着将长度为2m,直径为50mm的TC21钛合金右侧应力波加载杆16平放在应力波加载杆支座9上,并确保右侧应力波加载杆16可在支座上自由滑动,随后将右侧应力波加载杆16的左侧加载端面与长度和直径均为50mm的含中心直径5mm的圆柱孔30的花岗岩试样(即测试试样29)的右侧加载面对齐并充分贴合在一起,同时将右侧应力波加载杆16的右侧应力波加载端面与右侧电磁脉冲激发腔14的左侧应力波输出端面对齐并充分贴合在一起,其作用主要为一方面用于将传递至右侧电磁脉冲激发腔14的静态轴压进一步传递至右侧应力波加载杆16并最终作用于含中心直径5mm的圆柱孔30的花岗岩试样,另一方面用于将右侧电磁脉冲激发腔14产生的入射应力波输入至右侧应力波加载杆16并沿其轴线方向传播直至给含中心直径5mm的圆柱孔30的花岗岩试样施加从右至左的动态荷载;接着利用4根连杆7穿过左侧和右侧轴压加载固定挡板2和11周边的四个四周安装孔而将加载系统连接成整体并进而与支持平台构成一整体框架系统;随后将围压加载装置安置在含中心圆柱孔30的花岗岩试样外围,其具体安装步骤如下:先取下含中心直径5mm的圆柱孔30的花岗岩试样,然后在无轴压加载状态下分别将左侧轴压加载活塞4和右侧轴压加载活塞13向左右两端推开,从而可将左侧应力波加载杆8和右侧应力波加载杆16分别向左侧和右侧移动,进而为围压加载装置安装腾出空间,随后将如图4-8所示围压加载缸围挡17的左右两侧围挡分别套在左侧应力波加载杆8和右侧应力波加载杆16的加载端两侧,然后将围压加载缸18套在左侧或右侧应力波加载杆上,接着将包裹在耐高温抗磨橡胶套(例如26型氟橡胶)28中的含中心直径5mm的圆柱孔30的花岗岩试样与左侧应力波加载杆8和右侧应力波加载杆16接触,并将花岗岩试样调整至系统对称中心位置,随后通过轴压伺服控制加载系统同 步控制左侧和右侧轴压加载油缸3和12缓慢增压驱动左侧轴压加载活塞4和右侧轴压加载活塞13分别向右和向左移动,进而驱动左侧应力波加载杆8和右侧应力波加载杆16分别缓慢向右和向左移动夹紧含中心直径5mm的圆柱孔30的花岗岩试样并为其施加轴向压力,待轴向压力值达到约100KPa时,停止加载并将轴向压力保持恒定,从而确保含中心直径5mm的圆柱孔30的花岗岩试样以及整个轴向加载系统处于轴向固定状态,接下来将围压加载缸围挡17的左右两侧围挡与围压加载缸18对接并使围压加载缸18处于系统对称中心位置,以便含中心直径5mm的圆柱孔30的花岗岩试样位于围压加载缸18的中心位置,随后利用螺杆19将围压加载缸围挡17和围压加载缸18连接起来并拧紧为一整体结构;至此,完成整个系统连接以及试样安装步骤,随后即可根据试验设计开展相应的加载操作,其具体加载过程如下:首先通过轴压伺服控制加载系统同步控制左侧轴压加载油缸3右侧轴压加载油缸12,使二者重新升压并驱动左侧轴压加载活塞4和右侧轴压加载活塞13分别向右和向左移动,进而推动左侧应力波加载杆8和右侧应力波加载杆16分别以设定加载速率为含中心直径5mm的圆柱孔30的花岗岩试样施加轴向压力,待轴向压力值达到20MPa时,停止加载并利用轴压伺服控制加载系统将轴向压力保持恒定;随后利用围压伺服控制加载系统以设定速率通过围压加载进油口20向围压加载缸18内部泵入耐高温抗磨液压油(例如HEX T6002),待从围压加载排气口21流出液压油时表明围压加载缸内已注满耐高温抗磨液压油,此时用围压加载排气口密封塞22拧紧并密封好围压加载排气口21,待安装在围压加载缸围挡17的右侧围挡上部的围压油表23的压力读数达到设定围压值20MPa时,停止加载并利用围压伺服控制加载系统将围向压力保持恒定,从而使得通过耐高温抗磨橡胶套(例如26型氟橡胶)28作用在含中心直径5mm的圆柱孔30的花岗岩试样的环向围压恒定在20MPa;接着利用渗透压加载系统通过渗透压入水管道24和渗透压出水管道25给含中心直径5mm的圆柱孔30的花岗岩试样施加内压5MPa,待中心圆柱孔30的内压恒定为5MPa时,启动温度控制系统驱动智能温控热电偶与温度传感器27以每分钟6℃的速率升温,待围压加载缸18内的液压油温度增加至80℃时,制动温度控制系统,使液压缸内油温维持80℃两小时,以便包裹在耐高温抗磨橡胶套(例如26型氟橡胶)28中的含中心直径5mm的圆柱孔30的花岗岩试样内部温度均匀并恒定在80℃,至此完成向含中心直径5mm的圆柱孔30的花岗岩试样施加静态轴压、围压、内压和高温的耦合作用条件;随后根据试验设计,操作电磁脉冲激发控制系统驱动左侧电磁脉冲激发腔5和右侧电磁脉冲激发腔14同步激发并输出幅值为400MPa、持续时长为300μs的入射应力波,入射应力波随后分别沿左右两侧应力波加载杆向含中心直径5mm的圆柱孔30的花岗岩试样传播并对其进行动态冲击加载,完成温度-压力-内压耦合冲击加载三轴SHPB测试试验;需要说明的是,动态冲击加载过程,轴向和环向静态压力分 别在轴压伺服控制加载系统和围压伺服控制加载系统的调控下保持基本不变,从而实现恒定静态轴压和围压条件下的的动态三轴冲击加载试验;动态冲击加载过程通过粘贴在左右两侧加载杆中心位置处的电阻应变片10,可实时监测应力波加载杆中入射应变信号和反射应变信号,并将其通过屏蔽导线经由惠斯通电桥传输至信号放大器,应变信号经由信号放大器放大后通过屏蔽导线输出至数据记录仪进行记录和存储,最终再通过数据线将应变信号数据由数据记录仪输出至计算机上进行分析处理。当利用应变片10所监测到的应变信号数据显示温度-压力-内压耦合冲击加载三轴SHPB测试过程含中心直径5mm的圆柱孔30的花岗岩试样左右两端面所施加的动态压缩荷载基本一致时,可认为含中心直径5mm的圆柱孔30的花岗岩试样动态冲击加载过程达到了应力平衡状态,根据一维应力波传播理论,利用应变片10所监测的应变数据,可按照下述公式进行计算,获取含中心直径5mm的圆柱孔30的花岗岩试样在温度(80℃)-压力(20MPa)中心圆柱孔内压(5MPa)耦合作用下的动态压缩强度σ(t),动态压缩应变率
Figure PCTCN2019115488-appb-000005
以及应变ε(t)分别为:
Figure PCTCN2019115488-appb-000006
Figure PCTCN2019115488-appb-000007
Figure PCTCN2019115488-appb-000008
其中,E、C和A分别为应力波加载杆的弹性模量(158GPa)、纵波速度(5000m/s)与杆的横截面面积(1963.5mm 2);A s为含中心直径5mm的圆柱孔30的花岗岩试样的横截面面积(1943.86mm 2,直径为50mm),A s为含中心直径5mm的圆柱孔30的花岗岩试样的长度(50mm);ε 左入射和ε 左反射分别为应变片从左侧应力波加载杆8上监测的入射应变信号和反射应变信号,ε 右入射和ε 右反射分别为应变片从右侧应力波加载杆16上监测的入射应变信号和反射应变信号。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

  1. 一种温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特征在于:
    其包括支撑平台(1)、左侧轴压加载固定挡板(2)、左侧轴压加载油缸(3)、左侧轴压加载活塞(4)、左侧电磁脉冲激发腔(5)、左侧电磁脉冲激发腔支座(6)、连杆(7)、左侧应力波加载杆(8)、应力波加载杆支座(9)、电阻应变片(10)、右侧轴压加载固定挡板(11)、右侧轴压加载油缸(12)、右侧轴压加载活塞(13)、右侧电磁脉冲激发腔(14)、右侧电磁脉冲激发腔支座(15)、右侧应力波加载杆(16)、围压加载缸围挡(17)、围压加载缸(18)、螺杆(19)、围压加载进油口(20)、围压加载排气口(21)、围压加载排气口密封塞(22)、围压油表(23)、温度系统外接电源出口(26)、智能温控热电偶与温度传感器(27)、耐高温抗磨橡胶套(28)以及测试试样(29);
    测试系统以测试试样(29)为中心,呈左右对称形式布置,其中左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)分别固定于支撑平台(1)的左右两端,左侧轴压加载固定挡板(2)和右侧轴压加载固定挡板(11)中心和四周分别设置中心安装孔和四周安装孔,左侧轴压加载油缸(3)和右侧轴压加载油缸(12)分别穿过左端轴压加载固定挡板(2)和右端轴压加载固定挡板(11)的中心安装孔,并与之焊接形成整体结构,此外,左端轴压加载固定挡板(2)和右端轴压加载固定挡板(11)通过连杆(7)穿过其周边的四周安装孔而将二者连接成整体,并进而与支持平台构成一整体框架系统;左侧电磁脉冲激发腔(5)由左侧电磁脉冲激发腔支座(6)支撑并安置在支撑平台(1)上,其中左侧电磁脉冲激发腔(5)的左端部与左侧轴压加载活塞(4)的右端部自由贴合接触,将左侧轴压加载油缸(3)提供的静态轴压通过左侧轴压加载活塞(4)传递至左侧电磁脉冲激发腔(5);左侧应力波加载杆(8)由应力波加载杆支座(9)支撑并安置在支撑平台(1)上,其中左侧应力波加载杆(8)的左端部与左侧电磁脉冲激发腔(5)的右端面自由贴合接触,一方面用于将传递至左侧电磁脉冲激发腔(5)的静态轴压进一步传递至左侧应力波加载杆(8)并最终作用于测试试样(29),另一方面用于将左侧电磁脉冲激发腔(5)产生的入射应力波输入至左侧应力波加载杆(8)并沿其轴线方向传播直至给测试试样(29)施加从左至右的动态荷载;
    同理,右侧电磁脉冲激发腔(14)由右侧电磁脉冲激发腔支座(15)支撑并安置在支撑平台(1)上,其中右侧电磁脉冲激发腔(14)的右端部与右侧轴压加载活塞(13)的左端部自由贴合接触,用于将右侧轴压加载油缸(12)提供的静态轴压通过右侧轴压加载活塞(13)传递至右侧电磁脉冲激发腔(14);右侧应力波加载杆(16)由应力波加载杆支座(9)支撑并安置在支撑平台(1)上,其中右侧应力波加载杆(16)的右端部与右侧电磁脉冲激发腔(14)的左端面自由贴合接触,一方面用于将传递至右侧电磁 脉冲激发腔(14)的静态轴压进一步传递至右侧应力波加载杆(16)并最终作用于测试试样(29),另一方面用于将右侧电磁脉冲激发腔(14)产生的入射应力波输入至右侧应力波加载杆(16)并沿其轴线方向传播直至给测试试样(29)施加从右至左的动态荷载;左侧应力波加载杆(8)和右侧应力波加载杆(16)上设置电阻应变片(10);
    围压加载缸围挡(17)、围压加载缸(18)、螺杆(19)、围压加载进油口(20)、围压加载排气口(21)、围压加载排气口密封塞(22)以及围压油表(23)构成围压加载装置,其中围压加载缸围挡(17)的中心和四周分别设置有中心安装孔和四周安装孔,用于分别将左侧应力波加载杆(8)和右侧应力波加载杆(16)穿过中心安装孔伸入围压加载缸(18)的内部与测试试样(29)接触,螺杆(19)通过围压加载缸围挡的四周安装孔将围压加载缸围挡(17)和围压加载缸(18)连接为一整体结构并安置在支撑平台(1)上,此外,围压加载缸围挡(17)的右侧围挡中心安装孔下部和上部分别设有围压加载进油口(20)和围压加载排气口(21),通过围压加载进油口(20)和围压加载排气口(21)将围压加载装置构成连通回路,用于将液压油泵入围压加载缸(18),对包裹在耐高温抗磨橡胶套(28)中的测试试样(29)施加环向静态围压,围压加载排气口(21)外侧配有围压加载排气口密封塞(22),静态围压压力大小通过围压油表(23)进行显示;温度控制装置包括温度系统外接电源出口(26)和智能温控热电偶与温度传感器(27),用于为测试试样(29)提供升温并维持温度在设定值,加热时,通过控制系统控制智能温控热电偶与温度传感器(27)以实验设定的升温速率将输送至围压加载缸(18)内的液压油升温并将热量传递给包裹在耐高温抗磨橡胶套(28)中的测试试样(29),通过控制系统控制热电偶,设置升温速率和温度范围,然后通过智能温度控制传感器反馈实时温度到显示系统,确保加热至预定温度,加热至预定温度后,开展岩石动力学试验,实现原位控制立方体试样至指定温度。
  2. 根据权利要求1所述的温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特征在于:左端轴压加载固定挡板(2)和右端轴压加载固定挡板(11)通过四根连杆(7)穿过其周边的四个四周安装孔而将二者连接成整体。
  3. 根据权利要求1所述的温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特征在于:所述左侧轴压加载固定挡板(2)、右侧轴压加载固定挡板(11)、围压加载缸围挡(17)三者的中心安装孔和四周安装孔均为圆形孔。
  4. 根据权利要求1所述的温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特 征在于:还包括渗透压加载装置,所述渗透压加载装置包括左侧渗透压管道(24)和右侧渗透压管道(25),其中左侧渗透压管道(24)和右侧渗透压管道(25)的孔径和长度均相同,二者分别内置于左侧应力波加载杆(8)的右端部和右侧应力波加载杆(16)的左端部,并与测试试样加载端面直接接触,渗透压施加时,通过从左侧渗透压管道(24)注入具有设定压力的渗透液,渗透液在渗透压的驱动下通过测试试样(29)的内部连通的孔网通道从右侧渗透压管道(25)排出,并维持渗透压恒定在设定值。
  5. 根据权利要求1所述的温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特征在于:围压加载缸围挡(17)的中心安装孔直径比左侧应力波加载杆(8)和右侧应力波加载杆(16)的直径大1±0.1mm。
  6. 根据权利要求1所述的温度-压力-渗透压耦合电磁加载三轴SHPB测试系统,其特征在于:智能温控热电偶与温度传感器(27)为环状结构并内置于围压加载缸(18)的环向缸壁内,智能温控热电偶与温度传感器(27)由控制系统控制其升温速率,并反馈实时温度到显示系统,确保加热至预定温度。
PCT/CN2019/115488 2019-08-01 2019-11-05 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统 WO2021017242A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/568,929 US11921088B2 (en) 2019-08-01 2022-01-05 Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910708107.4A CN110441173B (zh) 2019-08-01 2019-08-01 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
CN201910708107.4 2019-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115487 Continuation WO2021017241A1 (zh) 2019-08-01 2019-11-05 渗透压和静压耦合电磁加载三轴shpb装置和测试方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/115487 Continuation WO2021017241A1 (zh) 2019-08-01 2019-11-05 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
US17/568,929 Continuation US11921088B2 (en) 2019-08-01 2022-01-05 Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Publications (1)

Publication Number Publication Date
WO2021017242A1 true WO2021017242A1 (zh) 2021-02-04

Family

ID=68432762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115488 WO2021017242A1 (zh) 2019-08-01 2019-11-05 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统

Country Status (2)

Country Link
CN (1) CN110441173B (zh)
WO (1) WO2021017242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436153A (zh) * 2022-08-15 2022-12-06 中国人民解放军空军工程大学 用于霍普金森压杆的加温-恒温一体化装置及操作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987667B (zh) * 2019-12-09 2021-04-02 中南大学 一种适用于分离式霍普金森杆的岩石高温剪切试验装置及方法
CN111307606B (zh) * 2020-04-07 2024-05-14 四川大学 深部高温高压环境岩石拉伸与拉压循环力学实验装置
CN111458239A (zh) * 2020-04-12 2020-07-28 北京工业大学 一种微波加热下实时高温环境中应力波传播测试系统
CN112857965B (zh) * 2021-01-08 2022-02-22 北京理工大学 一种shpb测试用高温加热系统
CN113588460B (zh) * 2021-07-27 2022-09-16 中南大学 用于岩石的高温三轴shpb装置及其装配方法和试验方法
CN113899634B (zh) * 2021-08-27 2024-05-24 北京工业大学 一种评价冲击荷载作用下钻头牙齿破岩效率的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318897A (ja) * 1997-05-16 1998-12-04 Sumitomo Metal Ind Ltd 衝撃破壊試験方法
CN103852373A (zh) * 2014-03-20 2014-06-11 中国人民解放军理工大学 霍普金森压杆冲击实验三向围压温度联合加载装置
CN104819926A (zh) * 2015-05-20 2015-08-05 河海大学 裂隙岩石的多场耦合渗透试验装置及试验方法
CN204789116U (zh) * 2015-07-02 2015-11-18 山东科技大学 一种新型霍普金森杆
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082031A (ja) * 2000-09-05 2002-03-22 Ishikawajima Harima Heavy Ind Co Ltd ホプキンソン棒法試験装置
CN108344648B (zh) * 2018-02-07 2020-11-20 西北工业大学 单轴双向加载分离式霍普金森压杆及拉杆装置和实验方法
CN109406310A (zh) * 2018-12-26 2019-03-01 深圳大学 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
CN211235336U (zh) * 2019-08-01 2020-08-11 深圳大学 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318897A (ja) * 1997-05-16 1998-12-04 Sumitomo Metal Ind Ltd 衝撃破壊試験方法
CN103852373A (zh) * 2014-03-20 2014-06-11 中国人民解放军理工大学 霍普金森压杆冲击实验三向围压温度联合加载装置
CN104819926A (zh) * 2015-05-20 2015-08-05 河海大学 裂隙岩石的多场耦合渗透试验装置及试验方法
CN204789116U (zh) * 2015-07-02 2015-11-18 山东科技大学 一种新型霍普金森杆
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436153A (zh) * 2022-08-15 2022-12-06 中国人民解放军空军工程大学 用于霍普金森压杆的加温-恒温一体化装置及操作方法
CN115436153B (zh) * 2022-08-15 2023-08-18 中国人民解放军空军工程大学 用于霍普金森压杆的加温-恒温一体化装置及操作方法

Also Published As

Publication number Publication date
CN110441173B (zh) 2024-07-30
CN110441173A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021017242A1 (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
WO2021017241A1 (zh) 渗透压和静压耦合电磁加载三轴shpb装置和测试方法
CN110441170B (zh) 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
US11921088B2 (en) Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
CN110296898B (zh) 一种高温环境中动静组合加载的霍普金森拉杆装置及方法
WO2020134581A1 (zh) 中低应变率动静一体化试验测试系统
WO2021008010A1 (zh) 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
CN106918531B (zh) 可用于多相耦合的动静联合加载岩石试验机及试验方法
CN110057696B (zh) 一种带吸能装置可模拟原位应力环境的分离式霍普金森压杆
CN109932248B (zh) 一种模拟不同地应力条件下硐室掌子面开挖瞬态卸荷的试验系统
CN112858024B (zh) 用于测量水力耦合作用下深部岩石动态性能的装置及方法
WO2024011651A1 (zh) 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
CN109142067B (zh) 在梯度静应力下类岩材料中应力波传播的实验方法及装置
CN210893972U (zh) 单轴双向同步控制电磁加载动态剪切试验装置
CN109001040B (zh) 岩石压裂模拟装置
CN114544391B (zh) 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN113984504A (zh) 一种多功能岩石力学试验系统及其试验方法
CN105784308A (zh) 建筑物横向冲击均布动荷载动态性能试验装置
CN103076242A (zh) 材料高围压温控动态特性测试系统
CN207181185U (zh) 一种低速轻气炮冲击试验装置
CN211235336U (zh) 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统
CN106932285B (zh) 一种邻近水体岩石层裂强度的测试装置及方法
CN211235335U (zh) 渗透压和静压耦合电磁加载三轴shpb装置
WO2021012459A1 (zh) 双轴四向动静组合电磁加载霍普金森平板冲击加载装置
KR102625946B1 (ko) 절리암석의 직접 전단 시험을 위한 장봉 낙하 충격 시험장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939782

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19939782

Country of ref document: EP

Kind code of ref document: A1