WO2021012459A1 - 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 - Google Patents
双轴四向动静组合电磁加载霍普金森平板冲击加载装置 Download PDFInfo
- Publication number
- WO2021012459A1 WO2021012459A1 PCT/CN2019/115484 CN2019115484W WO2021012459A1 WO 2021012459 A1 WO2021012459 A1 WO 2021012459A1 CN 2019115484 W CN2019115484 W CN 2019115484W WO 2021012459 A1 WO2021012459 A1 WO 2021012459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- confining pressure
- loading
- plate
- along
- transmission plate
- Prior art date
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 50
- 230000005540 biological transmission Effects 0.000 claims description 91
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims 1
- 239000011435 rock Substances 0.000 abstract description 44
- 239000000463 material Substances 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 238000009863 impact test Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 19
- 238000005065 mining Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
- G01N3/317—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/001—Impulsive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/005—Electromagnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0067—Fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
- G01N2203/0254—Biaxial, the forces being applied along two normal axes of the specimen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0676—Force, weight, load, energy, speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to the research field of mechanical properties and fracture laws of solid materials or structural surfaces.
- it relates to a double-axis four-direction combined dynamic and static electromagnetic loading Hopkinson plate impact loading device.
- rock mass is an anisotropic material and consists of a structure and a structure surface. Therefore, the experimental study of rock mass dynamic mechanical properties and failure mechanism requires the use of rock mass samples with representative sizes to effectively reflect the true dynamic properties of rock mass materials.
- most of the existing rock mass dynamic mechanical characteristics test equipment can only carry out experimental research on the dynamic characteristics of small-sized rock samples with an equivalent diameter less than or equal to 50mm.
- the stress wave generated by the wave source in actual engineering is usually treated as a two-dimensional plane wave for analysis and processing after propagating for a certain distance.
- the existing rock dynamics testing equipment is usually based on one-dimensional stress wave testing equipment, and it is difficult to realize two-dimensional plane stress wave generation and testing research.
- the traditional one-dimensional Hopkinson rod device is mainly composed of an impact rod, an incident rod, a transmission rod, a buffer rod, and electrical signal monitoring equipment.
- the impact rod, incident rod, transmission rod, and buffer rod are cylinders with the same diameter and usually less than or equal to 100mm. body.
- a cylindrical sample with a diameter of 100mm or less and an aspect ratio of less than or equal to 1 is clamped between the incident rod and the transmission rod, and then the impact rod hits the incident end of the incident rod at a certain speed.
- the generated incident stress wave propagates and loads along the incident rod toward the specimen.
- the incident, reflection and transmission signals monitored by the strain gauges attached to the incident rod and the transmission rod can be used to calculate the stress, strain and energy dissipation of the rock sample during the impact loading process. parameter.
- the invention patent with the patent number 200510032031.6 introduces a three-axis Hopkinson rod modified from a one-dimensional Hopkinson rod assembly that can be used to achieve a combination of static confining pressure and dynamic impact loading (the rod diameter is usually less than or equal to 50mm).
- This device is based on the traditional one-dimensional Hopkinson rod device.
- a set of hydraulic cylinders are added to the system axial direction and the test sample ring direction respectively to apply static axial pressure to the sample in the axial and ring direction.
- the dynamic mechanics and fracture parameters of the rock sample under combined dynamic and static shock loading can be obtained through the same monitoring and calculation methods as the traditional one-dimensional Hopkinson bar.
- the utility model with the patent number 201620574575.9 introduces a method that can apply predetermined true triaxial static stress to the rock sample (the stress in the three main directions meets: ⁇ 1 ⁇ 2 ⁇ 3 ), and then the sample
- the square true triaxial Hopkinson pressure rod device with a rod diameter of 50mm width loaded on impact can realize the impact loading test research of rock samples under true triaxial prestress.
- the dynamic mechanics and fracture parameters of rock samples under true triaxial dynamic and static combined loading can be obtained through the same monitoring and calculation methods as the traditional one-dimensional Hopkinson bar.
- the traditional one-dimensional Hopkinson bar device can only study the dynamic mechanical properties of rock specimens under one-dimensional impact loading; the improved three-axis Hopkinson bar and true three-axis Hopkinson bar device can test dynamic and static combined impact
- the dynamic characteristics of rock samples under load are studied, but the above-mentioned Hopkinson bar devices can only be used to study the one-dimensional dynamic mechanical characteristics of small-sized rock samples, and the rock samples are usually complete rock samples with uniform materials.
- the rock mass is an anisotropic material and consists of a structure and a structure surface. Therefore, the experimental study of rock mass dynamic mechanical properties and failure mechanism requires the use of rock mass samples with sufficient representative size to effectively reflect the true dynamic properties of rock mass materials.
- the purpose of the invention In order to develop a dual-axis four-direction dynamic and static combined electromagnetic loading Hopkinson plate impact loading device, which is used to systematically develop large-size rock materials (large-size rock with a width of 200mm ⁇ 500mm).
- the dynamic impact test of the two-dimensional plane stress wave of the bulk material to study the dynamic mechanical response of the large-scale rock mass structure under the conditions of different initial confining pressure and strain rate (10 1 -10 3 s -1 ), and analyze the dynamic and static combination of rock
- the present invention provides a dual-axis four-directional dynamic and static combined electromagnetic loading Hopkinson plate impact loading device.
- a dual-axis four-way combined dynamic and static electromagnetic loading Hopkinson plate impact loading device includes a loading frame system, a rod system, an electromagnetic pulse launch system, a two-axis four-way confining pressure servo control loading system, and a data monitoring and acquisition system.
- the loading frame system includes a supporting platform, connecting rods, supporting slide rails, a central square box, a round table and a base, which play a role in providing a test platform and guiding the alignment of the biaxial four-way rods.
- the rod system includes bullets and a biaxial four-way incident plate and a transmission plate.
- the electromagnetic pulse emission system includes an electromagnetic pulse emission cavity and a barrel.
- the two-axis four-direction confining pressure servo control loading system includes a hydraulic loading cylinder, a confining pressure loading fixed baffle, a confining pressure loading piston and a confining pressure servo control system.
- the function of the dual-axis four-way confining pressure servo control loading system is to programmatically control the loading, maintenance and unloading of the oil source system, which can ensure that the static confining pressure remains relatively stable during the test; the pressure and displacement sensors can feed back pressure and stroke data to ensure The static confining pressure is not overloaded.
- the data monitoring and acquisition system includes a multi-channel high-speed synchronous recorder, strain gauge, Wheatstone bridge and strain signal amplifier, which can ensure that the test data is recorded and stored completely and effectively.
- the present invention provides a dual-axis four-direction combined dynamic and static electromagnetic loading Hopkinson plate impact loading device, which includes a central square box and a supporting platform.
- the central square box is placed on the supporting platform.
- the four sides of the box along the X-axis and Y-axis directions are provided with rectangular holes.
- the upper and lower ends of the central square box are completely penetrated.
- the four side edges of the central square box along the X-axis and Y-axis directions are provided with mounting holes.
- two-axis four-way Hopkinson rods are respectively arranged along the X-axis and Y-axis directions.
- the X + system includes electromagnetic pulse launching chamber, barrel, bullet, cushion, and X + loading fixed baffle to confining pressure , X + to the connecting rod, X + to the incident plate and X + to the incident plate to support the slide rail; X + load the confining pressure on the center and both sides of the fixed baffle are provided with rectangular holes and mounting holes, the spacer block passes through the X + The rectangular hole of the fixed baffle is loaded to the confining pressure. The end of the spacer is in a free state along the X + direction to accept the impact of the bullet.
- the end of the spacer is butted with the X + incident plate along the X - direction; set at the end of the X + direction
- a bullet is placed in the barrel.
- the electromagnetic pulse launching cavity drives the bullet to accelerate in the barrel and hit the end of the cushion at a set speed to generate an incident stress wave and transmit it to X + to the incident plate;
- the X + incident plate is placed in the sliding groove of the X + incident plate supporting slide, and passes through the rectangular opening of the central square box along the X + direction to contact the plate-shaped sample, X + direction
- the incident plate support slide rail and the central square box are welded along the X + side;
- X - direction system includes X-direction confining pressure loading cylinder, X - direction confining pressure loading fixed baffle, X-direction confining pressure loading piston, X - direction connecting rod, X - direction transmission plate and X - direction transmission plate support slide rail; X and X to the loading piston confining pressure loading cylinder integrally connected to the confining pressure, X - loading the fixed stop are provided on both sides and the center with a rectangular hole and the mounting hole confining pressure, X confining pressure to loading cylinder through the X - confining pressure to the load center of the rectangular holes and fixed fence welded into an integral structure therewith, for applying a static prestressing in the X-axis confining pressure, X - X passing through the link, respectively - to the fixed fence confining pressure loading
- the mounting holes on both sides and the mounting holes on both sides of the central square box along the X - direction connect the X - direction confining pressure loading fixed baffle
- the X - direction transmission plate support slide rail is welded to the side of the central square box along the X - direction; X-direction confining pressure loading The piston is in contact with the X - direction transmission plate to transmit the pressure of the X-direction confining pressure loading cylinder to the X - direction transmission plate and act on the plate-shaped sample;
- the Y + direction system includes Y + direction loading fixed baffle, Y + direction transmission plate, Y + direction connecting rod and Y + direction transmission plate support slide;
- Y + direction loading fixed baffle is provided on both sides mounting holes, Y + Y, respectively, through the link to fixed fence + loading sides and a central mounting hole to the square box confining pressure along the Y + Y + loading the fixed stop and the central direction against the confining sides of the mounting hole
- the boxes are connected;
- the Y + direction transmission plate is placed in the sliding groove of the Y + direction transmission plate support slide, and passes through the rectangular opening of the central box along the Y + direction to contact the plate-shaped sample, and the Y + direction transmission plate supports
- the slide rail and the central box are welded along the Y + side;
- Y - direction system includes Y-direction confining pressure loading cylinder, Y - direction confining pressure loading fixed baffle, Y - direction confining pressure loading piston, Y - direction connecting rod, Y - direction transmission plate and Y - direction transmission plate support slide rail ; Y - loading the fixed fence and the confining pressure on both sides of the center are provided with rectangular holes and mounting holes, Y to Y through a confining pressure loading cylinder - fixed stop loading the central rectangular aperture, and the confining pressure is welded thereto An integral structure, used to apply static prestressed confining pressure along the Y-axis, the Y - direction connecting rods respectively pass through the Y - direction confining pressure to load the mounting holes on both sides of the fixed baffle and the installation of the central box along the Y - direction.
- the hole connects the Y - direction confining pressure loading fixed baffle and the central square box; the Y - direction transmission plate is placed in the chute of the Y - direction transmission plate support slide, and passes through the central square box along the Y - direction rectangle The opening is in contact with the plate sample, the Y - direction transmission plate support slide rail is welded along the Y - direction side of the central box; the Y-direction confining pressure loading piston is in contact with the Y - direction transmission plate to load the cylinder with Y - direction confining pressure The pressure is transmitted to the Y - direction transmission plate and acts on the plate-shaped sample.
- the central square box is placed at the center of the supporting platform.
- the present invention also includes an elevating round platform, the plate-shaped sample is arranged on the platform of the elevating round platform, and the centers of the contact surfaces of the two coincide.
- all the mounting holes are arranged as round holes.
- the bullet is driven by the electromagnetic pulse launching cavity and is accelerated in the barrel to hit the left free end surface of the cushion block at a certain speed to generate a two-dimensional plane stress wave.
- the electromagnetic pulse launching system of the two-axis four-direction combined dynamic and static electromagnetic loading Hopkinson plate impact loading device can accurately control the bullet to hit the incident plate at a set speed and can repeatedly generate incident two-dimensional plane stress waves, which solves the existing problems.
- the Pushkinson rod device can only generate one-dimensional stress waves and the incident waveform is usually difficult to accurately control and highly repetitive problems.
- the double-axis four-direction combined dynamic and static electromagnetic loading Hopkinson plate impact loading device can be used to test large-size complete rock samples or large-size slab rock masses with internal prefabricated structures (such as through cracks, prefabricated holes, joints, etc.)
- the study of dynamic mechanical response and failure mechanism of the structure fills the gap that the existing Hopkinson bar equipment cannot carry out the study of the dynamic characteristics of large-scale rock mass structures.
- the dual-axis four-way dynamic and static combined electromagnetic loading Hopkinson plate impact loading device can realize the dual-axis four-way static confining pressure synchronous servo control loading and can realize the dynamic impact loading process.
- the sample static confining pressure remains relatively stable, which solves the problem.
- the Hopkinson rod cannot realize the synchronous servo control of the static confining pressure.
- Figure 1 is a three-dimensional view of the Hopkinson plate impact loading device with dual-axis four-directional dynamic and static combined electromagnetic loading according to the present invention
- FIG. 2 is a top view of the Hopkinson plate impact loading device with dual-axis four-direction dynamic and static combined electromagnetic loading according to the present invention
- Figure 3a is a three-dimensional view of the arrangement of the plate-shaped sample of the present invention.
- Figure 3b is a three-dimensional view of the plate-shaped sample placement platform of the present invention.
- Figure 4a is a three-dimensional view of the cushion block of the present invention.
- Figure 4b is a three-dimensional view of the X-direction confining pressure loading fixed baffle of the present invention.
- Figure 4c is a three-dimensional view of the connection between the cushion block of the present invention and the X-direction confining pressure loading fixed baffle;
- Figure 5 is a three-dimensional view of the central square box of the present invention.
- Figure 1 is a three-dimensional diagram of a two-axis four-direction combined dynamic and static electromagnetic loading Hopkinson plate impact loading device.
- the test device is placed on the support platform 1, and the center square box 26 is placed in the center of the support platform 1. Rectangular holes are reserved on the four sides in the Y-axis direction. The upper and lower ends of the central square box are completely penetrated. The four side edges of the central square box along the X-axis and Y-axis directions are provided with circular holes, with the central square box as the center of symmetry. , And two-axis four-way Hopkinson rods are arranged along the X-axis and Y-axis directions.
- the X + direction system includes the electromagnetic pulse launching cavity 2, the barrel 3, the bullet 4, the cushion block 5, the X + loading fixed baffle 6, the X + connecting rod 7, the X + incidence plate 8 and the X + direction entrance panel support skid. 9; X + loading flap fixed to the center and side confining pressure 6 are provided with a rectangular hole and a circular hole, through the pad 5 fixed stop loading X + 6 to the rectangular hole confining pressure, The cushion block 5 is in a free state along the X + direction to accept the impact of the bullet, and the cushion block 5 is butted with the X + incidence plate 8 along the X - direction end; the cushion block 5 is set, and the X + direction to the end of the incidence plate 8 can be It is fixed at the end of the confining pressure loading fixed baffle 6, while ensuring that its end can remain free and can accept the impact of the impact plate.
- An electromagnetic pulse launching cavity 2 and a barrel 3 connected to it are arranged at the end of the X + direction.
- a bullet 4 is placed in the barrel.
- the electromagnetic pulse launching cavity 2 can drive the bullet to accelerate in the barrel and impact at a set speed.
- the end of the cushion block 5 generates an incident stress wave and transmits it to the X + incident plate 8;
- X + passes through the X to the connecting rod 7 + loads the circular holes on both sides of the fixed baffle 6 and the central square box 26 along X +
- the circular holes on both sides connect the X + confining pressure loading fixed baffle 6 and the central square box 26;
- the X + incident plate 8 is placed in the chute of the X + incident plate supporting slide 9 and passes through
- the rectangular opening of the central box 26 along the X + direction is used for contact with the plate-shaped sample 27.
- the X + incident plate support slide rail 9 is welded to the central box side along the X + direction, which is the X + incident plate 8 To provide a sliding track and play the role of directional centering.
- the X - direction system includes X-direction confining pressure loading cylinder 10, X - direction confining pressure loading fixed baffle 11, X-direction confining pressure loading piston 12, X - direction connecting rod 13, X - direction transmission plate 14 and X - direction transmission
- the plate supports the slide rail 15; the X-direction confining pressure loading piston 12 and the X-direction confining pressure loading cylinder 10 are connected as a whole.
- the hydraulic cylinder is used to boost the piston to drive the piston forward until it is set on the incident plate. Then the oil pressure cylinder continues to increase the pressure, and the pressure of the oil pressure cylinder is transmitted to the incident plate through the piston;
- X - the center and both sides of the fixed baffle 11 are loaded with confining pressure to have rectangular holes and circular holes, respectively, X direction confining pressure
- the loading cylinder 10 passes through the central rectangular hole of the fixed baffle 11 to load the confining pressure on the X - direction and is welded to form an integral structure for applying static prestressing confining pressure along the X-axis, and the X - direction connecting rods 13 respectively pass through X - load fixed fence 11 on both sides and a center circular hole 26 in the X direction square box confining pressure - to the circular sides of the X - loading flap 11 fixed to the confining pressure side and the central connecting box 26;
- X - direction The transmission plate 14 is placed in the sliding groove of the
- Y + system includes Y + loading fixed baffle 16, Y + transmission plate 17, Y + connection rod 18 and Y + transmission plate support slide 19; Y + loading fixed baffle 16 a circular hole is provided on both sides, Y +, respectively, through the link 18 is Y + load fixing plate 16 on both sides and a center circular hole 26 in the square box confining pressure to the circular sides of the Y + Y + direction around the The pressure-loaded fixed baffle 16 and the central square box 26 are connected; the Y + direction transmission plate 17 is placed in the chute of the Y + direction transmission plate supporting slide 19, and passes through the rectangular opening of the central square box 26 along the Y + direction For contact with the plate-shaped sample 27, the Y + transmission plate support slide rail 19 is welded to the central square box along the Y + direction side to provide the Y + transmission plate 17 with a sliding track and directional centering Role.
- the Y - direction system includes Y-direction confining pressure loading cylinder 20, Y - direction loading fixed baffle 21, Y - direction loading piston 22, Y - direction connecting rod 23, Y - direction transmission plate 24 and Y - direction
- the transmission plate supports the slide rail 25; Y - the center and both sides of the confining pressure loading fixed baffle 21 are provided with rectangular holes and circular holes, respectively, the Y confining pressure loading cylinder 20 passes through the Y - confining pressure loading fixed baffle 21
- the central rectangular hole is welded to form an integral structure for applying static pre-stressed confining pressure along the Y-axis.
- the Y - direction connecting rod 23 passes through the Y - direction confining pressure to load the round holes on both sides of the fixed baffle 21 and 26 in the center square box Y - Y of the two sides of the circular hole - pressure loading fixed stop 21 and the center square 26 connected to the tank enclosure; Y - Y placed in the transmission plate 24 - the transmission plate 25 of the support rail In the chute, the rectangular opening in the Y - direction that passes through the central box 26 is used to contact the plate-shaped sample 27.
- the Y - transmission plate support slide rail 25 is welded to the side of the central box along the Y - direction, which is Y -
- the transmission plate 24 serves as a sliding track and a directional centering function; the Y-direction confining pressure loading piston 22 is in contact with the Y - direction transmission plate 24 to transmit the pressure of the Y-direction confining pressure loading cylinder 20 To the Y - direction transmission plate 24 and act on the plate-shaped sample 27.
- Figure 2 is a top view of the Hopkinson plate impact loading device with dual-axis four-direction combined dynamic and static electromagnetic loading.
- Figure 3a is a three-dimensional view of the plate-shaped sample on the sample installation platform
- Figure 3b is a three-dimensional view of the plate-shaped sample installation platform.
- the plate-shaped sample 27 is placed on the platform of the liftable round table 28, and the two contact surfaces are centered. With coincidence, the alignment of the plate-shaped sample 27 with the incident plate and the transmission plate can be precisely adjusted by adjusting the height of the liftable round table 28.
- the specific composition is as follows: Place the test device on the support platform 1, the center square box 26 at the center of the support platform 1, and the center square box is 125mm high , The length and width are both 600mm, rectangular holes are reserved on the four sides of the center box along the X-axis and Y-axis directions (the width of the rectangular hole is about 402mm, and the height is about 27mm). The upper and lower ends of the center box are completely penetrated. The four side edges of the central square box along the X-axis and Y-axis directions are provided with circular holes with a diameter of 25mm.
- the X + direction system includes the electromagnetic pulse launch cavity 2, the barrel 3, the bullet 4 (length, width and height are 25mm, 400mm and 25mm respectively), the cushion 5 (length, width and height are respectively 150mm, 400mm and 25mm), X + direction surrounding Compression loading fixed baffle 6, X + connecting rod 7, X + incident plate 8 (length, width and height are 2000mm, 400mm and 25mm respectively) and X + incident plate support slide 9 (length, width and height are 1800mm, respectively, 500mm and 125mm); X + is provided with a rectangular hole (width of the rectangular hole is about 402mm, height of about 27mm) and a circular hole with a diameter of 25mm, through which the spacer 5 passes X + loads the rectangular hole of the fixed baffle 6 to the confining pressure, the spacer 5 is in a free state along the X + direction for
- Bullets 4 are placed in the barrel. Through the electromagnetic pulse launching cavity 2, the bullet can be driven to accelerate movement in the barrel with a speed of 0-50m/s.
- an incident stress wave (with an amplitude of 0 ⁇ 1000MPa and a wavelength duration of 100 ⁇ 400 ⁇ s) is generated and transmitted to the X + incident plate 8;
- X + passes through the connecting rod 7 (diameter 25mm) through X + loading flap fixed to the confining pressure on both sides of the circular hole 6 and the center square box 26 on both sides of the circular hole in the direction
- X + X + loading of the baffle plate is fixed to the center side confining pressure tank 6 and 26 are connected;
- X + X + is placed in the support skid plate 9 enters the entrance panel 8 to slide (sliding width 400mm, height of 25mm) X + direction with a rectangular opening for a plate, and through the center 26 in the square box Sample 27 (length, width and height are 405mm, 405mm and 25mm respectively
- the X - direction system includes X-direction confining pressure loading cylinder 10, X - direction confining pressure loading fixed baffle 11, X-direction confining pressure loading piston 12 (length, width and height are 150mm, 400mm and 25mm respectively), X - direction connecting rod 13 , X - direction transmission plate 14 (length, width and height respectively 2000mm, 400mm and 25mm) and X - direction transmission plate support slide rail 15 (length, width and height respectively 1800mm, 500mm and 125mm) constitute; X - direction confining pressure loading fixed
- the center and both sides of the baffle 11 are respectively provided with a rectangular hole (the width of the rectangular hole is about 402mm, the height is about 27mm) and a circular hole with a diameter of 25mm.
- the X-direction confining pressure loading cylinder 10 passes through the X - loading fixed block to the confining pressure.
- the central rectangular hole of the plate 11 is welded to form an integral structure for applying static prestressed confining pressure (0 ⁇ 100MPa) along the X-axis.
- the X - direction connecting rods 13 respectively pass through the X - direction confining pressure to load a fixed stop plate 11 on both sides of a diameter of 25mm and the center of the circular hole 26 in the square box X - in the radial sides of the round hole of 25mm X - loading to fixed fence 11 and the center side confining pressure tank 26 are connected; X - to the transmission
- the plate 14 is placed in the chute of the X - direction transmission plate support slide rail 15 (the chute width is 400mm, the height is 25mm), and passes through the rectangular opening of the central square box 26 along the X - direction for contact with the plate-shaped sample 27 contact, the X - direction transmission plate support slide rail 15 is welded to the side of the center box along the X - direction, and the X - direction transmission plate 14 not only provides a sliding track but also plays a role of directional centering; X-direction confining pressure
- the loading piston 12 is in contact with the X - direction transmission plate 14 to
- Y + direction system includes Y + direction loading fixed baffle 16, Y + direction transmission plate 17 (length, width and height are 2000mm, 400mm and 25mm respectively), Y + direction connecting rod 18 and Y + direction transmission plate support slide rail 19 (length, width and height are 1800mm, 500mm and 125mm respectively);
- Y + is loaded to the confining pressure on both sides of the fixed baffle 16 is provided with a diameter of 25mm circular holes, the Y + link 18 passes through the Y + confining pressure
- a circular hole with a diameter of 25mm on both sides of the loading fixed baffle 16 and a circular hole with a diameter of 25mm on both sides of the central square box 26 along the Y + direction connect the Y + confining pressure loading fixed baffle 16 and the central square box 26;
- Y + The transmissive plate 17 is placed in the chute of the Y + transmissive plate support slide rail 19 (the width of the chute is 400mm, the height is 25mm), and the rectangular opening in the Y + direction passing through the central
- Y - direction system includes Y-direction confining pressure loading cylinder 20, Y - direction confining pressure loading fixed baffle 21, Y - direction confining pressure loading piston 22 (length, width and height are 150mm, 400mm and 25mm respectively), Y - direction connecting rod 23 and Y - direction transmission plate 24 (length, width and height are 2000mm, 400mm and 25mm respectively), Y - direction transmission plate support slide rail 25 (length, width and height are 1800mm, 500mm and 125mm respectively) constitute; Y - direction confining pressure loading
- the center and both sides of the fixed baffle 21 are respectively provided with a rectangular hole (the width of the rectangular hole is about 402mm, the height is about 27mm) and a circular hole with a diameter of 25mm.
- the Y-direction confining pressure loading cylinder 20 passes through the Y - direction confining pressure loading
- the central rectangular hole of the baffle 21 is fixed and welded to form an integral structure for applying static pre-stressed confining pressure (0-100MPa) along the Y-axis.
- the Y - direction connecting rod 23 passes through the Y - direction confining pressure respectively.
- the transmissive plate 24 is placed in the slide groove of the Y - direction transmissive plate support slide rail 25 (the width of the slide groove is 400mm, the height is 25mm), and passes through the rectangular opening in the Y - direction of the central square box 26 for connecting with the plate.
- the sample 27 is in contact, and the Y - direction transmission plate support slide rail 25 is welded to the side of the central square box along the Y - direction, and the Y - direction transmission plate 24 not only provides a sliding track but also plays a role of directional centering;
- the confining pressure loading piston 22 is in contact with the Y - direction transmission plate 24 for transmitting the pressure of the Y - direction loading cylinder 20 to the Y - direction transmission plate 24 and acts on the plate-shaped sample 27. It should be noted that each corner of the plate-shaped sample 27 is chamfered by 2.5mm.
- the purpose is to make the width of the contact surface between the plate-shaped sample and the incident plate consistent with the 2.5mm chamfering, and at the same time, it can be in the X and Y directions. Avoid direct contact between the incident plates on both sides and cause the dynamic loading process.
- the incident plates on both sides of the X and Y directions are collided during the compression deformation (shrinking) of the sample in the middle; in addition, the 2.5mm chamfer can protect the plate-shaped specimen. Generate enough dynamic deformation to prevent the X-direction and Y-direction incident plates from contacting, and avoid excessive chamfering and inaccurate test results.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种双轴四向动静组合电磁加载霍普金森平板冲击加载装置,包括加载框架系统、杆件系统、电磁脉冲发射系统、双轴四向围压伺服控制加载系统、数据监测与采集系统。该装置用于系统开展双轴四向预加静应力状态下宽度达到200mm~500mm的大尺寸岩体材料的二维平面应力波动态冲击试验,研究不同初始围压状态和应变率条件下大尺寸岩体结构的动态力学响应,分析动静组合作用下岩体结构破断机理,建立岩体材料的动态损伤与断裂理论,指导并应用于岩体工程实践。
Description
本发明涉及属于固体材料或结构面力学特性和破裂规律研究领域。尤其涉及双轴四向动静组合电磁加载霍普金森平板冲击加载装置。
目前,地球浅部矿产资源已逐渐枯竭,资源开发不断走向地球深部,煤炭开采深度已达1500m,地热开采深度超过3000m,金属矿开采深度超过4350m,油气资源开采深度达7500m,深部资源开采已成为常态。深部资源开采过程中,岩石处于复杂的动静应力作用状态,面临高地应力以及强烈的工程扰动等条件。因此,探究并揭示深部岩体材料在高地应力和动态工程扰动(例如爆炸波、岩爆和矿震和地震等)荷载作用下的动力学响应以及破断机制可为深部矿产资源安全、经济、高效以及可持续开发利用提供理论支持和技术指导。由于岩体属于各向异性材料,并且由结构体和结构面构成。因此,试验研究岩体动态力学特性和破断机制需要利用具有代表性尺寸大小的岩体试样才能有效反应岩体材料真实的动力学性能。然而现有岩体动态力学特性测试设备大多只能开展等效直径小于等于50mm的小尺寸岩石试样动力学特性测试实验研究。此外,实际工程中波源产生的应力波,传播一定距离后通常当作二维平面波进行分析处理。然而,现有岩石动力学测试设备通常为基于一维应力波测试设备,难以实现二维平面应力波产生和测试研究。因此,研制双轴四向动静组合电磁加载霍普金森平板冲击加载装置,系统开展双轴四向预加静应力状态下宽度达到200mm~500mm的大尺寸岩体材料的动态冲击试验研究则显得十分重要。
国内外现有主要的岩土材料的动力学特性测试装置如下:
(1)一维霍普金森杆
传统一维霍普金森杆装置主要由撞击杆,入射杆,透射杆,缓冲杆以及电信号监测设备构成,其中撞击杆,入射杆,透射杆,缓冲杆为直径相同且通常小于等于100mm的圆柱体。岩石动力学特性测试时,将直径小于等于100mm的长径比 小于等于1的圆柱体试样夹持于入射杆与透射杆之间,随后由撞击杆以一定的速度撞击入射杆的入射端,产生入射应力波沿着入射杆向试样方向传播与加载。根据一维应力波传播理论,利用粘贴在入射杆和透射杆上的应变片监测的入射、反射和透射信号即可计算出岩石试样冲击加载过程的应力、应变以及能量耗散等相关动力学参数。
(2)动静组合加载三轴霍普金森杆
专利号为200510032031.6的发明专利介绍一种由一维霍普金森杆装改装而成可用于实现静态围压和动态冲击组合加载三轴霍普金森杆(杆径通常小于等于50mm)。该装置在传统一维霍普金森杆装置基础上,在系统轴向和测试试样环向方向上分别添加了一套液压油缸,用于给试样沿轴向和环向分别施加静态轴压和围压,其中围压为环向等压即σ
2=σ
3。该装置先通过轴压加载装置和围压装置对试样施加三个方向的静载(σ
1≠σ
2=σ
3),然后再沿轴向方向给测试试样施加冲击荷载。通过与传统一维霍普金森杆相同的监测和计算方法即可获取动静组合冲击加载下岩石试样的动态力学和破裂参数。
(3)真三轴霍普金森杆实验装置
专利号为201620574575.9的实用新型介绍了一种可以在岩石类试样施加预定真三轴静态应力(三个主方向的应力满足:σ
1≠σ
2≠σ
3)后,再对试样进行单向冲击加载的杆径为50mm宽度的方形真三轴霍普金森压杆装置,该装置可实现真三轴预应力下岩石试样的冲击加载试验研究。通过与传统一维霍普金森杆相同的监测和计算方法即可获取真三轴动静组合加载下岩石试样的动态力学和破裂参数。
传统一维霍普金森杆装置,只能实现岩石试样一维冲击加载条件下的动态力学特性研究;改进的三轴霍普金森杆和真三轴霍普金森杆装置虽然能够测试动静组合冲击荷载下的岩石试样的动力学特性研究,但是上述霍普金森杆装置均只能开展小尺寸岩石试样的一维动态力学特性研究,并且岩石试样通常为材料均匀的完整岩石试样。然而在实际工程中,岩体属于各向异性材料,并且由结构体和结构面构成。因此,试验研究岩体动态力学特性和破断机制需要利用具有足够代表性尺寸大小的岩体试样才能有效反应岩体材料真实的动力学性能。此 外,深部岩体结构(如隧道工程和采矿工程巷道周边围岩)通常受到沿竖直方向的静态地应力作用,同时也经常受到某一方向的动态冲击荷载(如爆炸波、地震荷载等)的作用。因此,开展大尺寸岩体结构动静组合冲击加载试验研究是目前现有霍普金森杆装置无法实现的。因而,研制双轴四向动静组合电磁加载霍普金森平板冲击加载装置,系统开展双轴四向预加静应力状态下大尺寸岩体材料的动态冲击试验研究则十分有必要。
发明概述
问题的解决方案
发明目的:为了研制双轴四向动静组合电磁加载霍普金森平板冲击加载装置,用于系统开展双轴四向预加静应力状态下大尺寸岩体材料(宽度达到200mm~500mm的大尺寸岩体材料)的二维平面应力波动态冲击试验,研究不同初始围压状态和应变率(10
1-10
3s
-1)条件下大尺寸岩体结构的动态力学响应,分析动静组合作用下岩体结构破断机理,建立岩体材料的动态损伤与断裂理论,指导并应用于岩体工程实践,本发明提供了一种双轴四向动静组合电磁加载霍普金森平板冲击加载装置。
发明技术方案:双轴四向动静组合电磁加载霍普金森平板冲击加载装置包括加载框架系统、杆件系统、电磁脉冲发射系统、双轴四向围压伺服控制加载系统、数据监测与采集系统。
加载框架系统包括支撑平台、连杆、支撑滑轨,中心方箱、圆台和底座,起提供试验平台并引导双轴四向杆件对中的作用。杆件系统包括子弹以及双轴四向入射板和透射板。电磁脉冲发射系统包括电磁脉冲发射腔和炮管。双轴四向围压伺服控制加载系统包括液压加载油缸、围压加载固定挡板、围压加载活塞以及围压伺服控制系统。双轴四向围压伺服控制加载系统的功能为程序化控制油源系统的加载、保持和卸载,可保证静态围压在测试过程保持相对稳定;压力、位移传感器可以反馈压力和行程数据,确保静态围压不过载。数据监测与采集系统包括多通道高速同步记录仪、应变片、惠斯通电桥以及应变信号放大器 ,能确保测试数据完整且有效的被记录和存储。
为了解决现有技术中问题,本发明提供了一种双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其包括中心方箱和支撑平台,中心方箱置于支撑平台上,中心方箱沿X轴和Y轴方向的四个侧面设有矩形孔,中心方箱上下两端完全贯通,中心方箱沿X轴和Y轴方向的四个侧面边缘设有安装孔,以中心方箱为对称中心,沿X轴和Y轴方向分别布设双轴四向霍普金森杆件,X
+向系统包括电磁脉冲发射腔、炮管、子弹、垫块、X
+向围压加载固定挡板、X
+向连杆、X
+向入射板及X
+向入射板支撑滑轨;X
+向围压加载固定挡板的中心和两侧分别设置有矩形孔和安装孔,垫块穿过X
+向围压加载固定挡板的矩形孔,垫块沿X
+向末端处于自由状态用于接受子弹撞击,垫块沿X
-向末端与X
+向入射板对接;在X
+向端部设置有电磁脉冲发射腔以及与之相连接的炮管,炮管内放置子弹,通过电磁脉冲发射腔驱动子弹在炮管中加速运动并以设定速度撞击垫块的末端产生入射应力波并传入至X
+向入射板;X
+向连杆穿过X
+向围压加载固定挡板两侧的安装孔以及中心方箱沿X
+向两侧的安装孔将X
+向围压加载固定挡板和中心方箱连接起来;X
+向入射板放置在X
+向入射板支撑滑轨的滑槽内,并穿过中心方箱沿X
+向的矩形开口与板状试样接触,X
+向入射板支撑滑轨与中心方箱沿X
+向侧面焊接;
X
-向系统包括X向围压加载油缸、X
-向围压加载固定挡板、X向围压加载活塞、X
-向连杆、X
-向透射板及X
-向透射板支撑滑轨;X向围压加载活塞与X向围压加载油缸连为一体,X
-向围压加载固定挡板的中心和两侧分别设置有矩形孔和安装孔,X向围压加载油缸穿过X
-向围压加载固定挡板的中心矩形孔并与之焊接为一整体结构,用于沿X轴向施加静态预应力围压,X
-向连杆分别穿过X
-向围压加载固定挡板两侧安装孔以及中心方箱沿X
-向两侧的安装孔将X
-向围压加载固定挡板和中心方箱连接起来;X
-向透射板放置在X
-向透射板支撑滑轨的滑槽内,并穿过中心方箱沿X
-向的矩形开口用于与板状试样接触,X
-向透射板支撑滑轨与中心方箱沿X
-向侧面焊接;X向围压加载活塞与X
-向透射板相接触将X向围压加载油缸的压力传递至X
-向透射板并作用在板状试样上;
Y
+向系统包括Y
+向围压加载固定挡板、Y
+向透射板、Y
+向连杆及Y
+向透射 板支撑滑轨;Y
+向围压加载固定挡板的两侧设置有安装孔,Y
+向连杆分别穿过Y
+向围压加载固定挡板两侧安装孔以及中心方箱沿Y
+向两侧的安装孔将Y
+向围压加载固定挡板和中心方箱连接起来;Y
+向透射板放置在Y
+向透射板支撑滑轨的滑槽内,并穿过中心方箱沿Y
+向的矩形开口与板状试样接触,Y
+向透射板支撑滑轨与中心方箱沿Y
+向侧面焊接;
Y
-向系统包括Y向围压加载油缸、Y
-向围压加载固定挡板、Y
-向围压加载活塞、Y
-向连杆、Y
-向透射板及Y
-向透射板支撑滑轨;Y
-向围压加载固定挡板的中心和两侧分别设置有矩形孔和安装孔,Y向围压加载油缸穿过Y
-向围压加载固定挡板的中心矩形孔并与之焊接为一整体结构,用于沿Y轴向施加静态预应力围压,Y
-向连杆分别穿过Y
-向围压加载固定挡板两侧安装孔以及中心方箱沿Y
-向两侧的安装孔将Y
-向围压加载固定挡板和中心方箱连接起来;Y
-向透射板放置在Y
-向透射板支撑滑轨的滑槽内,并穿过中心方箱沿Y
-向的矩形开口与板状试样接触,Y
-向透射板支撑滑轨与中心方箱沿Y
-向侧面焊接;Y向围压加载活塞与Y
-向透射板相接触用于将Y向围压加载油缸的压力传递至Y
-向透射板并作用在板状试样上。
作为本发明的进一步改进,所述中心方箱置于支撑平台的中心位置。
作为本发明的进一步改进,还包括可升降圆台,所述板状试样安置于可升降圆台的平台上,且二者接触面中心相重合。
作为本发明的进一步改进,所有所述安装孔设置为圆孔。
作为本发明的进一步改进,所述子弹由所述电磁脉冲发射腔驱动并在所述炮管内加速后以一定速度撞击所述垫块的左侧自由端面产生二维平面应力波。
发明的有益效果
本发明的有益效果是:
(1)双轴四向动静组合电磁加载霍普金森平板冲击加载装置的电磁脉冲发射系统可精确控制子弹以设定速度撞击入射板并且可重复产生入射二维平面应力波,解决了现有霍普金森杆设备只能产生一维应力波并且入射波形通常难以精确控制并且高度重复的难题。
(2)双轴四向动静组合电磁加载霍普金森平板冲击加载装置可用于测试大尺寸完整岩石试样或含有内部预制结构(如贯穿裂纹、预制孔洞、节理等)的大尺寸板状岩体结构的动态力学响应和破断机理研究,填补了现有霍普金森杆设备无法开展大尺寸岩体结构动力学特性研究的空白。
(3)双轴四向动静组合电磁加载霍普金森平板冲击加载装置可实现双轴四向静态围压同步伺服控制加载并且可实现动态冲击加载过程试样静态围压保持相对稳定,解决了现有霍普金森杆无法实现静态围压同步伺服控制的难题。
对附图的简要说明
图1是本发明双轴四向动静组合电磁加载霍普金森平板冲击加载装置三维图;
图2是本发明双轴四向动静组合电磁加载霍普金森平板冲击加载装置俯视图;
图3a是本发明板状试样安置三维图;
图3b是本发明板状试样安置平台三维图;
图4a是本发明垫块三维图;
图4b是本发明X向围压加载固定挡板三维图;
图4c是本发明垫块与X向围压加载固定挡板连接三维图;
图5是本发明中心方箱三维图。
图中标号对应部件名称如下:
1-支撑平台,2-电磁脉冲发射腔,3-炮管,4-子弹,5-垫块,6-X
+向围压加载固定挡板,7-X
+向连杆,8-X
+向入射板,9-X
+向入射板支撑滑轨,10-X向围压加载油缸,11-X
-向围压加载固定挡板,12-X向围压加载活塞,13-X
-向连杆,14-X
-向透射板,15-X
-向透射板支撑滑轨,16-Y
+向围压加载固定挡板,17-Y
+向透射板,18-Y
+向连杆,19-Y
+向透射板支撑滑轨,20-Y向围压加载油缸,21-Y
-向围压加载固定挡板,22-Y向围压加载活塞,23-Y
-向连杆,24-Y
-向透射板,25-Y
-向透射板支撑滑轨,26-中心方箱,27-板状试样,28-圆台,29-底座。
发明实施例
最佳实施例1
图1为双轴四向动静组合电磁加载霍普金森平板冲击加载装置三维图,试验装置置于支撑平台1上,中心方箱26置于支撑平台1的中心位置,中心方箱沿X轴和Y轴方向的四个侧面预留了矩形孔,中心方箱上下两端完全贯通,中心方箱沿X轴和Y轴方向的四个侧面边缘设有圆形孔,以中心方箱为对称中心,沿X轴和Y轴方向分别布设双轴四向霍普金森杆件。X
+向系统包括电磁脉冲发射腔2、炮管3、子弹4、垫块5、X
+向围压加载固定挡板6、X
+向连杆7、X
+向入射板8及X
+向入射板支撑滑轨9;X
+向围压加载固定挡板6的中心和两侧分别设置有矩形孔和圆孔,垫块5穿过X
+向围压加载固定挡板6的矩形孔,垫块5沿X
+向末端处于自由状态用于接受子弹撞击,垫块5沿X
-向末端与X
+向入射板8对接;设置垫块5,X
+向入射板8的端部就能够固定在围压加载固定挡板6的端部,同时还保证其末端能够保持自由状态并且能够接受撞击板的撞击。在X
+向端部设置有电磁脉冲发射腔2以及与之相连接的炮管3,炮管内放置子弹4,通过电磁脉冲发射腔2可驱动子弹在炮管中加速运动并以设定速度撞击垫块5的末端产生入射应力波并传入至X
+向入射板8;X
+向连杆7穿过X
+向围压加载固定挡板6两侧圆孔以及中心方箱26沿X
+向两侧的圆孔将X
+向围压加载固定挡板6和中心方箱26连接起来;X
+向入射板8放置在X
+向入射板支撑滑轨9的滑槽内,并穿过中心方箱26沿X
+向的矩形开口用于与板状试样27接触,X
+向入射板支撑滑轨9与中心方箱沿X
+向侧面焊接,为X
+向入射板8既起到提供滑移轨道又起到定向对中的作用。X
-向系统包括X向围压加载油缸10、X
-向围压加载固定挡板11、X向围压加载活塞12、X
-向连杆13、X
-向透射板14及X
-向透射板支撑滑轨15;X向围压加载活塞12与X向围压加载油缸10连为一体,通常加载静态围压的时候通过液压油缸升压驱动活塞向前移动,直到定在入射板上,然后油压缸继续升压,通过活塞把油压缸的压力传递到入射板上;X
-向围压加载固定挡板11的中心和两侧分别设置有矩形孔和圆孔,X向围压加载油缸10穿过X
-向围压加载固定挡板11的中心矩形孔并与之焊接为一整体结构,用于沿X轴向施加静态预应力围压,X
-向连杆13分别穿过X
-向围压加载固定挡板11两侧 圆孔以及中心方箱26沿X
-向两侧的圆孔将X
-向围压加载固定挡板11和中心方箱26连接起来;X
-向透射板14放置在X
-向透射板支撑滑轨15的滑槽内,并穿过中心方箱26沿X
-向的矩形开口用于与板状试样27接触,X
-向透射板支撑滑轨15与中心方箱沿X
-向侧面焊接,为X
-向透射板14既起到提供滑移轨道又起到定向对中的作用;X向围压加载活塞12与X
-向透射板14相接触用于将X向围压加载油缸10的压力传递至X
-向透射板14并作用在板状试样27上。Y
+向系统包括Y
+向围压加载固定挡板16、Y
+向透射板17、Y
+向连杆18及Y
+向透射板支撑滑轨19;Y
+向围压加载固定挡板16的两侧设置有圆孔,Y
+向连杆18分别穿过Y
+向围压加载固定挡板16两侧圆孔以及中心方箱26沿Y
+向两侧的圆孔将Y
+向围压加载固定挡板16和中心方箱26连接起来;Y
+向透射板17放置在Y
+向透射板支撑滑轨19的滑槽内,并穿过中心方箱26沿Y
+向的矩形开口用于与板状试样27接触,Y
+向透射板支撑滑轨19与中心方箱沿Y
+向侧面焊接,为Y
+向透射板17既起到提供滑移轨道又起到定向对中的作用。Y
-向系统包括Y向围压加载油缸20、Y
-向围压加载固定挡板21、Y
-向围压加载活塞22、Y
-向连杆23、Y
-向透射板24及Y
-向透射板支撑滑轨25;Y
-向围压加载固定挡板21的中心和两侧分别设置有矩形孔和圆孔,Y向围压加载油缸20穿过Y
-向围压加载固定挡板21的中心矩形孔并与之焊接为一整体结构,用于沿Y轴向施加静态预应力围压,Y
-向连杆23分别穿过Y
-向围压加载固定挡板21两侧圆孔以及中心方箱26沿Y
-向两侧的圆孔将Y
-向围压加载固定挡板21和中心方箱26连接起来;Y
-向透射板24放置在Y
-向透射板支撑滑轨25的滑槽内,并穿过中心方箱26沿Y
-向的矩形开口用于与板状试样27接触,Y
-向透射板支撑滑轨25与中心方箱沿Y
-向侧面焊接,为Y
-向透射板24既起到提供滑移轨道又起到定向对中的作用;Y向围压加载活塞22与Y
-向透射板24相接触用于将Y向围压加载油缸20的压力传递至Y
-向透射板24并作用在板状试样27上。
图2为双轴四向动静组合电磁加载霍普金森平板冲击加载装置俯视图。
图3a为板状试样位于试样安装平台上的三维图,图3b为板状试样安装平台三维 图,板状试样27安置于可升降圆台28的平台上,且二者接触面中心相重合,通过调节可升降圆台28的高度可精确调整板状试样27与入射板和透射板的对中。
最佳实施例2
按照图1所示装置三维图依次连接好测试装置各部分,其具体组成情况如下:将试验装置置于支撑平台1上,中心方箱26置于支撑平台1的中心位置,中心方箱高125mm,长和宽均为600mm,中心方箱沿X轴和Y轴方向的四个侧面预留了矩形孔(矩形孔宽度约为402mm,高度约为27mm),中心方箱上下两端完全贯通,中心方箱沿X轴和Y轴方向的四个侧面边缘设有直径为25mm的圆形孔,以中心方箱为对称中心,沿X轴和Y轴方向分别布设双轴四向霍普金森板件。X
+向系统包括电磁脉冲发射腔2、炮管3、子弹4(长宽高分别为25mm、400mm和25mm)、垫块5(长宽高分别为150mm、400mm和25mm)、X
+向围压加载固定挡板6、X
+向连杆7、X
+向入射板8(长宽高分别为2000mm、400mm和25mm)及X
+向入射板支撑滑轨9(长宽高分别为1800mm、500mm和125mm);X
+向围压加载固定挡板6的中心和两侧分别设置有矩形孔(矩形孔宽度约为402mm,高度约为27mm)和直径25mm的圆孔,垫块5穿过X
+向围压加载固定挡板6的矩形孔,垫块5沿X
+向末端处于自由状态用于接受子弹撞击,垫块5沿X
-向末端与X
+向入射板8对接;在X
+向端部设置有电磁脉冲发射腔2以及与之相连接的炮管3,炮管内放置子弹4,通过电磁脉冲发射腔2可驱动子弹在炮管中加速运动并以0-50m/s的速度撞击垫块5的末端产生入射应力波(幅值为0~1000MPa,波长持续时间为100~400μs)并传入至X
+向入射板8;X
+向连杆7(直径为25mm)穿过X
+向围压加载固定挡板6两侧圆孔以及中心方箱26沿X
+向两侧的圆孔将X
+向围压加载固定挡板6和中心方箱26连接起来;X
+向入射板8放置在X
+向入射板支撑滑轨9的滑槽内(滑槽宽度为400mm,高度为25mm),并穿过中心方箱26沿X
+向的矩形开口用于与板状试样27(长宽高分别为405mm,405mm和25mm,其中板状试样四个边角各个方向倒角2.5mm(如图3a所示),使板状试样与入射板接触面宽度保持为400mm)接触,X
+向入射板支撑滑轨9与中心方箱沿X
+向侧面焊接,为X
+向入射板8既起到提供滑移轨道又起到定向对中的作用。X
-向系统包括X向围压加载油缸10、X
- 向围压加载固定挡板11、X向围压加载活塞12(长宽高分别为150mm,400mm和25mm)、X
-向连杆13、X
-向透射板14(长宽高分别为2000mm、400mm和25mm)及X
-向透射板支撑滑轨15(长宽高分别为1800mm、500mm和125mm)构成;X
-向围压加载固定挡板11的中心和两侧分别设置有矩形孔(矩形孔宽度约为402mm,高度约为27mm)和直径25mm的圆孔,X向围压加载油缸10穿过X
-向围压加载固定挡板11的中心矩形孔并与之焊接为一整体结构,用于沿X轴向施加静态预应力围压(0~100MPa),X
-向连杆13分别穿过X
-向围压加载固定挡板11两侧直径为25mm的圆孔以及中心方箱26沿X
-向两侧直径为25mm的圆孔将X
-向围压加载固定挡板11和中心方箱26连接起来;X
-向透射板14放置在X
-向透射板支撑滑轨15的滑槽内(滑槽宽度为400mm,高度为25mm),并穿过中心方箱26沿X
-向的矩形开口用于与板状试样27接触,X
-向透射板支撑滑轨15与中心方箱沿X
-向侧面焊接,为X
-向透射板14既起到提供滑移轨道又起到定向对中的作用;X向围压加载活塞12与X
-向透射板14相接触用于将X向围压加载油缸10的压力传递至X
-向透射板14并作用在板状试样27上。Y
+向系统包括Y
+向围压加载固定挡板16、Y
+向透射板17(长宽高分别为2000mm、400mm和25mm)、Y
+向连杆18及Y
+向透射板支撑滑轨19(长宽高分别为1800mm、500mm和125mm);Y
+向围压加载固定挡板16的两侧设置有直径为25mm的圆孔,Y
+向连杆18分别穿过Y
+向围压加载固定挡板16两侧直径为25mm的圆孔以及中心方箱26沿Y
+向两侧直径为25mm的圆孔将Y
+向围压加载固定挡板16和中心方箱26连接起来;Y
+向透射板17放置在Y
+向透射板支撑滑轨19的滑槽内(滑槽宽度为400mm,高度为25mm),并穿过中心方箱26沿Y
+向的矩形开口用于与板状试样27接触,Y
+向透射板支撑滑轨19与中心方箱沿Y
+向侧面焊接,为Y
+向透射板17既起到提供滑移轨道又起到定向对中的作用。Y
-向系统包括Y向围压加载油缸20、Y
-向围压加载固定挡板21、Y
-向围压加载活塞22(长宽高分别为150mm,400mm和25mm)、Y
-向连杆23及Y
-向透射板24(长宽高分别为2000mm、400mm和25mm),Y
-向透射板支撑滑轨25(长宽高分别为1800mm、500mm和125mm)构成;Y
-向围压加载固定挡板21的中心和两侧分别设置有矩形孔(矩形孔宽度约为402mm,高度约为27mm)和直径为25mm的圆孔,Y向围压加载油缸20穿过Y
-向围压 加载固定挡板21的中心矩形孔并与之焊接为一整体结构,用于沿Y轴向施加静态预应力围压(0~100MPa),Y
-向连杆23分别穿过Y
-向围压加载固定挡板21两侧直径为25mm的圆孔以及中心方箱26沿Y
-向两侧直径为25mm的圆孔将Y
-向围压加载固定挡板21和中心方箱26连接起来;Y
-向透射板24放置在Y
-向透射板支撑滑轨25的滑槽内(滑槽宽度为400mm,高度为25mm),并穿过中心方箱26沿Y
-向的矩形开口用于与板状试样27接触,Y
-向透射板支撑滑轨25与中心方箱沿Y
-向侧面焊接,为Y
-向透射板24既起到提供滑移轨道又起到定向对中的作用;Y向围压加载活塞22与Y
-向透射板24相接触用于将Y向围压加载油缸20的压力传递至Y
-向透射板24并作用在板状试样27上。需要说明的是板状试样27各个边角方向倒角2.5mm,其目的是通过倒角2.5mm使得板状试样与入射板接触面宽度保持一致,同时又能在X方向和Y方向上避免两侧入射板直接接触而导致动态加载过程因试样向中间挤压变形(缩小)引起X方向和Y方向两侧入射板发生撞击;此外,倒角2.5mm既能保板状试样27产生足够的动态变形而不至于X方向和Y方向入射板接触,又能避免倒角过大导致测试结果不准确。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (5)
- 一种双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其特征在于:其包括中心方箱(26)和支撑平台(1),中心方箱(26)置于支撑平台(1)上,中心方箱(26)沿X轴和Y轴方向的四个侧面设有矩形孔,中心方箱(26)上下两端完全贯通,中心方箱(26)沿X轴和Y轴方向的四个侧面边缘设有安装孔,以中心方箱(26)为对称中心,沿X轴和Y轴方向分别布设双轴四向霍普金森杆件,X +向系统包括电磁脉冲发射腔(2)、炮管(3)、子弹(4)、垫块(5)、X +向围压加载固定挡板(6)、X +向连杆(7)、X +向入射板(8)及X +向入射板支撑滑轨(9);X +向围压加载固定挡板(6)的中心和两侧分别设置有矩形孔和安装孔,垫块(5)穿过X +向围压加载固定挡板(6)的矩形孔,垫块(5)沿X +向末端处于自由状态用于接受子弹撞击,垫块(5)沿X -向末端与X +向入射板(8)对接;在X +向端部设置有电磁脉冲发射腔(2)以及与之相连接的炮管(3),炮管内放置子弹(4),通过电磁脉冲发射腔(2)驱动子弹在炮管中加速运动并以设定速度撞击垫块(5)的末端产生入射应力波并传入至X +向入射板(8);X +向连杆(7)穿过X +向围压加载固定挡板(6)两侧的安装孔以及中心方箱(26)沿X +向两侧的安装孔将X +向围压加载固定挡板6和中心方箱(26)连接起来;X +向入射板(8)放置在X +向入射板支撑滑轨(9)的滑槽内,并穿过中心方箱(26)沿X +向的矩形开口与板状试样(27)接触,X +向入射板支撑滑轨(9)与中心方箱沿X +向侧面焊接;X -向系统包括X向围压加载油缸(10)、X -向围压加载固定挡板(11)、X向围压加载活塞(12)、X -向连杆(13)、X -向透射板(14)及X -向透射板支撑滑轨(15);X向围压加载活塞(12 )与X向围压加载油缸(10)连为一体,X -向围压加载固定挡板(11)的中心和两侧分别设置有矩形孔和安装孔,X向围压加载油缸(10)穿过X -向围压加载固定挡板(11)的中心矩形孔并与之焊接为一整体结构,用于沿X轴向施加静态预应力围压,X -向连杆(13)分别穿过X -向围压加载固定挡板(11)两侧安装孔以及中心方箱(26)沿X -向两侧的安装孔将X -向围压加载固定挡板(11)和中心方箱(26)连接起来;X -向透射板(14)放置在X -向透射板支撑滑轨(15)的滑槽内,并穿过中心方箱(26)沿X -向的矩形开口用于与板状试样(27)接触,X -向透射板支撑滑轨(15)与中心方箱沿X -向侧面焊接;X向围压加载活塞(12)与X -向透射板(14)相接触将X向围压加载油缸(10)的压力传递至X -向透射板(14)并作用在板状试样(27)上;Y +向系统包括Y +向围压加载固定挡板(16)、Y +向透射板(17)、Y +向连杆(18)及Y +向透射板支撑滑轨(19);Y +向围压加载固定挡板(16)的两侧设置有安装孔,Y +向连杆(18)分别穿过Y +向围压加载固定挡板(16)两侧安装孔以及中心方箱(26)沿Y +向两侧的安装孔将Y +向围压加载固定挡板(16)和中心方箱(26)连接起来;Y +向透射板(17)放置在Y +向透射板支撑滑轨(19)的滑槽内,并穿过中心方箱(26)沿Y +向的矩形开口与板状试样(27)接触,Y +向透射板支撑滑轨(19)与中心方箱沿Y +向侧面焊接;Y -向系统包括Y向围压加载油缸(20)、Y -向围压加载固定挡板(21)、Y -向围压加载活塞(22)、Y -向连杆(23)、Y -向透射板(24)及Y -向透射板支撑滑轨(25);Y -向围压加载固定挡板(21)的中心和两侧分别设置有矩形孔和安装孔,Y向围压加载油缸(20)穿过Y -向围压加载固定挡板(21)的中心矩形孔并与之焊接为一整体结构,用于沿Y轴向施加静态预应力围压,Y -向 连杆(23)分别穿过Y -向围压加载固定挡板(21)两侧安装孔以及中心方箱(26)沿Y -向两侧的安装孔将Y -向围压加载固定挡板(21)和中心方箱(26)连接起来;Y -向透射板(24)放置在Y -向透射板支撑滑轨(25)的滑槽内,并穿过中心方箱(26)沿Y -向的矩形开口与板状试样(27)接触,Y -向透射板支撑滑轨(25)与中心方箱沿Y -向侧面焊接;Y向围压加载活塞(22)与Y -向透射板(24)相接触用于将Y向围压加载油缸(20)的压力传递至Y -向透射板(24)并作用在板状试样(27)上。
- 根据权利要求1所述的双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其特征在于:所述中心方箱(26)置于支撑平台(1)的中心位置。
- 根据权利要求1所述的双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其特征在于:还包括可升降圆台(28),所述板状试样(27)安置于可升降圆台(28)的平台上,且二者接触面中心相重合。
- 根据权利要求1所述的双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其特征在于:所有所述安装孔设置为圆孔。
- 根据权利要求1所述的双轴四向动静组合电磁加载霍普金森平板冲击加载装置,其特征在于:所述子弹(4)由所述电磁脉冲发射腔(2)驱动并在所述炮管(3)内加速后以一定速度撞击所述垫块(5)的左侧自由端面产生二维平面应力波。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910655782.5A CN110441171B (zh) | 2019-07-19 | 2019-07-19 | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 |
CN201910655782.5 | 2019-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021012459A1 true WO2021012459A1 (zh) | 2021-01-28 |
Family
ID=68429730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115484 WO2021012459A1 (zh) | 2019-07-19 | 2019-11-05 | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110441171B (zh) |
WO (1) | WO2021012459A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112665994B (zh) * | 2020-12-17 | 2024-03-22 | 武汉理工大学 | 一种重力卸荷的岩体动态卸荷试验系统及方法 |
CN114252356B (zh) * | 2021-12-20 | 2023-11-07 | 天津大学 | 多线隧道瞬态开挖卸荷装置与方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104568591A (zh) * | 2015-01-06 | 2015-04-29 | 上海交通大学 | 一种双轴拉伸测试装置 |
CN205719826U (zh) * | 2016-06-13 | 2016-11-23 | 中国科学技术大学 | 一种基于真三轴静载的岩石霍普金森冲击加载实验装置 |
KR101727405B1 (ko) * | 2015-10-28 | 2017-05-02 | 전북대학교산학협력단 | Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법 |
CN107014689A (zh) * | 2017-03-20 | 2017-08-04 | 中国矿业大学 | 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统 |
CN206531730U (zh) * | 2017-02-09 | 2017-09-29 | 中国地质大学(武汉) | 一种三轴向围压的煤岩水力压裂试验装置 |
CN109406313A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 霍普金森束杆动态测试系统 |
CN109406310A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 三轴六向霍普金森压杆的动静载荷同步伺服控制系统 |
CN109406312A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 真三轴霍普金森杆固体动态损伤与超声波传播测试方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109297811A (zh) * | 2018-09-28 | 2019-02-01 | 西北工业大学 | 双轴双向压缩加载装置及其方法 |
CN210893973U (zh) * | 2019-07-19 | 2020-06-30 | 深圳大学 | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 |
-
2019
- 2019-07-19 CN CN201910655782.5A patent/CN110441171B/zh active Active
- 2019-11-05 WO PCT/CN2019/115484 patent/WO2021012459A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104568591A (zh) * | 2015-01-06 | 2015-04-29 | 上海交通大学 | 一种双轴拉伸测试装置 |
KR101727405B1 (ko) * | 2015-10-28 | 2017-05-02 | 전북대학교산학협력단 | Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법 |
CN205719826U (zh) * | 2016-06-13 | 2016-11-23 | 中国科学技术大学 | 一种基于真三轴静载的岩石霍普金森冲击加载实验装置 |
CN206531730U (zh) * | 2017-02-09 | 2017-09-29 | 中国地质大学(武汉) | 一种三轴向围压的煤岩水力压裂试验装置 |
CN107014689A (zh) * | 2017-03-20 | 2017-08-04 | 中国矿业大学 | 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统 |
CN109406313A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 霍普金森束杆动态测试系统 |
CN109406310A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 三轴六向霍普金森压杆的动静载荷同步伺服控制系统 |
CN109406312A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 真三轴霍普金森杆固体动态损伤与超声波传播测试方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110441171B (zh) | 2024-09-10 |
CN110441171A (zh) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3712589B1 (en) | Test apparatus and method for key roof block collapse in bidirectional static-dynamic loading | |
US11913915B2 (en) | Uniaxial bidirectional synchronous control electromagnetic loaded dynamic shear test system and method | |
US10969314B2 (en) | Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment | |
CN110274831B (zh) | 锚杆(索)支护结构测试及锚固系统性能综合试验装置及方法 | |
Peroni et al. | Experimental investigation of high strain-rate behaviour of glass | |
CN105865907B (zh) | 一种用于动力扰动型岩爆模拟的真三轴试验夹具 | |
CN103471941B (zh) | 锚杆抗冲击性能模拟测试系统 | |
CN109406312B (zh) | 真三轴霍普金森杆固体动态损伤与超声波传播测试方法 | |
CN109406313B (zh) | 霍普金森束杆动态测试系统 | |
WO2021012459A1 (zh) | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 | |
CN104034504B (zh) | 悬浮隧道整体冲击响应试验装置 | |
WO2021017242A1 (zh) | 温度-压力-渗透压耦合双向电磁加载三轴shpb测试系统 | |
CN103471942A (zh) | 冲击地压单轴模拟试验系统及其应用方法 | |
AU2021100769A4 (en) | An Experimental Method for Simulating Triggered Rockburst of Rock Wall under Micro-disturbance | |
CN205910055U (zh) | 一种用于动力扰动型岩爆模拟的真三轴试验夹具 | |
CN105372118A (zh) | 柱状试件横向动态均布加载试验装置 | |
CN116337591B (zh) | 一种适用于材料复杂应力状态的分离式霍普金森压杆实验装置 | |
Chen et al. | Nonlinear Dynamics Mechanism of Rock Burst Induced by the Instability of the Layer‐Crack Plate Structure in the Coal Wall in Deep Coal Mining | |
Zhou et al. | Experimental study on the progressive failure of double‐flawed granite samples subjected to impact loads | |
Li et al. | Dynamic mechanical behavior and cracking mechanism of cross-jointed granite containing a hole | |
CN210893973U (zh) | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 | |
WO2023226157A1 (zh) | 一种梯度应力下锚固体试件受动载冲击的装置及试验方法 | |
CN103471801B (zh) | 深埋隧洞冲击地压模拟试验系统及其试验方法 | |
CN216816041U (zh) | 一种竖向可观察式结构柱抗爆试验装置 | |
Player et al. | An Examination of Dynamic Test Facilities' |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19938570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19938570 Country of ref document: EP Kind code of ref document: A1 |