WO2021007855A1 - 基站、像控点定位方法、电子设备和计算机可读介质 - Google Patents

基站、像控点定位方法、电子设备和计算机可读介质 Download PDF

Info

Publication number
WO2021007855A1
WO2021007855A1 PCT/CN2019/096572 CN2019096572W WO2021007855A1 WO 2021007855 A1 WO2021007855 A1 WO 2021007855A1 CN 2019096572 W CN2019096572 W CN 2019096572W WO 2021007855 A1 WO2021007855 A1 WO 2021007855A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
base station
coordinates
target
station according
Prior art date
Application number
PCT/CN2019/096572
Other languages
English (en)
French (fr)
Inventor
黄振昊
李明辉
潘国秀
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/096572 priority Critical patent/WO2021007855A1/zh
Priority to CN201980008835.2A priority patent/CN111712735A/zh
Publication of WO2021007855A1 publication Critical patent/WO2021007855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present application relate to the field of communication technology, in particular to base stations, image control point positioning methods, electronic equipment, and computer-readable media.
  • drones have been applied to more and more fields. For example, the use of drones for aerial surveys and the use of drones to replace humans to complete more difficult shooting tasks.
  • the embodiment of the present application proposes a base station, an image control point positioning method, an electronic device, and a computer readable medium to solve the technical problem of low efficiency of image control point positioning in the prior art.
  • an embodiment of the present application provides a base station, including a support and a target; a first antenna and a global navigation satellite system GNSS receiver are installed on the top of the support, and the first antenna is connected to the GNSS receiver.
  • the GNSS receiver is used to receive satellite data through the first antenna; the target is fixedly connected to one side of the bottom of the support, and a second antenna is installed in the center of the target.
  • the second antenna is connected to a GNSS chip, the GNSS chip is used to receive satellite data through the second antenna, and the center of the target is used as an image control point during aerial surveys; the GNSS receiver and the GNSS
  • the chips are respectively connected in communication with a processor, and the processor is used to determine the baseline vector coordinate difference between the first antenna and the image control point based on the satellite data acquired by the GNSS receiver and the GNSS chip, and based on the The coordinate of the first antenna is different from the coordinate of the baseline vector, and the coordinate of the image control point is determined.
  • an embodiment of the present application provides an image control point positioning method, including: acquiring satellite data received by a GNSS receiver and a GNSS chip respectively; and determining the difference between the first antenna and the second antenna based on the acquired satellite data Baseline vector coordinate difference; Obtain the coordinates of the first antenna; Use the center of the target as the image control point for drone aerial surveys, and determine the coordinates of the image control point based on the coordinate difference between the coordinates and the baseline vector; Among them, GNSS receiver, GNSS chip , The first antenna, the second antenna and the target are installed in the base station as described in the first aspect.
  • an embodiment of the present application provides an electronic device, including: a processor and a memory; the memory is used to store program instructions; the processor is used to execute the program instructions stored in the memory, and when the program instructions are executed, process
  • the device is used to perform the following steps: obtain the satellite data received by the GNSS receiver and the GNSS chip respectively; determine the baseline vector coordinate difference between the first antenna and the second antenna based on the obtained satellite data; obtain the coordinates of the first antenna; The center of is used as the image control point during the aerial survey of the UAV. Based on the coordinate difference between the coordinates and the baseline vector, the coordinates of the image control point are determined; among them, the GNSS receiver, GNSS chip, first antenna, second antenna and target are installed as above The base station described in the first aspect.
  • an embodiment of the present application provides a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, the image control point positioning method as described in the second aspect is implemented.
  • an embodiment of the present application provides a vehicle equipped with the base station described in the first aspect.
  • the embodiment of the application provides a base station.
  • the GNSS receiver in the base station can receive satellite data through a first antenna; the GNSS chip in the base station can receive satellite data through a second antenna and communicate with the second antenna.
  • Installed at the center of the above target the center of the target can be used as an image control point during aerial surveys.
  • the baseline vector calculation can be performed, and the coordinates of the image control point can be determined by combining the coordinates of the first antenna.
  • the base station has the function of the image control point, and the positioning efficiency of the image control point is improved.
  • Fig. 1 is a schematic structural diagram of an embodiment of a base station according to the present application.
  • Figure 2 is a top view of the base station of Figure 1;
  • Figure 3 is a schematic diagram of an application scenario of the base station according to the present application.
  • 4a is a schematic diagram of the structure of a vehicle-mounted base station of a vehicle equipped with the base station of the present application;
  • 4b is a top view of the structure of the vehicle-mounted base station of the vehicle equipped with the base station of the present application;
  • 4c is a top view of the structure of the vehicle-mounted base station of the vehicle equipped with the base station of the present application;
  • Fig. 4d is a schematic diagram of an application scenario of a vehicle equipped with the base station of the present application.
  • 4e is a schematic diagram of an application scenario of a vehicle equipped with the base station of the present application.
  • FIG. 5 is a flowchart of an embodiment of an image control point positioning method according to the present application.
  • Fig. 6 is a schematic structural diagram of an embodiment of an image control point positioning device according to the present application.
  • FIG. 1 shows a schematic structural diagram of an embodiment of a base station according to the present application.
  • the base station includes: a support 110 and a target 120.
  • the above-mentioned supporting member may be a column of various shapes, for example, a cylinder, a prism, or the like.
  • the above-mentioned support can be made of materials, such as wood, metal, plastic, and the like.
  • the above-mentioned target may be a plate-like structure of various shapes, for example, it may be a square plate or a circular bench.
  • the above-mentioned target can be made of various materials, such as foam, wood, plastic and so on.
  • a first antenna (not shown in the figure) and a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) receiver 111 are installed on the top of the support 110.
  • the first antenna is connected to the GNSS receiver 111.
  • the GNSS receiver 111 is used to receive satellite data through the first antenna.
  • the aforementioned GNSS receiver 111 may be various types of receivers that can capture and track satellite signals.
  • it can be a receiver equipped with a multi-frequency and multi-system GNSS board to ensure the quantity and quality of the observed satellite signals.
  • the target 120 is fixedly connected to one side of the bottom of the support 110.
  • a second antenna is installed in the center of the aforementioned target.
  • the aforementioned second antenna is connected to the GNSS chip 121.
  • the GNSS chip 121 is used to receive satellite data through the second antenna.
  • the center of the above target is used as the image control point during aerial survey.
  • the GNSS chip 121 may be various GNSS receivers that can capture and track satellite signals.
  • it can be a single-frequency GNSS chip, thereby reducing costs and improving the portability of the base station.
  • the GNSS receiver 111 and the GNSS chip 121 are respectively connected to a processor (not shown in the figure) in communication, and the processor is used for satellite data acquired based on the GNSS receiver 111 and the GNSS chip 121 , Determining the baseline vector coordinate difference between the first antenna and the image control point, and determining the coordinate of the image control point based on the coordinate difference between the first antenna and the baseline vector coordinate.
  • the target 120 may be a foam board.
  • the above-mentioned target may be drawn with a black and white pattern to facilitate identification and positioning.
  • the aforementioned target may be a square.
  • the side length of the square can be preset, for example, set to 1 meter.
  • the mark of the ground target can be obtained in the photographed photo, and the center of the target 120 can be used as the image control point.
  • the difference in the baseline vector coordinates between the first antenna position and the second antenna position can be determined by knowing the satellite data received by the GNSS receiver 111 and the GNSS chip 121. Therefore, based on the difference between the first antenna position and the aforementioned baseline vector coordinate, the image control point can be determined to obtain the coordinate. Since the position of the image control point can be accurately obtained, it can provide more accurate position data for the aircraft and reduce the UAV's dependence on the ground control point.
  • the square can be divided diagonally into isosceles right triangles with mutually spaced colors or patterns.
  • Figure 2 shows a top view of the base station.
  • the square in order to make the target more eye-catching, the square is divided into 4 isosceles right-angled triangles by its diagonal.
  • the isosceles right-angled triangles have black and white colors, so no one The machine can accurately determine the center position of the target using visual positioning at a high altitude.
  • the four parts divided into four isosceles right-angled triangles may have other colors or patterns spaced apart from each other.
  • the RTK calculation is performed through the satellite data sent by the base station, and the position information of the camera station at the centimeter level can be obtained. With centimeter-level camera location information, the requirements for ground control points can be greatly reduced.
  • the target may be rectangular (for example, rectangle, square).
  • the rectangle can be divided into isosceles triangles with colors or patterns spaced apart by diagonal lines.
  • a rectangle is divided diagonally into isosceles triangles with black and white colors.
  • the rectangle can also be divided into rectangles with colors or patterns spaced apart by the center line of each side.
  • the division method is not limited, and various division methods can be selected as required.
  • the target may include adjacent first squares and second squares. At this time, two adjacent targets can be used for two drones to dock separately.
  • the first square and/or the second square may be divided diagonally into isosceles right-angled triangles with mutually spaced colors or patterns.
  • the first square and the second square may be diagonally divided into four isosceles right-angled triangles with black and white colors.
  • the colors of adjacent portions for example, adjacent isosceles triangles
  • the direction of the nose when unmanned can be determined according to the color on the target.
  • the adjacent parts of the square patterns adjacent to each other have different colors to specify different orientations of the drone.
  • the target may be circular.
  • the circle can be divided into 4 parts by two diameters.
  • the 4 parts have shapes or colors spaced apart from each other. So that the UAV can use visual positioning to accurately determine the center position of the target at a higher altitude.
  • a circle is divided by two diameters into sectors with black and white colors.
  • the degree of the angle between the two diameters can be preset. As an example, the angle between the two diameters is 90°.
  • the drone when the drone reaches the charging threshold, it flies to hover near the target and waits for the drone that was originally parked on the target to take off and land on the center of the target according to the visual positioning. .
  • a charging interface is provided at the center of the target.
  • the charging port on the drone is just docked with the charging port in the center of the target to charge the drone.
  • a wireless charging device is provided on the target, and the drone can be charged according to the wireless charging technology after docking.
  • the above-mentioned first antenna may be a measurement type antenna to ensure better capture and tracking of satellite signals.
  • the above-mentioned second antenna may be a four-arm helical antenna.
  • a four-arm helical antenna is composed of four helical arms, and the length of each is an integer multiple of a quarter wavelength.
  • the current amplitudes of the four spiral arm feed ends are equal, and the phases are sequentially different by 90°. It has a cardioid pattern, good front-to-rear ratio and excellent wide-beam circular polarization characteristics, and is very suitable for use as a receiving antenna for satellite positioning systems.
  • the height of the aforementioned support is greater than or equal to a preset height (for example, 1.5 meters).
  • the above-mentioned target can also be used as a take-off and landing point of the drone.
  • UAVs carried out air belt operations, due to the limited image transmission distance, for large-scale air belt operations, UAVs usually could not use one take-off and landing point to complete the air belt operations and needed to return to the take-off point. As a result, the UAV wastes a lot of battery power and human and material resources during the flight belt operation process, and the operation efficiency is low.
  • the base station described in this embodiment can be used as the take-off and landing point of the drone in the application scenario of air belt operation. Since the target can be provided with a wireless charging device, or the center of the target can have a charging interface, the drone can be taken off, landed and charged in the base station described in this embodiment during operation.
  • Figure 3 is a schematic diagram of an application scenario of the base station.
  • Figure 3 contains four base stations.
  • the dashed line in Figure 3 is the flight path of the UAV when performing air belt operations.
  • the drone can follow the flight path indicated by the dashed line for flight operations.
  • any one or more of the four base stations in Figure 3 can be used as the take-off and landing point (for example, the one closest to the drone during the flight belt operation) to carry out the launch of the drone. Drop to perform charging and other operations.
  • the base station described in this embodiment can be arranged within the detection range. During the shooting operation of the drone, when the battery is insufficient and needs to be charged, it can detect the location of the base station closest to the drone and approach the location of the base station to land at the base station.
  • the drone can use the positioning recognition function to determine the center position of the target according to the pattern in the target, so as to identify the precise position of the target to complete an accurate landing, and then the drone can be replaced or charged And so on.
  • This process does not require user intervention and operation, which can save labor costs and save maintenance personnel's physical strength. Therefore, the base station described in this embodiment can be used as the take-off and landing point of the drone, which helps to improve the operating efficiency of the drone when operating in a large area.
  • the base station may be used to determine the baseline vector coordinate difference between the first antenna and the image control point based on the satellite data acquired by the GNSS receiver and the GNSS chip, and based The coordinates of the first antenna are different from the coordinates of the baseline vector to determine the coordinates of the image control point.
  • the above-mentioned base station is used as a reference station or a mobile station.
  • the base station is equipped with a network card.
  • the network card is used to send the satellite data received by the GNSS receiver and the coordinates of the first antenna to Server or mobile station.
  • the above-mentioned mobile station includes a drone.
  • the user can request the differential data from the server through the remote control, and the server can forward the differential data to the drone through image transmission.
  • the UAV can directly obtain satellite data and the coordinates of the first antenna mentioned above from the base station through image transmission.
  • the base station when the base station is used as a mobile station, the base station may also be used to obtain satellite data collected by the reference station and the coordinates of the reference station, and based on the satellite data collected by the reference station, The coordinates of the reference station and the satellite data received by the GNSS receiver determine the coordinates of the first antenna.
  • the aforementioned reference station may be a third-party CORS (Continuously Operating Reference Stations).
  • the coordinates of the first antenna can be calculated by RTK (Real-time kinematic, real-time dynamic) carrier phase differential positioning technology or PPK (postprocessed kinematic, dynamic post-processing) measurement technology.
  • RTK carrier phase differential technology is a differential method for real-time processing of carrier phase observations at two measuring stations.
  • the satellite signals received by the base station and the mobile station are jointly solved in real time to obtain the coordinate increment between the base station and the mobile station (ie, the baseline vector coordinate difference). Therefore, when the coordinates of the reference station are known, the coordinates of the mobile station can be determined through the coordinate difference of the baseline vector.
  • the PPK measurement technology is a GNSS positioning technology that uses the carrier phase to perform post-differentiation, which is a dynamic post-processing measurement technology.
  • the carrier phase to perform post-differentiation
  • the dynamic post-processing measurement technology Unlike RTK real-time carrier phase difference technology, there is no need to establish a real-time communication link between the mobile station and the base station during PPK measurement, but the original observation data collected by the mobile station and the base station GNSS receiver after the field observation is over Perform post-processing to calculate the three-dimensional coordinates of the mobile station.
  • the GNSS receiver in the base station can receive satellite data through the first antenna; the GNSS chip in the base station can receive satellite data through the second antenna and communicate with the second antenna.
  • the center of the target can be used as an image control point during aerial surveys.
  • the baseline vector calculation can be performed, and the coordinates of the image control point can be determined by combining the coordinates of the first antenna.
  • the base station has the function of the image control point, and the positioning efficiency of the image control point is improved.
  • the base station can also be used as a mobile station, a reference station, and a take-off and landing point during aerial surveys of drones, thereby enriching the use of the base station.
  • FIG. 4a is a schematic diagram of the structure of a vehicle-mounted base station of a vehicle equipped with the aforementioned base station
  • FIG. 4b is a top view of the structure of a vehicle-mounted base station of a vehicle equipped with the aforementioned base station
  • FIG. 4c is a top view of the structure of a vehicle-mounted base station of a vehicle equipped with the aforementioned base station
  • Fig. 4e is a schematic diagram of an application scenario of a vehicle equipped with the aforementioned base station.
  • the base station in the foregoing embodiment can be mounted on a vehicle.
  • inspections such as power inspections
  • the rough position of the base station can be obtained by communicating with the base station’s GNSS receiver, and then moved to the top of the vehicle equipped with the base station.
  • Positioning determines the precise position of the above-mentioned base station mounted on the vehicle, and landing according to the visual position (as shown in Figure 4d).
  • the base station target may be a square (as shown in FIG. 4b), two adjacent squares (as shown in FIG. 4c), a rectangle, a circle, a cross shape, etc.
  • the shape of the target is not limited in the embodiment of this specification.
  • the target can be mounted on the top of the vehicle or in the bucket, so that the vehicle can take off or land freely when the vehicle is stationary or driving.
  • the drone can obtain the base station target position mounted on the vehicle at a certain height.
  • a charging interface can be provided at the center of the target.
  • the charging port on the drone is just docked with the charging port in the center of the target to charge the drone.
  • the target is equipped with a wireless charging device, and the drone can be charged according to wireless charging technology after docking. After the drone is charged, it can take off and continue to complete the inspection mission. At this time, the target can provide another drone for landing (as shown in Figure 4e).
  • FIG. 5 shows the process 500 of the image control point positioning method according to the present application.
  • the process 500 of the image control point positioning method includes the following steps:
  • Step 501 Obtain satellite data received by the GNSS receiver and the GNSS chip respectively.
  • the execution body of the image control point positioning method (for example, the electronic device connected to the base station communication described in the embodiment of FIG. 1) can obtain the satellite data received by the GNSS receiver and the GNSS chip respectively.
  • the above-mentioned GNSS receiver and the above-mentioned GNSS chip are installed in the base station described in the embodiment of FIG. 1.
  • the above-mentioned satellite data may include carrier phase observations, or search observations.
  • Step 502 Determine the baseline vector coordinate difference between the first antenna and the second antenna based on the acquired satellite data.
  • the above-mentioned execution body may perform a baseline vector solution on the acquired satellite data.
  • the baseline vector solution refers to the process of using the carrier phase observation value or its differential observation value to solve the baseline vector coordinate difference between two synchronously observed stations. Therefore, through the baseline vector calculation, the coordinate difference of the baseline vector between the first antenna and the second antenna can be determined.
  • the position of the first antenna may be referred to as point A
  • the position of the second antenna may be referred to as point B.
  • the distance value ( ⁇ X, ⁇ Y, ⁇ Z) between A and B in the ECEF (Earth Centered Earth Fixed Coordinate System) coordinate system can be obtained.
  • the calculation principle of the distance value ( ⁇ X, ⁇ Y, ⁇ Z) between A and B in the ECEF coordinate system (that is, the principle of differential positioning) is as follows:
  • c is the speed of light
  • is the clock difference
  • Observe the tropospheric delay of satellite j for point A Observe the ionospheric delay of satellite j for point A
  • Is the ambiguity of the observation satellite j at point A ⁇ 1 and ⁇ 2 are random errors
  • is the wavelength
  • Is the distance from satellite k to point A Observe the tropospheric delay of satellite k for point A
  • Observe the ionospheric delay of satellite k for point A Observe the full-week ambiguity of satellite k for point A.
  • Is the carrier phase double difference value Is the pseudo-range double difference, Is the distance double difference, Is the double difference of tropospheric delay, Is the double difference of ionospheric delay, Is the double difference of ambiguity for the whole week They are the double difference of random error.
  • the clock error of observation satellite j at point A is similar to that of observation satellite j at point B
  • the clock error of observation satellite k at point A is similar to that of point B.
  • the clock difference of observation satellite k is similar
  • the tropospheric delay of observation satellite j at point A is similar to that of observation satellite j at point B
  • the tropospheric delay of observation satellite k at point A is similar to that of observation satellite k at point B
  • the tropospheric delay of observation satellite k at point A is similar.
  • the ionospheric delay of j is similar to the ionospheric delay of observation satellite j at point B, and the ionospheric delay of observation satellite k at point A is similar to that of observation satellite k at point B. Therefore, the clock error, ionospheric error, tropospheric error and other main factors that affect the positioning accuracy can be eliminated, so as to obtain the centimeter-level relative position relationship between A and B ( ⁇ X, ⁇ Y, ⁇ Z). At this time, when the coordinates (X A , Y A , Z A ) of point A are known, the position of point B can be determined.
  • Step 503 Obtain the coordinates of the first antenna.
  • the above-mentioned execution subject may obtain the coordinates of the first antenna (that is, point A).
  • the coordinates (X A , Y A , Z A ) of point A can be obtained in various ways.
  • the coordinates of point A may be coordinates in the ECEF coordinate system.
  • the coordinates of point A can be obtained through the carrier phase difference of the RTK carrier phase difference technology.
  • the coordinates of the above-mentioned first antenna may be obtained through PPK measurement technology.
  • the coordinates of the above-mentioned first antenna may be obtained through GNSS static observation technology. It needs to be pointed out that when obtaining the coordinates of point A by the above method, you can rely on third-party base stations, such as CORS.
  • the method for obtaining the coordinates of point A is not limited to the above list, and other methods may be used as needed, such as measuring with electronic equipment such as a total station, which will not be repeated here.
  • step 504 the center of the target is used as the image control point during the aerial survey of the drone, and the coordinates of the image control point are determined based on the coordinate difference between the aforementioned coordinates and the baseline vector.
  • the above-mentioned execution subject may use the center of the target as the image control point during aerial survey of the UAV. Since the coordinates of point A and the baseline vector coordinate difference between points A and B are known, the coordinates of the above-mentioned image control point in the ECEF coordinate system (X B , Y B , Z B ).
  • the execution subject may also convert the coordinates of the image control point into geographic coordinates (Geographic Coordinates), and the geographic coordinates may be expressed as (Lon B , Lat B , H B ).
  • Geographic Coordinates can be determined by the following formula:
  • Lon B , Lat B , H B are the longitude, latitude, and height of point B , respectively.
  • e 2 is the eccentricity of the earth, and a is the length of the semi-major axis of the earth.
  • geographic coordinates are spherical coordinates that use latitude, longitude, and altitude to indicate the location of a ground point.
  • the geographic coordinate system takes the earth's axis as the polar axis, and all planes passing through the north and south poles of the earth are called meridian planes.
  • the above-mentioned execution subject may also perform a projection transformation of the above-mentioned geographic coordinates (for example, a projection transformation method such as horizontal-axis Mercator projection or Gausske Lug projection) is used to generate the projection coordinates of the above-mentioned image control point. Since the image control point usually adopts the projection coordinates, the coordinates of the image control point are converted to the projection coordinates, which is convenient for controlling the accuracy of the map based on the image control point.
  • a projection transformation method such as horizontal-axis Mercator projection or Gausske Lug projection
  • the method provided by the above-mentioned embodiments of the present application obtains the satellite data received by the GNSS receiver and the GNSS chip in the base station, and then calculates the baseline vector, and finally determines the image control point to obtain the coordinates by combining the coordinates of the first antenna.
  • the positioning efficiency of the image control points can be improved.
  • this application provides an embodiment of an electronic device, and the device embodiment corresponds to the method embodiment shown in FIG. 6.
  • the electronic device may be deployed in the base station shown in FIG. 1, or may be connected to the base station shown in FIG. 1 through wired or wireless communication.
  • the electronic device 600 described in this embodiment includes a processor 601 and a memory 602.
  • the above-mentioned memory 601 is used to store program instructions; the above-mentioned processor 602 is used to execute the program instructions stored in the above-mentioned memory, and when the program instructions are executed, the above-mentioned processor is used to perform the following steps: respectively acquiring the GNSS receiver and the GNSS chip received Based on the acquired satellite data, determine the baseline vector coordinate difference between the first antenna and the second antenna; acquire the coordinates of the first antenna; use the center of the target as the image control point for the drone aerial survey, based on the above The coordinates and the above-mentioned baseline vector coordinate difference determine the coordinates of the above-mentioned image control point; wherein, the above-mentioned GNSS receiver, the above-mentioned GNSS chip, the above-mentioned first antenna, the above-mentioned second antenna and the above-mentioned target are installed in the base station
  • the processor 602 may be further configured to: convert the coordinates of the image control point to geographic coordinates; perform projection transformation on the geographic coordinates to generate the projection coordinates of the image control point. .
  • the foregoing processor 602 may be further configured to obtain the coordinates of the foregoing first antenna through the carrier phase difference of the RTK carrier phase difference technology.
  • the above-mentioned processor 602 may be further configured to obtain the coordinates of the above-mentioned first antenna through the PPK measurement technology.
  • the aforementioned processor 602 may be further configured to obtain the coordinates of the aforementioned first antenna through a GNSS static observation technology.
  • the electronic device obtained by the above-mentioned embodiment of the present application obtains the satellite data received by the GNSS receiver and the GNSS chip in the base station, and then calculates the baseline vector, and finally determines the image control point to obtain the coordinates by combining the coordinates of the first antenna .
  • the positioning efficiency of the image control points can be improved.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • a computer program is executed by a processor, each process of the embodiment of the above-mentioned image control point positioning method is realized, and the same Technical effect.
  • the various processes of the above-mentioned method embodiments are implemented, which will not be repeated here.
  • the embodiments of the present application can be provided as methods, devices, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-readable media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • a computer-readable media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing terminal equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the instruction device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种基站、像控点定位方法、电子设备和计算机可读介质,其中,该基站包括支撑件(110)和靶标(120);支撑件(110)的顶部安装有第一天线和GNSS接收机(111),第一天线与GNSS接收机(111)相连接;靶标(120)与支撑件(110)的底部的一侧固定连接,靶标(120)的中心安装有第二天线,第二天线与GNSS芯片(121)相连接,靶标的中心用于作为航测时的像控点;GNSS接收机(111)和GNSS芯片(121)分别与处理器通信连接,处理器用于基于GNSS接收机(111)和GNSS芯片(121)所获取的卫星数据,确定第一天线与像控点的基线向量坐标差,并基于第一天线的坐标和基线向量坐标差,确定像控点的坐标。该基站具备像控点的定位功能,提高了对像控点的定位效率。

Description

基站、像控点定位方法、电子设备和计算机可读介质 技术领域
本申请实施例涉及通信技术领域,具体涉及基站、像控点定位方法、电子设备和计算机可读介质。
背景技术
随着无人机的普及,无人机被应用到了越来越多的领域。例如,利用无人机进行航测、利用无人机替代人类完成较为困难的拍摄任务等。
在无人机执行任务时,通常需要人工在地上选取若干个点位作为像控点,之后用油漆对像控点进行标记,然后通过GNSS(Global Navigation Satellite System,全球导航卫星系统)静态解算或者全站仪等电子设备确定出该像控点的位置。然而,这种方式费时费力,导致像控点的定位效率较低。
发明内容
本申请实施例提出了基站、像控点定位方法、电子设备和计算机可读介质,以解决现有技术中像控点的定位效率较低技术问题。
第一方面,本申请实施例提供了一种基站,包括支撑件和靶标;所述支撑件的顶部安装有第一天线和全球导航卫星系统GNSS接收机,所述第一天线与所述GNSS接收机相连接,所述GNSS接收机用于通过所述第一天线接收卫星数据;所述靶标与所述支撑件的底部的一侧固定连接,所述的靶标的中心安装有第二天线,所述第二天线与GNSS芯片相连接,所述GNSS芯片用于通过所述第二天线接收卫星数据,所述靶标的中心用于作为航测时的像控点;所述GNSS接收机和所述GNSS芯片分别与处理器通信连接,所述处理器用于基于所述GNSS接收机和所述GNSS芯片所获取的卫星数据,确定第一天线与所述像控点的基线向量坐标差,并基于所述第一天线的坐标和所述基线向量坐标差,确定所述像控点的坐标。
第二方面,本申请实施例提供了一种像控点定位方法,包括:分别获取GNSS接收机和GNSS芯片接收到的卫星数据;基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差;获取第一天线的坐标;将靶标的中心作为无人机航测时的像控点,基于坐标和基线向量坐标差,确定像控点的坐标;其中,GNSS接收机、GNSS芯片、第一天线、第二天线和靶标安装于如上述第一方面所描述的基站。
第三方面,本申请实施例提供了一种电子设备,包括:处理器和存储器;存储器,用于存储程序指令;处理器,用于执行存储器存储的程序指令,当程序指令被执行时,处理器用于执行如下步骤:分别获取GNSS接收机和GNSS芯片接收到的卫星数据;基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差; 获取第一天线的坐标;将靶标的中心作为无人机航测时的像控点,基于坐标和基线向量坐标差,确定像控点的坐标;其中,GNSS接收机、GNSS芯片、第一天线、第二天线和靶标安装于如上述第一方面所描述的基站。
第四方面,本申请实施例提供了一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第二方面中所描述的像控点定位方法。
第五方面,本申请实施例提供了一种车辆,搭载有上述第一方面所描述的基站。
本申请实施例提供了一种基站,该基站中的GNSS接收机可通过第一天线接收卫星数据;该基站中的GNSS芯片可通过第二天线接收卫星数据与第二天线通信连接,第二天线安装于上述靶标的中心,靶标的中心可用于作为航测时的像控点。通过该GNSS接收机和GNSS芯片所接收到的卫星数据,可以进行基线向量解算,从而结合第一天线的坐标,即可确定出像控点得到坐标。由此,使基站具备像控点的功能,提高了对像控点的定位效率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是根据本申请的基站的一个实施例的结构示意图;
图2是图1的基站的俯视图;
图3是根据本申请的基站的一个应用场景的示意图;
图4a是搭载有本申请的基站的车辆的车载基站结构示意图;
图4b是搭载有本申请的基站的车辆的车载基站结构俯视图;
图4c是搭载有本申请的基站的车辆的车载基站结构俯视图;
图4d是搭载有本申请的基站的车辆的一个应用场景的示意图;
图4e是搭载有本申请的基站的车辆的一个应用场景的示意图;
图5是根据本申请的像控点定位方法的一个实施例的流程图;
图6是根据本申请的像控点定位装置的一个实施例的结构示意图。
具体实施例
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
请参考图1,其示出了根据本申请的基站的一个实施例的结构示意图。该基站包括:包括支撑件110和靶标120。
在本实施例中,上述支撑件可以是各种形状的柱体,例如,可以是圆柱体、棱柱体等。此外,上述支撑件可以使用材质制作而成,例如木质、金属、塑料等。
在本实施例中,上述靶标可以是各种形状的板状结构,例如,可以是方形板、圆形板凳。此外,上述靶标可以使用各种材质制作而成,例如泡沫、木质、塑料等。
在本实施例中,上述支撑件110的顶部安装有第一天线(图中未示出)和GNSS(Global Navigation Satellite System,全球导航卫星系统)接收机111。述第一天线与上述GNSS接收机111相连接。上述GNSS接收机111用于通过上述第一天线接收卫星数据。
在本实施例中,上述GNSS接收机111可以是可捕捉和跟踪卫星信号的各种类型的接收机。可选的,可以是安装有多频多系统GNSS板卡的接收机,以保证观测卫星信号的数量和质量。
在本实施例中,上述靶标120与支撑件110的底部的一侧固定连接。上述的靶标的中心安装有第二天线。上述第二天线与GNSS芯片121相连接。上述GNSS芯片121用于通过上述第二天线接收卫星数据。上述靶标的中心用于作为航测时的像控点。
在本实施例中,GNSS芯片121可以是可捕捉和跟踪卫星信号的各种GNSS接收机。可选的,可以是单频GNSS芯片,从而降低成本,并提高基站的便携性。
在本实施例中,上述GNSS接收机111和上述GNSS芯片121分别与处理器(图中未示出)通信连接,上述处理器用于基于上述GNSS接收机111和上述GNSS芯片121所获取的卫星数据,确定第一天线与上述像控点的基线向量坐标差,并基于上述第一天线的坐标和上述基线向量坐标差,确定上述像控点的坐标。
在本实施例的一些可选的实现方式中,靶标120可以是泡沫板。
在本实施例的一些可选的实现方式中,上述靶标可以绘制有黑白相间的图案,以便于识别和定位。
在本实施例的一些可选的实现方式中,上述靶标可以为正方形。该正方形的边长可以预先设定,例如设定为1米。在无人机进行航测拍摄等场景中,可以在拍摄照片中获取地面靶标的标志,并将靶标120的中心作为像控点。由于第二天线安装于上述靶标的中心,因而已知GNSS接收机111接收机和GNSS芯片121所接收到的卫星数据,即可确定出第一天线位置与第二天线位置的基线向量坐标差,由此,基于第一天线位置和上述基线向量坐标差,即可确定出像控点得到坐标。由于像控点位置可以精确得出,由此可以为飞机提供了比较精准的位置数据,降低了无人机对地面控制点的依赖。
当靶标可以为正方形时,可选的,该正方形被可以对角线分割为颜色或图案相互间隔的等腰直角三角形。作为示例,图2示出了基站的一个俯视图。如图2所示,为使靶标更为醒目,正方形被其对角线分割为4个等腰直角三角形为了方便无人机 进行视觉定位个等腰直角三角形具有黑白相间的颜色,因此,无人机可以在较高的高度利用视觉定位准确地确定靶标的中心位置。当然,不失一般性地,被分割为4个等腰直角三角形的四个部分可以具有相互间隔的其他颜色或者图案。当无人机在空中进行拍摄作业时,通过基站发送的卫星数据进行RTK解算,即可获取到厘米级别的摄站位置信息。通过厘米级别的摄站位置信息,可以大大降低对于地面控制点的要求。
在本实施例的一些可选的实现方式中,靶标可以为矩形(例如长方形、正方形)。此时,与上述正方形类似,矩形可以被对角线分割为颜色或图案相互间隔的等腰三角形。作为示例,矩形被对角线分割为颜色黑白相间的等腰三角形。此外,矩形还可以被各个边的中线分割为颜色或图案相互间隔的矩形。此处,分割方式不作限定,可以根据需要选取各种分割方式。
在本实施例的一些可选的实现方式中,靶标可以包括邻接的第一正方形和第二正方形。此时,两个相邻的靶标可以供两架无人机分别停靠。上述第一正方形和/或第二正方形可以被对角线分割为颜色或图案相互间隔的等腰直角三角形。作为示例,第一正方形和第二正方形可以分别被对角线分割为颜色黑白相间的四个等腰直角三角形。
需要说明的是,当靶标包括邻接的第一正方形和第二正方形时,第一正方形和第二正方形的相邻接部分(例如相邻的等腰三角形)的颜色可以相同或不同。无人停靠时的机头朝向可以根据靶标上的颜色确定。相互邻接正方形图案的相邻部分颜色不同,以规定无人机的不同朝向。
在本实施例的一些可选的实现方式中,靶标可以为圆形。圆形可以被两条直径分割为4个部分。4个部分分别具有相互间隔的形状或者颜色。以便于无人机可以在较高的高度利用视觉定位准确地确定靶标的中心位置。例如,圆形被两条直径分割为颜色黑白相间的扇形。两条直径的夹角的度数可以预先设定。作为示例,两条直径夹角为90°。
在本实施例的一些可选的实现方式中,当无人机达到充电阈值时,飞行到靶标附近悬停,等待原本停靠于靶标上充电的无人机起飞后根据视觉定位降落于靶标中心位置。
在本实施例的一些可选的实现方式中,靶标中心处设置有充电接口。无人机停靠于靶标中心时,无人机上的充电接口恰好与靶标中心的充电接口对接,以使无人机充电。
在本实施例的一些可选的实现方式中,靶标上设置有无线充电装置,无人机停靠后可以根据无线充电技术进行充电。
在本实施例的一些可选的实现方式中,上述第一天线可以为测量型天线,以保证较好地捕捉和跟踪卫星信号。
在本实施例的一些可选的实现方式中,上述第二天线可以为四臂螺旋天线。实践中,四臂螺旋天线由四根螺旋臂组成,每根的长度为四分之一波长的整数倍。四根螺旋臂馈电端的电流幅度相等,相位依次相差90°它具有心形方向图、良好的前后比及优异的宽波束圆极化特性,十分适合用作卫星定位系统的接收天线。
在本实施例的一些可选的实现方式中,上述支撑件的高度大于或等于预设高度(例如1.5米)。由此,可以保证第一天线能够接收到较低仰角的卫星信号,尽量减少环境遮挡的影响,降低多路径效应的影响。
在本实施例的一些可选的实现方式中,上述靶标还可以用作无人机的起降点。在以往情况下,在无人机进行航带作业时,由于图传距离有限,因而对于大范围的航带作业,无人机通常无法使用一个起降点完成航带作业,需要返回起飞点。导致无人机在航带作业过程中,浪费了大量的电池电量和人力物力资源,作业效率较低。而本实施例所描述的基站,可以在航带作业的应用场景下,作为无人机的起降点。由于靶标上可以设置有无线充电装置,或靶标中心可以具有充电接口,因而,可以使无人机可以在作业过程中,在本实施例所描述的基站中起降及充电。
如图3所示,图3是该基站的一个应用场景的示意图。图3中包含四个基站。图3中的虚线为无人机执行航带作业时的飞行路线。无人机可以按照虚线所指示的飞行路线进行飞行作业。在航带作业过程中,可以将图3中的四个基站中任意一个或多个基站作为起降点(例如在航带作业过程中距离无人机最近的一个),进行无人机的起降,以进行充电等操作。
作为示例,电力巡检场景中,通常需要检测输电塔是否发生故障。以往方式通常需要人工登至输电塔的顶端,来排查输电塔是否发生故障。虽然也可通过无人机进行拍摄作业,但由于电力巡检的电路过长、输电塔之间的距离较远或者输电塔数量较多,通常无人机无法一次性完成该拍摄作业。此时,可以将本实施例所描述的基站布置于检测范围内。无人机在拍摄作业中,当电量不足需要充电时,可以检测出距离无人机最近的基站位置,并靠近该基站的位置,以便在该基站处降落。在降落过程中,无人机可以通过定位识别功能,根据靶标中的图案,确定靶标正中的位置,从而识别出靶标的精确位置,以完成精确着陆,进而可以对无人机进行更换电池或充电等操作。该过程中无需用户干预和操作,可以节约人力成本,节省维护人员体力。从而,本实施例所描述的基站可作为无人机的起降点,有助于提高无人机大区域作业时的作业效率。
在本实施例的一些可选的实现方式中,上述基站可以用于基于上述GNSS接收机和上述GNSS芯片所获取的卫星数据,确定第一天线与上述像控点的基线向量坐标差,并基于上述第一天线的坐标和上述基线向量坐标差,确定上述像控点的坐标。
在本实施例的一些可选的实现方式中,上述基站用于作为基准站或移动站。
在本实施例的一些可选的实现方式中,上述基站安装有网卡,当上述基站作为 基准站时,上述网卡用于将上述GNSS接收机所接收的卫星数据和上述第一天线的坐标发送至服务器或者移动站。其中,上述移动站包括无人机。实践中,用户可通过遥控器向服务器请求差分数据,服务器即可通过图传将差分数据转发给无人机。或者,无人机可以通过图传直接从基站中获取卫星数据和上述第一天线的坐标。
在本实施例的一些可选的实现方式中,当上述基站作为移动站时,上述基站还可以用于获取基准站采集的卫星数据和上述基准站的坐标,并基于基准站采集的卫星数据、上述基准站的坐标和上述GNSS接收机接收到的卫星数据,确定上述第一天线的坐标。此处,上述基准站可以是第三方CORS(Continuously Operating Reference Stations,连续运行参考站)。此处,可以通过RTK(Real-time kinematic,实时动态)载波相位差分定位技术或者PPK(postprocessed kinematic,动态后处理)测量技术计算第一天线的坐标。
实践中,RTK载波相位差分技术,是实时处理两个测量站载波相位观测量的差分方法。将基准站和移动站接收到的卫星信号进行实时联合解算,求得基准站和移动站间坐标增量(即基线向量坐标差)。从而,在基准站坐标已知的情况下,通过基线向量坐标差,即可确定移动站的坐标。
此外,PPK测量技术是利用载波相位进行事后差分的GNSS定位技术,属于动态后处理测量技术。与RTK实时载波相位差分技术不同,PPK测量时在移动站和基准站之间不需要建立实时通讯链接,而是在外业观测结束以后,对移动站与基准站GNSS接收机所采集的原始观测数据进行事后处理,从而计算出移动站的三维坐标。
本申请的上述实施例提供的基站,该基站中的GNSS接收机可通过第一天线接收卫星数据;该基站中的GNSS芯片可通过第二天线接收卫星数据与第二天线通信连接,第二天线安装于上述靶标的中心,靶标的中心可用于作为航测时的像控点。通过该GNSS接收机和GNSS芯片所接收到的卫星数据,可以进行基线向量解算,从而结合第一天线的坐标,即可确定出像控点得到坐标。由此,使基站具备像控点的功能,提高了对像控点的定位效率。同时,该基站还可以作为移动站、基准站以及无人机航测过程中的起降点,由此,丰富了基站的用途。
请进一步参考图4a-4e。前述实施例中的基站可搭载于车辆上,由此,本申请还提供了一种车辆。图4a是搭载有前述基站的车辆的车载基站结构示意图;图4b是搭载有前述基站的车辆的车载基站结构俯视图;图4c是搭载有前述基站的车辆的车载基站结构俯视图;图4d是搭载有前述基站的一个应用场景的示意图;图4e搭载有前述基站的车辆的一个应用场景的示意图。
如图4a所示,前述实施例中的基站可搭载于车辆上。在巡检(例如电力巡检)过程中,当无人机电量达到充电阈值时,可以通过与基站的GNSS接收机通信获得基站的粗略位置,并移动至搭载有基站的车辆上方,然后通过视觉定位确定搭载于 车辆上的上述基站的精确位置,并根据视觉位置降落(如图4d所示)。基站靶标可以是正方形(如图4b所示)、近邻的两个正方形(如图4c所示)、矩形、圆形、正十字形等,本说明书实施例不对其形状进行限定。
靶标可以搭载于车辆的顶部或者挂斗中,以便于车辆在静止或者行驶状态下可以自由起飞或者降落。如图4d和4e所示,无人机可以在一定高度获得搭载于车辆上的基站靶标位置。
靶标中心处可以设置有充电接口。无人机停靠于靶标中心时,无人机上的充电接口恰好与靶标中心的充电接口对接,以使无人机充电。靶标上设置有无线充电装置,无人机停靠后可以根据无线充电技术进行充电。当无人机充电结束后,可以起飞并继续完成巡检任务,此时,该靶标可提供另一无人机降落(如图4e所示)。
进一步参考图5,其示出了根据本申请的像控点定位方法的流程500。该像控点定位方法的流程500,包括以下步骤:
步骤501,分别获取GNSS接收机和GNSS芯片接收到的卫星数据。
在本实施例中,像控点定位方法的执行主体(例如图1实施例所描述的基站通信连接的电子设备)可以分别获取GNSS接收机和GNSS芯片接收到的卫星数据。其中,上述GNSS接收机和上述GNSS芯片安装于图1实施例所描述的基站。此处,上述卫星数据可以包括载波相位观测值或者查分观测值等。
步骤502,基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差。
在本实施例中,上述执行主体可以对所获取的卫星数据进行基线向量解算(baseline vector solution)。实践中,基线向量解算是指在卫星定位中,利用载波相位观测值或其差分观测值,求解两个同步观测的测站之间的基线向量坐标差的过程。由此,通过基线向量解算,即可确定第一天线与第二天线的基线向量坐标差。
此处,第一天线的位置可称为A点,第二天线的位置可称为B点。通过基线向量解算,可以得到可以获取A、B间在ECEF(Earth Centered Earth Fixed Coordinate System,地球中心坐标系)坐标系下的距离值(ΔX,ΔY,ΔZ)。
此处,A、B间在ECEF坐标系下的距离值(ΔX,ΔY,ΔZ)的计算原理(即差分定位原理)如下:
假设A点与B点同步观测卫星j的数据。则A点获取的卫星j的载波相位观测值
Figure PCTCN2019096572-appb-000001
伪距观测值
Figure PCTCN2019096572-appb-000002
A点获取的卫星k载波相位观测值
Figure PCTCN2019096572-appb-000003
和伪距观测值
Figure PCTCN2019096572-appb-000004
如下:
Figure PCTCN2019096572-appb-000005
Figure PCTCN2019096572-appb-000006
Figure PCTCN2019096572-appb-000007
Figure PCTCN2019096572-appb-000008
其中,
Figure PCTCN2019096572-appb-000009
为卫星j到A点的距离,c为光速,δ为钟差,
Figure PCTCN2019096572-appb-000010
为A点观测卫星j的对流层延迟,
Figure PCTCN2019096572-appb-000011
为A点观测卫星j的电离层延迟,
Figure PCTCN2019096572-appb-000012
为A点观测卫星j的整周模糊度,ε 1、ε 2为随机误差,λ为波长,
Figure PCTCN2019096572-appb-000013
为卫星k到A点的距离,
Figure PCTCN2019096572-appb-000014
为A点观测卫星k的对流层延迟,
Figure PCTCN2019096572-appb-000015
为A点观测卫星k的电离层延迟,
Figure PCTCN2019096572-appb-000016
为A点观测卫星k的整周模糊度。
同理,B点获取的卫星j的载波相位观测值
Figure PCTCN2019096572-appb-000017
伪距观测值
Figure PCTCN2019096572-appb-000018
B点获取的卫星k载波相位观测值
Figure PCTCN2019096572-appb-000019
和伪距观测值
Figure PCTCN2019096572-appb-000020
如下:
Figure PCTCN2019096572-appb-000021
Figure PCTCN2019096572-appb-000022
Figure PCTCN2019096572-appb-000023
Figure PCTCN2019096572-appb-000024
其中,
Figure PCTCN2019096572-appb-000025
为卫星j到B点的距离,
Figure PCTCN2019096572-appb-000026
为B点观测卫星j的对流层延迟,
Figure PCTCN2019096572-appb-000027
为B点观测卫星j的电离层延迟,
Figure PCTCN2019096572-appb-000028
为B点观测卫星j的整周模糊度,
Figure PCTCN2019096572-appb-000029
为卫星k到B点的距离,
Figure PCTCN2019096572-appb-000030
为B点观测卫星k的对流层延迟,
Figure PCTCN2019096572-appb-000031
为B点观测卫星k的电离层延迟,
Figure PCTCN2019096572-appb-000032
为B点观测卫星k的整周模糊度。
当分别为A点和B点的载波相位观测值及伪距观测值进行二次差分运算后,可得公式:
Figure PCTCN2019096572-appb-000033
Figure PCTCN2019096572-appb-000034
其中,
Figure PCTCN2019096572-appb-000035
为载波相位双差值,
Figure PCTCN2019096572-appb-000036
为伪距双差值,
Figure PCTCN2019096572-appb-000037
为距离双差值,
Figure PCTCN2019096572-appb-000038
为对流层延迟双差值,
Figure PCTCN2019096572-appb-000039
为电离层延迟双差值,
Figure PCTCN2019096572-appb-000040
为整周模糊度双差值,
Figure PCTCN2019096572-appb-000041
分别为随机误差双差值。
由于A、B点间距远远小于各点与卫星的间距,因此,可认为A点观测卫星j的钟差与B点观测卫星j的钟差近似,A点观测卫星k的钟差与B点观测卫星k的钟差近似,A点观测卫星j的对流层延迟与B点观测卫星j的对流层延迟近似,A点观测卫星k的对流层延迟与B点观测卫星k的对流层延迟近似,A点观测卫星j的电离层延迟与B点观测卫星j的电离层延迟近似,以及A点观测卫星k的电离层延迟 与B点观测卫星k的电离层延迟近似。因此,可消除钟差、电离层误差、对流层误差等影响定位精度的主要因素,从而获得厘米级的A、B间相对位置关系(ΔX,ΔY,ΔZ)。此时,在A点的坐标(X A,Y A,Z A)已知的情况下,即可确定出B点的位置。
步骤503,获取第一天线的坐标。
在本实施例中,上述执行主体可以获取第一天线(即A点)的坐标。此处,可以采用多种方式获取A点的坐标(X A,Y A,Z A)。此处,A点的坐标可以是在ECEF坐标系下的坐标。
可选的,可以通过RTK载波相位差分技术载波相位差分获取A点的坐标。或者,可以通过PPK测量技术获取上述第一天线的坐标。或者,可以通过GNSS静态观测技术获取上述第一天线的坐标。需要指出的是,在利用上述方式获取A点坐标时,可以依赖于第三方基站,比如CORS等。
需要说明的时,获取A点的坐标的方式不限于以上列举,还可以根据需要采用其他方式获取,例如使用全站仪等电子设备进行测量,此处不再赘述。
步骤504,将靶标的中心作为无人机航测时的像控点,基于上述坐标和基线向量坐标差,确定像控点的坐标。
在本实施例中,上述执行主体可以将靶标的中心作为无人机航测时的像控点。由于A点的坐标以及A、B点之间的基线向量坐标差已知,因此,可以由A上述坐标和上述基线向量坐标差,确定出上述像控点在ECEF坐标系下的坐标(X B,Y B,Z B)。
在本实施例的一些可选的实现方式中,在确定出像控点的坐标之后,上述执行主体还可以将上述像控点的坐标转换为地理坐标(Geographic Coordinates),该地理坐标可以表示为(Lon B,Lat B,H B)。此处,地理坐标可通过如下公式确定:
Figure PCTCN2019096572-appb-000042
Figure PCTCN2019096572-appb-000043
Figure PCTCN2019096572-appb-000044
Figure PCTCN2019096572-appb-000045
其中,Lon B、Lat B、H B分别为B点的经度、纬度、高度。e 2为地球偏心率,a为地球的半长轴的长度。
实践中,地理坐标为用纬度、经度、高度表示地面点位置的球面坐标。地理坐标系以地轴为极轴,所有通过地球南北极的平面均称为子午面。而后,上述执行主体还可以将上述地理坐标进行投影变换(例如采用横轴墨卡托投影或高斯克吕格投影等投影变换方式),生成上述像控点的投影坐标。由于像控点通常采用投影坐标,因而,将像控点的坐标转换为投影坐标,便于基于像控点对地图的精度进行控制。
本申请的上述实施例提供的方法,通过获取基站中的GNSS接收机和GNSS芯片所接收到的卫星数据,而后进行基线向量解算,最后结合第一天线的坐标确定出像控点得到坐标。相对于人工在地上选取像控点进行标记,再通过GNSS静态解算或者全站仪等电子设备确定像控点坐标的方式,可以提高像控点的定位效率。
进一步参考图6,作为对上述各图所示方法的实现,本申请提供了一种电子设备的一个实施例,该装置实施例与图6所示的方法实施例相对应。该电子设备可以部署于如图1所示的基站中,也可以与图1所示的基站通过有线或无线通信方式通讯连接。
如图6所示,本实施例所述的电子设备600包括:处理器601和存储器602。上述存储器601,用于存储程序指令;上述处理器602,用于执行上述存储器存储的程序指令,当程序指令被执行时,上述处理器用于执行如下步骤:分别获取GNSS接收机和GNSS芯片接收到的卫星数据;基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差;获取上述第一天线的坐标;将靶标的中心作为无人机航测时的像控点,基于上述坐标和上述基线向量坐标差,确定上述像控点的坐标;其中,上述GNSS接收机、上述GNSS芯片、上述第一天线、上述第二天线和上述靶标安装于如图1实施例所描述的基站。
在本实施例的一些可选的实现方式中,上述处理器602可以进一步用于:将上述像控点的坐标转换为地理坐标;将上述地理坐标进行投影变换,生成上述像控点的投影坐标。
在本实施例的一些可选的实现方式中,上述处理器602可以进一步用于:通过RTK载波相位差分技术载波相位差分获取上述第一天线的坐标。
在本实施例的一些可选的实现方式中,上述处理器602可以进一步用于:通过PPK测量技术获取上述第一天线的坐标。
在本实施例的一些可选的实现方式中,上述处理器602可以进一步用于:通过GNSS静态观测技术获取上述第一天线的坐标。
本申请的上述实施例提供的电子设备,通过获取基站中的GNSS接收机和GNSS芯片所接收到的卫星数据,而后进行基线向量解算,最后结合第一天线的坐标确定出像控点得到坐标。相对于人工在地上选取像控点进行标记,再通过GNSS静态解算或者全站仪等电子设备确定像控点坐标的方式,可以提高像控点的定位效率。
本申请实施例还提供一种计算机可读介质,计算机可读介质上存储有计算机程序,该计算机程序被处理器执行时实现上述像控点定位方法的实施例的各个过程,且能达到相同的技术效果。为避免重复,该计算机程序被处理器执行时实现上述各方法的实施例的各个过程,这里不再赘述。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的数据传输系统、方法、发送端和计算机可读介质,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (40)

  1. 一种基站,其特征在于,包括支撑件和靶标;
    所述支撑件的顶部安装有第一天线和全球导航卫星系统GNSS接收机,所述第一天线与所述GNSS接收机相连接,所述GNSS接收机用于通过所述第一天线接收卫星数据;
    所述靶标与所述支撑件的底部的一侧固定连接,所述的靶标的中心安装有第二天线,所述第二天线与GNSS芯片相连接,所述GNSS芯片用于通过所述第二天线接收卫星数据,所述靶标的中心用于作为航测时的像控点;
    所述GNSS接收机和所述GNSS芯片分别与处理器通信连接,所述处理器用于基于所述GNSS接收机和所述GNSS芯片所获取的卫星数据,确定第一天线与所述像控点的基线向量坐标差,并基于所述第一天线的坐标和所述基线向量坐标差,确定所述像控点的坐标。
  2. 根据权利要求1所述的基站,其特征在于,所述靶标为泡沫板。
  3. 根据权利要求1所述的基站,其特征在于,所述靶标绘制有黑白相间的图案。
  4. 根据权利要求1所述的基站,其特征在于,所述靶标为矩形。
  5. 根据权利要求4所述的基站,其特征在于,所述矩形被对角线分割为颜色或图案相互间隔的等腰三角形。
  6. 根据权利要求5所述的基站,其特征在于,所述矩形被对角线分割为颜色黑白相间的等腰三角形。
  7. 根据权利要求1所述的基站,其特征在于,所述靶标为正方形。
  8. 根据权利要求7所述的基站,其特征在于,所述正方形被对角线分割为颜色或图案相互间隔的等腰直角三角形。
  9. 根据权利要求8所述的基站,其特征在于,所述正方形被对角线分割为颜色黑白相间的等腰直角三角形。
  10. 根据权利要求1所述的基站,其特征在于,所述靶标包括邻接的第一正方 形和第二正方形。
  11. 根据权利要求11所述的基站,其特征在于,所述第一正方形和/或第二正方形被对角线分割为颜色或图案相互间隔的等腰直角三角形。
  12. 根据权利要求11所述的基站,其特征在于,所述第一正方形和第二正方形被对角线分割为颜色黑白相间的等腰直角三角形。
  13. 根据权利要求12所述的基站,其特征在于,第一和第二正方形的相邻接部分颜色不同。
  14. 根据权利要求12所述的基站,其特征在于,第一和第二正方形的相邻接部分颜色相同。
  15. 根据权利要求1所述的基站,其特征在于,所述靶标为圆形。
  16. 根据权利要求16所述的基站,其特征在于,所述圆形被两条直径分割为颜色黑白相间的扇形。
  17. 根据权利要求16所述的基站,其特征在于,所述两条直径夹角为90°。
  18. 根据权利要求1所述的基站,其特征在于,所述靶标中心具有充电接口。
  19. 根据权利要求1所述的基站,其特征在于,靶标上设置有无线充电装置。
  20. 根据权利要求1所述的基站,其特征在于,所述基站用于作为基准站或移动站。
  21. 根据权利要求20所述的基站,其特征在于,所述基站安装有网卡,当所述基站作为基准站时,所述网卡用于将所述GNSS接收机所接收的卫星数据和所述第一天线的坐标发送至服务器或者移动站,其中,所述移动站包括无人机。
  22. 根据权利要求20所述的基站,其特征在于,当所述基站作为移动站时,所述处理器进一步用于获取基准站采集的卫星数据和所述基准站的坐标,并基于所述基准站采集的卫星数据、所述基准站的坐标和所述GNSS接收机接收到的卫星数据, 确定所述第一天线的坐标,将所述第一天线的坐标作为所述基站的坐标。
  23. 根据权利要求1所述的基站,其特征在于,所述靶标用于作为无人机的起降点。
  24. 根据权利要求1所述的基站,其特征在于,所述GNSS接收机安装有多频多系统GNSS板卡。
  25. 根据权利要求1所述的基站,其特征在于,所述GNSS芯片为单频GNSS芯片。
  26. 根据权利要求1所述的基站,其特征在于,所述第一天线为测量型天线。
  27. 根据权利要求1所述的基站,其特征在于,所述第二天线为四臂螺旋天线。
  28. 根据权利要求1所述的基站,其特征在于,所述支撑件的高度大于或等于预设高度。
  29. 一种像控点定位方法,其特征在于,包括:
    分别获取GNSS接收机和GNSS芯片接收到的卫星数据;
    基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差;
    获取所述第一天线的坐标;
    将靶标的中心作为无人机航测时的像控点,基于所述坐标和所述基线向量坐标差,确定所述像控点的坐标;
    其中,所述GNSS接收机、所述GNSS芯片、所述第一天线、所述第二天线和所述靶标安装于如权利要求1-11之一所述的基站。
  30. 根据权利要求29所述的方法,其特征在于,在所述确定所述像控点的坐标之后,所述方法还包括:
    将所述像控点的坐标转换为地理坐标;
    将所述地理坐标进行投影变换,生成所述像控点的投影坐标。
  31. 根据权利要求29所述的方法,其特征在于,所述获取所述第一天线的坐标,包括:
    通过实时动态RTK载波相位差分技术载波相位差分获取所述第一天线的坐标。
  32. 根据权利要求29所述的方法,其特征在于,所述获取所述第一天线的坐标,包括:
    通过动态后处理PPK测量技术获取所述第一天线的坐标。
  33. 根据权利要求29所述的方法,其特征在于,所述获取所述第一天线的坐标,包括:
    通过GNSS静态观测技术获取所述第一天线的坐标。
  34. 一种电子设备,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,用于执行所述存储器存储的程序指令,当程序指令被执行时,所述处理器用于执行如下步骤:
    分别获取GNSS接收机和GNSS芯片接收到的卫星数据;
    基于所获取的卫星数据,确定第一天线与第二天线的基线向量坐标差;
    获取所述第一天线的坐标;
    将靶标的中心作为无人机航测时的像控点,基于所述坐标和所述基线向量坐标差,确定所述像控点的坐标;
    其中,所述GNSS接收机、所述GNSS芯片、所述第一天线、所述第二天线和所述靶标安装于如权利要求1-11之一所述的基站。
  35. 根据权利要求34所述的电子设备,其特征在于,所述处理器,进一步用于:
    将所述像控点的坐标转换为地理坐标;
    将所述地理坐标进行投影变换,生成所述像控点的投影坐标。
  36. 根据权利要求34所述的电子设备,其特征在于,所述处理器,进一步用于:
    通过RTK载波相位差分技术载波相位差分获取所述第一天线的坐标。
  37. 根据权利要求34所述的电子设备,其特征在于,所述处理器,进一步用于:
    通过PPK测量技术获取所述第一天线的坐标。
  38. 根据权利要求34所述的电子设备,其特征在于,所述处理器,进一步用于:
    通过GNSS静态观测技术获取所述第一天线的坐标。
  39. 一种计算机可读介质,其上存储有计算机程序,其特征在于,该程序被处 理器执行时实现如权利要求29-33中任一所述的方法。
  40. 一种车辆,其特征在于,所述车辆搭载有权利要求1-28之一所述的基站。
PCT/CN2019/096572 2019-07-18 2019-07-18 基站、像控点定位方法、电子设备和计算机可读介质 WO2021007855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/096572 WO2021007855A1 (zh) 2019-07-18 2019-07-18 基站、像控点定位方法、电子设备和计算机可读介质
CN201980008835.2A CN111712735A (zh) 2019-07-18 2019-07-18 基站、像控点定位方法、电子设备和计算机可读介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096572 WO2021007855A1 (zh) 2019-07-18 2019-07-18 基站、像控点定位方法、电子设备和计算机可读介质

Publications (1)

Publication Number Publication Date
WO2021007855A1 true WO2021007855A1 (zh) 2021-01-21

Family

ID=72536817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096572 WO2021007855A1 (zh) 2019-07-18 2019-07-18 基站、像控点定位方法、电子设备和计算机可读介质

Country Status (2)

Country Link
CN (1) CN111712735A (zh)
WO (1) WO2021007855A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115357675A (zh) * 2022-08-18 2022-11-18 自然资源部国土卫星遥感应用中心 一种像控点标准化处理建设像控点数据库方法和系统
CN117169936A (zh) * 2023-09-18 2023-12-05 武汉非秒迅连科技有限公司 终端定位方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779845A (zh) * 2021-01-27 2021-05-11 樊勇军 道路标线自动预划线设备及工作方法
CN115950305B (zh) * 2023-03-14 2023-05-12 四川省自然资源科学研究院(四川省生产力促进中心) 无人机多功能地面相控靶标装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005019A (zh) * 2015-07-09 2015-10-28 厦门精图信息技术股份有限公司 一种基于bds/gps rtk的地下管线测量方法
CN105937902A (zh) * 2016-04-29 2016-09-14 山东深海海洋科技有限公司 一种基于rtk-gps波浪测量技术的船载浮标测量系统及方法
CN206370490U (zh) * 2017-01-18 2017-08-01 深圳市北斗智星勘测科技有限公司 一种支持gnss和反射棱镜同步观测的天线支架
CN207937612U (zh) * 2018-04-02 2018-10-02 北京建筑大学 一种可用于三维激光扫描标靶的gnss接收机
CN208026870U (zh) * 2018-03-29 2018-10-30 西安长庆科技工程有限责任公司 一种基于gnss扫描测量装置
CN208059907U (zh) * 2018-04-13 2018-11-06 广东海纬地恒空间信息技术有限公司 一种无人机导航信息地面校正装置
CN109211200A (zh) * 2018-09-29 2019-01-15 北京四维图新科技股份有限公司 地图数据采集系统
JP2019035728A (ja) * 2017-08-16 2019-03-07 宏介 津留 ネジ付き対空標識

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220212A (ja) * 1995-02-14 1996-08-30 Furuno Electric Co Ltd Gps測距装置およびgps測位装置
CN105651160B (zh) * 2014-11-04 2019-02-12 北京浩宇天地测绘科技发展有限公司 一种安装定位装置的三维激光扫描仪球形标靶及其使用方法
CN104931922B (zh) * 2015-04-29 2017-05-10 湖北航天技术研究院总体设计所 一种车载双天线卫星定向仪方位角传递装置与方法
CN206757048U (zh) * 2017-01-19 2017-12-15 广州南方无人机技术有限公司 无人机后差分航测模块
CN106643670B (zh) * 2017-02-26 2022-12-09 西安大地测绘股份有限公司 一种无人机航摄站点坐标求解装置及方法
CN106932801A (zh) * 2017-05-02 2017-07-07 南京嘉谷初成通信科技有限公司 一种用于无人机的手持地面站及测绘定位方法
CN108489467B (zh) * 2018-03-07 2019-09-24 华北水利水电大学 一种房屋密集区域航测无人机像控点坐标测量方法
CN109539895B (zh) * 2018-11-14 2021-02-26 石家庄铁道大学 移动靶标智能控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005019A (zh) * 2015-07-09 2015-10-28 厦门精图信息技术股份有限公司 一种基于bds/gps rtk的地下管线测量方法
CN105937902A (zh) * 2016-04-29 2016-09-14 山东深海海洋科技有限公司 一种基于rtk-gps波浪测量技术的船载浮标测量系统及方法
CN206370490U (zh) * 2017-01-18 2017-08-01 深圳市北斗智星勘测科技有限公司 一种支持gnss和反射棱镜同步观测的天线支架
JP2019035728A (ja) * 2017-08-16 2019-03-07 宏介 津留 ネジ付き対空標識
CN208026870U (zh) * 2018-03-29 2018-10-30 西安长庆科技工程有限责任公司 一种基于gnss扫描测量装置
CN207937612U (zh) * 2018-04-02 2018-10-02 北京建筑大学 一种可用于三维激光扫描标靶的gnss接收机
CN208059907U (zh) * 2018-04-13 2018-11-06 广东海纬地恒空间信息技术有限公司 一种无人机导航信息地面校正装置
CN109211200A (zh) * 2018-09-29 2019-01-15 北京四维图新科技股份有限公司 地图数据采集系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115357675A (zh) * 2022-08-18 2022-11-18 自然资源部国土卫星遥感应用中心 一种像控点标准化处理建设像控点数据库方法和系统
CN117169936A (zh) * 2023-09-18 2023-12-05 武汉非秒迅连科技有限公司 终端定位方法及系统

Also Published As

Publication number Publication date
CN111712735A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021007855A1 (zh) 基站、像控点定位方法、电子设备和计算机可读介质
Grayson et al. GPS precise point positioning for UAV photogrammetry
US10878243B2 (en) Method, device and apparatus for generating electronic map, storage medium, and acquisition entity
US10564649B2 (en) Flight planning for unmanned aerial tower inspection
CN106526551B (zh) 一种雷达天线动态性能测试系统及方法
GREJNER‐BRZEZINSKA Direct exterior orientation of airborne imagery with GPS/INS system: Performance analysis
US9927513B2 (en) Method for determining the geographic coordinates of pixels in SAR images
CN105184776A (zh) 目标跟踪方法
CN110503687B (zh) 一种空中光电测量平台目标定位方法
JP6138326B1 (ja) 移動体、移動体の制御方法、移動体を制御するプログラム、制御システム、及び情報処理装置
CN108520640B (zh) 基于超宽带的无人机导航方法、导航设备、无人机
Madawalagama et al. Low cost aerial mapping with consumer-grade drones
CN102565834A (zh) 一种单频gps测向系统及其测向定位方法
US10642284B1 (en) Location determination using ground structures
US11531833B2 (en) Creating a ground control point file using an existing landmark shown in images
CN108614582A (zh) 基于rtk技术的无人机精准降落方法
CN106643670B (zh) 一种无人机航摄站点坐标求解装置及方法
CN112098926B (zh) 一种利用无人机平台的智能测角训练样本生成方法
KR102028323B1 (ko) 영상 레이더의 영상 보정 장치 및 시스템
Huang et al. Research on UAV flight performance test method based on dual antenna GPS/INS integrated system
CN109146936B (zh) 一种图像匹配方法、装置、定位方法及系统
CN115876197A (zh) 一种系留升空光电成像目标定位方法
Iannucci et al. Cross-Modal Localization: Using automotive radar for absolute geolocation within a map produced with visible-light imagery
CN109993795B (zh) 解算sar图像地面位置方法、装置、电子设备及介质
CN112013716A (zh) 一种电视导引头模拟系统捕捉快速移动目标的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937488

Country of ref document: EP

Kind code of ref document: A1